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HAAR TYPE BASES IN LORENTZ SPACES VIA

EXTRAPOLATION

LUIS NOWAK

Abstract. In this note we consider Haar type systems as unconditional bases for Lorentz spaces
defined on spaces of homogeneous type. We also give characterizations of these spaces in terms
of the Haar coefficients. The basic tools are the Rubio de Francia extrapolation technique and

the characterization of weighted Lebesgue spaces with Haar bases.

1. Introduction

The characterization of function spaces via wavelet coefficients as well as the
unconditionality of such bases for these spaces are two of the most important
properties of wavelets in Euclidean context. The nature of the function spaces
and the particular features of wavelets can be very variable. However, in the
general context of metric measure spaces (X, d, µ), the Haar functions are the
basic example of wavelet orthonormal systems in L2. Given the discontinuity of
Haar functions, these systems can only be bases in the Schauder sense of spaces
of functions without regularity in the classical sense. This is the case of Lebesgue
spaces. In [2], the authors introduce Haar systems associated with Christ’s dyadic
cubes [6] and prove that such systems are unconditional bases for weighted Lebesgue
spaces. Moreover, they give a characterization of such spaces via Haar coefficients.
The aim of this note is to consider the case of Lorentz spaces. Precisely we prove the
characterization of Lp,q spaces through Haar coefficients and the unconditionality
of the Haar system in the Lorentz spaces when 1 < p, q < ∞. The main tools are,
the extrapolation technique introduced by Rubio de Francia as it was generalized in
[7], and the results of characterization and unconditionality given in [2] for weighted
Lebesgue spaces. We would like to point out that similar results in Euclidean spaces
are contained in [12] where a different approach was used.

We present our result in six sections. In Section 2 we briefly review the basic
definitions and properties of Lorentz spaces. Section 3 is devoted to introduce the
dyadic and Haar systems on a space of homogeneous type. Section 4 and 5 provide
the precise statements of the main analytical tools for our results, which are stated
and proved in Section 6.
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2. Lorentz spaces

In this section we shall briefly recall the basic theory of Lorentz spaces on mea-
sure spaces (X,µ) such that µ is a σ-finite measure. We shall restrict our attention
only to the scale Lp,q with 1 < p, q < ∞. For details we refer the reader to [9] and
[10] (see also [8] or [5] for an approach from the point of view of Banach function
spaces). Given a measurable real valued function f defined onX , we denote with λf

the distribution function of f , that is λf (s) = µ({x ∈ X : |f(x)| > s}). The non in-
creasing rearrangement of f is the function given by f∗(t) = inf{s > 0 : λf (s) ≤ t},
for t ≥ 0.

For 1 < p, q < ∞, the Lp,q(X,µ) = Lp,q space is defined as the linear space of
all measurable functions f on X such that ‖f‖∗p,q < ∞, where

‖f‖∗p,q =

(

q

p

∫ ∞

0

(t1/pf∗(t))q
dt

t

)1/q

.

The quantity ‖.‖∗p,q is not a norm. However, R. Hunt introduces in [9] a norm on
Lp,q such that the topology given by ‖.‖∗p,q is equivalent to topology induced by
the norm. This norm is defined by ‖f‖p,q = ‖f∗∗‖∗p,q, where

f∗∗(t) =











sup
µ(E)≥t

1
µ(E)

∫

E
|f(y)|dµ(y) if t ≤ µ(X),

1
t

∫

X
|f(y)|dµ(y) if t > µ(X).

The following statements collect the main properties of Lorentz spaces that we
shall use later. Some of them are elementary and some others can be found in [9]
and [5]. We shall denote with VX the space of all simple functions defined on the
measure space (X,µ). That is, f ∈ VX if there exist real numbers ai, i = 1, . . . ,M

such that f =
∑M

i=1 aiχEi
, where each set Ei is measurable. With V(X) we shall

denote the class which coincides with VX when µ(X) = ∞ and the class of those
functions f ∈ VX such that

∫

X fdµ = 0 when µ(X) < ∞.

