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ON Z-NULL LIE ALGEBRAS

L. MAGNIN

ABSTRACT. We consider the class of complex Lie algebras for which the Koszul 3-form is zero,
and prove that it contains all quotients of Borel subalgebras, or of their nilradicals, of finite
dimensional complex semisimple Lie algebras. A list of Kac-Moody types for indecomposable
nilpotent complex Lie algebras of dimension < 7 is given.

1. INTRODUCTION

Leibniz algebras are non-antisymmetric versions g of Lie algebras: the commu-
tator is not required to be antisymmetric, and the right adjoint operations [., Z]
are required to be derivations for any Z € g ([10]). In the presence of antisym-
metry, that is equivalent to the Jacobi identity. Leibniz algebras have a cohomol-
ogy of their own, the Leibniz cohomology HL®(g,g), associated to the complex
CL*(g,g) = Hom (g®°,g) = g ® (g*)®* and the Leibniz coboundary § defined for

¢ € CL"(g,9) by
(60) (X1, Xo, .o, Xpy1) =

n+1
[Xlaw(XQa s aXnJrl)] + Z (_1)1[1/)()(17 s 7Xia s 7Xn+1)aXi]
=2
+ Z (_1)j+1w(X15'"7Xi—17[Xian]aX’i-‘rh"'7Xj7"'7Xn+1)

1<i<j<n+1

(If g is a Lie algebra, ¢ coincides with the usual coboundary d on C*(g,g) = g®
A° g% ). Since Lie algebras are Leibniz algebras, a natural question is, given some
fixed Lie algebra, whether or not it has more infinitesimal Leibniz deformations
(i.e. deformations as a Leibniz algebra) than infinitesimal deformations as a Lie
algebra. That amounts to the comparison of the adjoint Leibniz 2-cohomology
group HL?(g,g) and the ordinary one H?(g,g), and was addressed by elementary

[

methods in [5]. There we proved that
HL*(g.9) = H*(9.9) ® ZLi(g.0) &C,

where ZL3(g,g) is the space of symmetric Leibniz 2-cocycles and C is a space
consisting of coupled Leibniz 2-cocycles, i.e. the nonzero elements have the property
that their symmetric and antisymmetric parts are not cocycles. The Lie algebra g
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38 L. MAGNIN

is said to be (adjoint) Z L?-uncoupling if C = {0}. That is best understood in terms
of the Koszul map Z which associates to any invariant bilinear form B on the Lie
algebra g the Koszul form (X,Y, 72) — I5(X,Y,Z) = B([X,Y],Z) (X,Y,Z € g).
Then ZL2(g,9) = c®@ker Z (¢ the center of g) and C = (¢ ® ImZ)N B>(g, g). Hence g
is Z L?-uncoupling if and only if (¢ ® ImZ) N B3(g,g) = {0}. The class of (adjoint)
Z L*-uncoupling Lie algebras is rather extensive since it contains, beside the class
of zero center Lie algebras, the class of Lie algebras having zero Koszul form, which
we call Z-null Lie algebras.

In the present paper, we examine some properties of the class of Z-null Lie
algebras. First, after proving basic properties of Z-null Lie algebras, we state in
Proposition 2.6 a result for Lie algebras having a codimension 1 ideal, connecting
Z-nullity of the ideal and Z-nullity or Z-exactedness (i.e. the Koszul form is a
coboundary) of the Lie algebra itself. Several corollaries are given, and fundamental
examples are treated in detail. We also give a table (Table 1) for all non Z-null
complex Lie algebras of dimension < 7. This table is a new result. Then comes the
main result of the paper, Theorem 3.1, which states that any nilradical of a Borel
subalgebra of a finite-dimensional semi-simple Lie algebra is Z-null.

We also give a list of Kac-Moody types for indecomposable nilpotent Lie algebras
of dimension < 7 (Table 2). Again, that result is new.

Throughout the paper, the base field is C.

2. THE KOSZUL MAP AND Z-NULL LIE ALGEBRAS

Let g be any finite dimensional complex Lie algebra. Recall that a symmetric
bilinear form B € S2g* is said to be invariant (see [J]), i.e. B € (529*)g if
and only if B([Z,X],Y) = —B(X,[Z,Y]) VX,Y,Z € g. The Koszul map T :

a
(S%g*)° — (/\39*) C Z3(g,C) is defined by Z(B) = Ip, with I(X,Y,Z) =
B([X,Y],Z)VX,Y,Z € g.
Lemma 2.1. Denote C?g = [g,g]. The projection = : g — @g/C?g induces an
isomorphism

w : kerZT — S2 (9/029)* :
Proof. For B € kerZ, define w(B) € S? (g/CQQ)* by
@(B)(r(X),n(Y)) = B(X,Y), VX,Y € g.
w(B) is well-defined since for X, Y, U,V € g
B(X+[U,V]Y) = B(X,Y)+B([U,V]Y)
= BXY)+Ip(U,VY)
= B(X,Y) (as Ip =0).
The map w is injective since w(B) = 0 implies B(X,Y) = 0VX,Y € g. To prove

that it is onto, let B € S? (g/CQQ)*, and let B, € S%g* defined by B,(X,Y)
B(m(X),n(Y)). Then Br([X,Y],Z) = B(r([X,Y]),n(Z2)) = B(0,7(2)) =

VX,Y,Z € g, hence B, € (529*)g and B, € kerZ. Now, w(B,) = B.

O o |
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ON Z-NULL LIE ALGEBRAS 39

From Lemma 2.1, dim (529*)g = W—;D + dimImZ, where ¢ = dim H'(g,C) =

dim (g/C2g). For reductive g, dim (S2g*)® = dim H?(g, C) ([9]).

Definition 2.2. g is said to be Z-null (resp. Z-exact) if Z = 0 (resp. ImZ C
B*(g,C)).

g is Z-null if and only C%g C ker B VB € (SQQ*)Q. It is standard that for any

B € (529*)9, there exists By € (329*)g such that ker (B + B;) C C?g. Hence
ﬂBe(szg*)g ker B C C?g, and g is Z-null if and only ﬂBe(Szg*)g ker B = C?g.

Lemma 2.3. (i) Any quotient of a (not necessarily finite dimensional) T-null Lie
algebra is T-null;
(ii) Any finite direct product of Z-null Lie algebras is Z-null.

Proof. (i) Let g be any Z-null Lie algebra, h an ideal of g, g = g/b,
m : g — g the projection, and B e (SQQ*)Q. Define B, 6_529* by B.(X,Y) =
B(n(X),n(Y)),X,Y € g. Then B.([X,Y],Z) = B(n(X,Y]),n(Z)) =
B([r(X),=(Y)],n(2)) = B#X),[x(Y)n(2)]) = BxX)=(Y,Z])

Z]
I

o |l

B(X,[Y,Z))¥X,Y,Z € g, hence B, € (S%g*)® and Izo(r x 7 x 1) =
since g is Z-null. Hence Iz = 0.

