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FURTHER RESULTS ON SEMISIMPLE HOPF ALGEBRAS OF

DIMENSION p2q2

JINGCHENG DONG AND LI DAI

Abstract. Let p, q be distinct prime numbers, and k an algebraically closed field of character-
istic 0. Under certain restrictions on p, q, we discuss the structure of semisimple Hopf algebras
of dimension p2q2. As an application, we obtain the structure theorems for semisimple Hopf al-
gebras of dimension 9q2 over k. As a byproduct, we also prove that odd-dimensional semisimple
Hopf algebras of dimension less than 600 are of Frobenius type.

1. Introduction

Throughout this paper, we will work over an algebraically closed field k of char-
acteristic 0.

The question of classifying all Hopf algebras of a fixed dimension backdates
to I. Kaplansky in 1975. This question was first solved in the Ph.D. thesis of R.
Williams for dimension less than 11 [24]. In the last twenty years there has been an
intense activity in classification problems of finite dimensional Hopf algebras. Many
results have been found, containing mainly the semisimple case and the pointed
non-semisimple case.

Quite recently, an outstanding classification result was obtained for semisimple
Hopf algebras over k. That is, Etingof et al. [5] completed the classification of
semisimple Hopf algebras of dimension pq2 and pqr, where p, q, r are distinct prime
numbers. Up to now, besides those mentioned above, semisimple Hopf algebras of
dimension p, p2, p3 and pq have been completely classified. See [4, 7, 12, 13, 14, 25]
for details.

Recall that a semisimple Hopf algebraH is called of Frobenius type if the dimen-
sions of the simple H-modules divide the dimension of H . Kaplansky conjectured
that every finite-dimensional semisimple Hopf algebra is of Frobenius type [8, Ap-
pendix 2]. It is still an open problem. Many examples show that a positive answer
to Kaplansky’s conjecture would be very helpful in the classification of semisimple
Hopf algebras. See [2, 7, 18] for examples.

In a previous paper [3], we studied the structure of semisimple Hopf algebras
of dimension p2q2, where p, q are prime numbers with p4 < q. As an application,
we also studied the structure of semisimple Hopf algebras of dimension 4q2, for all
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prime numbers q. In the present paper, we shall continue our investigation and
prove that some results in [3] can be extended to the case p2 < q. Moreover, the
structure theorems for semisimple Hopf algebras of dimension 9q2 will also be given
in this paper, where q is a prime number.

The paper is organized as follows. In Section 2, we recall the definitions and ba-
sic properties of semisolvability, characters and Radford’s biproducts, respectively.
Some useful lemmas are also obtained in this section. In particular, we give a
partial answer to Kaplansky’s conjecture. We prove that if dimH is odd and H
has a simple module of dimension 3 then 3 divides dimH . This result has already
appeared in [1, Corollary 8] and [10, Theorem 4.4], respectively. In the first paper,
Burciu does not assume that the characteristic of the base field is zero, but adds
the assumption that H has no even-dimensional simple modules. Accordingly, his
proof is rather different from ours. Our proof here is also different from that in
the second paper. Under the assumption that H does not have simple modules of
dimension 3 or 7, we also prove that if dimH is odd and H has a simple module of
dimension 5 then 5 divides dimH .

We begin our main work in Section 3. Assume that q > p2 and p does not divide
q − 1. We prove that if H is a semisimple Hopf algebra of dimension p2q2 and has
a simple module of dimension p then

(1) If gcd(|G(H)|, |G(H∗)|) = p2 then H = R#kG is a Radford biproduct,
where kG is a group algebra of dimension p2 and R is a semisimple Yetter-Drinfeld
Hopf algebra in kG

kGYD of dimension q2.
(2) In other cases, H is semisolvable.
In Section 4, we study the more concrete example, that is, the structure of

semisimple Hopf algebras of dimension 9p2. Let H be a semisimple Hopf algebra
of dimension 9q2, where q > 3 is a prime number. We prove that

(1) If gcd(|G(H∗)|, |G(H)|) = 9 then H is isomorphic to a Radford’s biproduct
R#kG, where kG is the group algebra of group G of order 9, R is a semisimple
Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.
(2) In all other cases, H is semisolvable.
The techniques we develop in Section 2.1 are quite useful in excluding potential

candidates for Hopf algebras not of Frobenius type. In Section 5, we shall illustrate
this point of view by showing that odd-dimensional semisimple Hopf algebras of
dimension less than 600 are of Frobenius type.

Throughout this paper, all modules and comodules are left modules and left co-
modules, and moreover they are finite-dimensional over k. ⊗, dim mean ⊗k, dimk,
respectively. For two positive integers m and n, gcd(m,n) denotes the greatest
common divisor of m,n. Our references for the theory of Hopf algebras are [16]
or [23]. The notation for Hopf algebras is standard. For example, the group of
group-like elements in H is denoted by G(H).

2. Preliminaries

2.1. Characters. Throughout this subsection, H will be a semisimple Hopf al-
gebra over k. As an algebra, H is isomorphic to a direct product of full matrix
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algebras

H ∼= k(n1) ×

s∏

i=2

Mdi
(k)(ni),

where n1 = |G(H∗)|. In this case, we say H is of type (d1, n1; . . . ; ds, ns) as an
algebra, where d1 = 1. If H∗ is of type (d1, n1; . . . ; ds, ns) as an algebra, we shall
say that H is of type (d1, n1; . . . ; ds, ns) as a coalgebra.

Obviously, H is of type (d1, n1; . . . ; ds, ns) as an algebra if and only if H has n1

non-isomorphic irreducible characters of degree d1, n2 non-isomorphic irreducible
characters of degree d2, etc. In this paper, we shall use the notation Xt to denote
the set of all irreducible characters of H of degree t.