(L1) (Lp,q, ‖.‖p,q) is a Banach spaces and ‖f‖∗p,q ≤ ‖f‖p,q ≤
p

p−1‖f‖
∗
p,q for every

function f in Lp,q.
(L2) For every measurable set E we have that ‖χE‖

∗
p,q = µ(E)1/p.

(L3) If f and g are two measurable functions defined on X such that |f | ≤ |g|
µ-a.e., then ‖f‖p,q ≤ ‖g‖p,q.

(L4) If (fn : n ∈ Z
+) is a sequence of functions in Lp,q such that 0 ≤ fn ր f

µ-a.e., then either f 6∈ Lp,q and ‖fn‖p,q ր ∞ or f ∈ Lp,q and ‖fn‖p,q ր
‖f‖p,q.

(L5) The space V(X) is dense in Lp,q, where Lp,q is Lp,q if µ(X) = ∞ and those
functions in Lp,q with vanishing integral if µ(X) < ∞.

(L6) (Dominated Convergence Theorem) Let f be a measurable function defined
on X . If (fn : n ∈ Z

+) is a sequence of measurable functions defined on X

such that fn −→ f µ-a.e. and |fn| ≤ |g| for some function g in Lp,q and
every positive integer n, then ‖fn − f‖p,q −→ 0.
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(L7) (Fatou’s lemma) If (fn : n ∈ Z
+) is a sequence of measurable functions

defined on X , then ‖lim inf
n−→∞

fn‖p,q ≤ lim inf
n−→∞

‖fn‖p,q.

(L8) (Duality) (Lp,q)∗ = Lp′,q′ , where p′ and q′ are the conjugate Hölder expo-
nents of p and q respectively.

(L9) (Hölder inequality) If f ∈ Lp,q and g ∈ Lp′,q′ where p′ and q′ are the
conjugate Hölder exponents of p and q respectively, then the function f.g

belongs to L1 and
∫

X
|f(x)g(x)|dµ(x) ≤ C‖f‖∗p,q‖g‖

∗
p′,q′ .

Some comments are in order. In our general setting, that we shall introduce
in the next section, atoms in the measure sense usually appear. In the classical
literature on the subject of Lorentz spaces, such as [13], atoms are excluded. As
the authors explicitly emphasize, this restriction is assumed only for the sake of
simplicity. Nevertheless, in the original paper of Hunt the restriction to non-atomic
spaces is shown to be only relevant for the duality when p or q ranks over (0, 1).

3. Haar systems in spaces of homogeneous type

Let us recall the basic properties of the general theory of spaces of homogeneous
type. Assume that X is a set, a nonnegative symmetric function d on X × X is
called a quasi-distance if there exists a constant K such that

d(x, y) ≤ K[d(x, z) + d(z, y)], (3.1)

for every x, y, z ∈ X , and d(x, y) = 0 if and only if x = y.
We shall say that (X, d, µ) is a space of homogeneous type if d is a quasi-distance

on X , µ is a positive Borel measure defined on a σ-algebra of subsets of X which
contains the balls, and there exists a constant C such that the inequalities

0 < µ(B(x, 2r)) ≤ C µ(B(x, r)) < ∞

hold for every x ∈ X and every r > 0.
It is well known that the d-balls are generally not open sets. Moreover, some-

times some balls are not even Borel measurable subsets of X . Nevertheless in [11],
R. Macias and C. Segovia prove that if d is a quasi-distance on X , then there
exists a distance ρ and a number α ≥ 1 such that d is equivalent to ρα. Hence we
shall assume along this paper that (X, d, µ) is a space of homogeneous type with
d a distance on X , in other words that K = 1 in (3.1). In order to be able to
apply Lebesgue’s Differentiation Theorem we shall also suppose that continuous
functions are dense in L1(X,µ).

The construction of dyadic type families of subsets in metric or quasi-metric
spaces with some inner and outer metric control of the sizes of the dyadic sets is
given in [6]. These families satisfy all the relevant properties of the usual dyadic
cubes in R

n. Actually, the only properties of Christ’s cubes needed in our further
analysis are contained in the next definition which we borrow from [4].

