REVISTA DE LA

UNION MATEMATICA ARGENTINA

Vol. 52, No. 2, 2011, 23-34

SOBOLEV SPACES DIVERSIFICATION

BRUNO BONGIOANNI

ABSTRACT. This work attempts to be an overview of a variety of results concerning Sobolev
spaces associated to some orthonormal systems, particularly the Hermite and Laguerre operators
settings.

1. INTRODUCTION

This work is based on a talk given in “X Encuentro de Analistas A. P. Calderén”
at La Falda, Cérdoba, Argentina, August 25-28, 2010. The talk was about some
results obtained in [5] and [6] about Sobolev spaces associated to the Hermite and
Laguerre operators.

Hermite-Sobolev spaces already appear in [23] for the case p = 2 where an
expansion type definition was used. For p > 1 an approach considering derivatives
was presented in [5]. These results where extended in [6] and the new ideas where
used to describe Laguerre-Sobolev spaces.

Sobolev spaces associated to other operators where also studied in the last years
creating an interesting diversity. Examples of these are [2], [3], [L1] and [15] among
others.

In the classical theory, given a multi-index o = (aj)?zl of non-negative integers,
we denote the operator

o ol

Oz Q10252 ... Qg

where |a| = a1 + @z + ... + an, and the derivatives %, t=1,...,d, are taken in
the weak sense. Then, for 1 < p < oo, the classical Sobolev space of order k € Ny
is defined by

WEP = (] € IPRY) s Sof € VR, ol < 1.

The space W¥? is a separable Banach space with the norm

lep= 3 |2

ozt
la| <k

)
p
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24 BRUNO BONGIOANNI

where | - ||, denotes the usual LP(R?) norm. It is also well known that the set C2°
(the set of functions with infinitely many derivatives and compact support) is a
dense subspace (see [18]).

If we start with f € L2(R?), by the formula

0 ~ o

(521)°© = —2riGFo).

we have f € W2 if and only if (1 + |¢[2)*/2f € L2(RY).
Therefore, it is reasonable to define for s > 0

wer {7 2®): [ IFOR+Icd < oo

Now, using R
[(1 = A)f17(¢) = (L +4m®|¢) £,

we have for s > 0,

(7= 2)72f17(¢) = (1 +4m*¢[*) /2 F ().
The operator (I — A)~*/2) with s > 0, is called the Bessel potential of order s.
Therefore, f € W*? if and only if there exists g € L?(R%) such that (I —A)~%/2g =
f, that is to say
WP = (I — A)~*(L*(R?)).
Bessel potentials are bounded operators on LP(R?), p > 1 (see [15], Chapter V).

For p > 1 and s > 0, the potential space of order s and integrability p is defined
as

LE = (I - 8)"*/2(LP(RY))

with the norm

1f1lzz = llgllp,
where g is such that (I — A)~%/2g = f.
In [18] it was proven that for a positive integer k¥ and 1 < p < oo, the space

Whe = L.

A more general setting might be constructed considering a second order differ-
ential operator L self-adjoint with respect to a measure p.

Sometimes, it is possible to obtain a factorization of L as

L=> 00,

where 8; and 9; are first order differential operators, and then to define the Sobolev
space of order k and integrability p associated to L as

WhP = {f € LP(u) : (9;)'f € LP(u) and (9 f € LP(), j < k}.

When s > 0 the definition of the potential space of order s and integrability p
could be given by
LY = (I + 1) */*(L ().
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SOBOLEV SPACES DIVERSIFICATION 25

In the case that L=%/2 is bounded on LP (1), we have
LE = L2 (LP (). (1)

It is reasonable to expect that for a positive integer k it follows WP = LY, and
this tell us that 0; and 0; have the right to be called derivatives associated to L.

2. HERMITE SETTING
The Hermite operator is defined as
H=-A+|z]?, zeR% (2)

Its eigenvectors are the Hermite functions, which form an orthonormal basis for
L?(R9). In R they are defined for n € Ng = {0,1,2,3,...} as

H,(t) e t'/?

where H,, is the Hermite polynomial of order n (see [21]).
In R? given a multi-index o = (aj)?zl € N&, the Hermite function of order « is
defined using the unidimensional ones by

ho(x) = H;lzlhaj (), == (x1,...,2q4) € RY.
As we said, the Hermite functions are eigenvectors of H (see [22]) satisfying
Hho = (2|a| + d) ha,

where |a| = E?:l a;.