Let V be an H-module. The character of V is the element χ = χV ∈ H∗ defined
by 〈χ, h〉 = TrV (h) for all h ∈ H . The degree of χ is defined to be the integer
degχ = χ(1) = dimV . If U is another H-module, we have

χU⊗V = χUχV , χV ∗ = S(χV ),

where S is the antipode of H∗.
The irreducible characters of H span a subalgebra R(H) of H∗, which is called

the character algebra of H . By [25, Lemma 2], R(H) is semisimple. The antipode
S induces an anti-algebra involution ∗ : R(H) → R(H), given by χ 7→ χ∗ := S(χ).
The character of the trivial H-module is the counit ε.

Let χU , χV ∈ R(H) be the characters of the H-modules U and V , respectively.
The integer m(χU , χV ) = dimHomH(U, V ) is defined to be the multiplicity of U in
V . This can be extended to a bilinear form m : R(H)×R(H) → k.

Let Irr(H) denote the set of irreducible characters ofH . Then Irr(H) is a basis of
R(H). If χ ∈ R(H), we may write χ =

∑
α∈Irr(H)m(α, χ)α. Let χ, ψ, ω ∈ R(H).

Then m(χ, ψω) = m(ψ∗, ωχ∗) = m(ψ, χω∗) and m(χ, ψ) = m(χ∗, ψ∗). See [19,
Theorem 9].

For each group-like element g in G(H∗), we have m(g, χψ) = 1, if and only
if ψ = χ∗g and 0 otherwise for all χ, ψ ∈ Irr(H). In particular, m(g, χψ) = 0
if degχ 6= degψ. Let χ ∈ Irr(H). Then for any group-like element g in G(H∗),
m(g, χχ∗) > 0 if and only if m(g, χχ∗) = 1 if and only if gχ = χ. The set of such
group-like elements forms a subgroup of G(H∗), of order at most (degχ)2. See [19,
Theorem 10]. Denote this subgroup by G[χ]. In particular, we have

χχ∗ =
∑

g∈G[χ]

g +
∑

α∈Irr(H), degα>1

m(α, χχ∗)α. (1)

A subalgebra A of R(H) is called a standard subalgebra if A is spanned by
irreducible characters of H . Let X be a subset of Irr(H). Then X spans a standard
subalgebra of R(H) if and only if the product of characters in X decomposes
as a sum of characters in X . There is a bijection between ∗-invariant standard
subalgebras of R(H) and quotient Hopf algebras of H . See [19, Theorem 6].

In the rest of this subsection, we shall present some results on irreducible char-
acters and algebra types.

Lemma 2.1. Let χ ∈ Irr(H) be an irreducible character of H. Then
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(1) The order of G[χ] divides (degχ)2.
(2) The order of G(H∗) divides n(degχ)2, where n is the number of non-isomor-

phic irreducible characters of degree degχ.

Proof. It follows from Nichols-Zoeller Theorem [20]. See also [18, Lemma 2.2.2]. �

Lemma 2.2. Assume that dimH is odd and H is of type (1, n1; . . . ; ds, ns) as an
algebra. Then di is odd and ni is even for all 2 ≤ i ≤ s.

Proof. It follows from [9, Theorem 5] that di is odd.
If there exists i ∈ {2, . . . , s} such that ni is odd, then there is at least one

irreducible character of degree di such that it is self-dual. This contradicts [9,
Theorem 4]. �

Remark 2.3. In fact, [9, Theorem 4] is also useful when we consider the possible
decompositions of χχ∗, where χ ∈ Irr(H). Assume that dimH is odd and χ ∈
Irr(H). We rewrite (1) as

χχ∗ =
∑

g∈G[χ]

g +
∑

α1∈Xq1

m(α1, χχ
∗)α1 + · · ·+

∑

αn∈Xqn

m(αn, χχ
∗)αn.

Then
∑

αi∈Xqi
m(αi, χχ

∗) is even for all 1 ≤ i ≤ n. Indeed, If
∑

αi∈Xqi
m(αi, χχ

∗)

is odd, then there exists at least one irreducible character αi of degree qi such that
it is self-dual, since χχ∗ is self-dual. This contradicts [9, Theorem 4].

Lemma 2.4. Assume that dimH is odd. Then
(1) If H has an irreducible character χ of degree 3, then G[χ] 6= {ε}. In partic-

ular, 3 divides dimH.
(2) Assume in addition that H does not have irreducible characters of degree

3 or 7. If H has an irreducible character χ of degree 5, then G[χ] 6= {ε}. In
particular, 5 divides dimH.

Proof. (1) Let χ be an irreducible character of degree 3. By Lemma 2.2, H does
not have irreducible characters of even degree. Therefore, if G[χ] is trivial then
χχ∗ = ε+χ3+χ5 for some χ3 ∈ X3, χ5 ∈ X5. This contradicts Remark 2.3. Hence,
G[χ] is not trivial for every χ ∈ X3. By Lemma 2.1 (1), the order of G[χ] is 3 or
9. Thus, 3 divides |G(H∗)| since G[χ] is a subgroup of G(H∗) for every χ ∈ X3.

(2) Let χ be an irreducible character of degree 5. By assumption and Lemma
2.2, if G[χ] is trivial then there are four possible decomposition of χχ∗:

χχ∗ = ε+χ11+χ13;χχ
∗ = ε+χ9+χ15;χχ

∗ = ε+χ5+χ19;χχ
∗ = ε+χ1

5+χ
2
5+χ

3
5+χ9,

where χi, χ
k
j are irreducible characters of degree i, j. This contradicts Remark 2.3.