Definition 3.1. The class D(δ) of all dyadic families. We say that D =
⋃

j∈Z
Dj is a dyadic family on X with parameter δ ∈ (0, 1), briefly that D belongs

D(δ), if each Dj is a family of open subsets Q of X , such that
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(d.1) For every j ∈ Z the cubes in Dj are pairwise disjoint.
(d.2) For every j ∈ Z the family Dj covers almost all X in the sense that µ(X−

⋃

Q∈DjQ) = 0.

(d.3) If Q ∈ Dj and i < j, then there exists a unique Q̃ ∈ Di such that Q ⊆ Q̃.

(d.4) If Q ∈ Dj and Q̃ ∈ Di with i ≤ j, then either Q ⊆ Q̃ or Q ∩ Q̃ = ∅.
(d.5) There exist two constants a1 and a2 such that for each Q ∈ Dj there exists

a point x ∈ Q for which B(x, a1δ
j) ⊆ Q ⊆ B(x, a2δ

j).

The main properties of a dyadic family D in the classD(δ) are contained in the
following result.

Proposition 3.2. Let D be a dyadic family in the class D(δ). Then

(d.6) There exists a positive integer N depending only on the doubling constant
such that for every j ∈ Z and all Q ∈ Dj the inequalities 1 ≤ #(O(Q)) ≤ N

hold, where O(Q) = {Q
′

∈ Dj+1 : Q
′

⊆ Q}.
(d.7) X is bounded if and only if there exists a dyadic cube Q in D such that

X = Q.
(d.8) The families D̃j = {Q ∈ Dj : #({Q

′

∈ Dj+1 : Q
′

⊆ Q}) > 1}, j ∈ Z are
pairwise disjoint.

For a given dyadic family D in the classD(δ), arguing as in [1] (see also [2]), we
always can construct Haar type bases H, of Borel measurable simple real functions
h, satisfying the following properties.

(h.1) For each h ∈ H there exists a unique j ∈ Z and a cube Q = Q(h) ∈ D̃j

such that {x ∈ X : h(x) 6= 0} ⊆ Q, and this property does not hold for any
cube in Dj+1.

(h.2) For every Q ∈ D̃ =
⋃

j∈Z
D̃j there exist exactly MQ = #(O(Q)) − 1 ≥ 1

functions h ∈ H such that (h.1) holds. We shall write HQ to denote the
set of all these functions h.

(h.3) For each h ∈ H we have that
∫

X
h dµ = 0.

(h.4) For each Q ∈ D̃ let VQ denote the vector space of all functions on Q which

are constant on each Q
′

∈ O(Q). Then the system {
χ
Q

(µ(Q))1/2
}
⋃

HQ is

an orthonormal basis for VQ.

The following result is an easy consequence of (h.1) to (h.4). We shall denote
with Lp(X,µ) = Lp, (p ≥ 1) the space Lp of all measurable functions f such that
‖f‖Lp < ∞ when µ(X) = ∞ and the space L

p
0 = {f ∈ Lp(X,µ) :

∫

X fdµ = 0}
if µ(X) < ∞. Here, as usual, for a measurable function f , ‖f‖pLp =

∫

X
|f |pdµ if

1 ≤ p < ∞ and ‖f‖L∞ = ess sup |f |.

Theorem 3.3. Let D be a dyadic family on X such that D belongs to class

D(δ). Then every Haar type system H associated to D is an orthonormal ba-
sis in L2(X,µ).
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4. Characterization of weighted Lebesgue spaces

Let us start this section introducing the basic tools of dyadic analysis on spaces of
homogeneous type. When a dyadic family D is given we define, as usual, the class
of Muckenhoupt type dyadic weight functions associated to D. A non-negative,
measurable and locally integrable function w defined on the space of homogeneous
type (X, d, µ), is said to be a Muckenhoupt dyadic weight of class AD

p , 1 < p < ∞
if the inequality

(

1

µ(Q)

∫

Q

w(x)dµ(x)

)(

1

µ(Q)

∫

Q

w(x)
−1
p−1 dµ(x)

