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SOBOLEV SPACES DIVERSIFICATION

BRUNO BONGIOANNI

Abstract. This work attempts to be an overview of a variety of results concerning Sobolev
spaces associated to some orthonormal systems, particularly the Hermite and Laguerre operators
settings.

1. Introduction

This work is based on a talk given in “X Encuentro de Analistas A. P. Calderón”
at La Falda, Córdoba, Argentina, August 25-28, 2010. The talk was about some
results obtained in [5] and [6] about Sobolev spaces associated to the Hermite and
Laguerre operators.

Hermite-Sobolev spaces already appear in [23] for the case p = 2 where an
expansion type definition was used. For p > 1 an approach considering derivatives
was presented in [5]. These results where extended in [6] and the new ideas where
used to describe Laguerre-Sobolev spaces.

Sobolev spaces associated to other operators where also studied in the last years
creating an interesting diversity. Examples of these are [2], [3], [11] and [15] among
others.

In the classical theory, given a multi-index α = (αj)
d
j=1 of non-negative integers,

we denote the operator

∂α

∂xα
=

∂|α|

∂xα1

1 ∂xα2

2 . . . ∂xαd

d

,

where |α| = α1 + α2 + . . .+ αn, and the derivatives ∂
∂xi

, i = 1, . . . , d, are taken in
the weak sense. Then, for 1 ≤ p ≤ ∞, the classical Sobolev space of order k ∈ N0

is defined by

W k,p = {f ∈ Lp(Rd) :
∂α

∂xα
f ∈ Lp(Rd), |α| ≤ k}.

The space W k,p is a separable Banach space with the norm

‖f‖k,p =
∑

|α|≤k

∥∥∥∥
∂α

∂xα
f

∥∥∥∥
p

,
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24 BRUNO BONGIOANNI

where ‖ · ‖p denotes the usual Lp(Rd) norm. It is also well known that the set C∞
c

(the set of functions with infinitely many derivatives and compact support) is a
dense subspace (see [18]).

If we start with f ∈ L2(Rd), by the formula
(
∂

∂ζj
f

)
̂(ζ) = −2πiζj f̂(ζ),

we have f ∈W k,2 if and only if (1 + |ζ|2)k/2f̂ ∈ L2(Rd).
Therefore, it is reasonable to define for s > 0

W s,p =

{
f ∈ L2(Rd) :

∫

Rd

|f̂(ζ)|2(1 + |ζ|2)sdζ <∞
}
.

Now, using

[(I −∆)f ]̂(ζ) = (1 + 4π2|ζ|2)f̂ ,
we have for s > 0,

[(I −∆)−s/2f ]̂(ζ) = (1 + 4π2|ζ|2)−s/2f̂(ζ).

The operator (I − ∆)−s/2, with s > 0, is called the Bessel potential of order s.
Therefore, f ∈ W s,2 if and only if there exists g ∈ L2(Rd) such that (I−∆)−s/2g =
f , that is to say

W 2,p = (I −∆)−s/2(L2(Rd)).

Bessel potentials are bounded operators on Lp(Rd), p ≥ 1 (see [18], Chapter V).
For p ≥ 1 and s > 0, the potential space of order s and integrability p is defined

as

Lp
s = (I −∆)−s/2(Lp(Rd))

with the norm

‖f‖Lp
s
= ‖g‖p,

where g is such that (I −∆)−s/2g = f .
In [18] it was proven that for a positive integer k and 1 < p < ∞, the space

W k,p = L
p
k.

A more general setting might be constructed considering a second order differ-
ential operator L self-adjoint with respect to a measure µ.

Sometimes, it is possible to obtain a factorization of L as

L =
∑

i

∂i∂̃i,

where ∂i and ∂̃i are first order differential operators, and then to define the Sobolev
space of order k and integrability p associated to L as

W k,p = {f ∈ Lp(µ) : (∂i)
jf ∈ Lp(µ) and (∂̃i)

jf ∈ Lp(µ), j ≤ k}.
When s > 0 the definition of the potential space of order s and integrability p

could be given by

Lp
s = (I + L)−s/2(Lp(µ)).
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SOBOLEV SPACES DIVERSIFICATION 25

In the case that L−s/2 is bounded on Lp(µ), we have

Lp
s = L−s/2(Lp(µ)). (1)

It is reasonable to expect that for a positive integer k it follows W k,p = L
p
k, and

this tell us that ∂i and ∂̃i have the right to be called derivatives associated to L.