Therefore, G[χ] is not trivial for every χ ∈ X5.
The rest of the statement can be obtained by the Nichols–Zoeller Theorem. �

Lemma 2.5. Assume that dimH is odd and H is of type (1, n; 3,m; . . . ) as an
algebra. If

(1)H does not have irreducible characters of degree 9, or
(2) there exists a non-trivial subgroup G of G(H∗) such that G[χ] = G for all

χ ∈ X3,
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then H has a quotient Hopf algebra of dimension n+ 9m.

Proof. Let χ, ψ be irreducible characters of degree 3. Both assumptions (1) and
(2) imply that χψ is not irreducible. Indeed, this is immediate for assumption (1),
while for assumption (2) it is a consequence of [17, Lemma 2.4.1].

If there exists χ5 ∈ X5 such that m(χ5, χψ) > 0 then χψ = χ5+χ3+ g for some
χ3 ∈ X3 and g ∈ G(H∗), by Lemma 2.2. From m(g, χψ) = m(χ, gψ∗) = 1, we get
χ = gψ∗. Then χψ = gψ∗ψ = χ5 + χ3 + g shows that ψ∗ψ = g−1χ5 + g−1χ3 + ε.
This contradicts Lemma 2.4. Similarly, we can show that there does not exist
χ7 ∈ X7 such that m(χ7, χψ) > 0. Therefore, χψ is a sum of irreducible characters
of degree 1 or 3. It follows that irreducible characters of degree 1 and 3 span a
standard subalgebra of R(H) and H has a quotient Hopf algebra of dimension
n+ 9m. �

Lemma 2.6. Assume that dimH is odd and H does not have simple modules of
dimension 3 and 7. If H has a simple module of dimension 5, then 5 divides the
order of G(H∗). In particular, 5 divides dimH.

Proof. Let χ be an irreducible character of degree 5. By assumption and Lemma
2.2, if G[χ] is trivial then there are four possible decomposition of χχ∗:

χχ∗ = ε+χ11+χ13;χχ
∗ = ε+χ9+χ15;χχ

∗ = ε+χ5+χ19;χχ
∗ = ε+χ1

5+χ
2
5+χ

3
5+χ9,

where χi, χ
k
j are irreducible characters of degree i, j. This contradicts Remark 2.3.

Therefore, G[χ] is not trivial for every χ ∈ X5. Hence, 5 divides the order of G(H∗)
by Lemma 2.1 (1). �

Proposition 2.7. Let q be a prime number. If H is of type (1, q2; q,m; . . . ) as an
algebra, where q does not divide m, then H∗ has a Hopf subalgebra K of dimension
≥ 2q2. Moreover, kG(H∗) is a normal Hopf subalgebra of K.

Proof. The group G(H∗) acts by left multiplication on the set Xq. The set Xq is
a union of orbits which have length 1, q or q2. Since q does not divide |Xq| = m,
there exists at least one orbit with length 1. That is, there exists an irreducible
character χq ∈ Xq such that G[χq] = G(H∗). In addition, [17, Lemma 2.1.4]
shows that G[χ∗

q ] = G(H∗) in this case. This means that gχq = χq = χqg for all
g ∈ G(H∗).

Let C be the q2-dimensional simple subcoalgebra of H∗, corresponding to χq.
Then gC = C = Cg for all g ∈ G(H∗). By [17, Proposition 3.2.6], kG(H∗) is
normal in K := k[C], where k[C] denotes the subalgebra generated by C. It is
a Hopf subalgebra of H∗ containing G(H∗). Counting dimensions, we find that
dimK ≥ 2q2. �

2.2. Semisolvability. Let B be a finite-dimensional Hopf algebra over k. A Hopf
subalgebra A ⊆ B is called normal if h1AS(h2) ⊆ A, for all h ∈ B. If B does
not contain proper normal Hopf subalgebras then it is called simple. The notion
of simplicity is self-dual, that is, B is simple if and only if B∗ is simple.

Let π : H → B be a Hopf algebra map and consider the subspaces of coinvariants

Hcoπ = {h ∈ H |(id⊗ π)∆(h) = h⊗ 1}, and
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coπH = {h ∈ H |(π ⊗ id)∆(h) = 1⊗ h}.

Then Hcoπ (respectively, coπH) is a left (respectively, right) coideal subalgebra of
H . Moreover, we have

dimH = dimHcoπdimπ(H) = dimcoπHdimπ(H).

The left coideal subalgebra Hcoπ is stable under the left adjoint action of H .
Moreover Hcoπ = coπH if and only if Hcoπ is a normal Hopf subalgebra of H . If
this is the case, we shall say that the map π : H → B is normal. See [22] for more
details.

The following lemma is taken from [17, Section 1.3].

Lemma 2.8. Let q : H → B be a Hopf epimorphism and A a Hopf subalgebra of
H such that A ⊆ Hcoq. Then dimA divides dimHcoq.

The notions of upper and lower semisolvability for finite-dimensional Hopf alge-
bras have been introduced in [15], as generalizations of the notion of solvability for
finite groups. By definition, H is called lower semisolvable if there exists a chain
of Hopf subalgebras

Hn+1 = k ⊆ Hn ⊆ · · · ⊆ H1 = H

such that Hi+1 is a normal Hopf subalgebra of Hi, for all i, and all quotients
Hi/HiH

+
i+1 are trivial. That is, they are isomorphic to a group algebra or a dual

group algebra. Dually, H is called upper semisolvable if there exists a chain of
quotient Hopf algebras

H(0) = H
π1−→ H(1)

π2−→ · · ·
πn−−→ H(n) = k

such that Hcoπi

(i−1) = {h ∈ H(i−1)|(id⊗πi)∆(h) = h⊗1} is a normal Hopf subalgebra

of H(i−1), and all Hcoπi

(i−1) are trivial. H is called semisolvable if it is upper or lower

semisolvable.
In analogy with the situations for finite groups, it is enough for many applications

to know that a Hopf algebra is semisolvable.
By [15, Corollary 3.3], we have that H is upper semisolvable if and only if H∗ is

lower semisolvable. If this is the case, then H can be obtained from group algebras
and their duals by means of (a finite number of) extensions.