)p−1

≤ C, (4.1)

holds for some constant C and every dyadic set Q ∈ D.
For p = 1 we say that w ∈ AD

1 if there is a constant C such that the inequality

w(Q)

µ(Q)
≤ Cw(x) (4.2)

holds for almost every point x ∈ Q and for every dyadic cube Q ∈ D. The class
AD

∞ is defined as

AD
∞ =

⋃

p≥1

AD
p . (4.3)

Associated to a dyadic system D inD(δ) the dyadic Hardy-Litllewood maximal
operator is given by

MDf(x) = sup
Q

1

µ(Q)

∫

Q

|f(y)|dµ(y), (4.4)

where the supremum is taken over the family of dyadic cubes Q in D containing
x. Since from (d.2) we have that E =

⋃

Q∈D ∂(Q) has zero measure, we may think

that MDf(x) is defined to be zero when x ∈ E.
The following result can be proved as in [2] where the authors prove that Haar

systems associated to Christ’s dyadic cubes are unconditional bases of the spaces
Lp
w with w ∈ AD

p and 1 < p < ∞. As before, the space Lp
w is the space Lp

w = {f :

(
∫

X
|f |pdµ)1/p < ∞} if µ(X) = ∞ and is the space of those functions in Lp

w(X,µ)
with vanishing integral if µ(X) < ∞. In the sequel we shall use the following
notation,

TF (f) =
∑

h∈F

〈f, h〉h =
∑

h∈F

(∫

X

fh dµ

)

h,

where F is a finite subset of H and

S(f)(x) =

(

∑

h∈H

|〈f, h〉|2|h(x)|2

)1/2

.

Theorem 4.1. Let (X, d, µ) be a space of homogeneous type and let H be a Haar

system associated to a dyadic family D ∈ D(δ). If 1 < p < ∞ and w ∈ AD
p then
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76 L. Nowak

(1) There exist two positive constants C1 and C2 such that for all f ∈ Lp
w(X,µ)

have that

C1‖f‖Lp
w

≤ ‖S(f)‖Lp
w

≤ C2‖f‖Lp
w
;

(2) H is an unconditional basis for Lp
w(X,µ) in the sense that

(2.1) the operators TF are uniformly bounded on Lp
w with F varying on the

finite subsets of H,
(2.2) for each h ∈ H the functional 〈f, h〉 =

∫

X
fh dµ, is linear and contin-

uous for f ∈ Lp
w,

(2.3) the linear span of H is dense in Lp
w.

5. Extrapolation: from weighted Lebesgue spaces to Lorentz spaces

This section is devoted to introduce the extrapolation technique of Rubio de
Francia. Such extrapolation result provides boundedness in the Lp,q-norm from
boundedness in dyadic weighted Lebesgue spaces. The precise result of extrap-
olation that we shall use is a slight modification of the generalized technique of
Rubio de Francia given in Theroem 3.5 in [7]. Let us start by introducing briefly
the basic notions of Banach function spaces which are needed to state precisely
Theorem 3.5 in [7]. We refer to [5] for complete details. Let (X,µ) be a σ-finite
measure space. We shall write Mµ and M+

µ to denote the set of all µ-measurable
functions f : X −→ [−∞,+∞] and the subset of Mµ whose values lie in [0,∞]
respectively. A function norm is a mapping ρ : M+

µ −→ [0,∞] such that for all

f, g and fn (with n ∈ Z
+) in M+

µ the following statements hold

(B1) ρ(f) = 0 if and only if f = 0 µ-a.e.,
(B2) for all a > 0 we have that ρ(af) = aρ(f),
(B3) ρ(f + g) ≤ ρ(f) + ρ(g),
(B4) if 0 ≤ g ≤ f µ-a.e., then ρ(g) ≤ ρ(f),
(B5) if 0 ≤ fn ր f µ-a.e., then ρ(fn) ր ρ(f),
(B6) if E ⊆ X with µ(E) < ∞, then ρ(χ

E
) < ∞,

(B7) for each E ⊆ X with µ(E) < ∞, there exists a positive and finite constant
C such that

∫

E
fdµ ≤ Cρ(f).