2. Hermite setting

The Hermite operator is defined as

H = −∆+ |x|2, x ∈ R
d. (2)

Its eigenvectors are the Hermite functions, which form an orthonormal basis for
L2(Rd). In R they are defined for n ∈ N0 = {0, 1, 2, 3, . . .} as

hn(t) =
Hn(t) e

−t2/2

(2nn!π1/2)1/2
, t ∈ R,

where Hn is the Hermite polynomial of order n (see [21]).
In R

d given a multi-index α = (αj)
d
j=1 ∈ N

d
0, the Hermite function of order α is

defined using the unidimensional ones by

hα(x) = Πd
j=1hαj

(xj), x = (x1, . . . , xd) ∈ R
d.

As we said, the Hermite functions are eigenvectors of H (see [22]) satisfying

Hhα = (2|α|+ d)hα,

where |α| =
∑d

j=1 αj .
Some other interesting properties of Hermite functions are the following. Their

proofs can be found in [19] and [22].

Proposition 1. If M ∈ N and f ∈ C∞
c , then there exists a constant CM,f > 0

such that ∣∣∣∣
∫

Rd

f hα

∣∣∣∣ ≤ CM,f (|α| + 1)−M , α ∈ N
d.

Proposition 2. If 1 ≤ p < ∞ and w ∈ Ap, then there exist constants ǫp > 0 and
Cw such that

‖hα‖Lp(w) ≤ Cw (|α| + 1)ǫp .

Proposition 3. As n→ ∞ the Hermite functions satisfy the estimates:

i) ‖hn‖p ∼ n
1
2p

− 1
4 , 1 ≤ p < 4,

ii) ‖hn‖p ∼ n− 1
8 log(n), p = 4,

iii) ‖hn‖p ∼ n
1
6p

− 1
12 , 4 < p ≤ ∞.

The Hermite operator can be factorized as

H =
1

2

d∑

j=1

AjA−j +A−jAj , (3)

Rev. Un. Mat. Argentina, Vol 52–2, (2011)



26 BRUNO BONGIOANNI

where

Aj =
∂

∂xj
+ xj and A−j = A∗

j = − ∂

∂xj
+ xj , 1 ≤ j ≤ d.

The operators Aj and A−j , are called annihilation and creation operators respec-
tively because of their behavior over Hermite functions, in fact, for 1 ≤ j ≤ d,

Ajhα =
√
2αj hα−ej , A−jhα =

√
2(αj + 1)hα+ej , (4)

where ej is the jth-coordinate vector in N
d
0. In the context of the Hermite operator,

the notion of derivatives is given by these operators.
Given p ∈ (1,∞) and k ∈ N, the Hermite-Sobolev space of order k, denoted by

W k,p, is the set of functions f ∈ Lp(Rd) such that

Aj1 · · ·Ajmf ∈ Lp(Rd), 1 ≤ |j1|, . . . , |jm| ≤ d, 1 ≤ m ≤ k,

with the norm

‖f‖Wk,p =
∑

1≤|j1|,...,|jm|≤d, 1≤m≤k

‖Aj1 · · ·Ajmf‖p + ‖f‖p.

This definition was rewritten in [6] considering only annihilation operators prov-
ing they are enough to define the Hermite-Sobolev space. In the same work, the
authors deal with weighted Sobolev spaces for weights in the Muckenhoupt class
Ap, defined for 1 < p <∞, as the set of weights (non-negative and locally integrable
functions) w such that

(∫

B

w

)1/p (∫

B

w− 1
p−1

)1/p′

≤ C|B|, (5)

for every ball B ⊂ R
d; and for p = 1, A1 is defined as those weights w satisfying

the condition

w(B) sup
B
w−1 ≤ C|B|, (6)

for every ball B ⊂ R
d.

Given a weight w, k ∈ N and p ≥ 1, the Hermite-Sobolev space of order k,
denoted by W k,p(w), is defined as the set of functions f ∈ Lp(w) such that

m times︷ ︸︸ ︷
Aj · · ·Aj f = Am

j f ∈ Lp(w), 1 ≤ m ≤ k, 1 ≤ j ≤ d,

with the norm

‖f‖Wk,p(w) =

d∑

j=1

∑

1≤m≤k

‖Am
j f‖Lp(w) + ‖f‖Lp(w).

On the other hand, in order to define a potential space like (1), for a > 0 we
define the operator

H−af(x) =
1

Γ(a)

∫ ∞

0

e−tHf(x) ta
dt

t
, x ∈ R

d, f ∈ F, (7)
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SOBOLEV SPACES DIVERSIFICATION 27

where {e−tH}t≥0 is the heat semi-group associated to H , and F denotes the set of
linear combinations of Hermite functions.

