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INEQUALITIES FOR NORMS ON PRODUCTS OF STAR

ORDERED OPERATORS

CRISTINA CANO, IRENE MOSCONI AND SUSANA NICOLET∗

Abstract. The aim of this paper is to relate the star order in operators in a Hilbert space
with certain norm inequalities. We are showing inequalities of the type ‖BXA‖2 ≤ ‖XBA‖2 (or
‖BXA‖2 ≥ ‖XBA‖2), which are already known under the assumption that A = ψ(B), with ψ

a positive increasing (or decreasing, respectively) function defined on the spectrum of B. In this

work, we will study this type of inequalities with the hypothesis that A≤* B, where A≤* B if
A∗A = B∗A and AA∗ = BA∗.

1. Introduction

A topic of interest in operator theory is the study of inequalities. Many authors
have worked on this issue, among others, Corach-Porta-Recht [7], Kittaneh [10],
Bourin [3] and [4].

On the other hand, many authors have studied different order relations for ma-
trices. Among others, the star order; Hartwig and Drazin in [9], Baksalary in [2].
Since many of the usual techniques used in finite dimensional spaces (as pseudoin-
verses or singular value decompositions) are not available for general Hilbert spaces,
in [1], the authors study the *-order on the algebra L(H) of bounded operators on
a Hilbert space H. They introduce new techniques which allow them to show that
almost all the known properties which hold for matrices can be generalized to
operators acting on a Hilbert space H.

In section 2, we expose some of the properties before raised in [1] which are
referred to the star order and we study several inequalities for operator norms, pre-
viously exposed in [3], such as ‖BXA‖2 ≤ ‖XBA‖2 (or ‖BXA‖2 ≥ ‖XBA‖2) with
A,B,X ∈ H, under the assumption that A = ψ(B) with ψ a positive increasing
(or decreasing) function on the spectrum of B.

In section 3 we study the relationship of the star order with some norms inequa-
lities of the type studied by Bourin [3], under the hypothesis of that A≤*B.

2. Preliminaries

Given a separable Hilbert space H, L(H) denotes the algebra of bounded linear
operators on H, and L(H)+ the cone of positive operators for an operator A ∈ H.
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We denote by ran(A) the range or image of A, ker(A) the nullspace of A, σ(A) the
spectrum of A,A∗ the adjoint of A, |A| = (A∗A)1/2 the modulus of A. If H has
finite dimension, the only ideals of L(H) are the trivial ones. If dimH = ∞, all
proper ideals of L(H) are included in the ideal of compacts operators.

By a unitarily invariant norm |||.|||, we mean a norm on an ideal ℑ of L(H),
making ℑ a Banach space, and such that |||U.X.V ||| = |||X ||| for all X in ℑ and all
U, V unitaries in L(H). Examples of unitarily invariant norms are the usual operator
norm ‖.‖ and the Schatten p-norms (1 ≤ p ≤ ∞), defined for any operator X by

‖X‖p = (Tr|X |p)1/p =
(

∑

µp
n(X)

)1/p

,

where {µn(X)} are the singular values of X arranged in decreasing order and
repeated according to their multiplicities (even if X is not compact, there is a
natural definition of µn for all n).

Definition 2.1. Given A,B ∈ L(H), we say that A is lower or equal than B

with respect to the star order, which is denoted by A ≤∗ B, if A∗A = B∗A and

AA∗ = BA∗.

The following results were proved in [1].

Proposition 2.2. Let A,B ∈ L(H). Then

(1) The following statements are equivalent

(a) BA∗ = AA∗.

(b) A = BP, where P is the orthogonal projection onto ran(A∗).
(c) A = BP, where P is some orthogonal projection.

(2) The following statements are equivalent

(a) B∗A = A∗A.

(b) A = QB, where Q is the orthogonal projection onto ran(A).
(c) A = QB, where Q is some orthogonal projection.

Corollary 2.3. Let A,B ∈ L(H) so that A ≤∗ B. Then ran(A) ⊆ ran(B) and

ran(A∗) ⊆ ran(B∗).

Corollary 2.4. Let A,B ∈ L(H) so that A ≤∗ B and B2 = B. Then A2 = A.

Theorem 2.5. Let A,B ∈ L(H) such that ran(A) = ran(A∗). Then, A≤*B if

and only if

A =

(

A11 0
0 0

)

ran(A)

ran(A)
⊥ and B =

(

A11 0
0 B22

)

ran(A)

ran(A)
⊥ .

In such case AB = BA and σ(A) ⊆ σ(B) ∪ {0}.
Proposition 2.6. Let A,B be normal operators. Then, for every continuous func-

tion f : σ (A) ∪ σ (B) ∪ {0} → C satisfying that f(0) = 0, it holds that

A≤*B ⇒ f(A)≤* f(B).

