
i
i

i
i

i
i

i
i

REVISTA DE LA
UNIÓN MATEMÁTICA ARGENTINA
Vol. 52, No. 2, 2011, 1–22

HARDY SPACES ASSOCIATED WITH SEMIGROUPS OF
OPERATORS

JORGE J. BETANCOR

Abstract. This paper is a non exhaustive survey about Hardy spaces defined by semigroups of
operators.

1. Introduction

This paper is a summary of the talk held by the author in the conference “X
Encuentro de Analistas A. Calderón”, that was celebrated in La Falda, Córdoba,
in Argentina, in September 2010. Our purpose is to present a survey about Hardy
spaces associated with semigroups of operators. Of course it is not possible to be ex-
haustive. There exist monographs about this topic (see [25], [43], and [50], amongst
others) and almost every day a paper where Hardy spaces appear is written. This
shows the great importance of the Hardy spaces.

In [42] Stein developed harmonic analysis associated to semigroups of operators.
Let (Ω,M, µ) be a measure space. A family {Tt}t>0 of operators is a C0-semigroup
of operators when the following conditions are satisfied:

(i) For every t > 0, the operator Tt is bounded from L2(Ω, µ) into itself.
(ii) Tt ◦ Ts = Tt+s, t, s > 0.
(iii) For every f ∈ L2(Ω, µ), limt→0+ Ttf = f , in L2(Ω, µ).

A C0-semigroup {Tt}t>0 is said to be a symmetric diffusion semigroup provided
that, for every t > 0, we have that

(iv) Tt is a contraction in Lp(Ω, µ), for every 1 ≤ p ≤ ∞.
(v) Tt is selfadjoint in L2(Ω, µ).
(vi) Ttf ≥ 0, for every 0 ≤ f ∈ Lp(Ω, µ) and 1 ≤ p ≤ ∞.

(vii) For every f ∈ L2(Ω, µ),
∫

Ω

fdµ =

∫
Ω

Ttfdµ.

The classical heat and Poisson semigroups, Ornstein-Uhlenbeck (Gaussian) semi-
group or Bessel semigroup considered in [36] are examples of symmetric diffusion
semigroups.

Maximal operators, Littlewood-Paley g-functions and Laplace transform type
multipliers associated with symmetric diffusion semigroups were studied in [42].
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2 J. BETANCOR

The maximal operator T∗ associated with the semigroup of operators {Tt}t>0 is
defined by

T∗f = sup
t>0
|Ttf |.

The behavior of T∗ in Lp-spaces is the following.

Theorem 1.1 ([42, p. 73]). Suppose that {Tt}t>0 is a C0-semigroup of operators
in L2(Ω, µ) that satisfies the properties (iv) and (v) above. Then, the maximal
operator T∗ is bounded from Lp(Ω, dµ) into itself, for every 1 < p ≤ ∞. Moreover,
for every f ∈ Lp(Ω, µ), 1 < p ≤ ∞,

lim
t→0+

Ttf(x) = f(x), (µ)-a.e. x ∈ Ω

In this point the question is: What is the behavior of T∗ in L1(Ω, µ)? This
question has been answered in many cases: classical heat and Poisson semigroups,
Ornstein-Uhlenbeck, Bessel and Laguerre semigroups, semigroups generated by
quite general elliptic operators, . . . . In all these examples T∗ is bounded from L1

into L1,∞ but it is not bounded from L1 into itself.
The Hardy space H1({Tt}t>0) associated with the semigroup {Tt}t>0 is defined

by
H1({Tt}t>0) = {f ∈ L1(Ω, µ) : T∗(f) ∈ L1(Ω, µ)}.

The norm ‖.‖H1({Tt}t>0) in H1({Tt}t>0) is given by

‖f‖H1({Tt}t>0) = ‖T∗f‖1, f ∈ H1({Tt}t>0).

For every semigroup {Tt}t>0 it is usual to study different characterizations of
the space H1({Tt}t>0) (atomic representations, maximal functions, special singular
integrals, area integrals, . . . ), H1({Tt}t>0)-boundedness of harmonic analysis op-
erators (multipliers, singular integrals, . . . ), duality and interpolation, definitions
and properties of the spaces Hp({Tt}t>0), 0 < p < 1, amongst other problems.

We begin recalling definitions and results about classical Hardy spaces in Section
2. After this, we present in Section 3 the extension of Hp theory to homogeneous
and non-homogeneous type spaces. In Section 3 we consider the Hardy spaces
associated to second order linear differential operators. In the last years I have
collaborated with J. Dziubanski (University of Wroclaw), G. Garrigós (University
of Murcia), S. Molina (University of Mar del Plata), L. Rodríguez-Mesa (University
of La Laguna) and J.L. Torrea (Autónoma University of Madrid) studying Hardy
spaces in the Bessel and Laguerre settings. Our results about Bessel and Laguerre
Hardy spaces are presented in Sections 4 and 5, respectively.

2. Classical Hardy spaces

The study of Hardy spaces in Rn was begun by Stein and Weiss [44]. Their
theory was developed in connection with harmonic functions. In their celebrated
paper [24], Fefferman and Stein introduced real variable methods in the analysis of
Hp spaces (see [24, Section V]).

By S(Rn) we denote the Schwartz class of functions endowed with its usual
Fréchet topology, and by S(Rn)′ the dual space of S(Rn) that is called the space of
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HARDY SPACES ASSOCIATED WITH SEMIGROUPS OF OPERATORS 3

tempered distributions. A tempered distribution f is said bounded when f ∗ φ ∈
L∞(Rn), for every φ ∈ S(Rn).

If φ : Rn −→ C, we define, for every t > 0, φt(x) = t−nφ(x/t), x ∈ Rn.
We consider the heat semigroup {Wt}t>0 generated by the Laplace operator ∆ =∑n
j=1 ∂

2
xj in Rn, n ≥ 1, i.e,

Wt(f) = f ∗ h√t, f ∈ L
p(Rn), 1 ≤ p ≤ ∞,

where h(x) = (4π)−n/2 exp(−|x|2/4), x ∈ Rn, and the Poisson semigroup {Pt}t>0,
that is subordinated in the Bochner sense of {Wt}t>0, defined by

Pt(f) = f ∗ Pt, f ∈ Lp(Rn), 1 ≤ p ≤ ∞,

where P (x) = cn
1

(1+|x|2)(n+1)/2 , x ∈ Rn, and cn = Γ((n+ 1)/2)/π(n+1)/2.
A crucial result is the following.

Theorem 2.1 ([24, Theorem 11]). Let 0 < p ≤ ∞ and f ∈ S(Rn)′. The following
assertions are equivalent.

(i) There exists φ ∈ S(Rn) such that
∫
φ(x)dx 6= 0 and

Mφ(f) = sup
t>0
|f ∗ φt| ∈ Lp(Rn).

(ii) There exists N ∈ N such that

MN (f) = sup
φ∈SN

Mφ(f) ∈ Lp(Rn),

where

SN =
{
φ ∈ S(Rn) :

∫
Rn

(1 + |x|)N
∑
|α|≤N

∣∣∣ ∂α
∂xα

φ(x)
∣∣∣2dx ≤ 1

}
.

(iii) f is bounded and

f∗(y) = sup
|x−y|<t

|(f ∗ Pt)(x)| ∈ Lp(Rn).

Definition 2.1. Let 0 < p ≤ ∞. A distribution f ∈ S(Rn)′ is said to be in Hp(Rn)
when f satisfies some of the (equivalently, all) conditions in Theorem 2.1.

Note that if 0 < p ≤ ∞ and f ∈ S(Rn)′, then f ∈ Hp(Rn) if, and only
if W∗(f) = supt>0 |Wt(f)| ∈ Lp(Rn). Moreover, Hp(Rn) = Lp(Rn), for every
1 < p <∞.

An important characterization of the Hardy spaces in terms of a class of special
functions called atoms was obtained by Coifman [9] in one dimension, and by Latter
[33] in higher dimensions.