Remark 1. If a > 0 and α ∈ N
d
0, by using the Γ function and the fact

e−tHhα = e−t(2|α|+d)hα,

we have

H−ahα(x) =
1

Γ(a)

∫ ∞

0

e−tHhα(x) t
a dt

t
= (2|α|+ d)−ahα(x), x ∈ R

d.

The operator H−a has a kernel Ka with exponential behavior far from the
diagonal as the following proposition shows. The proof can be found in [5].

Proposition 4. The operator H−s, s > 0, has an integral representation

H−sf(x) =

∫

Rd

Ks(x, y)f(y)dy, x ∈ R
d,

where Ks(x, y) is positive and symmetric. Moreover,

Ka(x, y) ≤ C φa(|x− y|), x, y ∈ R
d, (8)

where φa(r), for r ≥ 0, is defined by

φa(r) =





χ{r<1}(r)

rd−2a + e
−r2

4 χ{r≥1}(r), if a < d
2 ,

log
(
e
r

)
χ{r<1}(r) + e

−r2

4 χ{r≥1}(r), if a = d
2 ,

χ{r<1}(r) + e
−r2

4 χ{r≥1}(r), if a > d
2 .

In [6] it was proven that H−a a bounded operator on Lp(w) for a weight w ∈ Ap

as the following theorem states.

Theorem 1. Let 1 ≤ p < ∞ and a > 0. If w ∈ Ap, then the operator H−a is
bounded on Lp(w).

Remark 2. The results in [4] (Theorem 4 therein) suggest that there should be
more weights for the boundedness of H−a in Lp(w). Those classes of weights allow
power weights w(x) = |x|γ without restriction on γ.

For the unweighted case Lp-Lq inequalities where obtained in [5].

Theorem 2. Let a, d such that 0 < a < d, then:

i) There exists a constant C such that

‖H−a/2f‖q ≤ C‖f‖1,
for all f ∈ L1(Rd) if and only if 1 ≤ q < d

d−a .

ii) There exists a constant C such that

‖H−a/2f‖∞ ≤ C‖f‖p,
for all f in Lp(Rd) if and only if p > d

a .
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28 BRUNO BONGIOANNI

iii) There exists a constant C such that

‖H−a/2f‖q ≤ C‖f‖∞,
for all f ∈ L∞(Rd) if and only if q > d

a .
iv) There exists a constant C such that

‖H−a/2f‖1 ≤ C‖f‖p,
for all f ∈ Lp(Rd) if and only if 1 ≤ p < d

d−a .

v) If 1 < p <∞, 1 < q <∞ and 1
p − a

d ≤ 1
q <

1
p +

a
d , then there exists a constant

C such that

‖H−a/2f‖q ≤ C‖f‖p,
for all f ∈ Lp(Rd).

In the Hermite setting the potential space of order a and integrability p is defined
as Lp

a(w) = H−a/2(Lp(w)), with respect to an absolute continuous measure w(x)dx,
being w a weight in a class where H−a/2 results bounded. From Theorem 1 it is
enough to ask w ∈ Ap.

A norm on Lp
a(w) is given by

‖f‖Lp
a(w) = ‖g‖Lp(w),

where g is such that H−a/2g = f .

Remark 3. It is easy to see that H−a/2 is one to one (see [5]), and this assures that
the space Lp

a is well defined for p ∈ [1,∞) and a > 0. As F = H−a/2(F) then F is
a dense space of Lp

a.

A fundamental devise of the theory is the family of Hermite-Riesz transforms of
order m ∈ N, associated to H , defined by

Rm
J = Aj1 . . . AjmH

−m/2, where J = (j1, . . . , jm), 1 ≤ |ji| ≤ d, 1 ≤ i ≤ m.

In the case j1 = · · · = jm = j, these operators will be denoted by Rm
j . The

case m = 1 was introduced by S. Thangavelu (see [22]). He proved that they are
bounded operators in Lp(Rd). Also in [19] and [20], it was shown that the operators
Rm

J are Calderón-Zygmund operators and as a consequence they are bounded in
Lp(w) for w ∈ Ap, 1 < p <∞.

We shall now present some expected properties of the spaces Lp
a(w) appearing

in [6].