(ii) Let g = g1 X g2 (91,92 Z-null) and B € (529*)9. As B(Xy,[Ys, Z3]) =
B([X1,Y3], Z2) = B(0,Z2) = 0VX, € g1,Y2,Z> € g2, B vanishes on g; x C?gy
and on C?g; x g as well, hence Ip = 0. O

™

Lemma 2.4. Let g be a finite dimensional semi-simple Lie algebra, with Cartan

subalgebra by, simple root system S, positive roots Ay, and root subspaces g<. Let
t # {0} be any subspace of b, and T' C A such that a+B €T fora,f €T, a+p €
A, Consider u=¢to @, 9

(i) Suppose that ce # 0V € T'. Then u is T-null;

(ii) Suppose that aje = 0Va € I'NS, and aje # 0Va € T'\ S. Then u is Z-null.

Proof. (i) Let uy = @, g%, and X, a root vector in g* : g® = CX,, Va € I'. Let
B e (SQu*)u. First, B(H,X) = OVH € ¢, X € uy. In fact, for any o € T', since
there exists H, € € such that o(H,) # 0, B(H,X,) = mB(H, [Ho, Xo]) =
ﬁ B([H,H,], X,]) = ﬁ B(0,X,) = 0. Second, that entails that the restric-
tion of B to uy X uy is zero, since for any «, 5 € T,

1

a(Hy)

B(XOHXB): B([Ha,Xa],Xg) = B(HOM[XOHXﬁ]) =0

a(Ha)
as [Xa, Xg] € ug. Then u is Z-null.
(ii) In that case, Xo & C*uVa € 'N S, and dim (u /C*u) = dim€ + #(I' N S). For
1 to be Z-null, one has to prove that, for any B € (SQu*)u :

B(H,X3)=0,VH ct, fel'\S; (2.1)
B(X.,X3)=0,YVael'nsS, el'\S;
B(X3,X,) =0, ¥3,v€T\S.
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40 L. MAGNIN

(2.1) is proved as in case (i). To prove (2.2), let Hg € € such that 5(Hg) # 0. Then

B(Xa,Xg) = B(X&a[Hﬁvxﬁ]): B([XmHﬁ]aXﬁ)

_ 1
B(Hpg)

1
= ~ 5 Be(Ha) Xa, Xg) = = g5 B0, X5) =0

_ 1
B(Hpg)

As to (2.3),

B(Xﬂa XV) =

from (2.1).

Example 2.5. Any Borel subalgebra is Z-null.

Proposition 2.6. Let g2 be a codimension 1 ideal of the Lie algebra g, (x1,...,zN)
a basis of g with ©1 & go, Ta,...,xN € @2, T the corresponding projection onto
g2, and (w',...,w") denote the dual basis for g*. Let B € (Szg*)g, and denote

By € (3293)92 the restriction of B to g2 X go. Then:
(i)
IB:d(wl/\f)+IB2o(772><772><772). (24)
where [ = B(-,z1) € g*;
(ii) Let v € N a5 € A*g*, and denote dg, the coboundary operator of go. Then
dy = w' Ay, (7) + dg,y 0 (T X T X ) (2.5)

where 0, stands for the coadjoint action of :cl on the cohomology of g;

(#i) Suppose I32 € B3(gy,C), and let v € N> g5 € N> @ such that Ip, = dg,-
Then Ig € B3(g,C) if and only if w* A0, (v) € B*(g,C). In particular, the condi-
tion

implies Ig = dry.

Proof. (i) For X,Y,Z € g one has
B((X,Y),2) = Bl (X)z1 + ma(X), ' (V)1 + m(Y)
= B (w!'(X) 1, m(Y)] — w!(Y)[z1, 72(X)

w!(Z)a1 + m(
=W (X)wH(2)B([z1, m2(Y)], 21) — w' (V)w! (Z) B([21, m2(X)], 21)
+ B(X,Y, Z) + B ([m2(X),
=B(X,Y, Z) + B([m(X), m(Y)], m2(Z))

H(Z)z1 +m(2))
[ma(X), ma(Y)],

)

+ €
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ON Z-NULL LIE ALGEBRAS 41

where

B(X,Y, Z) = w!(Z) B(Ima(X), ma(Y)], 21) + w! (X) B([z1, m2(Y)], m2(Z))
(21, m2(X)], m2(Z))
=w!(2)B([m(X), ma(Y)], 21) + w' (X)B(x1, [m2(Y), m2(2)])
—w! (V) B(x1, [m2(X), m(Z)]).

Now
df(X,Y) = —B([X,Y] 21)
= —B(w'(X)z; + m(X), 0 (Y)z1 + m(Y)], 21)
= =B (X)), m(Y)] — @' (Y)[z1, m(X)] + [ma(X), m2(Y)], 21)
—B([m2(X), m2(Y)], 21)
hence
BX,Y,Z) = —(w'(2)df(X,Y)+w (X)df (Y, Z) — ' (Y)df (X, Z))

— (W' AN (XY, 2).
Since dw! = 0, (2.7) then reads
IB:d(wl/\f)—l—IBQO(TFQX?TQ ><7T2). (28)

(ii) One has for any X, Y, Z € g

dy(X,Y, Z) = dy(ma(X), ma(Y), m2(Z)) + ' (X)dy(a1, m2(Y), 72(Z))
+wH (V)dy(ma(X), 21, m2(2)) + 0! (Z)dy(m2(X), ma(Y), 21).
Now, since v vanishes if one of its arguments is 1,
dy (w1, m2(Y), m2(Z)) =Y([w1, m2(Y)], 72(2)) + (1, m2(Z)], m2(Y))

dy(ma(X), 21, m2(2)) —([m2(X), 1], m2(2)) = y([21, m2(2)], ma (X))
dy(me(X), ma(Y), 1) = ([ma(X), 1], m2(Y)) — y([m2(Y), 21], m2 (X)),

hence

(XY, Z) = dy(ma(X), ma(Y), m2(Z)) + w0 (X)0, y(m2(V), m2(Z))
= w! (Y0, 7(m2(X), m2(Z)) + w0 (Z)00, 7 (m2(X), m2(Y))
= dy(m2(X), ma(Y), m2(Z)) + (w' A e, y) (XY, Z)
since Oy, y(m2(U), m2(V)) = 0, v(U, V) for all U,V € g.

