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UNIÓN MATEMÁTICA ARGENTINA
Vol. 53, No. 2, 2012, 79–87

ON HAMILTON CIRCUITS IN CAYLEY DIGRAPHS OVER

GENERALIZED DIHEDRAL GROUPS

ADRIÁN PASTINE AND DANIEL JAUME

Abstract. In this paper we prove that given a generalized dihedral group DH and a generating

subset S, if S∩H 6= ∅ then the Cayley digraph
→

Cay(DH , S) is Hamiltonian. The proof we provide
is via a recursive algorithm that produces a Hamilton circuit in the digraph.

1. Introduction

The Cayley digraph on a group G with generating set S, denoted
−−→
Cay (G;S),

is the digraph with vertex set G, and arc set containing an arc from g to gs
whenever g ∈ G and s ∈ S (if we ask S = S−1 and e /∈ S, we have just a
Cayley graph). Cayley (di)graphs of groups have been extensively studied and
some interesting results have been obtained (see [3]). In particular, several authors
have studied the following folk conjecture: every Cayley graph is Hamiltonian (see
[4]). Another interesting problem is to characterize which Cayley digraphs have
Hamiltonian paths. These problems tie together two seemingly unrelated concepts:
traversability and symmetry on (di)graphs.

Both problems had been attacked for more than fifty years (started with [5]),
yet not much progress has been made and they remain open. Most of the results
proved thus far depend on various restrictions made either on the class of groups
dealt with or on the generating sets (for example one can easily see that Cayley
graphs on Abelian groups have Hamilton cycles). The class of groups with cyclic
commutator subgroups has attracted attention of many researchers (see [2]). And
for many technical reasons the key to proving that every connected Cayley graph
on a finite group with cyclic commutator subgroup has a Hamilton cycle very likely
lies with dihedral groups.

Given a finite abelian group H , the generalized dihedral group over H is

DH =
〈

H, τ : τ2 = e τhτ = h−1 ∀h ∈ H
〉

Recently (2010) in [1], working on generalized dihedral groups, it was proved that
every Cayley graph on the dihedral group D2n with n even has a Hamilton cycle.

In 1982 in [7] Dave Witte proved that if
→

Cay(DH , S ∩ Hτ) is Hamiltonian, then
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→

Cay(DH , S) is also Hamiltonian. In this paper we take this result a step further and

prove via a recursive algorithm that if S∩H 6= ∅, then
→

Cay(DH , S) is Hamiltonian

independently of what happens with
→

Cay(DH , S ∩Hτ).

In [6] S. Curran proved that if Dn is a dihedral group and S = {τ, ρ1τ, . . . , ρmτ}

is a generating set which only contains reflections then if
→

Cay(Zn, S
′) has a Hamil-

ton circuit when S′ = {ρ1, . . . , ρm} then
→

Cay(Dn, S) has a Hamilton circuit. We
will show in this paper that his proof can be easily extended to generalized dihedral
groups.

2. Preliminaries

We start by giving some known definitions.

Definition 1. Given a finite abelian group H, the generalized dihedral group is

defined as follows:

DH =
〈

H, τ : τ2 = e τhτ = h−1 ∀h ∈ H
〉

Definition 2. Given a group G and a generating subset S ⊆ G such that e /∈ S,

we define the Cayley digraph
→

Cay(DH , S) as the digraph with vertex set G and arc

from g to gs for every g ∈ G and s ∈ S.

In this paper we will describe a walk by giving its starting vertex and the list of
generators that gives us the arcs of the walk in the order that the arcs are used, i.e.
(a; g1g2 . . . gk) will denote the walk that goes through the vertices: a, ag1, ag1g2,
. . . , ag1g2 . . . gk. When we talk about arcs in a walk we only consider them in
the direction used in the walk, even if they are edges. This means that if there
is an edge between a and agi (this is an undirected link), and a → agi is in the
walk, then in the walk we consider the edge as if it were an arc from a to agi. If
C = (a; g1 . . . gk) then the length of C is k.

Definition 3. We will say that a walk covers a set of vertex B if for every b ∈ B
there is an i such that b = ag1 . . . gi.