Let K be a proper normal Hopf subalgebra of H . Then

k −→ K −→ H −→ H := H/HK+ −→ k

is an exact sequence of Hopf algebras. If K is lower semisolvable and H is trivial
then H is lower semisolvable. On the other hand, is K is trivial and H is upper
semisolvable then H is upper semisolvable. As an immediate consequence of this
observation, we obtain the following result.

Proposition 2.9. Let H be a semisimple Hopf algebra of dimension p2q2, where
p, q are distinct prime numbers. If H is not simple as a Hopf algebra then it is
semisolvable.
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Proof. By assumption, H has a proper normal Hopf subalgebra K. Then dimK
divides dimH by Nichols-Zoeller Theorem [20]. Hence, by the classification of
semisimple Hopf algebras [4, 5, 13, 25], K is upper and lower semisolvable. The
proposition then follows from a direct check for every possible dimK. �

2.3. Radford’s biproduct. Let A be a semisimple Hopf algebra and let A
AYD de-

note the braided category of Yetter-Drinfeld modules overA. Let R be a semisimple
Yetter-Drinfeld Hopf algebra in A

AYD. Denote by ρ : R → A⊗R, ρ(a) = a−1 ⊗ a0,
and · : A⊗ R → R, the coaction and action of A on R, respectively. We shall use
the notation ∆(a) = a1 ⊗ a2 and SR for the comultiplication and the antipode of
R, respectively.

Since R is in particular a module algebra over A, we can form the smash product
(see [15, Definition 4.1.3]). This is an algebra with underlying vector space R⊗A,
multiplication given by

(a⊗ g)(b ⊗ h) = a(g1 · b)⊗ g2h, for all g, h ∈ A, a, b ∈ R,

and unit 1 = 1R ⊗ 1A.
Since R is also a comodule coalgebra over A, we can dually form the smash

coproduct. This is a coalgebra with underlying vector space R⊗A, comultiplication
given by

∆(a⊗ g) = a1 ⊗ (a2)−1g1 ⊗ (a2)0 ⊗ g2, for all h ∈ A, a ∈ R,

and counit εR ⊗ εA.
As observed by D. E. Radford (see [21, Theorem 1]), the Yetter-Drinfeld condi-

tion assures that R⊗A becomes a Hopf algebra with these structures. This Hopf
algebra is called the Radford’s biproduct of R and A. We denote this Hopf algebra
by R#A and write a#g = a⊗ g for all g ∈ A, a ∈ R. Its antipode is given by

S(a#g) = (1#S(a−1g))(SR(a0)#1), for all g ∈ A, a ∈ R.

A biproduct R#A as described above is characterized by the following property
(see [21, Theorem 3]): suppose that H is a finite-dimensional Hopf algebra endowed
with Hopf algebra maps ι : A → H and π : H → A such that πι : A → A is an
isomorphism. Then the subalgebra R = Hcoπ has a natural structure of Yetter-
Drinfeld Hopf algebra over A such that the multiplication map R#A→ H induces
an isomorphism of Hopf algebras.

Lemma 2.10. [3, Theorem 2.6] Let H be a semisimple Hopf algebra of dimension
p2q2, where p, q are distinct prime numbers. If gcd(|G(H)|, |G(H∗)|) = p2, then
H ∼= R#kG is a biproduct, where kG is the group algebra of group G of order p2,
R is a semisimple Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.

3. Semisimple Hopf algebras of dimension p2q2

Let p, q be distinct prime numbers with p < q. Throughout this section, H
will be a semisimple Hopf algebra of dimension p2q2, unless otherwise stated.
By Nichols-Zoeller Theorem [20], the order of G(H∗) divides dimH . Moreover,
|G(H∗)| 6= 1 by [5, Proposition 9.9]. By [3, Lemma 2.2], H is of Frobenius type.
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This fact is also a consequence of [5, Theorem 1.5]. Therefore, the dimension of
a simple H-module can only be 1, p, p2 or q. Let a, b, c be the number of non-
isomorphic simple H-modules of dimension p, p2 and q, respectively. It follows
that we have an equation p2q2 = |G(H∗)| + ap2 + bp4 + cq2. In particular, if
|G(H∗)| = p2q2 then H is a dual group algebra; if |G(H∗)| = pq2 then H is upper
semisolvable by the following lemma.

Lemma 3.1. If H has a Hopf subalgebra K of dimension pq2 then H is lower
semisolvable.

Proof. Since the index of K in H is p which is the smallest prime number dividing
dimH , the main result in [11] shows that K is a normal Hopf subalgebra of H .
The lemma then follows from Proposition 2.9. �

Lemma 3.2. If the order of G(H∗) is q2 then H is upper semisolvable.

Proof. If p = 2 and q = 3 then it is the case discussed in [17, Chapter 8]. Hence,
H is upper semisolvable. Throughout the remainder of the proof, we assume that
p ≥ 3.