Moreover, if f is also injective, then A≤*B ⇐⇒ f(A)≤* f(B).
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Corollary 2.7. Let A,B be normal operators such that A≤*B. Then |A| ≤* |B|
and |A∗| ≤* |B∗|.

Corollary 2.8. Given A ∈ L(H) and B ∈ L(H)+, if A≤*B, then also A ∈ L(H)+.

Bourin [3] studies several inequalities for norms on matrices, in particular for
the Hilbert-Schmidt and operator norms. Among others, we have:

Proposition 2.9. Let B ∈ L(H)+, E a projection, N an self-adjoint operator and

ψ a positive function defined on the spectrum of B. Then

(1) If ψ is increasing, ‖BEψ(B)‖ ≤ ‖EBψ(B)‖.
(2) If ψ is increasing, ‖BNψ(B)‖2 ≤ ‖NBψ(B)‖2 .
(3) If ψ is decreasing, ‖BNψ(B)‖2 ≥ ‖NBψ(B)‖2 . This inequality holds also

if N is normal or if either N is in the Hilbert-Schmidt class or B is compact.

Corollary 2.10. Let N and B be n × n matrices with N normal and B positive

and let ψ be a positive function defined on the spectrum of B. Then:

(1) If ψ is increasing, ‖BNψ(B)‖2 ≤ √
n ‖NBψ(B)‖2 .

(2) If ψ is decreasing, ‖NBψ(B)‖2 ≤ √
n ‖BNψ(B)‖2 .

Definition 2.11. An operator T defined in an Hilbert space H is said hyponormal

if T ∗T − TT ∗ ≥ 0 or, equivalently, if ‖T ∗x‖ ≥ ‖Tx‖ for all x ∈ H.

Definition 2.12. The hyponormality index of an invertible operator X is

ν(X) =
∥

∥X∗X−1
∥

∥ .

If X is no longer invertible, we set

ν(X) = limǫ→0

∥

∥

∥
X∗|X |+ ǫ

−1
∥

∥

∥
.

The hyponormality index of an operator is a number which measures the lack
of normality of an operator on a finite dimensional space H. If H has an infinite
dimension, then this number measures the lack of hyponormality.

Theorem 2.13. Let N be an operator, B a positive operator and ψ a positive

function defined on the spectrum of B.

(1) If ψ is increasing and ν(N) is finite,

‖BNψ(B)‖2 ≤ ν(N) ‖NBψ(B)‖2 .
The ν(N) constant is optimal. If N is hyponormal, the inequality holds

with ν(N) = 1.
(2) If ψ is decreasing, N is normal and if either N is in the Hilbert-Schmidt

class or N is self-adjoint or B is compact,

‖BNψ(B)‖2 ≥ ‖NBψ(B)‖2 .

Definition 2.14. A normal operator X is said to be semi-unitary if its restriction

to ran(X) is a unitary operator.
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Theorem 2.15. Let B be a positive operator, E a semi-unitary operator and ψ

an increasing positive function defined on the spectrum of B. Then:

‖BEψ(B)‖2 ≤
√
2 ‖EBψ(B)‖2 .

√
2 is in general the best constant possible; however, if E is a projection,

‖BEψ(B)‖2 ≤ ‖EBψ(B)‖2 .

Proposition 2.16. Let H be a self-adjoint operator and X,Y, Z three positive

operators such that X2 = Y Z. Then, for all unitarily invariant norm, we have:

‖|XHX‖| ≤ ‖|Y HZ‖|.

3. The relationship between the star order and some inequalities

for norms

If A is invertible and A ≤∗ B, then A = B. In the sequel, we assume that
A 6= B and, in order to restrict ourselves to the case when A is non invertible,
dim(ker(A)) ≥ 1.

Before relating the star order with inequalities in norms, we shall present some
known results and others that arise naturally from the application of the definition
of that order and properties of operators.

Lemma 3.1. Let A ∈ L(H). Then,

(1) ‖ |B|N |A| ‖2 = ‖BNA∗‖2.
(2) ‖ |B|N |A| ‖2 = ‖BNA‖2 = ‖BNA∗‖2, if A is normal.

Observation 3.2. We should note that using the fact that ifA≤*B then |A| ≤* |B|,
and applying the definition of the star order, the following equalities result:

AA∗ = BA∗ = AB∗, A∗A = B∗A = A∗B and |A|2 = |A| |B| = |B| |A|.

Proposition 3.3. Let A,B,X ∈ L(H), A≤*B. Then, for all unitarily invariant

norm the following equalities hold:

‖| X |B| |A| ‖| = ‖|X |A| |B| ‖| = ‖| X |A|2‖| = ‖|XA∗A‖| = ‖|XB∗A‖| = ‖|XA∗B‖|,

and if AA∗ = A∗A then ‖|XB∗A‖| = ‖|XBA∗‖|.