The space B = {f ∈ Mµ : ‖f‖B < ∞} is a normed Banach space with norm
given by ‖f‖B = ρ(|f |). We shall say that B is a Banach function space.

Given a Banach function space B, we define the scale of Banach function spaces

B
r , 1 ≤ r < ∞, by B

r = {f ∈ Mµ : |f |r ∈ B} with norm ‖f‖Br = ‖|f |r‖
1/r
B

.

The associated space to B, B
′

, is the space of all functions f ∈ Mµ such that
‖f‖

B
′ < ∞, where

‖f‖
B
′ = sup

{∫

X

|f(x)g(x)|dµ(x) : g ∈ B, ‖g‖B ≤ 1

}

.

This space B
′

is a Banach function space and the following generalized Hölder
inequality holds: for all f ∈ B and every g ∈ B

′

,
∫

X

|f(x)g(x)|dµ(x) ≤ ‖f‖B‖g‖B′ .
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Also, since (B
′

)
′

= B, we obtain the following fundamental identity

‖f‖B = sup

{∫

X

|f(x)g(x)|dµ(x) : g ∈ B
′

, ‖g‖
B
′ ≤ 1

}

. (5.1)

Given a family B of open sets in (X, d, µ) we define, for 1 ≤ p ≤ ∞, the
Muckenhoupt classes AB

p as the family of all locally integrable functions w such
that the inequalities (4.1), (4.2) and (4.3) respectively, hold with B instead D.
Also, we define the operator MB via (4.4) with the supremum taking over the
family B. As in [7], we shall say that B is a Muckenhoupt basis if for every
1 < p < ∞, w ∈ AB

p is a sufficient condition for the Lp
w boundedness of MB.

On the other hand, if F is a family of ordered pairs (f, g) of non negative and
measurable functions on X , we shall say that F is B-admissible if for each f such
that for some g (f, g) ∈ F , then both

(a)
∫

X fpw dµ < ∞ for every 1 < p < ∞ and every w ∈ AD
p , and

(b) ‖f‖B < ∞.

The precise statement of extrapolation given in [7] is contained in the following
result.

Theorem 5.1. (Theorem 3.5 in [7]) Let B be a Muckenhoupt basis and let B be
a Banach function space. Let F be a B-admissible family of pairs (f, g). Suppose
that for some p0, 0 < p0 < ∞, and every w ∈ AB

1 ,
∫

X

f(x)pw(x)dµ(x) ≤ C

∫

X

g(x)pw(x)dµ(x). (5.2)

If there exists q0, p0 ≤ q0 < ∞, such that B1/q0 is a Banach function space and
MB is bounded on (B1/q0 )

′

, then

‖f‖B ≤ C‖g‖B. (5.3)

Next we shall state the extrapolation result that we shall use in the sequel,
which, as mentioned, is a slight variant of the above theorem for the particular
context of Lorentz spaces on general measure spaces.

Theorem 5.2. Let 1 < p, q < ∞ be given. Let F be an Lp,q-admissible family of
ordered pair (f, g). Assume that for every r, 1 < r < ∞, there exists a positive
constant C = C(r) such that the inequality

∫

X

f(x)rw(x)dµ(x) ≤ C

∫

X

g(x)rw(x)dµ(x) (5.4)

holds for every (f, g) ∈ F and every w ∈ AD
1 . Then, for some constant C we have

‖f‖p,q ≤ C‖g‖p,q, (5.5)

for every (f, g) ∈ F .

In [3] the authors proved that the dyadic maximal operator MD is bounded in
Lp
w for w ∈ AD

p and 1 < p < ∞. Then, since each dyadic cube Q ∈ D is an open
set, we get that every dyadic family D is a Muckenhoupt basis. Moreover, from
interpolation (see for example [13], page 197) we get the following result.
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Theorem 5.3. Let (X, d, µ) be a space of homogeneous type. If 1 < p, q < ∞,
then there exists a positive constant C such that ‖MDf‖p,q ≤ C‖f‖p,q for every
function f .