(ili) Results immediately from (i) and (ii). O
Corollary 2.7. Under the hypotheses of Proposition 2.6, suppose that x1 commutes

with every x; (2 <1< N) except for z;,,..., x;,. and that z;, ..., x;, commute to
one another. Then, if go is Z-null, g is Z-null.
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Proof. From Equation 2.4, one has to prove that for any invariant bilinear sym-
metric form B on g, f = B(-,z1) € g* verifies df = 0, i.e. for any 2 <i,j < N,
B(z1,[zi, x;]) = 0. For i # i1,...,i,, and any j > 2, B(x1, [z, z;]) = B([z1, 2], ;)
= B(0,z;) =0. For ¢,j € {i1,...,4,}, B(z1, [z, x;]) = B(x1,0) = 0. O

Definition 2.8. The n-dimensional standard filiform Lie algebra is the Lie algebra
with basis {z1,...,2,} and commutation relations [x1,z;] = zi41 (1 < i < n).

Corollary 2.9. Any standard filiform Lie algebra or any Heisenberg Lie algebra
is Z-null.

Corollary 2.10. Any Lie algebra containing some Z-null codimension 1 ideal is
T-exact.

Corollary 2.11. Suppose that the Lie algebra g is such that dim ImZ = 0 or 1.
Let 7 € Der g such that Tz, € C%g Yk > 2 where (x1,...,7N) is some basis of
g. Denote g = C1 @ g the Lie algebra obtained by adjoining the derivation T
to g, and by I the Koszul map of §,. Then dim ImZ = 0 if dim ImZ = 0, and
dim ImZ =0 or 1 if dim ImZ = 1.

Proof. Let B € (S?T*)ér . One has
IB:WT/\dfT+IBzo(7T2X7T2X7T2) (29)

where (7,21,...,2x) is the basis of §,, (w™,w!,...,w™) the dual basis, By the re-
striction of B to g, fr = B(7,-) and my the projection on g. We will also use the pro-
jection 73 on vect(xa, ..., zn). For XY € g, X =w™(X)74+ X, Y =w (V)7 +Y,
X = m(X),Y = m(Y), so that df,(X,Y) = —B(r,[X,Y]) = —=B(1,[X,Y]) =
=B(r, [w'(X)z1 + m(X),w'(V)21 + m(Y)]) = —w'(X)B(r,[z1,m3(Y)])
+wt(Y)B(r, [x1,73(X)]) — B(7, [73(X), m3(Y)]), hence

df-(X,Y) = wH(X)Ba(rm3(Y), 21) — w(Y)Ba(rm3(X), 1) — Ba(rms(X), 7r3((Y)).)

2.10
Note that 7m3(X),773(Y) € C%g by the hypotheses. Suppose first that g is Z-
null. Then By (r73(Y), 1), Ba(7m3(X), 21), Bo(7m3(X), 73(Y)) all vanish. From
Equations (2.9), (2.10), §, is Z-null. Suppose now that g verifies dimImZ = 1 and
let C € (529*)g with I # 0. If §, is not Z-null we may suppose that Ip # 0.
There exists A € C such that Ip, = M. Then By (rm3(Y), 21) = AC (773 (Y), 21),
BQ(T’]Tg(X),iL’l) = )\C(’Tﬂ'g(X),iL'l), BQ(T’]Tg(X),’]Tg(Y)) = )\C(T’]Tg(X),ﬂ'g(Y)) It
follows from Equations (2.9), (2.10), that dimIm7Z = 1. O

Definition 2.12. A Lie algebra g is said to be quadratic if there exists a nonde-
generate invariant bilinear form on g.

Clearly, quadratic nonabelian Lie algebras are not Z-null.
Example 2.13. This example is an illustration to Corollary 2.11. The nilpotent

Lie algebra g7 2.4 has commutation relations [x1, z2] = x3, [1, 23] = Z4, [v1, 4] =
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ON Z-NULL LIE ALGEBRAS 43

x5, [v1, 5] = ®6, [2, T5] = —27, [T3, Ta] = T7. g7,2.4 I8 quadratic and dimIm7 = 1.
The elements of Der g7 2.4(mod adgr2.4) are
&0 0 0 0 0 0
e g 0 0 0 0 0
0 0 & +¢ 0 0 0 0
=10 o0 0 26} + €2 0 0 0 (2.11)
0 & 0 0 3¢t + &2 0 0
& & & 0 0 41 + &3 0
0 0 0 0 —& 3¢ +2¢6

7 is nilpotent if &} = £2 = 0. Denote the nilpotent 7 by (£2;£5;¢%,£5;€7). Now,
projectively equivalent derivations 7,7’ (see [12]) give isomorphic §,, g,/. By re-
duction using projective equivalence, we are reduced to the following cases: Case
1. & #0: (1;60,1;0); Case 2. & = 0 : (0;¢;0,m;\); where e,7,A = 0,1. In
both cases g, is Z-null, except when 7 = 0 in case 2 where g, is the direct product
C X g7,2.4 which is quadratic. Hence any indecomposable 8-dimensional nilpotent
Lie algebra containing a subalgebra isomorphic to g7 2.4 is Z-null, though g7 2.4 is
quadratic. That is in line with the fact that, from the double extension method of
[16], [15], any indecomposable quadratic solvable Lie algebra is a double extension
of a quadratic solvable Lie algebra by C.

Example 2.14. Among the 170 (non isomorphic) nilpotent complex Lie algebras of
dimension < 7, only a few are not Z-null. Those are listed in Table 1 in the classifica-
tion of [1 1], [13] (they are all Z-exact). Table 1 gives for each of them dim (529*)9 ,

a basis for ((329*)g / kerI) (which in those cases is one-dimensional), and the

corresponding Ips. The results in Table 1 are new and have been obtained, first
by explicit computation of all invariant bilinear forms on each one of the 170 Lie
algebras with the computer algebra system Reduce and a program similar to those
n [12],[13], and second by hand calculation of Ig for non Z-null Lie algebras. f
denotes quadratic Lie algebras; for w, 7 € g*, ® stands for the symmetric product

WOT=w®T+7T® w; w’k stands for w? A w’ A wk.

Remark 2.15. There are nilpotent Lie algebras of higher dimension with
dim (S 2 g*)g / kerZ > 1. For example, in the case of the 10 dimensional Lie algebra
g with commutation relations [z1,x2] = @5, [x1, 23] = w6, [v1, 24] = @7, [X2, 23] =
xs, [T2, T4] = 9, [T3,24] = X10, dim (S2g*)g/ kerZ = 4, and in the analogous case
of the 15 dimensional nilpotent Lie algebra with 5 generators one has
dim (529*)g / kerZ = 10. Those algebras are Z-exact and not quadratic.

