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UNIFORM DISTRIBUTION MODULO ONE OF SOME

SEQUENCES CONCERNING THE EULER FUNCTION

MEHDI HASSANI

Abstract. In this paper, we follow the recent method in the theory of uniform

distribution, developed by J.-M. Deshouillers and H. Iwaniec, to prove uniform
distribution modulo one of various sequences involving the Euler function,

together with some generalizations.

1. Introduction

A real sequence (an)n>1 is said to be uniformly distributed modulo one if for all
real numbers a, b with 0 6 a < b 6 1 we have

lim
N→∞

1

N

∑
n6N

{an}∈[a,b]

1 = b− a,

where as usual, by {x} we denote the fractional part of x. At the Czech–Slovak
Number Theory Conference in Smolenice in August 2007, F. Luca asked whether
the sequences of general term

an =
1

n

∑
m6n

ϕ(m), and gn =
( ∏
m6n

ϕ(m)
) 1
n

, (1.1)

where ϕ is the Euler function, are uniformly distributed modulo one [3]. About
one year later, J.-M. Deshouillers and H. Iwaniec [2] developed a method to attack
this problem. Their method implies that an is uniformly distributed modulo one,
and also gn is uniformly distributed modulo one if and only if the number

cg =
1

e

∏
p

(
1− 1

p

) 1
p

(1.2)

is irrational, which of course seems very likely to be, but there is no known proof
as we know. Indeed, Deshouillers and Iwaniec proved uniform distribution modulo
one of families of arithmetical functions including the arithmetic and the geometric
means of the first n values of the Euler function.
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Our aim in writing this paper is to obtain some results related to the main
results of the work of Deshouillers and Iwaniec. These include uniform distribution
modulo one of several sequences consisting of arithmetical functions defined by
them, as well as some sequences related by the Euler function. In Section 2, we
recall main results from the work of Deshouillers and Iwaniec [2], which is necessary
to introduce our results, and in Section 3 and Section 4 we prove them. Before
going to the next sections and introducing results and their proofs, we mention
some notes.

1. First, we note that all sequences in the work of Deshouillers and Iwaniec [2],
and in the present work, have the linear form cn+o(n), where the leading coefficient
c is irrational, or at least is assumed to be irrational. This seems to be the reason
for the fact that the method of Deshouillers and Iwaniec is not applicable for the
sequence (hn)n>1 of the harmonic mean of the first n values of the Euler function,
which is defined by

hn =
n∑

m6n

1
ϕ(m)

.

Indeed, Landau [7] showed the validity of the approximation∑
m6n

1

ϕ(m)
= A log n+B +O

(
log n

n

)
,

with constants A and B defined by

A =
ζ(2)ζ(3)

ζ(6)
≈ 1.94 and B = A

(
γ −

∑
p

log p

p2 − p+ 1

)
≈ −0.06,

where γ is Euler’s constant. This approximation implies that hn � n/log n.

2. Let us explain why uniform distribution modulo one of the sequence an
defined in (1.1), and similarly other sequences under study, is not trivial. If we

write an = 3n/π2 + R(n), then R(n) � (log n)
2
3 (log log n)

4
3 is the best known

approximation, due to Walfisz [8]. Now, we note that if we can reduce R(n) up to
o(1), then uniform distribution modulo one of an becomes trivial by applying the
Weyl criterion [9], which asserts that the sequence (an)n>1 is uniformly distributed
modulo one if and only if, for every integer h > 1 we have

lim
X→∞

1

X

∑
n6X

e(han) = 0,

where, for the whole text, we set

e(x) = e2πix.

Despite the above observation, Erdös and Shapiro [4] proved that the inequalities

R(n) > c log log log log n and R(n) < −c log log log log n,

each are valid for infinitely many integers n for some c > 0. So, in practice we
can not expect reducing R(n) up to o(1). In fact, the essence of the method
developed by Deshouillers and Iwaniec is to cope with this problem. Their main
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UNIFORM DISTRIBUTION OF SOME NUMBER THEORETIC SEQUENCES 57

idea is splitting R(n) into some parts, such that the Weyl sum of each part admits
suitable conditions of the Weyl criterion.

