A REMARK ON PRIME REPUNITS

PABLO A. PANZONE

ABSTRACT. A formula for the generating function of prime repunits is given in terms of a Lambert series using S. Golomb's formula.

1. INTRODUCTION AND MAIN RESULT

Identities can be sometimes used to prove that certain sequences of numbers are infinite. Recall the following known example attributed to J. Hacks in Dickson's *History of the theory of numbers*. From the well-known formula $\prod_p (\frac{1}{1-1/p^2}) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (Euler) and the fact that π^2 is irrational (Legendre) one obtains that the number of primes p is infinite (if the number of primes were finite then the left hand side would be a rational number). Of course, this is not a simple proof, see [1].

The aim of this note is, using Solomon Golomb's formula (2.1) (see [2]), to give a formula which involves the generating function of prime repunts and to make a remark with the above idea. We need some notation first.

A repunit is a natural number whose decimal expansion contains only the digit one: $R_n := \underbrace{1 \cdots 1}_{n} = \frac{10^n - 1}{9}$. It is known that R_n is a prime repunit for n = 2, 19, 23, 317, 1031. An open question is to know whether the number of prime repunits is infinite.

For a natural number m_0 we write $m_0 = p_1^{r_1} \cdots p_{\ell}^{r_{\ell}}$ where p_i are distinct primes and $r_i \geq 1$ (we shall always use p to denote a prime number). We write lcm for the least common multiple, gcd for the greatest common divisor and μ to denote the Möbius function. We denote by $\nu(m_0)$ an additive function i.e. a function defined at positive integer numbers so that $\nu(a) + \nu(b) = \nu(ab)$ if gcd(a, b) = 1. Also, we write as usual $\omega(p_1^{r_1} \cdots p_{\ell}^{r_{\ell}}) = \ell$ and $\Omega(n)$ the (completely) additive function which counts the number of prime divisors of n with multiplicity.

Define the function

²⁰¹⁰ Mathematics Subject Classification. 11A41.

Key words and phrases. Primes. Repunits.

Research supported in part by Conicet.

$$S_{\nu}(z) := \sum_{\substack{n \ge 5\\R_n \text{ prime}}} z^n \nu(R_n).$$

Observe that $S_{\nu}(z)$ is the generating function of the prime repunits greater than 1111.

For d > 1, gcd(d, 10) = 1 we define m = m(d) the multiplicative order of 10 modd i.e. m is the smallest positive integer such that $10^m = 1 \mod d$. Define $F_d(z)$ as:

$$F_d(z) := \begin{cases} \frac{z^m}{1-z^{6m}} + \frac{z^{5m}}{1-z^{6m}}, & \text{if } m = 1,5 \mod 6, \text{ and } 5 \le m, \\ 0, & \text{otherwise.} \end{cases}$$
(1.1)

We prove the following theorem.

g

Theorem. Let ν be any additive function such that $\nu(d) = O(d^k)$ for some positive k. Then in a neighborhood of zero one has

$$2\nu(3)S_{\nu}(z) = -\nu(3)^2 \left(\frac{z^7}{1-z^6} + \frac{z^5}{1-z^6}\right) + \sum_{\substack{d \ge 7\\\gcd(d,10)=1}} \mu(d)\nu(d)^2 F_d(z).$$
(1.2)

Remarks: The right hand side of (1.2) converges in some neighborhood of zero. Indeed one has $m \ge \log d$ (log is the logarithm in base 10). Therefore for, say, $|z| < \frac{1}{2}$,

$$\sum_{\substack{d \ge 7 \\ \mathrm{cd}(d,10)=1}} |\mu(d)\nu(d)^2 F_d(z)| \le O\Big(\sum_{d=1}^\infty d^{2k} |z|^m\Big) \le O\Big(\sum_{d=1}^\infty d^{2k} |z|^{[\log d]}\Big),$$

the last series being convergent in a suitable neighborhood of zero, where $[\cdot]$ is the nearest integer function.

In the spirit of the beginning of this note we observe the following immediate corollary of (1.2) (taking $\nu(p) = 1$): assume that there exists a natural number $q \geq 11$, such that the (absolutely convergent) series

$$\sum_{\substack{d \ge 7\\ \mathrm{d}(d,10)=1}} \mu(d)\omega(d)^2 F_d\left(\frac{1}{q}\right) = \sum_{\substack{d \ge 7\\ \mathrm{gcd}(d,10)=1}} \mu(d)\Omega(d)^2 F_d\left(\frac{1}{q}\right)$$

is an irrational number. Then the number of prime repunits is infinite. (Note: both series are equal due to the factor $\mu(d)$.)