Definition 4. A circuit is a walk with no repeated vertices other than the starting

and the ending vertices.

It is known that in a Cayley digraph given the list of generators we can start the
circuit in any vertex and that if g1 . . . gk gives a circuit, so does gjgj+1 . . . gng1g2 . . .
gj−1. We will use this fact in the proof of the main result.

We now introduce some new properties that will be useful to prove our main
result.

Definition 5. A circuit in
→

Cay (DH , S) satisfies the h-property if it has an arc

a → b such that a, b ∈ H.
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Definition 6. A circuit in
→

Cay (DH , S) satisfies the hτ-property if it has an arc

aτ → bτ such that a, b ∈ H.

Proposition 7. Let g1, g2, . . . , gk be a list of generators that produces a circuit and

let h1, h2 ∈ H. Then

(1) The circuit (h1; g1g2 . . . gk) satisfies the h-property if and only if the circuit

(h2τ ; g1g2 . . . gk) satisfies the hτ-property.
(2) The circuit (h1; g1g2 . . . gk) satisfies the hτ-property if and only if the circuit

(h2τ ; g1g2 . . . gk) satisfies the h-property.

Proof. Suppose that the circuit (h1; g1g2 . . . gk) satisfies the h-property, this means
that there is an arc a → b with a, b ∈ H . This arc is given by a generator gi, this
means that agi = b but a, b ∈ H and thus gi ∈ H . Even more, a = h1g1 . . . gi−1,
and, as h1 ∈ H , so does g1 . . . gi−1. Take now a′ = h2τg1 . . . gi−1, we know that
h2τ ∈ Hτ , g1 . . . gi−1 ∈ H and gi ∈ H , because of this a′ ∈ Hτ and a′gi ∈ Hτ .
And thus the circuit (h2τ ; g1g2 . . . gk) satisfies the hτ -property. The proofs of the
other implications are analogous. �

Corollary 8. Let g1, g2, . . . , gk be a list of generators that produces a circuit and

let h1, h2 ∈ H. Then

(1) If the circuit (h1; g1g2 . . . gk) satisfies the h-property or the hτ -property
then the circuit (h2; g1g2 . . . gk) satisfies the h-property or the hτ -property.

(2) If the circuit (h1τ ; g1g2 . . . gk) satisfies the h-property or the hτ -property
then the circuit (h2τ ; g1g2 . . . gk) satisfies the h-property or the hτ -property.

Proof. This is easily proved applying Proposition 7 twice. �

Definition 9. A circuit in
→

Cay (DH , S) satisfies the τ-property if it has an arc

c → cτ such that c ∈ H.

Proposition 10. Let g1, g2, . . . , gk be a list of generators that produces a circuit

and let h1, h2 ∈ H. Then if (h1; g1 . . . gk) satisfies the τ-property then (h2; g1 . . . gk)
satisfies the τ-property.

Proof. Suppose that the circuit (h1; g1 . . . gk) satisfies the τ -property, this means
that there is an arc c → cτ with c ∈ H in the circuit. Let gi be the generator in
the circuit that produces this arc, then gi = τ , and h1g1 . . . gi−1 ∈ H , as h1 ∈ H
so does g1 . . . gi−1. Take now the circuit (h2; g1 . . . gk) and let c′ = h2g1 . . . gi−1, as
h2 ∈ H so does c′, and thus c′ → c′τ = c′gi is an arc of the circuit, and the circuit
satisfies the τ -property. �

Definition 11. A circuit in (a; g1g2 . . . gk) satisfies the T -property if gk = τ .

Definition 12. An A-circuit is a circuit that satisfies the h-property, the hτ-
property, the τ-property and the T -property.

Lemma 13. If 〈S〉 = DH , then S ∩ Hτ 6= ∅. And without loss of generality we

can suppose that τ ∈ S.
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Proof. If S ⊆ H then 〈S〉 ≤ H < DH , then S * H , thus there is an element
s ∈ S such that s /∈ H , but this means that s ∈ Hτ and thus S ∩Hτ 6= ∅. Given
hτ ∈ Hτ ∩ S we will define an automorphism that maps hτ into τ :

φ : DH → DH

φ|H = I

φ(aτ) = h−1aτ

φ(H) = H and φ(Hτ) = Hτ ; this means that φ is a bijection. Let us see that
φ(ab) = φ(a)φ(b).