Definition 2.2. Let 0 < p ≤ 1. A measurable function a on Rn is an Hp-atom
when a satisfies the following conditions:

(i) There exist xa ∈ Rn and ra > 0 such that supp a ⊂ B(xa, ra) and ‖a‖∞ ≤
r
−n/p
a ,

Rev. Un. Mat. Argentina, Vol 52–2, (2011)
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4 J. BETANCOR

(ii) For every β ∈ Nn such that |β| ≤ n(p−1 − 1),
∫
Rn
xβa(x)dx = 0.

Theorem 2.2 ([9] and [33]). Let 0 < p ≤ 1. A distribution f ∈ S(Rn)′ is in
Hp(Rn) if, and only if, f =

∑∞
k=0 λkak, in S(Rn)′, where ak is a Hp-atom and

λk ∈ C, k ∈ N, such that
∑∞
k=0 |λk|p <∞. Moreover, if f ∈ Hp(Rn), then

‖f‖Hp(Rn) ∼ inf
f=

∑∞
k=0 λkak

( ∞∑
k=0

|λk|p
)1/p

.

Hardy spaces can also be characterized by Riesz transforms. For every j =
1, . . . , n and f ∈ Lp(Rn), 1 ≤ p < ∞, the j-th Riesz transform Rj(f) of f is
defined by

Rj(f)(x) = lim
ε→0+

cn

∫
|x−y|>ε

|xj − yj |
|x− y|n+1

f(y)dy, a.e. x ∈ Rn.

As it is well known, for every j = 1, . . . , n, Rj is a bounded operator from Lp(Rn)
into itself, 1 < p <∞, and from L1(Rn) into L1,∞(Rn), but it is not bounded from
L1(Rn) into itself.

We say that a distribution f ∈ S(Rn)′ is restricted at infinity when there exists
r0 > 1 such that f ∗ φ ∈ Lr(Rn), for every φ ∈ S(Rn) and r0 < r <∞.

Assume that ϕ ∈ C∞(Rn) is such that ϕ(x) = 1, |x| ≤ 1/2, and ϕ(x) = 0,
|x| ≥ 1. Let j = 1, . . . , n. We denote by Kj(x) = cnxj/|x|n+1, x ∈ Rn \ {0} and
we define K0,j = Kjϕ, and K∞,j = Kj(1 − ϕ). Let f ∈ S(Rn)′ be restricted at
infinity. Since K0,j is a distribution with compact support, f ∗K0,j ∈ S(Rn)′. Also,
we define the distribution f ∗K∞,j by

〈f ∗K∞,j , φ〉 = 〈f ∗ φ̃, K̃∞,j〉, φ ∈ S(Rn).

Here, if ψ : Rn −→ C, we write ψ̃(x) = ψ(−x), x ∈ Rn. The j-th Riesz transform
Rj(f) is defined by

Rj(f) = f ∗K0,j + f ∗K∞,j .

Definition 2.3. Let φ ∈ S(Rn) such that
∫
Rn φ(x)dx 6= 0 and let f ∈ S(Rn)′ be

restricted at infinity. We say that the Riesz transform R(f) of f is in Lp(Rn),
0 < p <∞, when

sup
t>0

(
‖f ∗ φt‖p +

n∑
j=1

‖Rj(f) ∗ φt‖p
)
<∞.

Note that this last property does not depend on φ.

Theorem 2.3 ([43, Proposition 3, p. 123]). Let 1 − 1/n < p < ∞. Suppose that
f ∈ S(Rn)′ is restricted at infinity. Then, f ∈ Hp(Rn) if, and only if, R(f) ∈
Lp(Rn). Moreover, if φ ∈ S(Rn) such that

∫
Rn φ(x) 6= 0, then

‖f‖Hp(Rn) ∼ sup
t>0

(
‖f ∗ φt‖p +

n∑
j=1

‖Rj(f) ∗ φt‖p
)
, f ∈ Hp(Rn).
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HARDY SPACES ASSOCIATED WITH SEMIGROUPS OF OPERATORS 5

Hardy spaces Hp(Rn) can be described in other different ways: molecules, area
integrals, Littlewood-Paley, . . . (see [43]).

The dual space of H1(Rn) was characterized in [24, Subsection 2.2] as the space
BMO(Rn) of the bounded mean oscillation functions in Rn (also called John-
Nirenberg space). A function f ∈ L1

loc(Rn) is in BMO(Rn) when

‖f‖∗ = sup
B

1

|B|

∫
B

|f(x)− fB |dx <∞,

where the supremum is taken over all the balls B in Rn. Here, for every ball B in
Rn, |B| denotes the Lebesgue measure of B and fB =

∫
B
f(x)dx.

The dual space H1(Rn)′ of H1(Rn) can be identified in the natural way with
the space BMO(Rn).

On the other hand, the dual space Hp(Rn)′ of Hp(Rn) coincides with the Lips-
chitz space L1/p−1(Rn), 0 < p < 1.

The interested reader can find a complete study about classical Hardy spaces in
Stein’s monography [43].

3. Hardy spaces in spaces of homogeneous type

Coifman and Weiss [10] studied the theory of classical Hardy spaces and they
isolated some of the measure theoretic and geometric properties in Rn that are
fundamental in order to get the theory. They consider the so called spaces of
homogeneous type.

Definition 3.1. A space of homogeneous type is a triple (X,µ, d) where
(i) X is a topological space.
(ii) µ is a Borel measure on X.
(iii) d is a quasimetric defined on X ×X.
(iv) µ satisfies the doubling property, i.e., there exists C > 0 such that

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r)), x ∈ X and r > 0.

Examples of spaces of homogeneous type can be encountered in [10, p. 587-591].
Hardy spaces on spaces of homogeneous type are defined firstly by using atoms

as follows.
Assume in the sequel that (X,µ, d) is a space of homogeneous type. Let 0 < p <

q and p ≤ 1 ≤ q ≤ ∞. A (µ)-measurable function a on X is a (p, q)-atom when
(i) There exist x0 ∈ X and r0 > 0 such that supp(a) ⊂ B(x0, r0) and ‖a‖qq ≤

µ(B(x0, r0))1−q/p.

(ii)
∫
X

a(x)dµ(x) = 0,

or, when µ(X) <∞, a(x) = µ(X)1/p, x ∈ X.
If α > 0, by Lα we denote the usual Lipschitz space of exponent α defined by

d. If, for every j ∈ N, aj is a (p, q)-atom and λj ∈ C, such that
∑∞
j=0 |λj |p < ∞,

then the series
∑∞
j=0 λjaj converges in L′1/p−1, the dual space of L1/p−1, when

0 < p < 1, and in L1(X,µ), when p = 1.

Rev. Un. Mat. Argentina, Vol 52–2, (2011)
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Definition 3.2. Let 0 < p < 1 ≤ q ≤ ∞ (respectively, 1 < q ≤ ∞). The
space Hp,q(X,µ) (respectively, H1,q(X,µ)) is the subspace of the dual L′1/p−1 of
L1/p−1 (respectively, L1(X,µ)) consisting of all those linear functionals h on L1/p−1

(functions in L1(X,µ)) admitting a representation as follows

h =

∞∑
j=0

λjaj ,

where, for every j ∈ N, aj is a (p, q)-atom and λj ∈ C, such that
∑∞
j=0 |λj |p <∞.

Moreover, we define

‖h‖Hp,q(X,µ) = inf
h=

∑∞
j=0 λjaj

(

∞∑
j=0

|λj |p)1/p, h ∈ Hp,q(X,µ).

On Hp,q(X,µ), ‖.‖Hp,q(X,µ) is a norm when p = 1 and a quasinorm when 0 < p < 1.

In [10, Theorem A] it was established that Hp,q(X,µ) = Hp,∞(X,µ), with
equivalent quasinorms, for every 0 < p < q and p ≤ 1 ≤ q ≤ ∞. The space
Hp(X,µ) is defined as any one of the spaces Hp,q(X,µ), for 0 < p < q and p ≤ 1 ≤
q ≤ ∞.