Example 2.16. The quadratic 5-dimensional nilpotent Lie algebra gs 4 has com-
mutation relations [z1,22] = x3, [x1,23] = 24, [T2,23] = x5. Consider the 10-
dimensional direct product g5 4 X g5 4, with the commutation relations: [z1, z2] =
x5, [X1,25] = w6, X2, 25] = @7, [3, 4] = T8, [X3, 28] = T9, [T4,xs] = x10. The only
11-dimensional nilpotent Lie algebra with an invariant bilinear form which reduces
to Bl =wow —w? o+ @w’, By =wow® —w!ow? +uwd®wd on
respectively the first and second factor is the direct product C x g5 4 X g5 4,
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TABLE 1. Non Z-null nilpotent complex Lie algebras of dimension

<T.
algebra dim (SQQ*)g basis for (S'Qg*)’J / kerZ Ip.
G5t 1 o o TRl LI
g6.3 f 7 W' OWwl —w? 0w’ +wd Ow? whZ3 = dul.b
96,14 4 WwIowl —wowt+wdwd w23 = —duwl?
gs.4 xC 7 W Ow’ —wow +wd®uwl wh23 = s
g5.4 x C? ¢ 11 W Ow’ —wowl +wd Wl wh23 = s
963 X C 1 11 T o0 — o TP ot PR TR p R
97,0.4(0)> 4 wlOw —w? Ow! +w? Qw? wh?3 = dwt?
97,0.5 97,0.6,
97,1.02, 07,1.10,
g7,1.13, 07,1.14,
g7.1.17
97.1.03 4 WwIowt —wowt+wdew? wh23 = dul.b
07,22 7 WwIow —w? oWl +wdow® WwhZ3 = dutt
g7,2.4 14 4 W OW +w? 0wl —w? 0w’ +w?®wlwh3T—wlh25 =

dw1’7

97,25, 97,2.6,|4 wlow —wow +w W’ whZ3 = dwbs
97,2.7, g7,2.8,
97.2.9,
07.2.18 7 wIow —wlow’ +wtw? whZE = T b
07.2.44, 07.3.6 7 wIow —wlow’ +wd ouw? w23 = '
07.3.23 7 WIowl —w? oW +wdwd whZ3 = dut®

Example 2.17. The 4-dimensional solvable “diamond” Lie algebra g with basis
(1,2, 23,24) and commutation relations [z1, x2] = w3, [v1, 23] = —22, [T2, 23] =

x4 cannot be obtained as in Lemma 2.4. Here dim ((529*)g / kerI) = 1, with

basis element B = w! ®w* + w? @w? + w3 @w?. Ig = wh?3 = dwh?; g is quadratic
and Z-exact. In fact, one verifies that all other solvable 4-dimensional Lie algebras
are Z-null (for a list, see e.g. [17]). For a complete description of Leibniz and Lie
deformations of the diamond Lie algebra (and a study of the case of gs54), see [5].

3. CASE OF A NILRADICAL

We now state and prove our main result. The proof is by case analysis over
the simple complex finite dimensional Lie algebras. In the classical cases, the
point consists in an inductive use of Corollary 2.7. In the exceptional cases, we
either utilize directly the commutation relations (Gs, Fy), or make use of a certain
property of the pattern of positive roots, which we call property (P) (Es, E7, Es).

Theorem 3.1. Any nilradical g of a Borel subalgebra of a finite-dimensional semi-
simple Lie algebra is Z-null.

Proof. 1t is enough to consider the case of a simple Lie algebra, hence of one of the
4 classical types plus the 5 exceptional ones.

Case A,,. Denote E; j,1 <4,j < n+ 1 the canonical basis of gl(n + 1,C). One
may suppose that the Borel subalgebra of A,, = sl(n+ 1) is comprised of the upper
triangular matrices with zero trace, and the Cartan subalgebra b is @zj CH;
with H; = E;; — E;t1,+1. The nilradical is g = A} = ®1<i<j<n+1 CE; ;. For
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n =1, g = C is Z-null. Suppose the result holds for the nilradical of the Borel
subalgebra of A,_1 = sl(n). One has g = CE12 @ --- @ CEy ;41 ® gh with gh =
®2<i<j<n+1 CE; ; being the nilradical of the Borel subalgebra of A,,_1, hence Z-
null. Fj ;41 commutes with g5, hence g5 is a codimension 1 ideal of CE ;41 @ gbh,
and, from Corollary 2.7, CEj 41 @ g5 is Z-null. Now E; , commutes with all
members of the basis of CE4 41 @ gh, except for E, 11, and [E1 ., By pt1] =
E1 p41. Then CEj 541 D gh is a codimension 1 ideal of CEy ,, @ (CE4 41 D gh), and
from Corollary 2.7, CE1,, ® (CE1 41 @ g¢h) is Z-null. Consider CE; ,,—1 ® (CE; ,,®
CEr n+1Dg5). E1,n—1 commutes with all members of the basis of CEy ,, CE; ,,41®
g5 except for Ey,_1 5, Ey—1 41, and yields respectively Ey ,,, Eq p41. Then CE; ,, &
CEh n+1@95 is a codimension 1 ideal of CE4 ,,—1 ®(CE4 ,, @CE1 41 @ ¢5), and since
En_1n,Epn_1n+1 commute, we get from Corollary 2.7 that CEy ,,—1 & (CEy, &
CE1 n+1 @ gb) is Z-null. The result then follows by induction.
Case D,,. We may take D,, as the Lie algebra of matrices

A Zo

<23 —tZ1> (31)
with Z; € gl(n,C), Z2, Z3 skew symmetric (see [7], p. 193). Denote Ei,j =
(Eé’j 7%@) V= (8 EJEEJ) (Eij,1 < ,j < nthe canonical basis of gl(n, C)).

The Cartan subalgebra b is @Z? CH,; with H; = Ei,i and the nilradical of the

Borel subalgebra is
P ce,o P chy (3.2)

1<i<j<n 1<i<j<n
All Fi,j’s commute to one another, and one has:
Eijs Fiod) = 66 Fi — 65, F k- (3.3)
We identify D,,_1 to a subalgebra of D,, by simply taking the first row and first

column of each block to be zero in (3.1). For n = 2, D = C? is Z-null. Suppose
the result holds true for D) ;. One has