Proof. Using Observation 3.2 and applying the definition of the star order then the
equalities hold.

The first clear consequence of the fact that A≤*B implies that |A|2 = |A| |B| =
|B| |A| is its application in the proposition 2.16, so the condition that they are
three positive operators such that X2 = Y Z can be extended to two *-ordered
operators.
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Proposition 3.4. Let A,B,H ∈ L(H), A≤*B. Then, for all unitarily invariant

norms ‖| · ‖| the following inequalities hold:

‖| |B| H |A| ‖| ≥ ‖| |A| H |A| ‖| and ‖||A| H |B| ‖| ≥ ‖| |A| H |A| ‖|,

with H = H∗.

Proof. The proof arises from the Proposition 2.16 and Observation 3.2.

Lemma 3.5. Let A,B,N ∈ L(H). If A≤*B, then ‖N |A| |B| ‖2 = ‖N |A| B∗ ‖2.

Proof. If A≤*B, then |A| ≤* |B| ⇒ |A| |B| = |B| |A| and ‖N |A| |B| ‖22 =
tr |B| |A|NN∗|A| |B| = trB∗B|A|N∗N |A| = trB|A|N∗N |A|B∗ = ‖N |A|B∗‖22.

Proposition 3.6. Let A,B ∈ L(H). If A≤*B and ran(A) = ran(A∗) then

‖ |B| − |A| ‖ = ‖B −A‖.

Proof. To verify this, let L(H) = ran(A)⊕ ran(A)
⊥

, then from Theorem 2.5

A =

(

A11 0
0 0

)

ran(A)

ran(A)
⊥, B =

(

A11 0
0 B22

)

ran(A)

ran(A)
⊥, and B −A =

(

0 0
0 B22

)

hence

‖B −A‖ = sup {‖(B −A)h‖ : h ∈ L(H), ‖h‖ = 1}

= sup
{

‖Bh‖ : h ∈ ran(A)
⊥

, ‖h‖ = 1
}

= sup
{

‖ |B|h‖ : h ∈ ran(A)
⊥

, ‖h‖ = 1
}

.

On the other hand:

|A| =
(

|A11| 0
0 0

)

, |B| =
(

|A11| 0
0 |B22|

)

and |B| − |A| =
(

0 0
0 |B22|

)

.

‖ |B| − |A| ‖ = sup {‖(|B| − |A|)h‖ : h ∈ L(H), ‖h‖ = 1}

= sup
{

‖ |B|h‖ : h ∈ ran(A)
⊥

, ‖h‖ = 1
}

= ‖B −A‖.

To use many of the results of Bourin [3] we need operators such that either one is
an increasing or a decreasing function of the other, then we wonder how to express
that relationship in terms of the star order.

Definition 3.7. Let us consider the following index: γ(A) = inf {‖Ah‖ : ‖h‖ = 1} .

In the case of finite dimension and A positive, γ(A) is the least eigenvalue of A.

Proposition 3.8. Let A,B ∈ L(H), A≤*B and ‖ |B| − |A| ‖ ≤ γ(|A|). Then
|A| = ψ(|B|) with ψ an increasing function defined on the spectrum of |B|.
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Proof. A≤*B implies |A| ≤* |B| and |A|∗ = |A|. Then, by Theorem 2.5 |A| and
|B| have the blocks representation in ran(|A|) ⊕ ran(|A|)⊥

|A| =
(

M11 0
0 0

)

ran(|A|)
ran(|A|)⊥

and |B| =
(

M11 0
0 M22

)

ran(|A|)
ran(|A|)⊥

.

Since |A| and |B| are positive, σ(|A|) ⊆ σ(|B|) ∪ {0} ⊆ [0,∞). If ‖ |B| − |A| ‖ ≤
γ(|A|) then ‖M22 ‖ ≤ γ(M11). Then we can define a function ψ such that ψ(M11) =
M11 and ψ(M22) = 0. Hence, we get |A| = ψ(|B|). Moreover if x1 ∈ σ(M11), x2 ∈
σ(M22), since ‖M22 ‖ ≤ γ(M11), we obtain x1 ≥ x2. Then x1 = ψ(x1) ≥ ψ(x2) = 0,
and ψ is increasing.