The dual ofH1(X,µ) is the space of bounded mean oscillation functionsBMO(X,
µ) on X, that is defined in a natural way, and, for every 0 < p < 1 the dual of
Hp(X,µ) is the Lipschitz space L1/p−1 ([10, Theorem B]).

Macías and Segovia [34] and Uchiyama [49] gave characterizations for theHp(X,µ)
spaces by using maximal functions.

We now consider a space of homogeneous type (X,µ, d) satisfying, for a certain
C > 1, that

r

C
≤ µ(B(x, r)) ≤ r, x ∈ X and r ∈ (0, µ(X)).

Also, we assume that there exists a nonnegative continuous function K defined on
(0,∞)×X ×X verifying the following properties:

(i) K(r, x, y) = 0, if d(x, y) > r.
(ii) For a certain A > 0, K(r, x, y) > 1/A.
(iii) K(r, x, y) ≤ 1.
(iv) For a certain γ > 0, |K(r, x, y)−K(r, x, z)| ≤ (d(y, z)/r)γ .
For any f ∈ L1

loc(X,µ), let

F (r, x, f) =

∫
X

K(r, x, y)f(y)
dµ(y)

r
, (r, x) ∈ (0,∞)×X,

and, we define
f+(x) = sup

r>0
|F (r, x, f)|, x ∈ X.

f∗(x) = sup
∣∣∣ ∫
X

f(y)ϕ(y)
dµ(y)

r

∣∣∣, x ∈ X,
Rev. Un. Mat. Argentina, Vol 52–2, (2011)



i
i

i
i

i
i

i
i

HARDY SPACES ASSOCIATED WITH SEMIGROUPS OF OPERATORS 7

where the supremum is taken over r > 0 and ϕ ∈ C(X) such that ‖ϕ‖∞ ≤ 1,
supp(ϕ) ⊂ B(x, r), and

sup
x,y∈X,x 6=y

|ϕ(x)− ϕ(y)|/d(x, y)γ ≤ r−γ .

Macías and Segovia [34] and Uchiyama [49] proved the following results.

Theorem 3.1 ([34]). If f ∈ L1(X,µ) and 1/(1 + γ) < p ≤ 1, then

‖f∗‖p/C ≤ ‖f‖Hp(X,µ) ≤ C‖f∗‖p,
where the constant C > 1 depends only on p and X.

Theorem 3.2 ([49]). There exists p1 < 1, only depending on X, such that, for
any f ∈ L1(X) and p > p1,

‖f∗‖p ≤ C‖f+‖p,
where the constant C > 0 depends only on p and X.

An immediate consequence of these results is the next one.

Corollary 3.1. For every f ∈ L1(X,µ),

‖f+‖1 ∼ ‖f∗‖1 ∼ ‖f‖H1(X,µ).

Recently, L. Grafakos, D. Yang and their collaborators have studied Hardy
spaces of a class of homogeneous spaces called RD-spaces (see [28] and [53], amongst
others).

In the papers of Coifman and Weiss ([10]), Macías and Segovia ([34] and [35]),
and Uchiyama ([49]), the main aspects of the harmonic analysis on spaces of homo-
geneous type are developed. There an interested reader can find more information
about this topic.

In the last years the harmonic analysis on nonhomogeneous spaces have been
studied by many authors (see, for instance, [37], [38], [39], [46], [47] and [48]). In
this case the measure µ does not need to be doubling.

4. Hardy spaces associated to operators

In this section we present some results about Hardy spaces associated to op-
erators. Most of this part can be encountered in the papers of Dziubanski and
Zienkiewicz ([20], [21], [22] and [23]) and Hofmann, Lu, Mitrea, Mitrea and Yan
([31]).

4.1. Hardy spaces and Schrödinger operators. Let V be a nonnegative and
locally integrable function in Rn, n ≥ 3, not identically zero. We define the
sesquilinear form Q by

Q(u1, u2) =

∫
Rn
∇u1(x)∇u2(x)dx+

∫
Rn
V (x)u1(x)u2(x)dx,

with domain

D(Q) = {(u1, u2) : uj ∈W 1,2(Rn) and
∫
Rn
V (x)|uj(x)|2dx <∞, j = 1, 2}.

Rev. Un. Mat. Argentina, Vol 52–2, (2011)
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This symmetric form is closed. We denote by LV the selfadjoint operator associated
withQ. The domain of the operator LV consists of all those functions u ∈W 1,2(Rn)
such that

∫
Rn V (x)|u(x)|2dx <∞ and there exists v ∈ L2(Rn) such that Q(v, ϕ) =∫

Rn v(x)ϕ(x)dx, for every ϕ ∈ W 1,2(Rn) such that
∫
Rn V (x)|ϕ(x)|2dx < ∞. For-

mally, we write LV = −∆ + V .
The operator −LV generates an analytic semigroup of operators {WV

t }t>0 de-
fined, for every t > 0, by

WV
t (f)(x) =

∫
Rn
WV
t (x, y)f(x)dx, f ∈ Lp(Rn), 1 < p <∞,

where, according to the Feynman-Kac formula

0 ≤WV
t (x, y) ≤ (4πt)−n/2 exp

(
− |x− y|

2

4t

)
, t > 0, x, y ∈ Rn.

This semigroup {WV
t }t>0 is not conservative.

In Shen’s paper [41] (see also [55]) some harmonic analysis operators associated
with the operator LV are analyzed. He assumed that the potential V satisfies
a reverse Hölder inequality RHq, where q > n/2. More precisely, we say that
0 ≤ V ∈ L1

loc(Rn) satisfies RHq when, there exists C > 0 such that( 1

|B|

∫
B

V (x)qdx
)1/q

≤ C

|B|

∫
B

V (x)dx,

for every ball B in Rn. Here |B| denotes the Lebesgue measure of B.
The auxiliary function m(x, V ) defined by

m(x, V ) =
(

sup
{
r > 0 : r2−n

∫
B(x,r)

V (y)dy ≤ 1
})−1

.

plays an important role in this theory.
As usual the maximal operator WV

∗ associated to the semigroup of operators
{WV

t }t>0 is defined by WV
∗ (f) = supt>0 |WV

t (f)|.

Definition 4.1. A function f ∈ L1(Rn) is in H1
V (Rn) when WV

∗ (f) ∈ L1(Rn).
The norm ‖.‖H1

V (Rn) on H1
V (Rn) is defined by

‖f‖H1
V (Rn) = ‖WV

∗ (f)‖1, f ∈ H1
V (Rn).

In [21] Dziubanski and Zinkiewicz introduced the following class of atoms. For
every n ∈ Z, the set Bn is defined by

Bn = {x ∈ Rn : 2n/2 ≤ m(x, V ) < 2(n+1)/2}.

Since 0 < m(x, V ) <∞, x ∈ Rn, we have Rn =
⋃
n∈ZBn.

Definition 4.2. A measurable function a on Rn is an atom for the Hardy space
H1
V (Rn) associated with the ball B(x0, r0), where x0 ∈ Rn and r0 > 0, when

supp(a) ⊂ B(x0, r0), ‖a‖∞ ≤ r−n0 and, if x0 ∈ Bn, then r0 ≤ 21−n/2. Moreover,∫
Rn a(y)dy = 0, provided that x0 ∈ Bn and r0 ≤ 2−1−n/2.

Rev. Un. Mat. Argentina, Vol 52–2, (2011)
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By using the theory of local Hardy spaces developed by Goldberg [29], Dziuban-
ski and Zienkiewicz [13] obtained atomic representation for the elements of the
space H1

V (Rn).

Theorem 4.1 ([13, Theorem 1.5]). Assume that V is not identically zero and
V ∈ RHn/2. Then, a function f ∈ L1(Rn) is in H1

V (Rn) if, and only if, f =∑∞
k=0 λkak, where, for every k ∈ N, ak is an atom for H1

V (Rn) and λk ∈ C being∑∞
k=0 |λk| <∞. Moreover, for every f ∈ H1

V (Rn),

‖f‖H1
V (Rn) ∼ inf

f=
∑∞
k=0 λkak

∞∑
k=0

|λk|.