Theorem 3. Let w ∈ Ap, 1 < p <∞, and a > 0.

i) If t > a, then L
p
t (w) ⊂ Lp

a(w) ⊂ Lp(w) with continuous inclusions. Moreover,
Lp
a(w) and L

p
t (w) are isometrically isomorphic.

ii) If t > 0, then H−t/2 maps Lp
a(w) into L

p
a+t(w).

iii) If a > 1 and 1 ≤ |j| ≤ d, then Aj is bounded from Lp
a(w) into L

p
a−1(w).

iv) The operators Rm
J are bounded on Lp

a(w).

For the unweighted case some comparison with the classical Sobolev spaces is
presented in the following result.
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Theorem 4. Let a > 0 and p ∈ (1,∞). Then

i) Lp
a ⊂ Lp

a.
ii) Lp

a 6= Lp
a.

iii) If f ∈ Lp
a and has compact support, then f belongs to Lp

a.

Remark 4. The results in [10] about Sobolev spaces associated to Schrödinger
operators with a polynomial potential, implies in particular that f belongs to Lp

a

if and only if f ∈ Lp
a and |x|2af ∈ Lp.

The following structural theorem was proved in [6]. A fundamental part of
the proof is due to the boundedness of higher order Riesz transforms given in
Theorem 3.

Theorem 5. Let k ∈ N, 1 < p <∞, and w ∈ Ap. Then,

W k,p(w) = L
p
k(w)

and the norms ‖ · ‖Wk,p(w) and ‖ · ‖Lp
k
(w) are equivalent.

3. Laguerre setting

For α > −1 and n ∈ N0, the Laguerre polynomial of order n and type α, is
defined by

Lα
n =

xαex

n!

dn

dxn
(e−xxn+α),

and the Laguerre function of order n and type α is

Lα
n (y) =

(
Γ(n+ 1)

Γ(n+ α+ 1)

)1/2

e−y/2yα/2Lα
n (y) , y ∈ R

+, n ∈ N0. (9)

For each α > −1, {Lα
n}∞n=0 is an orthonormal system in L2((0,∞)) and satisfies

LαLα
n =

(
n+

α+ 1

2

)
Lα
n, n ∈ N0,

where Lα is the Laguerre operator, self-adjoint in the set Cc(0,∞), defined by

Lα = −y d2

dy2
− d

dy
+
y

4
+
α2

4y
, y ∈ (0,∞). (10)

The operator Lα can be written as

Lα = (δα)∗δα +
(α+ 1)

2
,

where

δα =
√
x
d

dx
+

1

2

(√
x− α√

x

)
and (δα)∗ = −

√
x
d

dx
+

1

2

(√
x− α+ 1√

x

)
. (11)

As was shown in [6] the operator δα plays the role of derivative in the Laguerre
setting. The action of these operators on Laguerre functions is given by

δα(Lα
0 ) = 0, δα(Lα

n) = −
√
n Lα+1

n−1, for n ≥ 1, and (12)

(δα)∗(Lα+1
n ) = −

√
n+ 1 Lα

n+1 for n ≥ 0. (13)
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30 BRUNO BONGIOANNI

In this section we will deal with power weights yγ in order to proof boundedness
on Lp(R+, yγdy) of some operators associated to Lα, (see [1]). The range for the
exponent γ will be

− α

2
p− 1 < γ < p− 1 +

α

2
p, (14)

where α > −1, 1 < p <∞.
Under this hypothesis it is known (see [21] Theorem 5.7.1) that the set Sα of

finite linear combinations of Laguerre functions is dense in Lp((0,∞), yγdy).
At first sight, the natural way of defining a Sobolev space should be, iterating

the derivative δα, as the set of functions f in Lp(R+, yγdy) such that (δα)mf ∈
Lp(R+, yγdy), 0 ≤ m ≤ k. We shall denote this space by Wk,p

α (yγ), and the norm
is

‖f‖Wk,p
α (yδ) =

k∑

m=0

‖(δα)mf‖Lp(R+,yδdy) .

We will see later that this space is not appropriate as a Sobolev space for Lα

when −1 < α < 0.
It was found in [6] that the right space that plays the role of a Sobolev space

defined via derivatives in the Laguerre setting is called Laguerre-Sobolev spaces,
denoted by W k,p

α (yγ), defined by the sets of functions f in Lp(R+, yγdy) such that

δα+m ◦ . . . ◦ δα+1 ◦ δαf ∈ Lp(R+, yγdy), 0 ≤ m ≤ k − 1.

The norm on W k,p
α (yγ) is given by

‖f‖Wk,p
α (yγ) = ‖f‖p,γ +

k−1∑

m=0

∥∥δα+m ◦ . . . ◦ δα+1 ◦ δαf
∥∥
p,γ

.