=CE2®CE 1 3®...CE,®CF,®---0CF,® D},

Start with (CFl o0 @ D+ 1- From (3.3), 1*:‘1 > commutes with all E” 2<i<j<
n) hence with D . Then D} | is a codimension 1 ideal of CF} » @ D, | and
CFLQ &) an1 is Z-null from Corollary 2.7. Consider now (CFL?, &) (CFLQ &) anl).
Again from (3.3), Fy 3 commutes with all elements of the basis of D, , except
E2,3 and [E'273, F~'173] = F‘l,g. Then (CFLQ @D:{fl is a codimension 1 ideal of (Cﬁ'l,g &)
(CF12®D;f ), and the latter is Z-null. Suppose that CF} o 1®---®CF, @D, | is
a codimension 1 ideal of CF} g@(Cﬁl s_1®---®CE Q@D:{_l), and that the latter is
Z-null. Consider CF; g+1EB((CF1 sD---®CFy QEBD 1). From (3.3), for2 <i < j <
[E”,Fl 94_1] =0 g+1F1 i is nonzero only for i = 2,...,s,and j = s+ 1, and it is
then equal to F} - Then first CF, s@((CFl s—1D- - @(CFl QEBD 1) is a codimension
1 ideal of (CF1,3+1 ® ((CFLS oD CF172 @® D} ). Second, the latter is Z-null from
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Corollary 2.7. By induction the above property holds for s = n. Consider now
CE1n®(CF,®---®CF @D;i;l)' One has for 2 <i < j < n, [E1,, E; ;] =0,
[E~1,n, E]] = —(5n7j151,i, [ELn, ﬁ‘l,j] = 0. Hence (Cl*z‘l,nGB- . '@Cﬁ‘l,g@D;Ll is an ideal
of CE~1,n &) ((Cls‘l,n ®-- ~@C13‘1,2 @D, ) and the latter is Z-null. For2<i<j<n
1<k<n—2,

[Evn—k Eij] = On-iiFyy, )

[E1 n—ks g] = On—rkif1; — On—r;F1i

[El n—k» El n] = 6n7k,1E~|1,n = 07

(Brmi, Fij] = OnxaFi;=0.
[E1n_1, Ei j] is nonzero only for (i = n—1,j = n) and then yields Ey ,; [E1.n—1, F 4]
is nonzero only for (i = n— 1,7 = n) or for (i < j = n—1) and yields re-
spectively Fln, or F“ [Eln 1,E1 n] and [Eln 1,F17]] are zero for n > 3.
Hence, first CEl n @ (CF1 n - @ (CF1 2 @ D _, is a codimension 1 ideal of

(CE1 n 1@((CE1 n@(CFl n®- - @CFl Q@D 1), and second the latter is Z-null, since
E,_ 1,» commutes with F,_ 1n Fz n—1. Suppose that (CE1 n—k4+1 B B (CELn &,
(CFl,n O D (CFLQ 25 Dn_ is a codimension 1 ideal of. .. (CELn—k &) ((CELn—k+1 &)
) (CELn &) (CFLn DD Cﬁ‘l,z & D;Ll) and that the latter is Z-null. Consider
CE1 n—lk— 1@(CE1 n—k®- @CE1 n@CFl n®-- @Cﬁl 2@D}F ). [E1 o 1,E ;s
nonzero only for i = n—k—1 and yields then E; NE [E1 N o gl =0n—k—1 zFl,j
Op—fo— 1,jF1 i is nonzero only for i =n—k—1or j =n—k— 1 and yields resp. F1 g
or —FU Hence (CEln kD - @(CE1n@(CF1nEB @CF12@D 1 is an ideal of
(CEln e 1@((CE1n kD - @(CElnEB(CFln@ EBCF12@D ).Thelatteris
Z-null since E,_5_1 ; commutes with both Fopy ' Fl,n k—1 (' = n—k). The

result follows by induction.
Case B,,. We may take B,, (n > 2) as the Lie algebra of matrices

0 U v
|z Zo (3.4)
—tu | Zs | =2y

with u, v complex (1 X n)-matrices, Z; € gl(n,C), Za, Z3 skew symmetric, i.e.

0 u v
(3.5)

with A € D,,. We identify A € D,, to the matrix
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The Cartan subalgebra of B, is then simply that of D,,. B, consists of the matrices

0 |0 v
—

! (3.6)

0

with v complex (1 xn)-matrix and A € D;f. For 1 < ¢ < n, let v, the (1 x n)-matrix
(0,...,1,...,0) (1 in ¢** position), and

0 |O Uq
i

. Vg

Vg = @

0

Hence B, = (@Zzl (Cﬁq>@D;'{. Onehasfor1<qg<n, 1<i<j<n

[’anE:i,j] = —0q,40i
[0g, Fij] = 0
and for 1 <s<g<n
[ﬁqa ﬁs] = Fs,q- (3.7)

Consider Cy @ D;f. As ©; commutes with E; ; and F; ;, D;f is an ideal of Coy @ D;
and the latter is Z-null. Suppose that Cos_q & --- & Coy & D, is an ideal of
Cos @& (Cos_1@®---®Coy® D) and the latter is Z-null. Consider
Cs41® (Cos ® Cos—1 @ -+ @ Co1 @ D). [Us41, Ei j] = —0s41,;0; hence U541 com-
mutes to all E~i,j’s except for Emﬂ (1 < s) and then yields —o;. For t < s,
[Os41,0t] = FA“t’S+1. Hence Cts @ Cos_q1 & --- ® Coy & D} is an ideal of Cogyq @
(Cos ® Cos_1 @ -+ ®Coy ® D). Now we cannot apply directly Corollary 2.7 to
conclude that the latter is Z-null as the family F = {Ei7s+1,17t; 1 <i<s,1<
t < s} is not commutative. The E;.y1’s (i < s) commute to one another and
to the 9;’s, but the ¥;’s do not commute to one another. However, recall from
the proof of Corollary 2.7 that one has to check that, for any invariant bilinear
form B on Cos41 & (Cog ® Cos_1 @ -+ ® Coy ® D), B(vs41,[X,Y]) = 0 for all
X,Y € F. That reduces to B(dsy1, [0, 0¢]) = 0 V&, t',1 < ¢t < ¢ < s. Now,
B(0st1, [0, 0p]) = B([Us41,0t),00) = B(Fis+1,0) = B([Ets, Fss41],00) = 0
since E}}S, FMH, Oy € Cos® Cos_1®---@®Coy & D;f which is Z-null. We conclude
that Cosy1 @ (Cog P Cos_q @ - @® Coy @ DY) is Z-null. By induction the property
holds for s = n and B;! is Z-null.

Case C,,. This case is pretty similar to the case D,,. We may take C), as the Lie

algebra of matrices
VAR A
( Zs Z1> (3.8)
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with Z; € gl(n,C), Zy, Zs symmetric. E; ; and the Cartan subalgebra are identical
to those of D,,. We denote for 1 <i,j <n: Fi,j = (8 EJgEJ) . Then
Ci= @ cE e P chy (3.9)

1<i<jsn 1<i<jsn
All FM’S commute to one another, and one has:
[Eigs Fua) = 0551 + 60 F . (3.10)

The case is step by step analogous to the case of D,, with (3.10) instead of (3.3)
and (3.9) instead of (3.2).