For every j = 1, . . . , n, the j-th Riesz transformRV,j associated to the Schrödinger
operator LV is defined by

RV,j =
∂

∂xj
L
−1/2
V ,

where the negative square root L−1/2
V is given by the functional calculus as follows:

L
−1/2
V f(x) =

∫
Rn
KV (x, y)f(y)dy, (1)

being

KV (x, y) = − 1

2π

∫
R

(−iτ)−1/2Γ(x, y, τ)dτ.

Here, for every τ ∈ R, Γ(x, y, τ), x, y ∈ Rn, represents the fundamental solution
for the operator LV + iτ .

In [6] it was proved that, for every j = 1, . . . , n, the Riesz transform RV,j can
be represented as a principal value integral operator on C∞c (Rn), the space C∞-
functions in Rn that have compact support.

Proposition 4.1 ([6, Proposition 1.1]). Let j = 1, . . . , n. Suppose that one of the
following two conditions holds:

(i) f ∈ Lp(Rn), 1 ≤ p <∞, and V ∈ RHn;
(ii) f ∈ Lp(Rn), 1 ≤ p < p0, where 1

p0
= 1

q −
1
n , and V ∈ RHq, n/2 ≤ q < n.

Then, if RV,j(x, y) = ∂xjKV (x, y), x, y ∈ Rn, x 6= y, there exists the following limit

lim
ε→0+

∫
|x−y|>ε

RV,j(x, y)f(y)dy, a.e. x ∈ Rn.

Moreover, if f ∈ C∞c (Rn), then L−1/2
V f admits partial derivative with respect to xj

in almost everywhere Rn and
∂

∂xj
L
−1/2
V f(x) = lim

ε→0+

∫
|x−y|>ε

RV,j(x, y)f(y)dy, a.e. x ∈ Rn. (2)

Moreover, Shen [41] established the Lp boundedness properties of the Riesz
transforms RV,j , j = 1, . . . , n.

Theorem 4.2 ([41, Theorems 0.5 and 0.8]). Let j = 1, . . . , n. Suppose that one of
the following two conditions holds:
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(i) 1 < p <∞, and V ∈ RHn;
(ii) 1 < p < p0, where 1

p0
= 1

q −
1
n , and V ∈ RHq, n/2 ≤ q < n.

Then, RV,j can be extended to Lp(Rn) as a bounded operator from Lp(Rn) into it-
self. Moreover, RV,j can be extended to L1(Rn) as a bounded operator from L1(Rn)
into L1,∞(Rn).

The Riesz transforms associated to the operator LV characterize the Hardy
spaces H1

V (Rn).

Theorem 4.3 ([21, Theorem 1.7]). If V ∈ RHn/2 is a not identically zero and
nonnegative potential, then a function f ∈ L1(Rn) is in H1

V (Rn), if and only if,
RV,j(f) ∈ L1(Rn), j = 1, . . . , n. Moreover, we have that

‖f‖H1
V (Rn) ∼ ‖f‖1 +

n∑
j=1

‖RV,j(f)‖1, f ∈ H1
V (Rn).

Czaja and Zienkiewicz ([11]) considered the one-dimensional Schrödinger oper-
ator LV = − d2

dx2 + V , where 0 ≤ V ∈ L1
loc(R), and V is not identically zero. They

introduced a class of atomic Hardy spaces associated with a family of dyadic in-
tervals. Let I = {Ij}j∈N be a cover of R by closed dyadic intervals with disjoint
interiors. If I and J are two closed dyadic intervals in R, we say that I and J
are neighbors when I ∩ J has a single point. Assume that I = {Ij}j∈N satisfies
the following property: There exists C > 0 such that, for every j ∈ N, there exist
its two neighbors Ij1 and Ij2 in I and 1/C ≤ |Ij |/|Iji | ≤ C, i = 1, 2. We say a
measurable function a on R is a H1

I(R) atom if a is a classical atom supported in
(1 +α)Ij , for some j ∈ N, where α > 0 is small enough (see [11]), or if a = |Ij |χIj ,
for some j ∈ N. Here χJ denotes the characteristic function of the set J ⊂ R.

Definition 4.3. A function f ∈ L1(R) is in H1
I(R) when f =

∑∞
k=1 λkak, where,

for every k ∈ N, ak is a H1
I(R) atom and λk ∈ C, being

∑∞
k=1 |λk| <∞. The norm

‖.‖H1
I(R) on H1

I(R) is defined by

‖f‖H1
I(R) = inf

f=
∑∞
k=1 λkak

∞∑
k=0

|λk|, f ∈ H1
I(R).

Theorem 4.4 ([11, Theorem 1.1]). Assume that 0 ≤ V ∈ L1
loc(R), and V is not

identically zero. Then, there exists a family I = {Ij}j∈N of dyadic intervals in R
satisfying the above conditions such that H1

I(R) = H1
V (R).

In [23] Dziubanski and Zienkiewicz obtain atomic representation for the elements
in H1

V (Rn), n ≥ 3, when the potential V ≥ 0 has compact support and it belongs to
Lp(Rn) for some p > n/2. In contrast with the case of V satisfying a reverse Hölder
inequality or in the one dimensional case ([11]), the atoms for H1

V (Rn) considered
in [23] are not variants of local atoms.

In [12], [14], [17], [20], and [51] the interested reader can complete the information
about Hardy spaces in the Schrödinger setting. This theory has been extended
recently by Yang and Zhou [53] (see also [40]) defining the localized Hardy spaces.
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When L = −∆ + V in Rn, n ≥ 3, and 0 ≤ V ∈ L1
loc(Rn) satisfies RHq, with

q > n/2, the dual space of H1
V (Rn) was characterized by Dziubanski, Garrigós,

Martínez, Torrea and Zienkiewicz [16] as follows.

Definition 4.4. We say that a function f ∈ L1
loc(Rn) is in BMOV (Rn) provided

that there exists C > 0 such that the following two properties are satisfied:
(i) For every x ∈ Rn and r > 0,

1

|B(x, r)|

∫
B(x,r)

|f(y)− fB(x,r)|dy ≤ C,

where, as usual, fB(x,r) = 1
|B(x,r)|

∫
B(x,r)

f(y)dy, and |B(x, r)| denotes the
Lebesgue measure of B(x, r); and

(ii) For every x ∈ Rn and r ≥ γ(x),
1

|B(x, r)|

∫
B(x,r)

|f(y)|dy ≤ C.

Here, the critical radii γ(x) is defined by

γ(x) = 1/m(x, V ), x ∈ Rn.
Theorem 4.5 ([16, Theorem 4]). Let n ≥ 3, and let 0 ≤ V ∈ L1

loc(Rn) be satisfying
RHq, with q > n/2. Then, (H1

V (Rn))′ = BMOV (Rn).

4.2. Hardy spaces and operators satisfying Davies-Gaffney estimates. As-
sume that (X,µ, d) is a space of homogeneous type where d is a metric defined on
X ×X. Suppose also that

(i) L is a non-negative selfadjoint operator in L2(X,µ).
(ii) The operator L generates an analytic semigroup {Tt}t>0 which satisfies the

Davies-Gaffney condition, that is, there exist C, c > 0 such that for every
pair of open subsets U1 and U2 of X,

|〈Ttf1, f2〉L2(X,µ)| ≤ C exp
(
− dist(U1, U2)2

ct

)
‖f1‖2 ‖f2‖2, t > 0,

for every fj ∈ L2(X,µ) with supp(fj) ⊂ Uj , j = 1, 2.
In order to define Hardy spaces associated with the operator L, the notion of atom
in this context is introduced.