Proposition 3.9. Let A,B ∈ L(H), A≤*B and ‖ |A| ‖ ≤ γ(|B| − |A|). Then

|A| = ψ(|B|) with ψ a decreasing function defined on the spectrum of |B|.
Proof. Since A≤*B implies |A| ≤* |B| and |A|∗ = |A|, then |A| and |B| have the

same blocks representation in ran(|A|) ⊕ ran(|A|)⊥ stated in Proposition 3.8.
If γ(|B| − |A|) ≥ ‖ |A| ‖ then ‖ M11 ‖ ≤ γ(M22) and we can define a function ψ

such that ψ(M11) = M11 and ψ(M22) = 0 with ψ a decreasing function such that
|A| = ψ(|B|).
Theorem 3.10. Let A,B ∈ L(H), A≤*B and γ(|A|) ≥ ‖ |B| − |A| ‖ . Then, the
following inequalities hold:

(1) ‖ |B| N |A| ‖2 ≤ ν(N)‖ N |B| |A| ‖2, with finite ν(N).
(2) ‖ N |B| |A| ‖2 ≥ ‖ |B| N |A| ‖2, for NN∗ = N∗N.

(3)
√
n‖N |B| |A| ‖ ≥ ‖ |B| N |A| ‖, for A,B,N n×n matrices, NN∗ = N∗N.

(4)
√
2‖E |B| |A| ‖ ≥ ‖ |B| E |A| ‖, for E semi-unitary.

(5) ‖E |B| |A| ‖ ≥ ‖ |B| E |A| ‖, for a projection E.

Proof. Using the Propositions 3.8, 2.9 and the Theorems 2.13 and 2.15 we obtain
the proposition.

Observation 3.11. From the results obtained in 3.3, 3.5 and 3.10, numerous
other variants of the previous inequalities arise. We cite as examples the cases not
involving |A| and |B|.
Corollary 3.12. Let A,B,N ∈ L(H), N normal, A≤*B and γ(|A|) ≥ ‖ |B| − |A| ‖ .
Then

(1) ‖NAB∗‖2 ≥ ‖|BNA∗‖|2.
(2) ‖NAB∗‖2 ≥ ‖BNA‖2 if AA∗ = A∗A.

(3) ‖NAB‖2 ≥ ‖BNA∗‖2 if BB∗ = B∗B.

(4) ‖NAB‖2 ≥ ‖BNA‖2 if A and B are normals.

Proposition 3.13. Let A,B,N ∈ L(H), A≤*B and γ(|A|) ≥ ‖ |B| − |A| ‖ . Then
the following inequalities hold:

(1) ‖Re(N |A| |B|)‖2 ≥ ‖Re(|B|N |A|)‖2.
(2) ‖ Im(N |A| |B|)‖2 ≥ ‖ Im(|B|N |A|)‖2.
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Proof.

(1) As Re(N |A| |B|) = 1
2
(N |A| |B|+ |B| |A|N∗) we have:

4‖Re(N |A| |B|)‖22 = 2‖N |A| |B| ‖22 + tr(N |A| |B|)2 + tr(|B| |A|N∗)2

≥ 2‖ |B|N |A| ‖22 + tr(|B|N |A|)2 + tr(|B| |A|N∗)2

= 4‖Re(|B|N |A|) ‖22.
(2) The proof is similar to that of the previous item.

Theorem 3.14. Let A,B ∈ L(H), A≤*B and γ(|B| − |A|) ≥ ‖ |A| ‖ then the

following inequalities hold:

(1) ‖H |B| |A| ‖2 ≤ ‖ |B| H |A| ‖2, for H = H∗.

(2) ‖N |B| |A| ‖2 ≤ ‖ |B| N |A| ‖2, for NN∗ = N∗N.

(3)
√
n‖N |B| |A| ‖ ≤ ‖ |B| |A| N‖, for n × n matrices A,B,N and NN∗ =

N∗N.

(4) ‖Re(N |A| |B|)‖2 ≤ ‖Re(|B|N |A|)‖2.
(5) ‖ Im(N |A| |B|)‖2 ≤ ‖ Im(|B|N |A|)‖2.

Proof. Using the Propositions 2.9, 2.10, 3.9 and Theorem 2.13 we obtain the Propo-
sition.

Observation 3.15. Using 3.1, 3.2 and 3.3 other versions of the inequalities stated
in Proposition 3.14 can be obtained.

Proposition 3.16. Let A,B ∈ L(H), A≤*B and γ(|A|) ≥ ‖ |B| − |A| ‖. Let f
be a continuous increasing function, f : σ(|A|) ∪ σ(|B|) → C such that f(0) = 0.
Then

f(|A|)≤* f(|B|)
and

γ(f |A|) ≥ ‖ f(|B|)− f(|A|) ‖.
Proof. Using the same arguments as in Proposition 3.8, we obtain the inequalities.

Observation 3.17. If we replace at Proposition 3.4 |A| and |B| by f(|A|) and
f(|B|) the inequalities also hold.
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