By Lemma 2.1 (2), if a 6= 0 then ap2 ≥ p2q2, a contradiction. Hence, a = 0.
Similarly, b = 0. If follows that H is of type (1, q2; q, p2 − 1) as an algebra. In
addition, q does not divides p2 − 1, since q > p ≥ 3. Therefore, by Proposition
2.7, H has a quotient Hopf algebra K of dimension ≥ 2q2 and kG(H∗) is a nor-
mal Hopf subalgebra of K. Since dimK divides dimH , we know dimK = pq2 or
p2q2. If dimK = pq2 then Lemma 3.1 shows that H∗ is lower semisolvable. If
dimK = p2q2 then K = H∗. Since kG(H∗) is a group algebra and the quotient
H∗/H∗(kG(H∗))+ is trivial (see [13]), H∗ is lower semisolvable. Hence, H is upper
semisolvable. This completes the proof. �

Lemma 3.3. If q > p2 then the order of G(H∗) can not be q.

Proof. Suppose on the contrary that |G(H∗)| = q. Then p2q2 = q+ap2+bp4+cq2.
It is easily observed that a = 0. Indeed, if a 6= 0 and χ ∈ Xp then the decomposition
of χχ∗ gives rise to a contradiction, by the fact that p2 < q and G[χ] is a subgroup
of G(H∗) of order dividing p2, also by Lemma 2.1. Moreover, a direct check shows
that b 6= 0 and c 6= 0. Hence, H is of type (1, q; p2, b; q, c) as an algebra.

The group G(H∗) acts by left multiplication on the set Xq. The set Xq is a
union of orbits which have length 1 or q. If there exists an orbit with length q then
cq2 ≥ q3 ≥ p2q2 = dimH . It is impossible. Therefore, every orbit has length 1. It
follows that gχ = χ = χg for all g ∈ G(H∗) and χ ∈ Xq.

Let χ be an irreducible character of degree p2. Since G[χ] is a subgroup of
G(H∗) and the order of G[χ] divides p4, we have

χχ∗ = ε+
∑

i

m(ϕi, χχ
∗)ϕi +

∑

j

m(ψj , χχ
∗)ψj ,

where degϕi = p2, degψj = q for all i, j. It is obvious that there must exist some
ψj such that m(ψj , χχ

∗) 6= 0. We denote this ψj by ψ. Since p2 < q, we have
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Semisimple Hopf algebras of dimension p2q2 105

m(ψ, χχ∗) < p2, and hence

0 < m(χ, ψχ) < p2.

Consider the decomposition of ψχ. If there exists an irreducible character ω
of degree q such that m(ω, ψχ) > 0 then we have qp2 = mp2 + nq for some
positive integers m,n. This leads to the contradiction p2(q −m) = nq. Moreover,
irreducible characters of degree 1 can not appear in the decomposition of ψχ, since
degψ 6= degχ. It follows that ψχ is a sum of irreducible characters of degree p2.
Write

ψχ = m(χ, ψχ)χ+
∑

degαk=p2,αk 6=χ

m(αk, ψχ)αk.

Note that the relation above implies that m(χ, ψχ) = 1. Indeed, the left hand
side of this equality is stable under left multiplication by G[ψ] = G(H∗). Then
all the G(H∗)-conjugates of χ appear in ψχ with the same multiplicity as χ does.
Since G[χ] = {ε}, there are q of them. Whence this multiplicity must be 1, by
dimension restrictions. Thus ψχ =

∑
g∈G(H∗) gχ. Since G[ψ] = G[ψ∗], we also get

ψ(hχ) = ψχ =
∑

g∈G(H∗) gχ, for all h ∈ G(H∗).

Let C ⊆ H∗ be the sum of the q simple subcoalgebras of dimension p4 containing
the conjugates of χ, and letK ⊆ H∗ be the Hopf subalgebra generated as an algebra
by the simple subcoalgebra of dimension q2 containing ψ.

It follows that KC ⊆ C and therefore C is a (K,H∗)-Hopf module. Then by
the Nichols-Zoeller theorem, dimK divides dimC = qp4. In particular, K 6= H∗.
Since G(H∗) ⊆ K, then q divides dimK. Hence dimK = pq or qp2.

If dimK = pq, then K is commutative and since p2 < q, it has group-likes of
order p, which contradicts the assumption on the order of G(H∗). Also, in view
of the classification of semisimple Hopf algebras of dimension qp2 with p2 < q, the
possibility dimK = qp2 implies a similar contradiction. This finishes the proof. �

Notice that if |G(H∗)| = p or pq then p2q2 = |G(H∗)| + ap2 + bp4 + cq2 shows
that c can not be 0.

Lemma 3.4. Assume that q > p2 and |G(H∗)| = p. If a 6= 0 and p ∤ q− 1 then H
is upper semisolvable.

Proof. It is clear that G[χ] = G(H∗) for all χ ∈ Xp. By [17, Lemma 2.4.1], χϕ is
not irreducible for all χ, ϕ ∈ Xp. Hence, G(H

∗) ∪Xp spans a standard subalgebra
of R(H). It follows that H has a quotient Hopf algebra of dimension p + ap2.
Since c 6= 0, p+ ap2 < p2q2. By Nichols-Zoeller Theorem, p+ ap2 divides p2q2. If
p + ap2 = pq2 then H is upper semisolvable by Lemma 3.1. If p + ap2 = pq then
a = (q−1)/p, which contradicts the assumption. If p+ap2 = p2q then 1 = p(q−a),
which is impossible. �

Lemma 3.5. Assume that q > p2 and |G(H∗)| = pq. If a 6= 0 then H is upper
semisolvable.