Definition 4.5. Let M ∈ N. We say that a function a ∈ L2(X,µ) is a (1, 2,M)-
atom associated to the operator L if there exists a function b in the domain of the
operator LM and a ball B = B(x0, r0) such that

(a) a = LMb.
(b) supp(Lkb) ⊂ B, k = 0, 1, . . . ,M .
(c) ‖(r2

0L)kb‖2 ≤ r2M
0 µ(B)−1/2, k = 0, 1, . . . ,M .

We take M ∈ N such that M > n0/4, where

n0 = inf
{
n : sup

B ball in X,λ≥1

µ(λB)

λnµ(B)
<∞

}
.

The space H1
L,at,M (X) is defined as follows.
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Definition 4.6. A measurable function f is in H1
L,at,M (X) when f =

∑∞
k=0 λkak,

where the series converges in L2(X,µ), and, for every j ∈ N , aj is a (1, 2,M)-atom
and λj ∈ C, being

∑∞
k=0 |λk| <∞. The norm ‖.‖H1

L,at,M (X) on H1
L,at,M (X) is given

by
‖f‖H1

L,at,M (X) = inf
f=

∑∞
k=0 λkak

∑
|λj |, f ∈ H1

L,at,M (X).

The spaceH1
L,at,M (X) is the completion ofH1

L,at,M (X) with respect to ‖.‖H1
L,at,M (X).

For every f ∈ L1(X,µ) we consider the quadratic and nontangential area integral
associated with the semigroup {Tt}t>0 defined by

SL(f)(x) =
(∫

Γ(x)

|t2LTt2(f)(y)|2 dµ(y)

µ(B(x, t))

dt

t

)1/2

, x ∈ X,

where Γ(x) = {(y, t) ∈ X × (0,∞) : d(y, x) < t}.
Following [1] we consider the spaceH2

L(X) as the closure of the range L(L2(X,µ))
of the operator L on L2(X,µ). The space H1

L,S(X) is defined by

H1
L,S(X) = {f ∈ H2

L : ‖SL(f)‖1 <∞},

and the norm ‖.‖H1
L,S(X) on H1

L,S(X) by

‖f‖H1
L,S

= ‖SL(f)‖1, f ∈ H1
L,S .

Definition 4.7. The Hardy space H1
L,S(X) is the completion of H1

L,S(X) with
respect to the norm ‖.‖H1

L,S(X).

The Hardy spaces H1
L,at,M (X) and H1

L,S(X) coincide.

Theorem 4.6 ([31, Theorem 2.5]). . Under the specified assumptions (i) and
(ii) for the operator L, the topological space X and the constant M , we have that
H1
L,at,M (X) = H1

L,S(X) and

‖f‖H1
L,at,M (X) ∼ ‖f‖H1

L,S(X), f ∈ H1
L,S(X).

We now introduce a property about some Gaussian upper bounds for the kernel
Tt(x, y), (t, x, y) ∈ (0,∞) × X × X of the operator Tt, t > 0. More precisely the
property is the following:

(iii) For every t > 0 the function Tt(x, y) is a measurable function on X × X
and there exists constants C, c > 0 such that,

|Tt(x, y)| ≤ C

µ(B(x,
√
t))
exp
(
− d(x, y)2

ct

)
, a.e. x, y ∈ X.

Note that the property (iii) implies property (ii).
The space H1

L,max(X) consists of all those f ∈ L2(X,µ) such that T∗f ∈
L1(X,µ), where T∗f = supt>0 |Tt(f)|. The norm ‖.‖H1

L,max(X) in H1
L,max(X) is

defined by
‖f‖H1

L,max(X) = ‖T∗f‖1, f ∈ H1
L,max(X).
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Definition 4.8. The Hardy space H1
L,max(X) is the completion of H1

L,max(X)

with respect to the norm ‖.‖H1
L,max(X).

In general, the spaces H1
L,at,M (X) and H1

L,max are not equal.

Theorem 4.7 ([31, Theorem 7.4]). Assume that the operator L satisfies the con-
ditions (i) and (iii). Then, for every M ≤ 1, H1

L,at,M (X) ⊂ H1
L,max(X).

When L = −∆ + V , the Schrödinger operator with potential 0 ≤ V ∈ L1
loc(Rn),

the equality H1
L,at,M (X) = H1

L,max(X) holds, for every M ≥ 1 ([31, Theorem
8.2]). Note that in [31] the class of atoms, in the case of the Schrödinger operator,
is different to the one considered in [21].

We now define the space of BMO-type adapted to the operator L following
the approach of [32]. Let u = LMv be a function in L2(X,µ) where v belongs to
the domain D(LM ) of LM . For every ε > 0 and M ∈ N the following norm is
considered:

‖u‖M1,2,M,ε
0 (L) = sup

j∈N
2jεµ(B(x0, 2

j))1/2
M∑
k=0

‖Lkv‖L2(Uj(B0),µ),

where B0 = B(x0, 1), with x0 ∈ X, and, for every j ∈ N, j ≥ 1, Uj(B0) =
2jB0 \ 2j−1B0, being U0(B0) = B0. Then, we set

M1,2,M,ε
0 (L) = {u = LMv ∈ L2(X,µ) : ‖u‖M1,2,M,ε

0 (L) <∞},

and
ELM =

⋂
ε>0

(M1,2,M,ε
0 (L))′.

Definition 4.9. Assume that M ≥ 1 and the operator L satisfies the conditions
(i) and (ii). An element f ∈ ELM is said to belong to the adapted space of bounded
mean oscillation functions BMOL,M (X) if

‖f‖BMOL,M (X) = sup
B⊂X

( 1

µ(B)

∫
B

|(I − Tr2B )Mf(x)|2dµ(x)
)1/2

<∞,

where the supremun is taken over all the balls B in X. Here rB denotes the radius
of the ball B.

The analogue of Fefferman and Stein’s duality result in this context is the fol-
lowing.

Theorem 4.8. Suppose that M ∈ N and M > n0/4. If L is an operator satisfying
the conditions (i) and (ii), then (H1

L,at,M (X))∗ = BMOL,M (X).

5. Hardy spaces associated with Bessel operators

Muckenhoupt and Stein ([36]) studied Lp-boundedness properties of maximal
operators and Riesz transforms in the Bessel setting. In this case the measure
space is ((0,∞), x2αdx). By using pairs of appropriate conjugate functions defined
by a Cauchy-Riemann type equations they consider Hardy spaces for the operator
∆α = − d2

dx2 − 2α
x

d
dx , with α > 0.
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Dziubanski [13] defines Hardy spaces H1 associated with the operator Lα,V =

− 1
2
d2

dx2 − α
2x

d
dx + V , on (0,∞), where α > 1. The potential V is assumed to be

nonnegative, not identically zero, and that satisfies a reverse Hölder inequality with
an exponent q > (α+ 1)/2 with respect to the measure dµ(x) = 2

α−1x
αdx, that is,

there exists C > 0 such that( 1

µ(B)

∫
B

V (y)qdµ(y)
)1/q

≤ C

µ(B)

∫
B

V (y)dµ(y),

for every interval B ⊂ (0,∞). Then, the operator −Lα,V generates a semigroup
{Wα,V

t }t>0 of linear operators on Lp((0,∞), dµ), 1 ≤ p < ∞. The maximal oper-
ator Wα,V

∗ defined by {Wα,V
t }t>0 is given by

Wα,V
∗ (f) = sup

t>0
|Wα,V

t (f)|.

Definition 5.1. A function f ∈ L1((0,∞), dµ) belongs toH1(Lα,V ) whenWα,V
∗ f ∈

L1((0,∞), dµ). The norm ‖.‖H1(Lα,V ) on H1(Lα,V ) is defined by

‖f‖H1(Lα,V ) = ‖Wα,V
t (f)‖L1((0,∞),dµ), f ∈ H1(Lα,V ).

In order to introduce a class of atoms that allow to describe the elements of
H1(Lα,V ) the following function is introduced:

ρ(x) = sup
{
r > 0 :

r2

µ(B(x, r))

∫
B(x,r)

V (y)dµ(y) ≤ 1
}
, x ∈ (0,∞),

where B(x, r) = (x− r, x+ r) ∩ (0,∞), x, r ∈ (0,∞).