Case Gy. The commutation relations for Go appear in [6], p. 346. GF is 6-
dimensional with commutation relations [z1,z2] = x3; [x1, 23] = 224; [21,24] =
—3ws; [29,25) = —x6; [v3,74] = —3w. G5 has the same adjoint cohomology
(1,4,7,8,7,5,2) as, and is isomorphic to, ge,1s, which is Z-null.

Case Fjy. Fj has 24 positive roots, and root vectors z; (1 < i < 24). From the
root pattern, one gets with some calculations the commutation relations of F4Jr :

[961,962] = Ts; [901,9613] = T14; [96173015] = —Z6; [30173016] = —I7; [901,9617] = —X23;

[xl,xls] = T19; [$1,$24] = T22; [3027303] = T15; [3027307] = Ig; [$2,$12] = T13;

[962,9619] = X20; [30273621] = T24; [30273023] = To; [903,964] = 21, [9637305] = T6;

[x3,76] = w73 [13,29] = T10; [13,211] = T12; [13,715] = 2165 [23, 220] = —2211;

[£3,220] = %23} [13, T24] = —3217; [T4, 6] = Too; [24,27] = a3 [24, 28] = wo;

(T4, 29] = —x20; [24,10] = T11; [24, T15] = —T24; [T4, 216] = 2175 [24, 217] = 2185

[964,9623] = —I19; [905,9012] = T14; [1‘571716] = I8; [905,9017] = Z9; [905,9018] = —X20;

[965,9621] = T22; [966,9611] = —X14; [906,9015] = —I8; [1‘671717] = Z10; [17671318] = 2711;

(26, x21] = 32233 [6, T2a] = 3T0; [w7,218] = 2125 [w7,220) = —2214; [27, w24] =

T10; [T8, 18] = 22135 [T8, T19] = 2%14; [18, T21] = —T10; [T9, 217] = —2713; [v9, T21] =
—T11; [559,%23] = 2w14; [$107£€21] = —T12; [$10,$22] = —T14; [$107£€24] = —X13;

[961173615] = —T13; [3015,9519] = 21113 [961573621] = %3017; [3015,9622] = %959; [301573623] =

—z10; [T16,T19] = 2x12; [T16,%20] = 2T13; [T16,T22] = T10; [T17,T22] = Ti1;

[961773023] = 2w12; [302173022] = %9519; [962173624] = %1318; [962273324] = —%9520; [962373624] =
X11.-

Then the computation of all invariant bilinear forms on F4Jr with the computer
algebra system Reduce yields the conclusion that F, 4+ is Z-null.

Case Fg. In the case of EJ the set Ay of positive roots (associated to the set
S of simple roots) has cardinality 36 ([0], p. 333):

Ap ={e;+¢;;1<i<j<blU{e;—¢e;;1<j<i<5}
1
U{E(ieli52i53i64i55+\/§56);# minus signs even}

(the (g;)’s an orthogonal basis of the Euclidean space). Instead of computing the
commutation relations, we will use the following property (P) of A .

(P): fora,B,ye Ay, ifa+f €Ay anda+ye€ Ay, then f+v &AL
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Introduce some Chevalley basis ([7], p. 19 ex. 7) of Ef : (X4)aca+. One has
[XO(,XQ] = N(y,gXa_,_g Va,p € A+
NayﬂzolfQ+B¢A+,Na’lB EZ\{O} 1fa+ﬂ€A+

Define inductively a sequence g1 C ga C -+ C gag = Eg of Z-null subalgebras, each
of which a codimension 1 ideal of the following, as follows. Start with g; = CX5,,
01 € A4 of maximum height. Suppose g; defined. Then take g;11 = CXs,,, © g;
with ;41 € Ay \ {01,...,0;} of maximum height. Clearly, g; is a codimension 1
ideal of g;+1. To prove that it is Z-null we only have to check that, for 1 < s, < 4,
if 9;41 + s € Ay and 6;41 + & € Ay then 65 + 6 € A;. That holds true because
of property (P).

Case E7. In the case of Ef the set A of positive roots has cardinality 63 ([6],
p. 333):

Ap={ei+e;1<i<j<6yU{e —e;1<)<i<6}U{V2er)
1
U{§(:|:€1 :|:62:|:63:|:54:|:65:|:56+\/§57);# minus signs odd}.

Property (P) holds true for E (see [14]). Hence the conclusion follows as in the
case of B .

Case Eg. In the case of Eg the set A, of positive roots has cardinality 120 ([6],
p. 333):

Ap={ei+¢e;;1<i<j<8U{e;—¢e;;1<j<i<8}
1
U{§(i51i€2i53i54i€5i66i57+58);# minus signs even}.

Property (P) holds true for Eg (see [14]). Hence the conclusion follows as in the
case of Eg' . 0

Remark 3.2. Property (P) holds for A}, hence we could have used it. However,
it does not hold for F;". One has for example in the above commutation relations
of F;~ (with root vectors) [z3, 4] # 0, [x3,79] # 0, yet [z4, z9] # 0.

Remark 3.3. In the transversal to dimension approach to the classification prob-
lem of nilpotent Lie algebras initiated in [18], one first associates a generalized
Cartan matrix (abbr. GCM) A to any nilpotent finite dimensional complex Lie al-
gebra g, and then looks at g as the quotient §(A)4 /T of the nilradical of the Borel
subalgebra of the Kac-Moody Lie algebra g(A) associated to A by some ideal J.
Then one gets for any GCM A the subproblem of classifying (up to the action of a
certain group) all ideals of g(A),, thus getting all nilpotent Lie algebras of type A
(see [2], [3], [1], [19], and the references therein). Any indecomposable GCM is of
exactly one of the 3 types finite, affine, indefinite (among that last the hyperbolic
GCMs, with the property that any connected proper subdiagram of the Dynkin
diagram is of finite or affine type) ([1],[8],[20]). From Theorem 3.1, the nilpotent
Lie algebras that are not Z-null all come from affine or indefinite types. Unfortu-
nately, that is the case of many nilpotent Lie algebras, see Table 2. Finally, let us
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add some indications on how Table 2 was computed. The commutation relations
for the nilpotent Lie algebras g in Table 2 are given in [12], [13] in terms of a basis
(zj)1gj<n (n = dimg) which diagonalizes a maximal torus 7. We may suppose
here that (z;)1<;<¢, £ = dim (g/C?g), is a basis for g modulo C?g. The associated
weight pattern R(T') and weight spaces decomposition g = € BER(T) g” appear in
[13]. Asin [18], one first introduces Ry (T) = {8 € R(T); ¢° ¢ C%g} = {B1,...,Bs},
ly = dim (g7/ (gP* N C?g)), do = dimg” (1 < a < s). By definition the GCM
associated to g is A = (a})1<ij<e with af = 2 and, for i # j, —a} defined as
follows. In the simplest case where d, = 1Va (1 < a < s), then, for i # j, —a§»
is the lowest k € N such that ad(z;)**(z;) = 0. If d, > 1 for some 1 < a < s
(Lie algebras having that property are signalled by a ¥ in Table 2), one has (if
le > 1 as well) to reorder z1,...,x, according to weights as yi,...,y, with y;
of weight By , f : {1,...,8} — {1,...,s} some step function. Then, for
i # j, —al = inf {k € N;ad(v)"*!(w) = 0Vv € g1 Yuw € gfr@»}. The GCM A
is an invariant of g, up to permutations of {f1,..., s} that leave the dg’s invari-
ant. The type of the GCM was identified either directly or through the associated
Dynkin diagram. As an example to Table 2, there are (up to isomorphism) three