Proof. It is clear that the order of G[χ] is p for all χ ∈ Xp. In addition, a is not
divisible by q2, since otherwise ap2 ≥ p2q2, which is impossible. Hence, by [17,
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Proposition 1.2.6], G(H∗) is abelian and G[χ] is the unique subgroup of G(H∗) of
order p. By a similar argument as in the proof of Lemma 2.5, χϕ is not irreducible
for all χ, ϕ ∈ Xp. Hence, G(H∗) ∪ Xp spans a standard subalgebra of R(H). It
follows that H has a quotient Hopf algebra of dimension pq + ap2. Since c 6= 0,
pq+ ap2 < p2q2. By Nichols-Zoeller Theorem, pq+ ap2 divides p2q2. If pq+ ap2 =
pq2 then H is upper semisolvable by Lemma 3.1. If pq+ap2 = p2q then q = p(q−a),
a contradiction. �

Theorem 3.6. Assume that q > p2 and p does not divide q− 1. If H has a simple
module of dimension p then

(1) If gcd(|G(H)|, |G(H∗)|) = p2 then H = R#kG is a Radford biproduct, where
kG is a group algebra of dimension p2 and R is a semisimple Yetter-Drinfeld Hopf
algebra in kG

kGYD of dimension q2.
(2) In other cases, H is semisolvable.

Proof. It follows from Lemma 2.10 and Lemmas 3.1– 3.5. �

Notice that if |G(H∗)| = p2 or p2q then Lemma 2.1 (2) shows that Xq = ∅.

Corollary 3.7. Assume that q > p2 and p does not divide q2 − 1. If H has a
simple module of dimension p then H is semisolvable.

Proof. By the discussions above, we only consider the case that gcd(|G(H)|,
|G(H∗)|) = p2. LetK ⊆ G(H) andG ⊆ G(H∗) be subgroups of order p2. Consider-
ing the projection π : H → (kG)∗ obtained by transposing the inclusion kG ⊆ H∗,
we have that dimHcoπ = q2. If there exists 1 6= g ∈ K such that g ∈ Hcoπ then
k〈g〉 ⊆ Hcoπ, since Hcoπ is an algebra, where 〈g〉 denotes the subgroup generated
by g. It contradicts Lemma 2.8, since dimk〈g〉 does not divide dimHcoπ = q2.
Therefore, kK ∩Hcoπ = k1. We then have 2 possible decompositions of Hcoq as a
coideal of H :

Hcoq = k1⊕
∑

i

Vi ⊕
∑

j

Wj , orH
coq = kL⊕

∑

i

Vi ⊕
∑

j

Wj ,

where Vi is an irreducible left coideal of H of dimension p, Wi is an irreducible left
coideal of H of dimension p2 and L is a subgroup of G(H) of order q. Counting
dimensions on both sides, we have q2 = 1 +mp or q2 = q + np for some positive
integers m,n. This contradicts the assumption that p does not divide q − 1 and
q + 1. This completes the proof. �

4. Semisimple Hopf algebras of dimension 9q2

In this section, we shall investigate the structure of a semisimple Hopf algebra
H of dimension 9q2, where q is a prime number. The structure of semisimple Hopf
algebras of dimension 36 is presented in [17, Chapter 8], which are semisolvable up
to a cocycle twist. By [15, Theorem 3.5], semisimple Hopf algebras of dimension
81 are semisolvable. Hence, we assume that q > 3 in the remainder of this section.
Moreover, by [3, Theorem 3.7], it suffices to consider the case that q < 81.

Let a, b, c be the number of non-isomorphic simple H-modules of dimension 3, 9
and q, respectively. It follows that we have an equation 9q2 = |G(H∗)|+9a+81b+
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cq2. Since dimH is odd, Lemma 2.2 shows that a, b, c are even. We shall prove the
following proposition whose proof involves four lemmas.

Proposition 4.1. Assume that H is a semisimple Hopf algebra of dimension 9q2,
where 3 < q < 81. Then

(1) If gcd(|G(H∗)|, |G(H)|) = 9 then H is isomorphic to a Radford’s biproduct
R#kG, where kG is the group algebra of group G of order 9, R is a semisimple
Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.
(2) In all other cases, H is semisolvable.

4.1. The case 3 < q < 9.

Lemma 4.2. If q = 5 then Proposition 4.1 holds true.

Proof. By Lemma 2.1, 2.2, 2.4, 2.6 and the fact that H is of Frobenius type, if
dimH = 32 × 52 then H is of one of the following types as an algebra:

(1, 25; 5, 8), (1, 75; 5, 6), (1, 3; 3, 8; 5, 6), (1, 9; 3, 6; 9, 2), (1, 9; 3, 24), (1, 45; 3, 20).

If H is of type (1, 25; 5, 8) as an algebra then Lemma 3.2 shows that H is upper
semisolvable. If H is of type (1, 75; 5, 6) as an algebra then Lemma 3.1 shows that
H is upper semisolvable. If H is of type (1, 3; 3, 8; 5, 6) as an algebra then Lemma
2.5 shows that H has a quotient Hopf algebra of dimension 75. Hence, Lemma
3.1 shows that H is upper semisolvable. The lemma then follows from Lemma
2.10. �

Lemma 4.3. If q = 7 then Proposition 4.1 holds true.

Proof. By Lemma 2.1, 2.2, 2.4 and the fact that H is of Frobenius type, if dimH =
32 × 72 then H is of one of the following types as an algebra:

(1, 3; 3, 14; 5, 6; 9, 2), (1, 3; 3, 32; 5, 6), (1, 3; 3, 16; 7, 6), (1, 21; 3, 14; 7, 6),

(1, 49; 7, 8), (1, 147; 7, 6), (1, 9; 3, 12; 9, 4), (1, 9; 3, 30; 9, 2), (1, 9; 3, 48), (1, 63; 3, 42).