If a, b ∈ H this is true.
If a ∈ H and b = h1τ

φ(ah1τ) = h−1ah1τ = ah−1h1τ = φ(a)φ(h1τ).

If a = h1τ and b ∈ H

φ(h1τb) = h−1h1τb = φ(h1τ)φ(b).

Finally, if a = h1τ and b = h2τ , ab = h1h
−1
2 ,

φ(h1h
−1
2 ) = h1h

−1
2

= h1τh2τ

= h1τhh
−1h2τ

= h1h
−1τh−1h2τ

= h−1h1τh
−1h2τ

= φ(h1τ)φ(h2τ).

As φ|H = I and φ(hτ) = h−1hτ = τ . Using this isomorphism we can transform
hτ in τ , thus we can suppose without loss of generality that τ ∈ S. �

Lemma 14. Let S = {τ, s1, . . . , sn} ⊆ DH , S0 = {τ}, Sk = {τ, s1, . . . , sk}, and
Gk = 〈Sk〉 ≤ DH . Given sj ∈ S, let h ∈ H be such that sj = hτα with α ∈ {0, 1}.
Let ϕ be the least positive power of h such that hϕ ∈ Gj−1. Then Gj−1, hGj−1,

h2Gj−1, . . . ,h
ϕ−1Gj−1 is a partition of Gj.

Proof. Let si ∈ Sj−1; then sisj = sihτ
α = htisiτ

α with ti = ±1, but as τ ∈ Sj−1,
siτ

α ∈ Gj−1. Thus sisj = htibi with bi ∈ Gj−1. As any a ∈ Gj is a word of
generators, every time that sj appears in the word we can write it as hτα, and
then move the h to the left. This means that we can write a = htb, with b ∈ Gj−1,
but as hϕ ∈ Gj−1 we may assume that 0 ≤ t < ϕ.

We have proven that Gj =
ϕ−1
⋃

r=0
hrGj−1. Let us prove that this is actually a

partition.
Suppose that hr1Gj−1 ∩ hr2Gj−1 6= ∅, then hr1a = hr2b with a , b ∈ Gj−1 and

0 ≤ r1, r2 < ϕ. This means that hr1−r2 = ba−1 ∈ Gj−1 and then r1 − r2 = 0 (as
−ϕ < r1 − r2 < ϕ) and r1 = r2. Thus we have hr1Gj−1 = hr2Gj−1. This proves
that Gj−1, hGj−1, h

2Gj−1,. . . , h
ϕ−1Gj−1 is a partition of Gj . �
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3. Main result

Theorem 15. If H ∩ S 6= ∅, then
→

Cay(DH , S) has a Hamilton circuit.

Remark 16. Together with the proof we give a graphic example of how the algo-

rithm works on
−−→
Cay(DZ30

, {τ, r6, r10, r15τ}).

Proof. We will give a recursive algorithm that finds the circuit, obtaining in each
step an A-circuit with starting vertex in H that covers some subgraph.

Let h ∈ H ∩ S.

Base Step: τ ∈ S, let S1 = {τ, h} ⊆ S and G1 = 〈S1〉 ≤ DH . We will
show that C1 = (e; 2 ∗ ((ord(h) − 1) ∗ h, τ)) is a circuit that covers G1. Let
a ∈ G1, if a ∈ H , then a = hr, with 0 ≤ r ≤ ord(h)− 1, and so a is the rth
vertex of the circuit. If a ∈ Hτ and a ∈ G1, then

a = hrτ

= hord(h)−1hhrτ

= hord(h)−1hr+1τ

= hord(h)−1τh−r−1

= hord(h)−1τhord(h)−r−1

and thus it if

j = ord(h) − 1 + 1 + ord(h) − r − 1 = 2ord(h)− r − 1

then a is the jth vertex of the walk. We have seen that C1 covers G1. Also
the last vertex of the walk is