Definition 5.2. A measurable function a is an (1,∞)-atom when there exist
x0, r0 ∈ (0,∞) such that r0 < ρ(x0), supp(a) ⊂ B(x0, r0), and ‖a‖∞ ≤ µ(B(x0,
r0))−1. Moreover, if r0 < ρ(x0)/4,

∫∞
0
a(y)dµ(y) = 0.

In the following an atomic characterization of the elements of H1(Lα,V ) is es-
tablished.

Theorem 5.1 ([13, Theorem 1.10]). Assume that V is nonnegative, not identically
zero, and that satisfies a reverse Hölder inequality with an exponent q > (α+ 1)/2
with respect to the measure dµ(x) = 2

α−1x
αdx, with α > 1. Then, a function

f ∈ L1((0,∞), dµ) is in H1(Lα,V ) if, and only if, f =
∑∞
k=1 λkak, where, for

every k ∈ N, ak is an (1,∞)-atom and λk ∈ C, being
∑∞
k=1 |λk| < ∞. Moreover,

we have that

‖f‖H1(Lα,V ) ∼ sup
f=

∑∞
k=1 λkak

∞∑
k=1

|λk|, f ∈ H1(Lα,V ).

Betancor, Buraczewski, Fariña, Martínez and Torrea ([2]) investigated Lp((0,∞),
dx) bounds for the Riesz transforms related to the Bessel operator Sα defined by
Sα = − d2

dx2 + α2−α
x2 , on (0,∞), where α > 0. In [4] the Hardy spaces in the setting

of ∆α and Sα are analyzed.

Rev. Un. Mat. Argentina, Vol 52–2, (2011)



i
i

i
i

i
i

i
i

HARDY SPACES ASSOCIATED WITH SEMIGROUPS OF OPERATORS 15

The Poisson semigroup {Pαt }t>0 generated by the operator −
√

∆α is defined by

Pαt (f)(x) =

∫ ∞
0

Pαt (x, y)f(x)x2αdx, x ∈ (0,∞),

for every f ∈ Lp((0,∞), x2αdx), 1 ≤ p ≤ ∞. Here,

Pαt (x, y) =
2αt

π

∫ π

0

(sin θ)2α−1

(x2 + y2 + t2 − 2xy cos θ)α+1
dθ, t, x, y ∈ (0,∞).

The maximal operator Pα∗ is defined by Pα∗ (f) = supt>0 |Pαt (f)|.

Definition 5.3. Let α > 0. The Hardy space H1
max(∆α) consists of all those

functions f ∈ L1((0,∞), x2αdx) such that Pα∗ (f) ∈ L1((0,∞), x2αdx). The norm
‖.‖H1

max(∆α) is defined by

‖f‖H1
max(∆α) = ‖f‖L1((0,∞),x2αdx) + ‖Pα∗ (f)‖L1((0,∞),x2αdx), f ∈ H1

max(∆α).

The Riesz transform Rα in the ∆α-setting was defined in [36] by using a notion
of conjugation related to the operator ∆α. In [2] it was established that, for every
f ∈ Lp((0,∞), x2αdx), 1 ≤ p <∞,

Rα(f)(x) = lim
ε→0

∫ ∞
0, |x−y|>ε

Rα(x, y)f(y)y2αdy, a.e. x ∈ (0,∞),

where

Rα(x, y) = −2α

π

∫ π

0

(x− y cos θ)(sin θ)2α−1

(x2 + y2 − 2xy cos θ)α+1
dθ, x, y ∈ (0,∞).

Rα a Calderón-Zygmund operator with respect to the homogeneous space ((0,∞),
d, x2αdx), where d is the usual metric on (0,∞) (see [7]). We denote byH1

CW ((0,∞),
x2αdx) the atomic Hardy space associated to the space of homogeneous type
((0,∞), d, x2αdx) defined in [10] (see Section 3).

Definition 5.4. Let α > 0. We say that a function f ∈ L1((0,∞), x2αdx) is in
H1
Riesz(∆α) when Rα ∈ L1((0,∞), x2αdx). The norm ‖.‖H1

Riesz(∆α) is defined by

‖f‖H1
Riesz(∆α) = ‖f‖L1((0,∞),x2αdx) + ‖Rα(f)‖L1((0,∞),x2αdx), f ∈ H1

Riesz(∆α).

The three Hardy spaces that we have just defined for the operator ∆α coincide.

Theorem 5.2 ([4, Theorem 1.7]). Let α > 0 and f ∈ L1((0,∞), x2αdx). The
following assertions are equivalent.

(i) f ∈ H1
CW ((0,∞), x2αdx).

(ii) f ∈ H1
Riesz(∆α).

(iii) f ∈ H1
max(∆α).

Moreover, the corresponding norms are equivalent.

In the definition of the space H1
max(∆α) we can replace the Poisson integral by

Hankel convolution operators ([4, Theorem 2.7]). The results in [4] were extended
in [52] defining Hardy spaces Hp(∆α), 0 < p < 1. Also, the interested reader can
take a look at [27].
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The Poisson semigroup associated with the operator Sα is given by

Pαt (f)(x) =

∫ ∞
0

Pαt (x, y)f(y)dy, x ∈ (0,∞),

for every f ∈ Lp((0,∞), dx), 1 ≤ p ≤ ∞, where Pαt (x, y) = (xy)αPαt (x, y), t, x, y ∈
(0,∞). We consider the maximal operator Pα∗ defined by Pα∗ (f) = supt>0 |Pαt (f)|.

The Riesz transform Rα in the Sα-context is the following

Rα(f)(x) = xαRα(y−αf)(x), f ∈ L2((0,∞), dx),

Rα is a Calderón-Zygmund operator in the space ((0,∞), dx, d), where as above d
denotes the usual metric in (0,∞).

The Hardy spaces H1
max(Sα) and H1

Riesz(Sα) are defined in the usual way.
In [26], Fridli introduced the following class of atoms.

Definition 5.5. A measurable function a on (0,∞) is said to be an Fr-atom if
(i) a = 1

δχ(0,δ), for some δ > 0, where χ(0,δ) denotes the characteristic function
of the interval (0, δ), or

(ii) a is a classic atom associated to a certain bounded interval I ⊂ (0,∞).

By using Fr-atoms Fridli defined, in the usual way, the atomic Hardy space
H1
Fr(0,∞).
In the context of the Bessel operator Sα we have also the coincidence of the

three Hardy spaces. Note that the atomic Hardy spaces associated with ∆α and
Sα are defined by different class of atoms.

Theorem 5.3 ([4, Theorem 1.10]). Let α > 0. Then, H1
Fr(0,∞) = H1

max(Sα) =
H1
Riesz(Sα) and the corresponding norms are equivalent.

In [4] a Hardy type inequality on H1
Fr(Sα) for the Hankel transformation defined

by

hα(f)(y) =

∫ ∞
0

√
xyJα−1/2(xy)f(x)dx, y ∈ (0,∞),

is established. Also, multipliers and transplantation operators involving Hankel
transforms are investigated in H1

Fr(0,∞) ([4, Theorem 4.11]).

6. Hardy spaces associated with Laguerre operators

Hardy spaces in the Laguerre settings have been studied by Dziubanski ([22]
and [23]), Betancor, Dziubanski and Garrigós ([3]), and Dziubanski and Preisner
([19]).

For every n ∈ N, the n-th Laguerre polynomial of type α is defined by ([45])

Lαn(x) =
1

n!
exx−α

dn

dxn
(e−xxα+n), x ∈ (0,∞).

Hardy spaces associated with three classes of Laguerre functions have been stud-
ied.
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6.1. Laguerre functions {Lαn}n∈N. Let α > 0. We consider, for every n ∈ N, the
Laguerre function Lαn defined by

Lαn(x) =
( n!