7-dimensional nilpotent Lie algebras that can be constructed from the GCM Df):
97.2.1(%i4)> 97,2.10, 97,3.2- The 7-dimensional nilpotent Lie algebra DSZ’QO constructed

from the GCM D513) in [3] is isomorphic to g7 3.2.
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TABLE 2. Kac-Moody types for indecomposable nilpotent Lie al-
gebras of dimension < 7. Notations for indefinite hyperbolic are
those of [20], supplemented in parentheses for rank 3,4 by the
notations of [1] (as there are misprints and omissions in [20]).

algebra GCM Finite Affine Indefinite Indefinite
Hyperbolic | Not Hyper-
bolic
g3 _21 _21 As
94 23 Co
2 0°-10
05,1 (01 29 01> Ay x A
0 -10 2
2 —1 -1
05,2 -1 2 0 As
-10 2
2 -2 0
5.3 -1 2 -1 B3
’ 0 -1 2
2 —2 (1)
95,4 -2 2 Ay
95,5 2P Go
95,6 %% (3,2)
2 —170 -1
96,1 oo )| A
-10 0 2
2 -2 0 0
96,2 Bl (2) (2) ,Ol By x As
0 0 —1 2
2 —1 -1
-1 2 —1 AW
96,3 T151 s 2
2 —1-1
96,4 -2 2 0 Bs
—-10 2
2 —2 -1
5 1 —2 2 -1 HP (32
96,5 1A 2 (32)
2 -1 0
96,6 —2 2 —1 Csy
0 -1 2
2 —2 -1
(3)
-1 2 -1 H 1
96,7 A 1 1)
6.8 LY HY (103)
' 0 -1 2 96
2 —1 -1
96,9 -1 2 0 As
-10 2
2 —2-1 2)
—12 0 Al
96,10 2.0 2 4
2 -3 0 1)
-1 2 -1 G(
96,11 0 —1 2 2
2 —3 -2
96.121 -2 2 -1 \/
’ —1-1 2
2 -3 0
-1 2 —1 alv
96,13 ( 0 —1 2 ) 2
96,14 25 (3,2)
_ 1
96,15 32 22 Ag)
_ 2
96,16 2 24 Aé)
96,17 2 _24 (4,2)
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TABLE 2. continued

algebra GCM Finite Affine Indefinite Indefinite
Hyperbolic | Not Hyper-
bolic
96,18 25 G2
96,19 2 _24 (4,2)
96,20 23 (3,3)
gr0.17 ,25 }5 (5,5)
g7,0.2% ditto ditto
07,0.3 ditto ditto
+ 2 —4 44
97,0.4(\) —4 2 (4,4)
g7.05¢ ditto ditto
a7,0.6" (Eg EB) (3,3)
g7,0.7% ditto ditto
2 —3-3
1 32 -3
97,0.8 R Vv
2 0 —4 3
g?,l.Ol(i)I 91 31 *24 H&é (123)
El?.,l.ol(ii)i ditto ditto
a7,1.02 ,23 }2 (3,2)
g7,1.03F 25 (3,2)
07,1.1(iy) _23 » (5,3)
A#£0
07,1.1(iy) <_22 _25) (5,2)
A=0
07,1.1(i4) Y (5,1
07,1.1(ii4) _23 _24 (4,3
97,1.1(iv) _23 _22 3,2
2 0'—4
97.1.1(v) _02 _21 _22 \/
2 —3-1
97,1.1(vi) :? (2) g Vv
; 2 —3 -2
97,1.2(iy) :? 31 *22 Vv
a71.200)F | ditto ditto
97,1.2(iii)1 ditto ditto
97,1.2(iv) ditto ditto

53

Rev. Un. Mat. Argentina, Vol 53-2, (2012)



54
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algebra GCM Finite Affine Indefinite Indefinite
Hyperbolic | Not Hyper-
bolic
I 230 v
97,1.3(iy) 3
a71.300)F | ditto ditto
2 —3-3
97.1.3(2'2'2')1 -22 0 v
’ —2 0 2
2 —2 -2 3
07,1.3(i) " “22 1 H (40)
2 —3-3"-2
97,1.3(1))i :g 31 El :% \/
—1-1-1 2
g7,1.4 _22 _25 (57 2)
97,1.5 28 (4,2)
07.1.6 2D (5,2)
2 —2 -2
-2 2 -1 H<3) 34
g7,1.7 T 8 ( )
2 -3 0
—2 2 —1
97,1.8 225 Vv
2 —3-1
—2 2 —1
§7,1.9 (71 25 ) Vv
97,1.10 (,23 54) (4,3)
2 —4'-3
o7,1.117 (—2 2 —1) Vv
’ —1-1 2
2 —4 -2
97,1.121 (*2 2 *1) Vv
—1-1 2
97,1.13 _22 _24 (4,2)
97,1.14 25 (3,3)
2 —4'-3
07,1157 (—2 2 —1) Vv
’ —1-1 2
971161 (EQ 33 :%) Vv
T -1 -1 2
g7,1.17% (_24 o (4,4)
2 -3 -2
07,1187 -2 2 -1 Vv
’ —1-1 2
2 —2 -2
97,1.191 :g 32 722 Hg) (80)
2 —1 -2
-3 2 —1 H® (6
97,1.20 52 9 (6)
2 -3 -2
o7,1.217 -3 2 —2 Vv
’ —1-1 2
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TABLE 2. continued