ehord(h)−1τhord(h)−1τ =
(

hord(h)−1τ
)2

= e

and, as |G1| = 2ord(h) and the walk (e; 2 ∗ ((ord(h) − 1) ∗ h, τ)) has the
same length, C1 is a circuit covering G1. We will show now that it is an
A-circuit. The last generator is τ and thus it satisfies the T -property. It

has the arc e → h and the arc (h)
ord(h)−1

τ → (h)
ord(h)−1

τh, and so it

satisfies the h-property and the hτ -property. It has the arc (h)ord(h)−1 →

(h)
ord(h)−1

τ , and so it satisfies the τ -property. Then it is an A-circuit with
starting vertex in H , because its starting vertex is e.

G1 = 〈τ, r6〉

e r6
h

r12 r18 r24

τ

τ

r6τ r12τ r18τ r24τ

hτ

τ
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Recursive Step: let sn ∈ S, Sn = Sn−1 ∪ {sn} ⊆ S, and Gn = 〈Sn〉 ≤ DH .
We divide this step in two cases, sn = hn and sn = hnτ . In each case we
will find recursively a circuit covering each of the parts of Gn given by the
second lemma and we will join all them, forming an A-circuit that covers
Gn.

Case 1 (sn = hn): By the previous step we have Cn−1(1) = Cn−1 covering
Gn−1, and this gives the base step of the second recursion. Suppose now
that we found a circuit Cn−1(k) covering hk−1

n Gn−1 that satisfies the τ -
property and the T -property with starting vertex belonging to H . As
Cn−1 (k) satisfies the τ -property it has the arc cn → cnτ with cn ∈ H .
We multiply cn by hn and then copy the circuit starting in cnhn, this
gives us a circuit Cn−1 (k + 1), and because this circuit has initial vertex
in hk

nGn−1 and the generators of the circuit belong to Gn−1, this circuit
covers hk

nGn−1. As cnhn and the starting vertex of Cn−1 (k) both belong
to H and Cn−1 (k) satisfies the τ -property then because of Corollary 8 we
have that Cn−1 (k + 1) satisfies the τ -property. Because of the T -property
of Cn−1 (k), the last arc of Cn−1 (k + 1) is given by τ , and because τ2 = e
the last vertex from the circuit is cnhnτ . Multiplying cnhnτ by hn gives us
cnhnτhn = cnhnh

−1
n τ = cnτ . We now have these arcs joining the circuits

cn → cnhn and cnhnτ → cnτ ;

we use these arcs and erase the arcs:

cn → cnτ and cnhnτ → cnhn

to join the circuits. As the circuit satisfies the τ -property and its be-
ginning vertex belong to H , we may repeat the process to find a circuit
covering hk+1

n Gn−1 and, as we did not use the arc giving the T -property
of Cn−1 (k + 1) we can join them. We repeat the process until we find
a circuit covering the last part of Gn and join the circuits with the arcs
given in the recursion. The arcs that gave us the h-property and the hτ -
property in Cn−1 (1) are still used in this circuit, we did not use the arc
of the T -property from the last circuit, and the final arc is τ , so this is an
A-circuit, and as we keep the starting vertex from Cn−1 (1), its starting
vertex belongs to H .
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G2 = 〈τ, r6, r10〉

e r6
h

r24

r24τ

τ

r18ττ

hτ

τ

r4

r4τ

r28

r28τ

τ

r8

r8τ

r2

r2τ

τ

Case 2 (sn = hnτ): Again by the previous step we have Cn−1(1) = Cn−1

covering Gn−1, and this gives the base step of the second recursion. Sup-
pose now that we found a circuit Cn−1(k) covering hk−1

n Gn−1 that satisfies
the h-property and the hτ -property. As Cn−1(k) satisfies the h-property
it has two vertices an and bn from H that are neighbours. Multiply them
both by sn. As an, bn ∈ hk−1Gn−1 and