Γ(n+ α+ 1)

)1/2

Lαn(x)e−x/2xα/2, x ∈ (0,∞).

The family {Lαn}n∈N is an orthonormal basis in L2((0,∞), dx). For every n ∈ N,
L̃αLαn = µnLαn, where µn = n+ (α+ 1)/2 and

L̃α = −
(
x
d2

dx2
+

d

dx
−
(x

4
+
α2

4x

))
, x ∈ (0,∞).

We define the operator Lα by

Lα(f) =

∞∑
n=0

µncn(f)Lαn, f ∈ D(Lαn),

where, for every n ∈ N, cn(f) =
∫∞

0
f(y)Lαn(y)dy, and

D(Lα) = {f ∈ L2((0,∞), dx) :

∞∑
n=0

|µncn(f)|2 <∞}.

The semigroup of operators {Wα
t }t>0 generated by Lα is given, for every f ∈

Lp((0,∞), dx), 1 ≤ p ≤ ∞, by

Wα
t (f)(x) =

∫ ∞
0

Wα
t (x, y)f(y)dy, x ∈ (0,∞),

where

Wα
t (x, y) =

∞∑
n=0

e−µntLαn(x)Lαn(y), t, x, y ∈ (0,∞).

The maximal operator Wα
∗ is defined by Wα

∗ (f) = supt>0 |Wα
t (f)|.

Definition 6.1. Let α > 0. The space H1
max(Lα) consists of all those functions

f ∈ L1((0,∞), dx) such that Wα
∗ (f) ∈ L1((0,∞), dx). The norm ‖.‖H1

max(Lα) on
H1
max(Lα) is defined by

‖f‖H1
max(Lα) = ‖f‖1 + ‖Wα

∗ (f)‖1, f ∈ H1
max(Lα).

In [14] it was proved that H1
max(Lα) can be characterized by atomic represen-

tations. The notion of atom introduced in [14] depends on the following auxiliary
function: ρ(x) = 1

8 min(x, 1), x ∈ (0,∞).

Definition 6.2. A measurable function a is said to be an H1(Lα)-atom if there
exist x0, R0 ∈ (0,∞), such that R0 ≤ ρ(x0), supp(a) ⊂ (x0−R0, x0 +R0)∩ (0,∞),
and ‖a‖∞ ≤ R−1

0 . Moreover, if R0 ≤ ρ(x0)/2,
∫∞

0
a(y)dy = 0.

The space H1
at(Lα) is defined in the usual way by using H1(Lα)-atoms.

Theorem 6.1 ([14, Theorem 1.2]). Let α > 0. Then, H1
max(Lα) = H1

at(Lα) and
the corresponding norms are equivalent.
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Note that the last theorem says that the spaceH1
max(Lα) is actually independent

of α.
The Riesz transform Rα in the Lα-setting is defined by

Rα = δα(Lα)−1/2, where δα =
√
x
d

dx
+

1

2
(
√
x− α√

x
),

on span{Lαn}n∈N. Here, the negative square root (Lα)−1/2 of Lα is given by

(Lα)−1/2f =

∞∑
n=0

µ−1/2
n cn(f)Lαn, f ∈ L2((0,∞), dx).

Rα can be extended to Lp((0,∞), dx), for every 1 ≤ p <∞, as a bounded operator
from Lp((0,∞), dx) into itself, when 1 < p < ∞, and from L1((0,∞), dx) into
L1,∞(0,∞) (see [30]).

The Hardy space for Lα can be characterized by the Riesz transform Rα.

Definition 6.3. A function f ∈ L1((0,∞), dx) is in the space H1
Riesz(Lα) when

Rα(f) ∈ L1((0,∞), dx). The norm ‖.‖H1
Riesz(Lα) on H1

Riesz(Lα) is defined by

‖f‖H1
Riesz(Lα) = ‖f‖1 + ‖Rα(f)‖1, f ∈ H1

Riesz(Lα).

Theorem 6.2 ([3, Theorem 1.2]). Let α > 0. Then, H1
max(Lα) = H1

Riesz(Lα) and
the corresponding norms are equivalent.

6.2. Laguerre functions {ϕαn}n∈N. Let α > 0. For every n ∈ N, the Laguerre
function ϕαn is defined by

ϕαn(x) =
√

2xLαn(x2), x ∈ (0,∞).

The system {ϕαn}n∈N is an orthonormal basis in L2((0,∞), dx). Moreover, for every
n ∈ N, ϕαn is an eigenfunction of the operator

L̃α = −1

2

(
x
d2

dx2
− x2 − 1

x2

(
α2 − 1

4

))
, x ∈ (0,∞).

More precisely, L̃αϕαn = λnϕ
α
n, where λn = 2n+ α+ 1, for every n ∈ N.

The Hardy space H1(Lα) was investigated in [3] and [14].

6.3. Laguerre functions {`αn}n∈N. Let α > −1. The Laguerre function `αn is
defined by

`αn(x) = x−α/2Lαn(x), x ∈ (0,∞).

The sequence {`αn}n∈N is an orthonormal basis in L2((0,∞), dx). We have that, for
every n ∈ N, L̃α`αn = γn`

α
n, where γn = n+ (α+ 1)/2 and

L̃α = −
(
x
d2

dx2
+ (α+ 1)

d

dx
− x

4

)
, x ∈ (0,∞).

The Hardy space H1(Lα) has been studied in [15] and [18].

Rev. Un. Mat. Argentina, Vol 52–2, (2011)



i
i

i
i

i
i

i
i

HARDY SPACES ASSOCIATED WITH SEMIGROUPS OF OPERATORS 19

References

[1] P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemaniann

manifolds, J. Geom. Anal., 18 (2008), 192-248. 12

[2] J.J. Betancor, D. Buracewski, J.C. Fariña, M.T. Martínez and J.L. Torrea, Riesz transforms

related to Bessel operators, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 701-725. 14, 15

[3] J.J. Betancor, J. Dziubański, and G. Garrigós, Riesz transform characterization of Hardy

spaces associated with certain Laguerre expansions, Tohoku Math. J., 62 (2010), 215-231.

16, 18

[4] J.J. Betancor, J. Dziubański, and J.L. Torrea, On Hardy spaces associated with Bessel op-

erators, J. Anal. Math., 107 (2009), 195-219. 14, 15, 16

[5] J.J. Betancor, J.C. Fariña, L. Rodríguez-Mesa, A. Sanabria, and J.L. Torrea, Transference

between Laguerre and Hermite settings, J. Func. Anal., 254 (2008), 826-850.

[6] J.J. Betancor, J.C. Fariña, E. Harboure, and L. Rodríguez-Mesa, Lp-boundedness properties

of variation and oscillation operators in the Schrödinger setting, preprint. 9

[7] J.J. Betancor, J.C. Fariña, and A. Sanabria, On Littlewood-Paley functions associated with

Bessel operators, Glasgow Math. J., 51 (1) (2009), 55-70. 15

[8] J.J. Betancor, S. Molina, and L. Rodríguez-Mesa, Area Littlewood-Paley functions associated

with Hermite and Laguerre operators, Potential Analysis, 34, (4) (2011), 345-369.

[9] R.R. Coifman, A real variable characterization of Hp, Studia Math., 51 (1974), 269-274. 3,

4

[10] R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull.

Amer. Math. Soc., 83 (1977), 569-645. 5, 6, 7, 15

[11] W. Czaja and J. Zienkiewicz, Atomic characterization on the Hardy space H1
L(R) of one

dimensional Schrödinger operators with nonegative potentials, Proc. Amer. Math. Soc., 136

(1) (2008), 89-94. 10

[12] J. Dziubański, Atomic decomposition of Hp spaces associated with some Schrödinger opera-

tors, Indiana Univ. Math. J., 47 (1998), 75-98. 10

[13] J. Dziubański, Hardy spaces associated with semigroups generated by Bessel operators, Hous-

ton J. Math., 34 (2008), no. 1, 205-234. 9, 14

[14] J. Dziubański, Hardy spaces for Laguerre expansions, Constructive Approx., 27 (2008), 269-

287. 10, 17, 18

[15] J. Dziubański, Atomic decomposition of Hardy spaces associated with certain Laguerre ex-

pansions, J. Fourier Anal. Appl., 15 (2009), no. 2, 129-152. 18

Rev. Un. Mat. Argentina, Vol 52–2, (2011)



i
i

i
i

i
i

i
i

20 J. BETANCOR

[16] J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, BMO spaces

related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math.