Some other interesting properties of Hermite functions are the following. Their
proofs can be found in [19] and [22].

Proposition 1. If M € N and f € C°, then there exists a constant Cpry > 0

such that
e
Rd

Proposition 2. If1 <p < oo and w € A, then there exist constants €, > 0 and
C\w such that

<Cuy(lal+1)™, aeN

[hallrw) < Cw (laf +1)%.

Proposition 3. Asn — oo the Hermite functions satisfy the estimates:
1

i) [Pally ~n2 "7, 1<p<4,
.. _1
”) ||han ~n s 1og(n), p =4,

iii) || hnllp ~n® 12, 4 <p<oo.

The Hermite operator can be factorized as

d
1
H= EZAjA_j + A_;Aj, (3)

j=1

Rev. Un. Mat. Argentina, Vol 52-2, (2011)



26 BRUNO BONGIOANNI

where

0 N 0 .
AjZaTj-f—J?j and A_j:AjZ—a—xj—Fl‘j, 1S]§d.

The operators A; and A_j, are called annihilation and creation operators respec-
tively because of their behavior over Hermite functions, in fact, for 1 < j < d,

Ajha =/ 2Oéj hoz—ej7 A—jhoz = 2(043' + 1) hoz+ej; (4)

where e; is the jth-coordinate vector in N¢. In the context of the Hermite operator,
the notion of derivatives is given by these operators.

Given p € (1,00) and k € N, the Hermite-Sobolev space of order k, denoted by
WHP_is the set of functions f € LP(R?) such that

Ajy - Ay, f e LPRY), 1< il [dim] <d, 1 <m <K,
with the norm
I fllwwr = > Az, -+ Aj, fllp + 1 fllp-
1< g1 lse e lgm | <d, 1<m<k

This definition was rewritten in [6] considering only annihilation operators prov-
ing they are enough to define the Hermite-Sobolev space. In the same work, the
authors deal with weighted Sobolev spaces for weights in the Muckenhoupt class
Ap, defined for 1 < p < 00, as the set of weights (non-negative and locally integrable
functions) w such that

() (o) com

for every ball B C R%; and for p = 1, A; is defined as those weights w satisfying
the condition
w(B) spwt < C|B], (6)
B

for every ball B C R%.
Given a weight w, k € N and p > 1, the Hermite-Sobolev space of order k,
denoted by W¥P(w), is defined as the set of functions f € LP(w) such that

tim
m es
A Ajf=Alf € LP(w), 1<m<k1<j<d,

with the norm

d
[ lweeey =D D A Flloow) + 1 ow)-

j=11<m<k

On the other hand, in order to define a potential space like (1), for a > 0 we
define the operator

Hf@) = o [ et i@e L et fes @

T(a) Jo
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SOBOLEV SPACES DIVERSIFICATION 27

where {e_tH }i>0 is the heat semi-group associated to H, and § denotes the set of
linear combinations of Hermite functions.

Remark 1. If a > 0 and o € N¢, by using the T' function and the fact
eftHha _ 67t(2‘a|+d)ha,
we have

1 oo
H™%hq(z) = j /0 e Hh(x)t % = (2lal +d) " "ha(z), x€R%

I(a)

The operator H™® has a kernel K, with exponential behavior far from the
diagonal as the following proposition shows. The proof can be found in [5].

Proposition 4. The operator H=%, s > 0, has an integral representation

15w = [ Koty o e R

where Kq(x,y) is positive and symmetric. Moreover,

Ko(z,y) < Cdallz —yl), z.y€R%, 8)
where ¢q(r), for r >0, is defined by
XD 4 e Xpon(r), ifa<$,
¢a(r) = { log (¢) X{r<1}(7;) +e T xpen(r), ifa=4,
X{r<1}(r) + 6% X{er}(T)a Z'fa > %

In [6] it was proven that H ~* a bounded operator on LP(w) for a weight w € A,
as the following theorem states.

Theorem 1. Let1 < p < oo and a > 0. If w € A, then the operator H™% is
bounded on LP(w).

Remark 2. The results in [1] (Theorem 4 therein) suggest that there should be
more weights for the boundedness of H~% in LP(w). Those classes of weights allow
power weights w(z) = |z|Y without restriction on ~.