Lemma 2.5 shows that H can not be of type (1, 3; 3, 14; 5, 6; 9, 2), (1, 3; 3, 32; 5, 6) as
an algebra, since it contradicts Nichols-Zoeller Theorem. The lemma then follows
from a similar argument as in Lemma 4.2. �

4.2. The case 9 < q < 81. By the discussion in Section 3 and Lemma 2.10, it
suffices to prove that H is upper semisolvable when the order of G(H∗) is 3 or 3q.

Lemma 4.4. If the order of G(H∗) is 3 then H is upper semisolvable.

Proof. By Lemma 3.4, it is enough to consider the case that a = 0 or 3 divides
q − 1.

We first consider the case a = 0. In this case, 9q2 = 3 + 81b + cq2. Since c is
even, is divisible by 3 and is not 0, we have c = 6. Hence, q2 = 1 + 27b. A direct
check, for 9 < q < 81, shows that the equation holds true only when q = 53 and
b = 104. That is, H is of type (1, 3; 9, 104; 53, 6) as an algebra. We shall prove that
it is impossible.

Suppose on the contrary that H is of type (1, 3; 9, 104; 53, 6) as an algebra. Let
χ be an irreducible character of degree 9. From the decomposition of χχ∗, we have
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two equations: 81 = 3 + 9m + 53n and 81 = 1 + 9m + 53n, where m,n are non-
negative integers. It is easy to check that the first equation can not hold true, and
the second one holds true only when m = 3 and n = 1, which contradicts Remark
2.3.

We then consider the case that 3 divides q−1. Let χ be an irreducible character
of degree 9. From the decomposition of χχ∗, we have two equations: 81 = 1+3m+
9n+ qs and 81 = 3 + 3m+ 9n+ qs, where m,n, s are non-negative integers which
are even by Remark 2.3. A direct check, for q = 13, 19, 31, 37, 43, 61, 67, 73, 79,
shows that the first equation can not hold true, and the second one holds true only
when s = 0. This means that G[χ] = G(H∗) for all χ ∈ X9 and χχ∗ is a sum of
irreducible characters of degree 1, 3 or 9.

Let χ, ψ be two distinct irreducible characters of degree 9. We shall prove that
χψ∗ is a sum of irreducible characters of degree 1, 3 or 9. In fact, if there exists
an irreducible character ϕ ∈ Xq such that m(ϕ, χψ∗) > 0 then there must exist
ε 6= g ∈ G(H∗) such that m(g, χψ∗) = 1. From m(g, χψ∗) = m(χ, gψ) = 1, we
have χ = gψ. Hence, m(ϕ, χψ∗) = m(ϕ, gψψ∗) > 0. This contradicts the fact that
ψψ∗ does not contain any irreducible characters of degree q.

It follows that irreducible characters of degree 1, 3 and 9 span a standard subalge-
bra of R(H), and hence H has a quotient Hopf algebra H of dimension 3+9a+81b.
Since c 6= 0, then dimH < 9q2. Therefore dimH = 3, 3q, 9q, 3q2 or 9. Moreover,
dimH 6= 9, since otherwise (H)∗ ⊆ kG(H∗) by [13], but 9 = dimH does not divide
|G(H∗)| = 3.

The possibilities dimH = 3, 3q or 9q lead, respectively to the contradictions
9q2 = 3 + cq2, 9q2 = 3q + cq2 and 9q2 = 9q + cq2. Hence they are also discarded,
and therefore dimH = 3q2. This implies that H is upper semisolvable, by Lemma
3.1. �

Lemma 4.5. If the order of G(H∗) is 3q then H is upper semisolvable.

Proof. By Lemma 3.5, it is enough to consider the case that a = 0. In this case,
9q2 = 3q + 81b + cq2, where b is even and c = 6. A direct check, for 9 < q < 81,
shows this equation can not hold true. �

Combining [3, Theorem 3.7] with the results obtained in this section, we obtain
the structure theorem for semisimple Hopf algebras of dimension 9q2 over k for all
prime numbers q.

Theorem 4.6. Suppose that H is a semisimple Hopf algebra of dimension 9q2,
where q > 3 is a prime number. Then

(1) If gcd(|G(H∗)|, |G(H)|) = 9 then H is isomorphic to a Radford’s biproduct
R#kG, where kG is the group algebra of group G of order 9, R is a semisimple
Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.
(2) In all other cases, H is semisolvable.

As an immediate consequence of Theorem 4.6, we have a corollary.

Corollary 4.7. Suppose that H is a semisimple Hopf algebra of dimension 9q2,
where q is a prime number. If H is simple as a Hopf algebra then H is isomorphic
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to a Radford’s biproduct R#kG, where kG is the group algebra of group G of order
9, R is a semisimple Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.

In fact, examples of nontrivial semisimple Hopf algebras of dimension p2q2 which
are Radford’s biproducts in such a way, and are simple as Hopf algebras do exist.
A construction of such examples as twisting deformations of certain groups appears
in [6, Remark 4.6].

5. Semisimple Hopf algebras of Frobenius type

In this section, we shall prove the following theorem.

Theorem 5.1. Let H be a semisimple Hopf algebra over k. If dimH is odd and
less than 600, then H is of Frobenius type.

To do this, we first restate some results from Section 2.1 in terms of algebra
types, which can be easily handled by a computer.