These spaces are the right spaces for the theory as the following theorem shows
(see [6]).

Theorem 6. Let α > −1, 1 < p <∞, k ∈ N and γ satisfying (14). Then,

W k,p
α (yγ) = Wk,p

α (yγ),

and the norms are equivalent.

The Riesz transforms were defined in [12], for α > −1, by

Rα = δα(Lα)
−1/2 and R̃α = (δα)∗(Lα+1)

−1/2.

In [13] it was proved that those operators are bounded on Lp(R+, yγdy) for γ
satisfying (14). Given a positive integer k and α > −1 we define the higher order
Riesz transform of order k as

Rk
α =

(
δα+k−1 ◦ · · · ◦ δα+1 ◦ δα

)
(Lα)

−k/2

and

R̃k
α =

(
(δα)∗ ◦ (δα+1)∗ ◦ · · · ◦ (δα+k−1)∗

)
(Lα+k)

−k/2.

Observe that R1
α = Rα and R̃1

α = R̃α.

It was proved in [6] the following boundedness result for the operators Rk
α and

R̃k
α.
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Theorem 7. Let k ∈ N, 1 < p <∞, α > −1 and γ satisfying (14). The operators

Rk
α and R̃k

α are bounded on Lp(R+, yγdy).

As in the Hermite setting we have the following structural theorem for the spaces
Wp

α,a(y
γ).

Theorem 8. Let α > −1, 1 < p <∞, a > 0, and γ satisfying (14).

i) If t > a, then Wp
α,a(y

γ) ⊂ W
p
α,t(y

γ) ⊂ Lp(yγ) with continuous inclusions.

Moreover, Wp
α,a(y

γ) and W
p
α,t(y

γ) are isometrically isomorphic .

ii) If t > 0, then (Lα)
−t/2 maps Wp

α,a(y
γ) into W

p
α,a+t(y

γ).

iii) If a > 1, then δα is bounded from Wp
α,a(y

γ) into W
p
α+1,a−1(y

γ).

iv) The operators Rk
α, are bounded from Wp

α,s(y
γ) into W

p
α+k,s(y

γ).

Proposition 5. Let α > −1, 1 < p < ∞, k ∈ N and γ satisfying (14). Then Sα

is a dense subspace of W k,p
α (yγ).

A Riesz transform of higher order k associated to Lα could be defined iterat-
ing the derivative δα as (δα)k(Lα)

−k/2. This operator has the same boundedness
properties of Rk

α.

Theorem 9. Let α > −1 and k a positive integer. Then the Riesz transforms
(δα)k(Lα)

−k/2 are bounded in Lp(yγdy) for γ and p satisfying (14).

When −1 < α ≤ 0, despite the boundedness of (δα)k(Lα)
−k/2 in Lp(yγdy)

for γ satisfying (14), the spaces Wk,p
α (yδ) are different from the potential spaces

W
p
α,k(y

δ) as the following theorem shows.

Theorem 10. Let p be in the range 1 < p <∞.

i) If α > −1, and γ satisfies (14), then Wk,p
α (yγ) ⊂ Wk,p

α (yγ).
ii) If −1 < α ≤ 0, then W2,2

α 6= W2,2
α .

iii) If α > 0, and γ satisfies

− α− 1

2
p− 1 < γ < p− 1 +

α− 1

2
p. (15)

then W2,p
α (yγ) = W2,p

α (yγ),

4. Other Laguerre function systems

It is possible to translate the concepts and results of the previous section to
other Laguerre systems. For instance, we shall consider the orthonormal system in
L2((0,∞), dy) given by ϕα

k (y) = Lα
k (y

2)(2y)1/2, where Lα
k are the functions defined

in (9). The functions ϕα
k are eigenfunctions of the operator

Lα =
1

4

{
− d2

dy2
+ y2 +

1

y2

(
α2 − 1

4

)}
,

since

Lα(ϕ
α
k ) =

(
k +

α+ 1

2

)
ϕα
k .
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32 BRUNO BONGIOANNI

The operator Lα can be written as

Lα = (Dα)
∗Dα −

(α+ 1

2

)
,

with Dα =
1

2

{
d

dy
+ y − 1

y
(α+

1

2
)

}
and (Dα)∗ =

1

2

{
− d

dy
+ y − 1

y
(α+

1

2
)

}
.