Even when, at first, Theorem 5.2 looks like a special case of Theorem 5.1, this
is not the case in our general geometric setting. In fact, in (X, d, µ) atoms are
allowed. Hence, as shown [5], it could happen that the spaces (Lp,q)′ and (Lp,q)∗

does not coincide. On the other hand, since MD is bounded as an operator in
Lp′,q′ = (Lp,q)∗, Theorem 5.2 has to be proved as Theorem 5.1 (Theorem 3.5 in
[7]) after changing the boundedness hypothesis of MD in (Lp,q)′ by its boundedness
in (Lp,q)∗.

Proof of Theorem 5.2. Let us start choosing p0 > 1 such that 1 < p
p0
, q
p0

< ∞.

Then, since F is Lp,q-admissible, there exists a positive constant C such that
∫

X

f(x)p0w(x)dµ(x) ≤ C

∫

X

g(x)p0w(x)dµ(x), (5.6)

for every (f, g) ∈ F and each w ∈ AD
p0
.

On the other hand, from Theorem 5.3, the dyadic maximal operator MD is

bounded on the space (L
p
p0

, q
p0 )∗ = (L

p
p0

, q
p0 (X,µ))∗ = L

( p
p0

)′,( q
p0

)′(X,µ), where
( p
p0
)′ and ( q

p0
)′ are the conjugate Hölder exponents of ( p

p0
) and ( q

p0
) respectively.

So, we can define the iteration algorithm of Rubio de Francia for each function h

in (L
p
p0

, q
p0 )∗ by

Rh(x) =
∞
∑

k=0

Mk
Dh(x)

2k‖MD‖k
,

where with ‖MD‖ we denote the operator norm MD. It is easy see that

(RF1) h(x) ≤ Rh(x),
(RF2) ‖Rh‖

(L
p
p0

,
q
p0 )∗

≤ 2‖h‖
(L

p
p0

,
q
p0 )∗

,

(RF3) M(Rh)(x) ≤ 2‖MD‖Rh(x).

Now, let (f, g) ∈ F . Since L
p
p0

, q
p0 is a Banach function space, we get that

‖f‖p0
p,q = ‖fp0‖ p

p0
, q
p0

= sup

{∫

X

|f(x)|p0 |h(x)|dµ(x) : ‖h‖( p
p0

)′,( q
p0

)′ ≤ 1

}

.

Notice that, since f is non negative, we may restrict the supremum to non negative
h. Therefore, it will suffice prove that there exists a positive constant C such that
the inequality

∫

X

f(x)p0h(x)dµ(x) ≤ C‖g‖p0
p,q, (5.7)

holds for each non negative function h with ‖h‖( p
p0

)′,( q
p0

)′ ≤ 1.

To this end, note first that, from (RF1), the generalized Hölder inequality and
(RF2) we get that

∫

X

f(x)p0h(x)dµ(x) ≤

∫

X

f(x)p0Rh(x)dµ(x)
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≤ ‖fp0‖ p
p0

, q
p0
‖Rh‖( p

p0
)′,( q

p0
)′

≤ ‖fp0‖ p
p0

, q
p0
‖h‖( p

p0
)′,( q

p0
)′ < ∞.

Thus, since from (RF3) we have that Rh ∈ AD
1 ⊆ AD

p0
, then from (RF1), (5.6), the

generalized Hölder inequality and (RF2) we get that
∫

X

f(x)p0h(x)dµ(x) ≤

∫

X

f(x)p0Rh(x)dµ(x)

≤

∫

X

g(x)p0Rh(x)dµ(x)

≤ C‖gp0‖ p
p0

, q
p0
‖Rh‖( p

p0
)′,( q

p0
)′

≤ C‖gp0‖ p
p0

, q
p0
‖h‖( p

p0
)′,( q

p0
)′ < ∞

≤ C‖g‖p0
p,q,

with C independent of h. Hence,

‖f‖p0
p,q ≤ C‖g‖p0

p,q.