3. We mention that the method of Deshouillers and Iwaniec is applicable for
the sequence with general term

an =
1

n

∑
m6n

σ(m), (1.3)

where σ(m) =
∑
d|m d is the sum of the positive divisors of m. In [6] we prove that

the sequence (an)n>1 defined by (1.3) is uniformly distributed modulo one.

4. We propose some problems, which seem to be open as far as we know. The
first one is to prove that the sequence with general term( ∏

m6n

σ(m)
) 1
n

,

as well as the sequences with general terms
n∑

m6n

1
ϕ(m)

, and
n∑

m6n

1
σ(m)

,

are uniformly distributed modulo one. To formulate the second question, we recall
that a sequence of real numbers (an)n>1 is said to be dense modulo one if the

sequence of its fractional parts ({an})n>1 is dense in the interval [0, 1). In [1]

and [5] we proved that sequences with general terms∑
m6n

ϕ(m2 + 1)

m2 + 1
, and

∑
m6n

m2 + 1

σ(m2 + 1)
,

are dense modulo one. Now, the problem is to prove that both of the above
sequences are uniformly distributed modulo one, too.

2. Main results

2.1. Sequences consisting of arithmetic mean. The following result is Theo-
rem 1 of [2].

Theorem 2.1. Assume that ν(n) is a completely multiplicative function which
satisfies the conditions

|ν(p)| 6 ν, for some positive number ν and every prime p, (2.1)

and ∑
d6x

µ(d)ν(d)�ν,A x(log x)−A, for every positive A, (2.2)

where by �ν,A we mean that the implied constant depends only on ν and A. We
define the arithmetic function φ by

φ(m) = m
∏
p|m

(
1− ν(p)

p

)
. (2.3)
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58 MEHDI HASSANI

Then, the sequence A = (an)n>1 defined by

an =
1

n

∑
m6n

φ(m) (2.4)

is uniformly distributed modulo one, provided the number

ca =
1

2

∏
p

(
1− ν(p)

p2

)
is irrational.

We generalize the above theorem by introducing the following result, which
covers the truth of Theorem 2.1 by letting λ = 1.

Proposition 2.2. Assume that λ 6= 0 is an arbitrary real number. Then, under
the assumptions of Theorem 2.1, the sequence A = (aλ(n))n>1 defined by

aλ(n) = n1−2λ
( ∑
m6n

φ(m)
)λ

is uniformly distributed modulo one, provided the number cλa is irrational.

If in the above proposition we let ν(p) = 1, and λ = 1
2 ,−

1
2 ,−1, then we obtain

some interesting results concerning the Euler function ϕ, as follows.

Corollary 2.3. Let an = 1
n

∑
m6n ϕ(m). The sequences with general terms

sn =

√∑
m6n

ϕ(m), wn =
n2

sn
, rn =

n2

an
,

all are uniformly distributed modulo one.

2.2. Sequences consisting of geometric mean. The following result is Theo-
rem 2 of [2].

Theorem 2.4. Let ν(n) be a completely multiplicative function with

− ν 6 ν(p) < min{p, ν} (2.5)

for some positive number ν and every prime p, and∏
p6n

(
1− ν(p)

p

)
= β(log n)−λ

(
1 +O

( 1

log n

))
(2.6)

for some positive real numbers β and λ, where the implied constant depends only
on ν. Recall the arithmetic function φ(m) defined by (2.3). Then, the sequence
G = (gn)n>1 defined by

gn =
( ∏
m6n

φ(m)
) 1
n

(2.7)
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UNIFORM DISTRIBUTION OF SOME NUMBER THEORETIC SEQUENCES 59

is uniformly distributed modulo one, provided the number

cg =
1

e

∏
p

(
1− ν(p)

p

) 1
p

(2.8)

is irrational.