Of course, these series are difficult to analyze and they bear some similarity with the Lambert series $\sum_{1}^{\infty} \frac{1}{2^{n}-1}$ which have been proved irrational by Erdös [8] (see also [7]). The difficulty arises due to the extra arithmetical elements present of μ , ω (or Ω) and the dependence on m and d in F_d .

gc

As an easy exercise one can prove that if the number of prime repunits is infinite then the above series is irrational for q = 100. Hint: Use (1.2) and the fact that the number $S_{\omega}(\frac{1}{100})$, whose decimal expansion contains only the digits 0, 1 is an irrational number (this number has the digit 1 in place 2n iff $1111 < R_n$ is prime). To see this notice that if R_n is prime then n must be prime (see below Lemma 2.1 i)).

Finally observe that for an odd square-free number $1 < d = p_1 \cdots p_\ell$ (distinct primes) with gcd(d, 10) = 1 the number m(d) can be obtained as follows: if $1 \le n_i$ is the smallest integer such that $10^{n_i} = 1 \mod p_i$ then $m(d) = \operatorname{lcm}\{n_1, \ldots, n_\ell\}$. To see this notice that $m |\operatorname{lcm}\{n_1, \ldots, n_\ell\}$ for $10^{\operatorname{lcm}\{n_1, \ldots, n_\ell\}} = 1 \mod p_i$ and therefore $10^{\operatorname{lcm}\{n_1, \ldots, n_\ell\}} = 1 \mod d$. On the other hand $10^m = 1 \mod d$ and thus $10^m = 1 \mod p_i$; therefore $n_i | m$ and then $\operatorname{lcm}\{n_1, \ldots, n_\ell\} | m$.

2. Proof

For the proof of the theorem we need the following auxiliary lemma. Lemma 2.1.

i) If R_n is prime then n must be prime.

ii) If $10^n - 1$ has at most two distinct prime factors, then either n = 1, 2, 3, or $n \ge 5$ and R_n is prime.

Proof: i) If n = ab then $\frac{10^{ab}-1}{3^2} = \frac{10^{ab}-1}{10^b-1} \frac{10^b-1}{3^2}$.

ii) Assume that $10^n - 1$ has exactly one prime divisor. But $10^n - 1 = 3^r$, with n, r > 1 has no solution because this is a special case of Catalan's equation (see [3]).

Therefore, assume that $10^n - 1$ has exactly two prime divisors and n is coprime to 3. We write $10^n - 1 = 3^{2+a}p^r$ and then $R_n = 3^a p^r$. If a > 0 then we must have 3|n (the sum of the digits of a number must be divisible by 3 if the number is divisible by 3; the sum of the digits of R_n is n). This is absurd and therefore a = 0. Bugeaud and Mignotte [6], who completed a theorem of Shorey and Tijdeman ([5], Theorem 5 i)), showed that R_n is not a perfect power if 1 < n. Thus R_n is prime if n is coprime to 3.

Now if 3|n then

$$10^{n} - 1 = (10^{n/3} - 1)(10^{2n/3} + 10^{n/3} + 1),$$

and the second factor is 3 mod 9, so 3 divides n but 9 does not. So, the second factor must have some other prime factor p > 3, therefore the first factor is a power of 3, again false for n > 3 by results on Catalan's equation. Thus n = 3.

We recall S. Golomb's formula (see [2])

$$\sum_{d|m'=p_1^{r_1}\cdots p_{\ell}^{r_{\ell}}} \mu(d) \ \nu(d)^2 = \begin{cases} -\nu(p_1)^2, & \text{if } \ell = 1, \\ 2\nu(p_1)\nu(p_2), & \text{if } \ell = 2, \\ 0, & \text{if } \ell > 2. \end{cases}$$
(2.1)

This could be proved by grouping d as having one divisor, two divisors, three divisors etc., as

$$-\binom{\ell-1}{0}\sum_{i=1}^{\ell}\nu(p_i)^2 + \left\{\binom{\ell-1}{1}\sum_{i=1}^{\ell}\nu(p_i)^2 + 2\binom{\ell-2}{0}\sum_{i$$

which gives the desired formula (2.1) after grouping terms.