�

6. The main result

In this section we shall prove the following result that is the analogous of The-
orem 4.1 for Lorentz spaces.

Theorem 6.1. Let (X, d, µ) be a space of homogeneous type and let H be a Haar

system associated to a dyadic family D in D(δ). If 1 < p, q < ∞, then

(I) there exist two positive constants C1 and C2 such that for all f ∈ Lp,q we
have that

C1‖f‖p,q ≤

∥

∥

∥

∥

∥

∥

(

∑

h∈H

|〈f, h〉|2|h|2

)1/2
∥

∥

∥

∥

∥

∥

p,q

≤ C2‖f‖p,q.

(II) H is an unconditional basis for Lp,q(X,µ) in the sense that:
(II.1) the operators TF are uniformly bounded on Lp,q with F varying on the

finite subsets of H,
(II.2) for each h ∈ H the functional 〈f, h〉 =

∫

X fh dµ, is linear and contin-
uous for f ∈ Lp,q,

(II.3) the linear span of H is dense in Lp,q.

In order to prove (I) and (II), we shall apply the extrapolation result in Theorem
5.2 to admissible classes which are given in terms of the operators TF and S. The
next two propositions shall be the central tools for the proof of Theorem 6.1.

Proposition 6.2. The operators TF are uniformly bounded in Lp,q, 1 < p, q < ∞.
That is, there exists a positive constant C such that the inequality

‖TF (f)‖p,q ≤ C‖f‖p,q

holds for every function f ∈ Lp,q and all finite subsets F ⊆ H.
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Proof. First notice that, since the functions h ∈ H are simple, for each finite
set F ⊆ H and each function f ∈ Lp,q we get that TF (f) ∈ VX . Therefore,
TF (f) ∈ Lr

w ∩ Lp,q for all w ∈ AD
r with 1 < r < ∞ and every f ∈ Lp,q. Set

F = {(TF (f), f) : f ∈ Lp,q, F ⊆ H,#(F ) < ∞}, where #(F ) denotes the number
of elements of the set F . Then F is an Lp,q-admissible family. From Theorem 4.1,
H is an unconditional basis for Lr

w(X,µ) for every w ∈ AD
r with 1 < r < ∞. Then,

for some constant C we get that

‖TF (f)‖Lr
w
≤ C‖f‖Lr

w
,

holds for every w ∈ AD
r , any 1 < r < ∞ and for all finite F ⊆ H. Since AD

1 ⊆ AD
r

for all 1 < r < ∞, the proposition follows from Theorem 5.2. �

Proposition 6.3. There exist two positive constants C1 and C2 such that the
inequalities

C1‖f‖p,q ≤ ‖S(f)‖p,q ≤ C2‖f‖p,q, (6.1)

hold for every function f ∈ V(X)

Proof. The left inequality in (6.1) follows directly from Theorem 5.2 taking F =
{(f,S(f)) : f ∈ V(X)} and using Theorem 4.1. To prove the right hand side in-
equality in (6.1), we begin applying Theorem 5.2 with the family F = {(SF (f), f) :
f ∈ V(X), F ⊆ H,#(F ) < ∞}, where for each finite set F ⊆ H, SF (f) =
(
∑

h∈F |〈f, h〉|2|h|2
)1/2

. In fact, it is easy to see that SF (f) ∈ VX and there-
fore F is an Lp,q-admissible family. Applying Theorem 5.2, since from Theorem
4.1 the Lp

w-boundedness of SF is uniform in F , we get

‖SF (f)‖p,q ≤ C‖f‖p,q, (6.2)

for all f ∈ V(X) and every finite subset F of H.