For the unweighted case LP-L? inequalities where obtained in [5].

Theorem 2. Let a,d such that 0 < a < d, then:

i) There exists a constant C' such that
12 fllg < Cllflh,

for all f € LY(R?Y) if and only if 1 < q < d%‘la,
it) There exists a constant C' such that

1= fllo0 < CI£llp,
for all f in LP(RY) if and only if p > %.
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28 BRUNO BONGIOANNI

iii) There exists a constant C' such that
12 Fllq < Cllflloc,

for all f € L>=(RY) if and only if ¢ > %.
iv) There exists a constant C' such that

IH=2 f[l < Ol £,
for all f € LP(RY) if and only if 1 <

p
v) If1<p<oo,1<q<ooand%—%§
C such that

+ 9, then there exists a constant

IH=fllg < Cllflp,
for all f € LP(RY).

In the Hermite setting the potential space of order a and integrability p is defined
as LP(w) = H~%?(LP(w)), with respect to an absolute continuous measure w(x)dz,
being w a weight in a class where H~%?2 results bounded. From Theorem 1 it is
enough to ask w € A4,.

A norm on £2(w) is given by

I fllezwy = llgllze(w)
where ¢ is such that H=%/2g = f.

Remark 3. Tt is easy to see that H~%/? is one to one (see [7]), and this assures that
the space £7 is well defined for p € [1,00) and a > 0. As § = H~%/?(3) then § is
a dense space of £F.

A fundamental devise of the theory is the family of Hermite-Riesz transforms of
order m € N, associated to H, defined by

™= Aj .. Ay H™? where J = (1,5 4m), 1 < i < d, 1< i <m.

In the case ji1 = --- = jm = j, these operators will be denoted by R}*. The
case m = 1 was introduced by S. Thangavelu (see [22]). He proved that they are
bounded operators in LP(R?). Also in [19] and [20], it was shown that the operators
R’} are Calderén-Zygmund operators and as a consequence they are bounded in
LP(w) forw e Ap, 1 < p < o0.

We shall now present some expected properties of the spaces £F(w) appearing
in [6].

Theorem 3. Let w € A,, 1 <p < oo, and a > 0.

i) If t > a, then £ (w) C £8(w) C LP(w) with continuous inclusions. Moreover,
£P(w) and £F(w) are isometrically isomorphic.
i) If t > 0, then H=*/2 maps £8(w) into £, (w).
i) Ifa>1 and 1 < |j| <d, then A; is bounded from £F(w) into £_, (w).
i) The operators R} are bounded on £F(w).

For the unweighted case some comparison with the classical Sobolev spaces is
presented in the following result.
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SOBOLEV SPACES DIVERSIFICATION 29

Theorem 4. Leta >0 and p € (1,00). Then
i) L0 C LP.
it) £ # LP.
iii) If f € L and has compact support, then f belongs to £F.
Remark 4. The results in [10] about Sobolev spaces associated to Schrédinger

operators with a polynomial potential, implies in particular that f belongs to £
if and only if f € L2 and |x|?*f € LP.

The following structural theorem was proved in [6]. A fundamental part of
the proof is due to the boundedness of higher order Riesz transforms given in
Theorem 3.

Theorem 5. Let k € N, 1 <p < oo, and w € A,. Then,
WP (w) = £ (w)
and the norms || - |[wr.re(w) and || - [|er () are equivalent.
3. LAGUERRE SETTING

For @ > —1 and n € Ny, the Laguerre polynomial of order n and type «, is
defined by

z%e® d"™

o —x nta
mopl dan (e772™™9),
and the Laguerre function of order n and type « is
Cin+1) \"Y* o o
ny) = 77— *ELY Rt No.
g0 = (rrds) etLie), yeRn nete @

For each a > —1, {£2}2° , is an orthonormal system in L?((0, o)) and satisfies

a+1

Lo Lo = (n—i— )Eg,nENO,

where L, is the Laguerre operator, self-adjoint in the set C.(0, 00), defined by

d? d vy o
Lo=—y———+>4+—, € (0, 00). 10
VaE a1t 1 y € (0,00) (10)
The operator L, can be written as

where
5 = \/E% + % <\F— %) and (6%)* = —\/E% + % (\/5— O‘j;) . (11)