We have, using (2.1) and the above lemma, that

$$2\nu(3)S_{\nu}(z) = \sum_{\substack{n \ge 5\\n=1,5 \text{ mod } 6}} z^n \Big\{ \sum_{\substack{d \mid 10^n - 1}} \mu(d)\nu(d)^2 \Big\}.$$

Indeed this last formula follows from (2.1) which gives zero in the case that $m' = 10^n - 1$ has three or more prime divisors and from the fact that if $R_n > 1111$ is a prime repunit then n must be prime and therefore n = 1 or n = 5, mod 6, $n \geq 5.$

We continue our proof. We have

$$\sum_{\substack{n \ge 5\\n=1,5 \mod 6}} z^n \Big\{ \sum_{\substack{d|10^n - 1\\ d|10^n - 1}} \mu(d)\nu(d)^2 \Big\} = \sum_{\substack{d=3\\ \gcd(d,10) = 1}}^{\infty} \mu(d)\nu(d)^2 \Big\{ \sum_{\substack{n \ge 5\\n=1,5 \mod 6\\10^n = 1 \mod d}} z^n \Big\}$$

Notice that, for fixed d, the positive solutions of $10^n = 1 \mod d$ are given by the set $\{m, 2m, 3m, 4m, \dots\}$.

Assume $d \ge 3$, gcd(d, 10) = 1 and d is a square-free number. Then $\sum_{10^n = 1 \mod d} z^n = z^m + z^{2m} + z^{3m} + z^{4m} + \dots$ and therefore the sum

$$\sum_{\substack{n=1,5 \mod 6\\10^n=1 \mod d}} z^n = (z^m + z^{7m} + \dots) + (z^{5m} + z^{11m} + \dots)$$

if $m = 1,5 \mod 6$, and is zero otherwise. Thus

n

$$\sum_{\substack{n \ge 5\\n=1,5 \bmod 6\\10^n = 1 \bmod d}} z^n = \begin{cases} \frac{z^m}{1-z^{6m}} + \frac{z^{5m}}{1-z^{6m}}, & \text{if } m = 1,5 \bmod 6; 5 \le m, \\ \frac{z^7}{1-z^6} + \frac{z^5}{1-z^6}, & \text{if } m = 1, \\ 0, & \text{otherwise.} \end{cases}$$
(2.2)

But if m = 1 then one must have d = 3. So

$$\sum_{\substack{d=3\\ \gcd(d,10)=1}}^{\infty} \mu(d)\nu(d)^2 \Big\{ \sum_{\substack{n\geq 5\\ n=1,5 \bmod 6\\ 10^n=1 \bmod d}} z^n \Big\} =$$

Rev. Un. Mat. Argentina, Vol 53-2, (2012)

$$-\nu(3)^{2} \left(\frac{z^{7}}{1-z^{6}} + \frac{z^{5}}{1-z^{6}}\right) + \sum_{\substack{d=7\\ \gcd(d,10)=1}}^{\infty} \mu(d)\nu(d)^{2} \left\{\sum_{\substack{n \ge 5\\ n=1,5 \mod 6\\ 10^{n}=1 \mod d}} z^{n}\right\} = -\nu(3)^{2} \left(\frac{z^{7}}{1-z^{6}} + \frac{z^{5}}{1-z^{6}}\right) + \sum_{\substack{d=7\\ \gcd(d,10)=1}}^{\infty} \mu(d)\nu(d)^{2} F_{d}(z),$$

where (1.1) follows from (2.2).

Acknowledgment. We thank Edgardo Güichal for useful conversations and we are grateful to the referee for his/her careful reading and constructive remarks.

References

- [1] Paulo Ribenboim. The Little Book of Big Primes, Springer-Verlag, New York, 1991.
- [2] S. W. Golomb. The lambda method in prime number theory, J. Number Theory, 2, (1970), 193–198.
- [3] Tauno Metsänkylä. Catalan's Conjecture: Another old Diophantine problem solved, Bulletin of the American Mathematical Society 41, No. 1, (2004), 43–58.
- [4] Tom Apostol. Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
- [5] T.N. Shorey and R. Tijdeman. New applications of diophantine approximations to Diophantine equations, Math. Scand. 39, (1976), 5–18.
- [6] Y. Bugeaud and M. Mignotte. Sur l'équation Diophantienne $(x^n 1)/(x 1) = y^q$. II . C.R.Acad. Sci. Paris Sér. I Math., 382(9), (1999), 741-744.
- [7] P. B. Borwein. On the irrationality of $\sum 1/(q^n + r)$, Journal of Number Theory **37**(3), (1991), 253-259.
- [8] P. Erdös. On the arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12, (1948), 63-66.

Pablo A. Panzone Departamento e Instituto de Matemática (INMABB) Universidad Nacional del Sur Av. Alem 1253, 8000 Bahía Blanca, Argentina. ppanzone@uns.edu.ar

Recibido: 25 de noviembre de 2010 Revisado: 12 de agosto de 2011 Aceptado: 29 de febrero de 2012