Lemma 5.2. Let H be a semisimple Hopf algebra over k. Then
(1) If n1 does not divide dimH or nid

2
i (2 ≤ i ≤ s), then H cannot be of type

(1, n1; d2, n2; . . . ; ds, ns) as an algebra.
(2) If dimH is odd, then H cannot be of type (1, n1; d2, n2; . . . ; ds, ns) as an

algebra, where there exists i ∈ {2, . . . , s} such that ni is odd.
(3) If dimH is odd, then H cannot be of type (1, n1; d2, n2; . . . ; ds, ns) as an

algebra, where there exists i ∈ {2, . . . , s} such that di is even.
(4) If dimH is odd and 3 does not divide dimH, then H cannot be of type

(1,m; 3, n; . . . ) as an algebra.
(5) If dimH is odd, then H cannot be of type (1,m; 3, n; . . . ) as an algebra,

where m is not divisible by 3.
(6) If dimH is odd and 3+9n does not divide dimH, then H cannot be of type

(1, 3; 3, n; . . . ) as an algebra.
(7) If dimH is odd, H does not have simple modules of dimension 9 and m+9n

does not divide dimH, then H cannot be of type (1,m; 3, n; . . . ) as an algebra.
(8) If dimH is odd, H does not have simple modules of dimension 3, 7 and 5

does not divide dimH, then H cannot be of type (1,m; 5, n; . . . ) as an algebra.
(9) If dimH is odd and H does not have simple modules of dimension 3, 7,

then H cannot be of type (1,m; 5, n; . . . ) as an algebra, where m is not divisible by
5.

(10) If H is of type (1, 1; d2, n2; . . . ; ds, ns) as an algebra then {di : di > 1} has
at least three elements.

(11) If t does not divide m then H can not be of type (1,m; t, n) as an algebra.

Proof. Part (1) is just Lemma 2.1; parts (2),(3) are just Lemma 2.2; parts (4),(5)
are just Lemma 2.4; parts (6),(7) are just Lemma 2.5; parts (8),(9) are just Lemma
2.6; part (10) follows from [26, Lemma 11].

(11) Suppose on the contrary that H is of type (1,m; t, n) as an algebra. Let
χi(1 ≤ i ≤ n) be all distinct irreducible characters of degree t, s the order of group
G[χ1], and u the number of irreducible characters of degree t in the decomposition
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of χ1χ
∗
1. Then, we have t

2 = s+ut from χ1χ
∗
1 =

∑
g∈G[χ1]

g+
∑n

i=1m(χi, χ1χ
∗
1)χi.

It follows that t divides s, which implies t divides m. It is a contradiction. �

Proof of Theorem 5.1. Let p, q, r be distinct prime numbers. Semisimple Hopf al-
gebras of dimension pqr are classified in [5]. These Hopf algebras are of Frobenius
type. In addition, by [3, Lemma 2.2], semisimple Hopf algebras of dimension pmqn

are also of Frobenius type, where m,n are non-negative integers. Therefore, it
suffices to consider the case that dimH = 315, 495, 525, 585.

In the rest of the proof, the computation is partly handled by a personal com-
puter. For example, it is easy to write a computer program by which one finds
out all possible positive integers 1 = d1, d2, . . . , ds and n1, n2, . . . , ns such that
315 =

∑s

i=1 nid
2
i , and then one can eliminate those which can not be algebra types

of H by using Lemma 5.2.
If dimH = 315 then H is of one of the following types as an algebra: (1, 63; 3, 28),

(1, 3; 3, 2; 7, 6), (1, 21; 7, 6), (1, 15; 5, 12), (1, 9; 3, 34), (1, 45; 3, 30), (1, 9; 3, 16; 9, 2).
Clearly, H is of Frobenius type.

If dimH = 495 then H is of one of the following types as an algebra: (1, 45; 15, 2),
(1, 9; 3, 4; 15, 2), (1, 11; 11, 4), (1, 9; 9, 6), (1, 9; 3, 18; 9, 4), (1, 9; 3, 36; 9, 2), (1, 45;
5, 18), (1, 9; 3, 4; 5, 18), (1, 15; 3, 20; 5, 12), (1, 9; 3, 54), (1, 45; 3, 50), (1, 99; 3, 44).
Clearly, H is of Frobenius type.

If dimH = 525 then H is of one of the following types as an algebra: (1, 75; 15, 2),
(1, 25; 5, 2; 15, 2), (1, 3; 3, 8; 15, 2), (1, 35; 7, 10), (1, 25; 5, 20), (1, 175; 5, 14), (1, 75;
5, 18), (1, 3; 3, 8; 5, 18), (1, 3; 3, 58), (1, 21; 3, 56), (1, 75; 3, 50). Clearly, H is of
Frobenius type.

If dimH = 585 thenH is of one of the following types as an algebra: (1, 117; 3, 52),
(1, 1; 5, 2; 7, 4; 13, 2), (1, 9; 3, 10; 9, 6), (1, 9; 3, 28; 9, 4), (1, 9; 3, 46; 9, 2), (1, 9; 3, 64),
(1, 45; 3, 60). We shall prove that H can not be of type (1, 1; 5, 2; 7, 4; 13, 2) as an
algebra.

Suppose on the contrary that H is of type (1, 1; 5, 2; 7, 4; 13, 2) as an algebra.
Let X5 = {χ, ϕ}. Then χχ∗ = ε+χ+ϕ+χ7+χ

′
7 by Remark 2.3, where χ7, χ

′
7 are

distinct elements in X7. From m(χ7, χχ
∗) = m(χ, χ7χ) = 1, we have χ7χ = χ+ψ,

where degψ = 30 and m(χ, ψ) = 0. There are two possible decomposition of ψ:
ψ = 6ϕ or ψ = φ+ χ13 + 2ϕ, where φ ∈ X7, χ13 ∈ X13. If the first one holds true,
then m(ϕ, χ7χ) = m(χ7, ϕχ

∗) = 6, which is impossible. If the second one holds
true, then m(χ7, ϕχ

∗) = 2 implies that ϕχ∗ = 2χ7 + ω, where degω = 11. It is
also impossible. This completes the proof, and hence H is of Frobenius type. �
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