ansn = anhnτ

= hnanτ

and

bnsn = bnhnτ

= hnbnsn

we have that both ansn and bnsn belong to hk
nGn−1. As angi = bn with

gi ∈ H we have that

bnsngi = bnhnτgi

= hnbng
−1
i τ

= hnanτ

= anhnτ

= ansn,

thus gi gives an arc from bnsn to ansn and if Cn−1(k) = (c; g1 . . . gi . . . gm)
is the original circuit then (bnsn; gi . . . gmg1 . . . gi−1) is a circuit that covers
hk
nGn−1. But then Cn−1(k+1) = (bnsngi . . . gm; g1 . . . gm) is a circuit that

covers hk
nGn−1. As Cn−1(k) satisfies the h-property and the hτ -property by

Proposition 7 Cn−1(k + 1) satisfies both properties. We can join Cn−1(k)
with Cn−1(k + 1) with the arcs an → ansn and bnsn → bn, and reduce
it to a circuit by erasing the arc between an and bn and the arc between
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bnsn and ansn. As the arcs used to join Cn−1(k + 1) with Cn−1(k) are
given by vertices belonging to Hτ in Cn−1(k + 1) and the arcs used to
join Cn−1(k+1) with Cn−1(k+2) are given by vertices belonging to H in
Cn−1 (k + 1), we can join the three circuits to form a circuit. We continue
with this process until we find a circuit covering each part of Gn, and join
the circuits with the arcs given in the recursion. As the arc giving the h-
property in the last circuit is not erased it gives the h-property in the final
circuit. The arcs giving the hτ -property and the τ -property in the first
circuit are not erased, and they give the hτ -property and the τ -property
in the final circuit. As we end the circuit by returning to the first circuit
and ending it, the last generator is τ . Thus the circuit obtained is an
A-circuit, and as we keep the starting vertex from Cn−1 (1), its starting
vertex belongs to H .

G3 = 〈τ, r6, r10, r15τ〉

e r6
h

r2

r2τ

τ

r26τ

hτ

τ

τ

r15τ r21τ

r9τ r19τ

r19r25

h

Using the recursive step we will find an A-circuit that covers DH = 〈S〉, and
this will be the desired Hamilton circuit. �

Remark 17. As we just said, the Hamilton circuit provided in the theorem is

actually an A-circuit.

In [6] S. Curran showed that if Dn is a dihedral group and S = {τ, ρ1τ, . . . , ρmτ}

is a generating set which only contains reflections then if
→

Cay(Zn, S
′) has a Hamil-

ton circuit when S′ = {ρ1, . . . , ρm} then
→

Cay(Dn, S) has a Hamilton circuit. We
will show that his proof also works in generalized dihedral groups.

Theorem 18. Let DH be a generalized dihedral group and S = {τ, h1τ , . . . , hnτ}

be a set of generators which only contains reflections; then if
→

Cay(H,S′) has a

Hamilton circuit when S′ = {h1, . . . , hn} then
→

Cay(DH , S) has a Hamilton circuit.

Proof. We will only show that Curran’s proof also works in this case.
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Suppose that g1 . . . gm is a list of generators that produces a Hamilton circuit

in
→

Cay(H,S′) and let si = giτ ∈ S then the circuit C = (τ ; τs1τs2 . . . τsj) is a

Hamilton circuit in
→

Cay(DH , S). To prove this we first note that the length of C is
exactly 2|H | = |DH |, thus the only thing we have to prove is that it does not pass
through the same vertex twice. Suppose that it does pass through the same vertex
twice; then ττs1τ . . . sjτ

α = ττs1τ . . . skτ
β , as the initial vertex is τ and assuming

j < k. But we have that siτ = gi, and so

ττs1τ . . . sjτ
α = ττs1τ . . . skτ

β

g1g2 . . . gjsjτ
α = g1 . . . gk−1skτ

β

g1g2 . . . gj−1gjτ
α+1 = g1 . . . gk−1gkτ

β+1.

But the equality can only occur if τα+1 = τβ+1, and so we have

g1g2 . . . gj−1gjτ
α+1 = g1 . . . gk−1gkτ

β+1

g1g2 . . . gj−1gj = g1 . . . gk−1gk

e = gj+1 . . . gk,

but this cannot be, because g1 . . . gm gave a circuit. This means that C = (τ ; τs1τs2

. . . τsm) is a Hamilton circuit in
→

Cay(DH , S). �
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