algebra GCM Finite Affine Indefinite Indefinite
Hyperbolic | Not Hyper-
bolic
2 —3—1
(3)
07,2.1(iy) 1A H;”  (2)
2 —3-1
(3)
97,2.1(i4) :i (2) g Dy
2 -3 070 "
-1 2 —1-1
97,2.1(ii4) 0 212 0 H;, (150)
0 —-10 2
2 0 —1-2
0 2 —-10
97,2.1(iv) —1-1 2 —1 Vv
10 —1 2
2 —2 -1
(3)
87.2.1(v) :i _21 _21 Hl (1)
2 —1 -1 3
g7,2.2 22l =P (1)
97,2.3 27 (5,1)
_ 2
g7,2.4 _21 24 Ag)
- 1
97,2.5 ,22 22 Ag)
97,2.6 ,22 }3 (3,2)
97,2.7 25 (4,2)
07,2.8 2 (3,2)
97,2.9 ,23 }3 (3,3)
2 —3-1
-1 2 0 D(3)
97,2.10 I 4
2 —3 -2
g7,2.11F -2 2 -1 4
—1-1 2
2 —2 -2 3
g7,2.12% 220 HE) (112)
_21 _23 _02 H(B) (26)
97,2.13 ot A 100
255 HE) (111)
97,2.14 P 107
07,2.15 El 34 Bl HS (104)
= 0 —1 2 97
07,2.16 itto ditto
2 -3 0
g7,2.17 (*02 31 *21) \/
g7,2.18 ditto ditto
2 —3-1
-2 2 0
97,2.19 229 ) Vv
2 —1-3
-12 0
§7,2.20 -1z Vv
2 —3 -1 3
g7,2.21 :% 31 El Hé ) (2)
2 0 -3
97,2.22 0 2 -1 Vv
’ —2 -1 2
2 0 0 -2 @
97,2.23 5 A0 D,
1.0 —1 2

55
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TABLE 2. continued
algebra GCM Finite Affine Indefinite Indefinite
Hyperbolic | Not Hyper-
Y Y
bolic
2 —3 0 1
§7,2.24 éol _21 —21 Gg )
2 —3 0 -2
+ 12 -1 0
97,2.25 0 —1 2 —1 \/
—10 —1 2 >
2 —2 -1
g7,2.26" (:% 2 *21) Hég) (32)
2 —2—-1"-1
o7,2.277 220t Vv
—1-10 2
2 —1-2 0
= 4
97,2.28 ,% (2) (2) ,Ol Hio) (164)
0 0 —1 2
2 -2 0 0
22 -1 0
97,2.29 0 -1 2 —1 v
0 0 —1 2
2 30 0
97,2.30 e ey (3,2) x A
0 0 —1 2
2 -3 0
-1 2 -2 H<3) 26
97,2.31 o2 2) 100 (26)
2 —3-1 3)
07,2.32 22 Hype  (25)
2 -3 0
07,2.33 A HS% (28)
2 —2-1 3)
97,2.34 “22 9 H,g, (107)
2 —1 -2
97,2.35 (:% (2) g) Af)
2 0 —1—1 @
0 2 —1-—1
97,2.36 155 9 0 > Hg™ (131)
—1-10 2
2 —2-1 3
o7,2.377 22 —21) Hé ) (32)
2 -2 0 -1
07,2.38 LA O) v
)2 0 -12 0
-10 0 2
2 —2 -2 (3)
97,2.39 b2t H (3)
2 —2-1 3)
97,2.40 220 Hy”  (32)
2 —2 -2
o720 22 Hg) (106)
2 —1 -2
07,2.42 22 -1 Y (5)
2 —2 -2
97,2.43 120 HY (106)
2 C1 72 (5)
07,2.44 1A 6
2 -2 0 -1
12 —1-1
97,2.45 0 -12 0 v
—1-10 2
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TABLE 2. continued

algebra GCM Finite Affine Indefinite Indefinite
Hyperbolic | Not Hyper-
bolic
2 —1 -1 R3)
97,3.1(iy) :i _21 —21> A,
2 —1-1"-1
-12 0 0
97,3.1(iii) 10 2 0 Dy
-10 0 2
2 -3 -1 (3)
7,3.2 -12 0 D
97, 10 2 4
2 -3 0 (1)
7,3.3 -1 2 -1 G
o7, 0 —1 2 2
2 —1-1 (2)
7,3.4 -22 0 D
o7, -2 0 2 3
2 —1 -1
97,3.5 -2 2 0 Bs
-10 2
2 —1-2 (3)
7,3.6 -1 2 -1 H 1
9, —1-1 2 1 ey
2 -2 070
—12 0 —1
97,3.7 0O 0 2 —1 B4
0 —1-1 2
2 —2-1 0
—12 0 —1
g7,3.8 ~10 2 0 F4
0 -10 2
2 -2 0 0 )
—1 2 —1-1
97,3.9 0 —-12 0 By
0 -10 2
2 —1-10
—12 0 -2
97,3.10 210 2 o Cy
0 -10 2
2 —2-10
—12 0 —1
g7,3.11 -1 0 2 0 F4
0 -10 2
2 —1-10 W
—12 0 —1
97,3.12 -1 0 2 —1 A3
0 —1-1 2
2 -2 0 0 W
-22 0 0 1
g7,3.13 0O 0 2 —1 Al XAQ
0 0 —1 2
2 —1-20
—12 0 —1
07,3.14 -1 0 2 0 04
0 -10 2
2 —1-10
—22 0 0
97,3.15 10 2 1 By
0 0 —1 2
2 -2 0 0
-12 0 0
07,3.16 0 0 2 —2 B2 X B2
0 0 -1 2
2 -3 0 0
-12 0 0
g7,3.17 0 0 2 —1 G2 X A2
0 0 —12
2 20 0’0
-1 2 0 0 —1
97,3.18 0 0 2 -10 Bz x Az
’ 00 -12 0
0 -10 0 2
2 -1-10 0
—-12 0 0 0
97,3.19 10 2 -10 As
0 0 —1 2 —1
0 0 0 —12
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TABLE 2. continued

algebra GCM Finite Affine Indefinite Indefinite
Hyperbolic | Not Hyper-
bolic
2 —2 —2 Bh)
7,3.20 -12 0 C.
o7, -10 2 2
2 —2 -1 )
7,3.21 -1 2 0 A
g 20 2 4
2 —1 -2
07,3.22 -12 0 Cs
—10 2
5200 HD (103)
7,3.23 -22 0
o7, -10 2 96
2 —10°0 @)
-1 2 —1-1
97,3.24 0 —1 2 —1 H3 (126)
0 —1 -1 2
2 —1-10
-12 0 0
g7,4.1 -1 0 2 —1 A4
0 0 —1
2 —1—-1-1
—12 0 0
g7,4.2 -1 0 2 0 D4
—-10 0 2
2 -10 070
—-12 0 0 0
07,4.3 0 0 2 0 —1 Az X A3z
00 0 2 —1
0 0 —1—-1 2
2 0 0 -10"70
0 2 0 0 —10
00 2 0 0 —1
g7,4.4 10 0 2 0 O A2 X A2 X A2
0—-10 0 2 0
0 0 —-10 0 2
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