Our first observation on the geometric mean implies an approximation for the se-
quence with general term gn, defined in (1.1). Regarding this sequence, Deshouillers
and Luca [3] proved that

gn = cgn+O(log n),

where cg is defined by (1.2). We improve this approximation as follows.

Corollary 2.5. The sequence G = (gn)n>1 defined in (1.1) has the approximate
expansion

gn = cgn+
cg
2

log n+O(log log n),

where cg is defined by (1.2).

Then, we prove the following results.

Proposition 2.6. Recall the assumptions of Theorem 2.4. For any real number
η 6= 0, the sequence G = (gη(n))n>1 defined by

gη(n) = n1−η

∏
m6n

φ(m)


η
n

is uniformly distributed modulo one, provided the number cηg is irrational.

If in the above proposition we take η = 1/2,−1/2 and −1, then we get the
following corollary.

Corollary 2.7. Recall the assumptions of Theorem 2.4. The sequences with general
terms

sn =
√
ngn, wn =

n2

sn
, rn =

n2

gn
,

are uniformly distributed modulo one, provided the number cg is irrational.

Proposition 2.8. Recall the assumptions of Theorem 2.4. For any real number
η 6= 0, the sequence G = (gη(n))n>1 defined by

gη(n) = n−η

∏
m6n

mηφ(m)

 1
n

is uniformly distributed modulo one, provided the number e−ηcg is irrational.

We take η = −1 and 1 in the above proposition to get the following.
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Corollary 2.9. Recall the assumptions of Theorem 2.4. The sequences with general
terms

hn =
n(∏

m6n
φ(m)
m

) 1
n

, rn =

(∏
m6nmφ(m)

) 1
n

n

are uniformly distributed modulo one, provided the numbers ecg and e−1cg are
irrational, respectively.

Proposition 2.10. Recall the assumptions of Theorem 2.4. Let

f(n) = and +O
(
nd−2 logs n

)
,

where a 6= 0, d and s are some real numbers. Then, for any real number η 6= 0, the
sequence G = (gη(n))n>1 defined by

gη(n) = f(n)−η

∏
m6n

mηdφ(m)


1
n

is uniformly distributed modulo one, provided the number a−ηe−ηdcg is irrational.

Proposition 2.11. Recall the assumptions of Theorem 2.4, and assume that η 6=
−1 is an arbitrary real number. Then, the sequence G = (gη(n))n>1 with general
term

gη(n) =

∏
m6n

mηφ(m)


1

n(η+1)

is uniformly distributed modulo one, provided the number (e−ηcg)
1
η+1 is irrational.

In the above proposition we let η = 1 to get the following.

Corollary 2.12. Recall the assumptions of Theorem 2.4. Then, the sequence with
general term

sn =

√√√√( ∏
m6n

mφ(m)
) 1
n

is uniformly distributed modulo one, provided the number e−1cg is irrational.

3. Proofs: sequences consisting of arithmetic mean

We recall some notations. Let ψ be the saw function, defined by ψ(x) = {x} −
1/2. For a real z > 2 we denote by P (z), or simply P , the product

∏
p<z p. For

real numbers t, z > 2 and D satisfying P < D we define ρt(z) and ρt(D, z) by

ρt(z) =
∑
d|P

µ(d)ν(d)

d
ψ
( t
d

)
, (3.1)
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UNIFORM DISTRIBUTION OF SOME NUMBER THEORETIC SEQUENCES 61

and

ρt(D, z) =
∑
d6D

µ(d)ν(d)

d
ψ
( t
d

)
− ρt(z), (3.2)

where ν is defined as in Theorem 2.1. The following result, which evaluates the
arithmetic mean an defined by (2.4), is Lemma 4 of [2]. For the whole text, the
symbol B(ν) denotes a constant which depends only on ν, and its value may change
from one occurrence to another.