Now we shall show that (6.2) holds also for S(f). Take a sequence (Fn : n ∈ Z
+)

of subsets of H such that #(Fn) < ∞, Fn ⊆ Fn+1 for each positive integer n and
⋃

n Fn = H. Then SFn(f)(x) ր S(f)(x) for all x ∈ X and every f ∈ V(X). Hence,
from (L4) and (6.2) we get that S(f) ∈ Lp,q and (6.2) holds for S(f) �

Proof of Theorem 6.1. We first prove (I). Let us start by showing that

‖S(f)‖p,q ≤ C‖f‖p,q, (6.3)

for some positive constant C and every function f in Lp,q. Let f ∈ Lp,q be given.
Thus, from (L5), there exits a sequence (fk : k ∈ Z

+) of functions fk ∈ V(X) such
that

‖fk − f‖p,q −→
k→∞

0. (6.4)

Notice that for such a sequence and each function h ∈ H we get that

〈fk, h〉 −→
k→∞

〈f, h〉 (6.5)

In fact. From (h.1) to (h.4) we have, for each h ∈ H, that

|h(x)| ≤ µ(Q(h))−1/2χ
Q(h)

(x).
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Therefore, from (L9), (L2), (L1) and (6.4) we get that

|〈fk, h〉 − 〈f, h〉| ≤

∫

X

|fk − f ||h|dµ

≤ Cµ(Q(h))−1/2‖fk − f‖∗p,q‖χQ(h)
‖∗
p′ ,q′

≤ Cµ(Q(h))−1/2+1/p
′

‖fk − f‖p,q −→ 0.

It is easy to see, using a discrete version of Fatou’s Lemma, that

S(f)(x) ≤ lim inf
k−→∞

S(fk)(x).

Thus, from (L7) and Proposition 6.3 we have that

‖S(f)‖p,q ≤ lim inf
k−→∞

‖S(fk)‖p,q

≤ C lim inf
k−→∞

‖fk‖p,q = C ‖f‖p,q.

Now we shall prove that there exists a positive constant C such that ‖f‖p,q ≤
C‖S(f)‖p,q for every function f ∈ Lp,q. Notice that if f belongs to Lp,q and
(fk : k ∈ Z

+) is a sequence of functions in V(X) as in (6.4), then

S(f)(x) ≤ 2 [S(f − fk)(x) + S(fk)(x)] . (6.6)

Thus, from Proposition 6.3, (6.6), (L3), (L1) and (6.3) we get that

‖f‖p,q = lim
k−→∞

‖fk‖p,q

≤ C lim inf
k−→∞

‖S(fk)‖p,q

≤ 2C

(

lim inf
k−→∞

‖S(fk − f)‖p,q + ‖S(f)‖p,q

)

≤ 2C

(

lim inf
k−→∞

‖fk − f‖p,q + ‖S(f)‖p,q

)

= 2C‖S(f)‖p,q,

which finishes the proof of (I). Now, we shall prove (II). First notice that (II.1)
is the Proposition 6.2. Therefore, we only need to show (II.2) and (II.3). Since
each function h ∈ H belong to L∞(X,µ), from (L9), (L2) and (L1) we get

|〈h, f〉| =

∣

∣

∣

∣

∫

X

h(x)f(x)dµ(x)

∣

∣

∣

∣

≤ ‖h‖∞

∫

Q(h)

|f(x)|dµ(x)

≤ C‖h‖∞‖χ
Q(h)

‖∗
p′ ,q′

‖f‖∗p,q

≤ C‖h‖∞µ(Q(h))1/p‖f‖p,q,

for each h ∈ H and all function f ∈ Lp,q. Then (II.2) holds. Let us finally show
(II.3). Set f ∈ Lp,q. Take a sequence (Hn : n ∈ Z

+) of subsets of H such that
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⋃

n Hn = H, #(Hn) < ∞ and Hn ⊆ Hn+1. For each positive integer n we write

THn(f)(x) =
∑

h∈Hn

〈f, h〉h(x).

Thus, from the orthogonality of the Haar system H and the linearity of the oper-
ators THn , we get that

S(f − THn(f))(x) =





∑

h∈H\Hn

|〈f, h〉|2|h(x)|2





1/2

.

Then S(f − THn(f))(x) −→ 0 µ-a.e., and S(f − THn(f))(x) ≤ S(f)(x). Hence,
from (I) and (L6) we have that

‖f − THn(f)‖p,q ≤ C‖S(f − THn(f))‖p,q −→ 0,

when n −→ ∞ and (II.3) is proved. �
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