Z. 249 (2005), no. 2, 329–356. 11

[17] J. Dziubański, and M. Preisner, On Riesz transform characterization of H1 spaces associated

with some Schrödinger operators, Potential Analysis, DOI: 10.1007/s11118-010-9202-0. 10

[18] J. Dziubański, and M. Preisner, Riesz transform characterization of Hardy spaces associated

with Schrödinger operators with compactly supported potentials, Arkiv för Matematik, 48,

(2) (2010), 301-310. 18

[19] J. Dziubański, and M. Preisner, Riesz transform characterization of H1 spaces associated

with certain Laguerre expansions, preprint. 16

[20] J. Dziubański, and J. Zienkiewicz, Hardy spaces associated to with some Schrödinger opera-

tors, Studia Math., 126 (2) (1997), 149-160. 7, 10

[21] J. Dziubański, and J. Zienkiewicz, Hardy space H1 associated to Schrödinger operator with

potential satisfying reverse Hölder inequality, Revista Mat. Iberoamericana 15 (2) (1999),

279-296. 7, 8, 10, 13

[22] J. Dziubański, and J. Zienkiewicz, Hp spaces associated with Schrödinger operators with

potentials from reverse Hölder classes, Colloq. Math. 98 (1) (2003), 5–38. 7, 16

[23] J. Dziubański, and J. Zienkiewicz, Hardy space H1 for Schrödinger operators with compactly

supported potentials, Annali di Matematica, 184 (2005), 315-326. 7, 10, 16

[24] C. Fefferman and E. Stein, Hp spaces of several variables, Acta Math., 129 (1972), 137-193.

2, 3, 5

[25] G. Folland and E. Stein, Hardy spaces on homogeneous groups, Princeton University Press,

Princeton, 1982. 1

[26] S. Fridli, Hardy spaces generated by an integrability condition, J. Approx. Theory, 113 (2001),

91-109. 16

[27] J. García-Cuerva, Weighted Hp-spaces, Dissertations Math. (Rozprawy Mat.), 162 (1979).

15

[28] L. Grafakos, L. Liu, and D. Yang, Maximal function caracterization of Hardy spaces on

RD-spaces and their applications, Sci. China Ser. A, 51 (2008), 2253-2284. 7

[29] D. Goldberg, A local version of real Hardy spaces, Duke Math. J., 46 (1978), 27-42. 9

[30] E. Harboure, J.L. Torrea, and B. Viviani, Riesz transforms for Laguerre expansions, Indiana

Univ. Math. J., 55 (2006), 999-1014. 18

[31] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea, and L. Yan, Hardy spaces associated to non-

negative self-adjoint operators satisfying Davies-Gaffney estimates, Memoirs of the A.M.S.

7, 12, 13

Rev. Un. Mat. Argentina, Vol 52–2, (2011)



i
i

i
i

i
i

i
i

HARDY SPACES ASSOCIATED WITH SEMIGROUPS OF OPERATORS 21

[32] S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic

operators, Math. Ann., 344 (2009), 37-116. 13

[33] R.H. Latter, A decomposition of Hp(Rn) in terms of atoms, Studia Math., 62 (1977), 92-102.

3, 4

[34] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces in homo-

geneous type, Adv. Math., 33 (1979), 271-309. 6, 7

[35] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Advances in

Math., 33 (1979), 257-270. 7

[36] B. Muckenhoupt and E. Stein, Classical expansions and their relations to conjugate harmonic

functions, Trans. Amer. Math. Soc., 118 (1965), 17-92. 1, 13, 15

[37] F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for

Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices, 1998,

463-487. 7

[38] F. Nazarov, S. Treil and A. Volberg, Accretive system -theorems on nonhomogeneous spaces,

Duke Math. J., 113 (2002), 259-312. 7

[39] F. Nazarov, S. Treil and A. Volberg, The Tb -theorem on non-homogeneous spaces, Acta

Math. 190 (2003), 151-239. 7

[40] R. Jiang, D. Yang, and Yuan Zhou, Localized Hardy spaces associated with operators, Appli-

cable Analysis, 88 (9) (2009), 1409 - 1427. 10

[41] Z. W. Shen, Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier

(Grenoble) 45 (1995), no. 2, 513–546. 8, 9

[42] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of

Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J., 1970. 1, 2

[43] , Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals,

43 (1993), xiv+695, With the assistance of Timothy S. Murphy, Monographs in Harmonic

Analysis, III. 1, 4, 5

[44] E. Stein and G. Weiss, On the theory of harmonic functions of several variables, I. The

theory of Hp-spaces, Acta Math., 103 (1960), 25-62. 2

[45] G. Szegö, Orthogonal polynomials, Colloquium Publ., Vol. XXIII, Amer. Math. Soc., Provi-

dence, R.I., 1975. 16

[46] X. Tolsa, BMO, H1, and Calderón-Zygmund operators for non doubling measures, Math.

Ann., 319 (2001), 89-149. 7

[47] X. Tolsa, A proof of the weak (1,1) inequality for singular integrals with non doubling mea-

sures based on a Calderón-Zygmund decomposition, Publ. Mat., 45 (2001), 163-174. 7

Rev. Un. Mat. Argentina, Vol 52–2, (2011)



i
i

i
i

i
i

i
i

22 J. BETANCOR

[48] X. Tolsa, The atomic space H1 for non doubling measures in terms of a maximal operator,

Trans. Amer. Math. Soc., 355 (2003), 315-348. 7

[49] A. Uchiyama, A maximal function characterization of Hp on the spaces of homogeneous

type, Trans. Amer. Math. Soc., 262 (2) (1980), 579-592. 6, 7

[50] A. Uchiyama, Hardy Spaces on the Euclidean Space, Springer Monographs in Mathematics,

Springer, 2001. 1

[51] H. Wang, The boundedness of some integral operators on weighted Hardy spaces associated

with Schrödinger operators, arXiv:1103.1715v1. 10

[52] Dachun Yang and Dongyong Yang, Real variable characterizations of Hardy spaces associated

with Bessel operators, Anal. Appl. (Singap.) (to appear). 15

[53] D. Yang and Y. Zhou, Radial maximal function characterizations of Hardy spaces on RD-

spaces and their applications, Math. Anal., 346 (2010), 307-333. 7, 10

[54] D. Yang and Y. Zhou, Localized Hardy spaces related to admissible functions on RD-spaces

and applications to Schrödinger operators, Trans. Amer. Math. Soc., 363 (2011), 1197-1239.

[55] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph. D. Thesis, Princeton

University, 1993. 8

Jorge J. Betancor
Departamento de Análisis Matemático
Universidad de la Laguna
Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n
38271 La Laguna (Sta. Cruz de Tenerife), España
jbetanco@ull.es

Recibido: 29 de abril de 2011
Aceptado: 1 de noviembre de 2011

Rev. Un. Mat. Argentina, Vol 52–2, (2011)

mailto:jbetanco@ull.es

	1. Introduction
	2. Classical Hardy spaces
	3. Hardy spaces in spaces of homogeneous type
	4. Hardy spaces associated to operators
	4.1. Hardy spaces and Schrödinger operators
	4.2. Hardy spaces and operators satisfying Davies-Gaffney estimates

	5. Hardy spaces associated with Bessel operators
	6. Hardy spaces associated with Laguerre operators
	6.1. Laguerre functions {Ln}nN
	6.2. Laguerre functions {n}nN
	6.3. Laguerre functions {n}nN

	References