Lemma 3.1. Recall the assumptions of Theorem 2.1. Let 2 6 z 6 D < n be such
that P < D holds, too. Then, for any A > 0, we have

an = can− ρn(z)− ρn(D, z) +Oν,A

(D
n

(logD)B(ν) +
n

D
(logD)−A

)
, (3.3)

where by Oν,A we mean that the constant implied in the O term depends only on ν
and A.

The following technical result gives a mean-square bound for ρn(D, z). It is
Lemma 5 and Lemma 6 of [2]. Here τν(d) denotes the generalized divisor function.

Lemma 3.2. For any complex numbers c(d) with |c(d)| 6 τν(d) we have

∫ T

−T

∣∣∣∣∣∣
∑

z6d6D

c(d)

d
ψ
( t
d

)∣∣∣∣∣∣
2

dt�ν Tz
−1(log z)B(ν) +D(logD)B(ν), (3.4)

and ∑
|n|6T

∣∣∣∣∣∣
∑

z6d6D

c(d)

d
ψ
(n
d

)∣∣∣∣∣∣
2

�ν Tz
−1(log z)B(ν) +D(logD)B(ν). (3.5)

As an immediate and useful consequence of this lemma, we can get the following
corollary.

Corollary 3.3. For any complex numbers c(d) with |c(d)| 6 τν(d), we have

∑
|n|6T

∣∣∣∣∣∣
∑

z6d6D

c(d)

d
ψ
(n
d

)∣∣∣∣∣∣�ν Tz
− 1

2 (log z)B(ν) +
√
TD(logD)B(ν). (3.6)

In particular, we have∑
n6X

|ρn(D, z)| �ν Xz
− 1

2 (log z)B(ν) +
√
XD(logX)B(ν). (3.7)

Proof. We simply denote the inner sum by S, and then we use Cauchy’s inequality,
(
∑
xy)2 6 (

∑
x2)(

∑
y2), to write

1

2T + 1

∑
|n|6T

|S|2 =
∑
|n|6T

1

(2T + 1)2

∑
|n|6T

|S|2 >
( ∑
|n|6T

|S|
2T + 1

)2

.
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62 MEHDI HASSANI

This implies that ∑
|n|6T

|S| 6
√

(2T + 1)
∑
|n|6T

|S|2.

Now, we use (3.5) with the inequality
√
a+ b 6

√
a +
√
b to get (3.6). Also, we

obtain (3.7) from (3.6) by taking

c(d) =

{
0 if d | P (z),
µ(d)ν(d) if d - P (z).

(3.8)

This completes the proof. �

Proof of Proposition 2.2. We consider the truth of Lemma 3.1 in the form an =
can+R(n), say. Then, we have

aλ(n) = n1−λaλn = cλan
(

1 +
R(n)

can

)λ
= cλan

(
1 +

λR(n)

can
+O

( log2 n

n2

))
.

Thus, we obtain

aλ(n) = cλan+ λcλ−1
a R(n) +O

( log2 n

n

)
.

Now, for any integer h > 1, we have∑
n6X

e (haλ(n)) =
∑
n6X

e
(
h
(
cλan− λcλ−1

a ρn(z)
))

+ E,

where

E �
∑
n6X

{
|ρn(D, z)|+ D

n
(logD)B(ν) +

n

D
(logD)−A +

log2 n

n

}
�
∑
n6X

|ρn(D, z)|+D(logX)B(ν) +X2D−1(logD)−A + log3X,

and the implied constant depends on λ, ν, A and h. We set D = X(logX)−c for
some constant c > 0, and we use the approximation (3.7), by taking suitable values
for A and c, to obtain