The operator (Dα)∗ is the formal adjoint of Dα with respect to the Lebesgue
measure. The behavior of those operators over ϕα

k is

Dα(ϕα
k ) = −

√
kϕα+1

k−1 and (Dβ−1)∗(ϕβ
k ) = −

√
k + 1ϕβ−1

k+1 .

As in Section 3 the Riesz transforms can be defined as

Rk
α = Dα+k−1 ◦ · · · ◦Dα(Lα)

−k/2
, alternatively (Dα)k(Lα)

−k/2
, α > −1.

If V is the operator defined by V f(y) = (2y)1/2f(y2) and 2γ = η +
p

2
− 1, then

‖V f‖Lp(yη dy) = 2
1
2
− 1

p ‖f‖Lp(yγ dy) and the following proposition holds.

Proposition 6. Let 1 < p < ∞, 2γ = η + p
2 − 1 and T an operator defined over

the set of finite linear combination of Laguerre functions {Lα
k}k. The operator T

has a bounded extension from Lp((0,∞), yγdy) into Lp((0,∞), yγdy) if and only
if the operator T = V T V −1 has a bounded extension from Lp((0,∞), yηdy) into
Lp((0,∞), yηdy).

An easy consequence of the above proposition, and Theorems 7 and 9 is the
following.

Theorem 11. Let α > −1 and let f be a finite linear combination of Laguerre
functions {Lα

k}k.
i) e−tLαf = V −1e−tLαV f,

ii) (Lα)
−sf = V −1(Lα)

−sV f , for all s > 0,
iii) δαf = V −1DαV f ,

iv) Rk
αf = V −1Rk

α V f .

Proposition 7. Let α > −1, 1 < p <∞, and η be real number. Let S be any one
of the operators L−s, s > 0, Rk

α, (Dα)kL−k/2, s > 0. Then the operator S has a
bounded extension from Lp((0,∞), yηdy) into itself, for η satisfying

− 1− αp− p

2
< η < αp+

3p

2
− 1. (16)

Now in the same way as in Section 3, we can define potential spaces and Sobolev
spaces for the class of Laguerre functions {ϕα

k }k, α > −1. Thus, given α > −1,
1 < p <∞, s > 0 and η satisfying (16), we define

Up
α,s(y

η) = (Lα)
−s/2[Lp(R+, yηdy)]

with the norm ‖f‖Up
α,a(yη) = ‖g‖p,η, where (Lα)

−a/2g = f .

We shall denote by Uk,p
α (yγ), the set of functions f in Lp(R+, yηdy) such that

Dα+m ◦ . . . ◦Dα+1 ◦Dαf ∈ Lp(R+, yηdy), 0 ≤ m ≤ k − 1,
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with the norm

‖f‖Uk,p
α (yη) = ‖f‖p,η +

k−1∑

m=0

∥∥Dα+m ◦ . . . ◦Dα+1 ◦Dαf
∥∥
p,η
.

Finally, Uk,p
α (yγ), will denote the set of functions f in Lp(R+, yηdy) such that

(Dα)mf ∈ Lp(R+, yηdy), 0 ≤ m ≤ k, with the norm

‖f‖Uk,p
α (yη) =

k∑

m=0

‖(Dα)mf‖p,η .

The following theorems are direct consequences of Theorems 6, 10 and Proposi-
tions 7 and 11.

Theorem 12. Let α > −1, 1 < p <∞, k ∈ N and η satisfies (16).

i) Uk,p
α,η = Uk,p

α,η, and the norms are equivalent.

ii) Let η satisfying −α
2 p− 1 < η < p− 1 + α

2 p. Then Uk,p
α (yη) ⊂ Uk,p

α (yη).

iii) Let −1 < α ≤ 0. Then U2,2
α 6= U2,2

α .

iv) If η satisfies

− 1− (α− 1)p− p

2
< η < (α− 1)p+

3p

2
− 1, (17)

then U2,p
α (yη) = U2,p

α (yη).

Analogous results could be obtained for the systems of Laguerre functions ℓαk (y) =

Lα
k (y)y

−α/2 and ψα
k (y) =

√
2y−αLα

k (y
2), α > −1. These systems are eigenfunctions

of the differential operators

Lα = −y d
2

dy2
− (α + 1)

d

dy
+
y

4
.

and

Lα = −1

4

{ d2

dy2
+
(2α+ 1

y

) d

dy
− y2

}
.
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Matemática Argentina, 45(2):41–53, 2004. 23

[16] Keith M. Rogers and Sanghyuk Lee. The free and Hermite Schrödinger equations: an equiv-
alence. To appear.
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