As was shown in [6] the operator 6% plays the role of derivative in the Laguerre
setting. The action of these operators on Laguerre functions is given by

5ULE) =0, d%LY) = —/n LT, forn>1, and (12)
(@) (Lot = —vn+1 L2, forn>0. (13)
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30 BRUNO BONGIOANNI

In this section we will deal with power weights y” in order to proof boundedness
on LP(R™, y7dy) of some operators associated to L, (see [1]). The range for the
exponent 7y will be

—%p—1<7<p—1+%p, (14)
where a > —1, 1 < p < o0.
Under this hypothesis it is known (see [21] Theorem 5.7.1) that the set S, of
finite linear combinations of Laguerre functions is dense in L?((0, ),y dy).
At first sight, the natural way of defining a Sobolev space should be, iterating
the derivative §%, as the set of functions f in LP(R™ y7dy) such that (§*)™f €
LP(R y7dy), 0 < m < k. We shall denote this space by W¥*(y7), and the norm

1S

k
1 iy = S O™ Fllpoer yoay) -
m=0

We will see later that this space is not appropriate as a Sobolev space for L,
when —1 < a < 0.

It was found in [6] that the right space that plays the role of a Sobolev space
defined via derivatives in the Laguerre setting is called Laguerre-Sobolev spaces,
denoted by WkP(y"), defined by the sets of functions f in LP(R*,y”dy) such that

§otm o 0§l osof e LP(RY y7dy), 0 <m < k—1.
The norm on W¥»(y7) is given by

k—1
1 N oy = Iflloe + D 1[8%T™ 006 o g .
m=0

These spaces are the right spaces for the theory as the following theorem shows
(see [6]).

Theorem 6. Let a > —1, 1 <p < oo, k € N and « satisfying (14). Then,
WP (y") = We (y7),

and the norms are equivalent.

The Riesz transforms were defined in [12], for a > —1, by
Ro =0%La)"Y?  and Ry = (0%)*(Lay1)" Y2
In [13] it was proved that those operators are bounded on LP(RT,y7dy) for v

satisfying (14). Given a positive integer k and o > —1 we define the higher order
Riesz transform of order k as

= (557 0o ot 0 00) (L) 4
and 3
R = (%) 0 (071)" 0 -0 (0771 (L) 2.

Observe that R., = R, and R, = R,,.
It was proved in [6] the following boundedness result for the operators R® and
RE.

(e%
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SOBOLEV SPACES DIVERSIFICATION 31

Theorem 7. Letk € N, 1 < p < 0o, « > —1 and v satisfying (14). The operators
RE and RE are bounded on LP(RY, y7dy).

As in the Hermite setting we have the following structural theorem for the spaces
W7 . (y7)-

Theorem 8. Let a > —1, 1 <p < o0, a >0, and 7 satisfying (14).
i) If t > a, then WP (y7) C WP ,(y?) C LP(y") with continuous inclusions.
Moreover, QUQa(ij and Qﬂﬁ,t(y%) are isometrically isomorphic .
i) If t > 0, then (La)~"2 maps 207, ,(y") into WL, ., (y7).
ii) If a > 1, then 0* is bounded from 2%, ,(y") into We, ;. 1(y7).
iv) The operators RE, are bounded from 207, (y7) into W (YY)

'’

Proposition 5. Let a > —1, 1 < p < 00, k € N and ~ satisfying (14). Then S,
is a dense subspace of WEP(y7).

A Riesz transform of higher order k associated to L, could be defined iterat-
ing the derivative 6 as (6%)*(Ls,)~"*/2. This operator has the same boundedness
properties of RE.

Theorem 9. Let a > —1 and k a positive integer. Then the Riesz transforms
(6°)*(La) %% are bounded in LP(y"dy) for v and p satisfying (14).

When —1 < a < 0, despite the boundedness of (§%)¥(L,)~%/? in LP(ydy)
for ~ satisfying (14), the spaces W¥P(y?) are different from the potential spaces
mﬁ,k(y5) as the following theorem shows.