E �ν,λ,h Xz
− 1

3 , (3.9)

for 2 6 z 6 logX. On the other hand, we note that −λcλ−1
a ρn(z) is periodic in n

with period P . This fact allows us to write∣∣∣∣∣∣
∑
n6X

e
(
h
(
cλan− λcλ−1

a ρn(z)
))∣∣∣∣∣∣ 6

∣∣∣∣∣∣∣∣
P−1∑
b=0

∑
n6X
n≡b [P ]

e
(
h
(
cλan− λcλ−1

a ρn(z)
))∣∣∣∣∣∣∣∣

6
P−1∑
b=0

∣∣∣∣∣∣∣∣
∑
n6X
n≡b [P ]

e
(
hcλan

)∣∣∣∣∣∣∣∣ 6
P

| sin(hcλaPπ)|
,
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where by n ≡ b [P ] we mean n ≡ b (mod P ). Thus, by using (3.9), we obtain∣∣∣∣∣∣
∑
n6X

e(haλ(n))

∣∣∣∣∣∣ 6 P (z)

| sin(hcλaP (z)π)|
+Oν,λ,h(Xz−

1
3 ).

By considering the assumption of irrationality of the number cλa , we can find a
function ε(z,X) with the property that ε(z,X)→ 0 as X →∞, such that∣∣∣∣∣∣

∑
n6X

e(haλ(n))

∣∣∣∣∣∣ 6 ε(z,X)XP (z) +Oν,λ,h(Xz−
1
3 ).

This yields that ∑
n6X

e(haλ(n)) = o(X),

as X →∞. Now, the proof is completed. �

Proof of Corollary 2.3. We take ν(n) = 1 in Proposition 2.2. The sequences under
study are the sequence aλ(n) with λ = 1/2,−1/2 and −1, respectively. Also, the

corresponding characteristic constants cλa are respectively
√

3/π, π/
√

3 and 3/π2.
Since the set of algebraic numbers with ordinary + and × forms a field, thus
we imply that

√
3/π can not be rational. This gives the required assumption of

irrationality of the leading coefficients, and completes the proof. �

4. Proofs: sequences consisting of geometric mean

To prove Theorem 2.4, J.-M. Deshoiullers and H. Iwaniec [2] follow the same
method as applied for the arithmetic mean case. We recall its main points, and
then give our modified proof of the remarks. Suppose that 2 6 z < D 6 n. We
define the functions

Ψn(z) =
∑
p<z

ψ
(n
p

)
log
(

1− ν(p)

p

)
,

and

Ψn(z,D) =
∑

z6p<D

ψ
(n
p

)
log
(

1− ν(p)

p

)
.

We recall that P = P (z) =
∏
p<z p. The following lemma is the relation (38) of [2].

Lemma 4.1. Recall the assumptions of Theorem 2.4. Then, for any positive inte-
ger n we have

gn = cg

(
n+

1

2
log
(2πn

β

)
+
λ

2
log logn

)
− cg

∑
p6n

ψ
(n
p

)
log
(

1− ν(p)

p

)
+O

( 1

log n

)
.

(4.1)
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Corollary 4.2. Recall the assumptions of Theorem 2.4. Then, for 2 6 z < D 6 n,
we have

gn = cg

(
n+

1

2
log
(2πn

β

)
+
λ

2
log log n

)
− cgΨn(z)− cgΨn(z,D) + E(n,D),

(4.2)

where

E(n,D)�ν log
log n

logD
+

1

log n
.

Proof. By considering the relation (4.1), for the error term E(n,D) in (4.2) we
have

E(n,D) = −cg
∑

D6p6n

ψ
(n
p

)
log
(

1− ν(p)

p

)
+O

( 1

log n

)
.

The assumption (2.5) implies that∑
D6p6n

ψ
(n
p

)
log
(

1− ν(p)

p

)
�ν

∑
D6p6n

1

p
�ν log

log n

logD
.

This completes the proof. �

Proof of Corollary 2.5. We use the relation (4.1) by putting ν(n) = 1, and we note
that ∑

p6n

ψ
(n
p

)
log
(

1− 1

p

)
�
∑
p6n

1

p
= O(log log n).

This gives desired approximation. �

Proof of Proposition 2.6. We use the relation (4.2) in the form gn = cgn + R(n),
say. We have

gη(n) = n1−ηgηn = cηgn
(

1 +
R(n)

cgn

)η
= cηgn

(
1 +

ηR(n)

cgn
+O

( log2 n

n2

))
.