Theorem 10. Let p be in the range 1 < p < oc.
i) If a > —1, and v satisfies (14), then QWEP(y7) C WEP(y7).
i) If —1 < a <0, then W22 £ W22,
it1) If a > 0, and ~y satisfies
a—1 a—1

-1 14+ ——p. 1
5P l<y<p—l+——p (15)

then WEP(y7) = W2P(y7),

4. OTHER LAGUERRE FUNCTION SYSTEMS

It is possible to translate the concepts and results of the previous section to
other Laguerre systems. For instance, we shall consider the orthonormal system in
L2((0, 00), dy) given by ¢ (y) = £ (y%)(2y)*/2, where £¢ are the functions defined
in (9). The functions ¢§ are eigenfunctions of the operator

since
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32 BRUNO BONGIOANNI

The operator L, can be written as

L, = (D.)*D, — (a—i— 1)7

2
1(d 1 1 1 d 1 1
ith DY = =4 — - - = d (DY) = = q—— - - =) .
wi 2{dy+y y(a+2)} and (D%) 2{ dy—i—y y(a+2)}
The operator (D*)* is the formal adjoint of D® with respect to the Lebesgue
measure. The behavior of those operators over ¢f is

D (o) = —Vhgtl  and  (DPTN) () = —VE+ Tl
As in Section 3 the Riesz transforms can be defined as
RF =Dtk"1o...0 Da(La)fk/Q, alternatively (Da)k(La)fk/Q, a>—1.
If V is the operator defined by V f(y) = (2y)"/2f(y?) and 2y = n + g — 1, then
WV Loy ay) = 2: 7 || fll L7y~ ayy and the following proposition holds.

Proposition 6. Let 1 < p < oo, 2y =n+ 5 —1 and T an operator defined over
the set of finite linear combination of Laguerre functions {£g}r. The operator T
has a bounded extension from LP((0,00),y"dy) into LP((0,00),y"dy) if and only
if the operator T = VTV ="' has a bounded extension from LP((0,00),y"dy) into
LP((0,00), y"dy).

An easy consequence of the above proposition, and Theorems 7 and 9 is the
following.

Theorem 11. Let o > —1 and let f be a finite linear combination of Laguerre
functions {£5 }x.

i) e7thef = VleTthay f

i) (Lo) 5 f =V La) *Vf, for all s > 0,

ii) 8%f =V DV f,

w) REf=V-IREVf.
Proposition 7. Let a > —1, 1 < p < oo, and n be real number. Let S be any one
of the operators L=° s > 0, Rk, (DO‘)’“L”“/Q, s > 0. Then the operator S has a
bounded extension from LP((0,00),y"dy) into itself, for n satisfying

3
—1—ap—§<n<ap+?p—1. (16)

Now in the same way as in Section 3, we can define potential spaces and Sobolev
spaces for the class of Laguerre functions {¢¢ }x, @ > —1. Thus, given o > —1,
1 < p<oo,s>0 and 7 satisfying (16), we define

942 (") = (La) *[LP (R, y"dy)]
with the norm || f] U2 (yn) = lgllp,n, where (La)*“/2g =f.
We shall denote by UFP(y?), the set of functions f in LP(R™T,y"dy) such that
Do, . oD o Df € LP(RT,ydy), 0 <m <k —1,
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SOBOLEV SPACES DIVERSIFICATION 33

with the norm

k—1
||f||U§’p(y"7) = [[fllpn + Z ||Da+m o...oD**o D(nyp,n .
m=0
Finally, U*?(y?), will denote the set of functions f in LP(R*,y"dy) such that
(D)™ f e LP(RT,y"dy), 0 < m < k, with the norm

k
1l = S 1D F1,, -
m=0

The following theorems are direct consequences of Theorems 6, 10 and Proposi-
tions 7 and 11.

Theorem 12. Let a > —1,1 <p < oo, k € N and n satisfies (16).

i) Ufj”f’l = il’(i’f,’], and the norms are equivalent.
ii) Let n satisfying —5p—1<n<p—1+ $p. Then URP(y1) C UFP (yT).
i) Let —1 < o < 0. Then U422 # U>2.

w) If n satisfies

3
—1—(a—1)p—§<77<(04—1)p+?p—1, (17)

then $ZP(y") = UZP (y").

Analogous results could be obtained for the systems of Laguerre functions £§ (y) =
£2(y)y=*/? and Y (y) = V2y L (y?), @ > —1. These systems are eigenfunctions
of the differential operators

d? d
Lo =—y— — 1)—
y e (a+1) a +

1( d? 200+ 1\ d
=Y (52 )
T Ty Ty ey Y
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