Thus, we obtain

gη(n) = cηgn+ ηcηg

(
1

2
log
(2πn

β

)
+
λ

2
log log n−Ψn(z)−Ψn(z,D)

)
+ E1,

where

E1 = E1(n,D)�η E(n,D) +O
( log2 n

n

)
�ν,η log

log n

logD
+

1

log n
.

To prove that the sequence G = (gη(n))n>1 is uniformly distributed modulo one,

it is enough to show that this is the case for the sequence G′ =
(
g′η(n)

)
n>1

defined

by

g′η(n) = gη(n)−
ηcηg
2

(log n+ λ log log n).

For any integer h > 1, the Weyl sum associated to the sequence G′ is∑
n6X

e(hg′η(n)) = S(z,X) + E,
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where

S(z,X) =
∑
n6X

e
(
cηgh
(
n+

η

2
log(

2π

β
)− ηΨn(z)

))
,

and

E �ν,h

∑
n6X

{
|Ψn(z,D)|+ E1(n,D)

}
.

We have∑
n6X

E1(n,D)�ν,η

∫ X

2

(
log

log t

logD
+

1

log t

)
dt = X log

logX

logD
+Oν,η(1).

To approximate
∑
n6X |Ψn(z,D)|, we write

Ψn(z,D) =
∑

z6d6D

c(d)

d
ψ(
n

d
),

with

c(d) =

{
0, if d is not prime,

d log
(
1− ν(d)

d

)
, if d is prime.

For d = p, since −ν 6 ν(p), we obtain

c(p) = p log
(

1− ν(p)

p

)
6 p log

(
1 +

ν

p

)
6 ν = τν(p).

Hence, by using the statement of Corollary 3.3, we imply that∑
n6X

|Ψn(z,D)| �ν Xz
− 1

2 (log z)B(ν) +
√
XD(logD)B(ν),

and consequently, we get

E �ν,η,h Xz
− 1

2 (log z)B(ν) +
√
XD(logD)B(ν) +X log

logX

logD
.

Now, we let 2 6 z 6 logX, and we take D = X(logX)−c for some positive c with
− c

2 +B(ν) < − 1
2 , which yields that

E �ν,η,h Xz
− 1

2 (log z)B(ν) +
X log logX

logX
�ν,η,h Xz

− 1
3 + o(X).

To approximate S(z,X) we use the fact that the function Ψn(z) is periodic in n
with period P . We have

S(z,X) = e
(ηcηgh

2
log(

2π

β
)
) ∑
n6X

e
(
cηgh
(
n− ηΨn(z)

))
.
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Thus, we get

|S(z,X)| =

∣∣∣∣∣∣∣∣
P−1∑
b=0

∑
n6X
n≡b [P ]

e
(
cηgh
(
n− ηΨn(z)

))∣∣∣∣∣∣∣∣
6
P−1∑
b=0

∣∣∣∣∣∣∣∣
∑
n6X
n≡b [P ]

e
(
cηghn

)∣∣∣∣∣∣∣∣ 6
P (z)

| sin(cηghP (z)π)|
.

Hence, we obtain∣∣∣∣∣∣
∑
n6X

e(hg′η(n))

∣∣∣∣∣∣ 6 P (z)

| sin(cηghP (z)π)|
+Oν,η,h(Xz−

1
3 ) + o(X).

Now, we end the implication similar to the arithmetic mean case. Indeed, by using
the assumption of irrationality of the number cηg , we find a function ε(z,X) with
ε(z,X)→ 0 as X →∞, such that∣∣∣∣∣∣

∑
n6X

e(hg′η(n))

∣∣∣∣∣∣ 6 ε(z,X)XP (z) +Oν,η,h(Xz−
1
3 ) + o(X).

Therefore, we obtain
∑
n6X e(hg

′
η(n)) = o(X) as X →∞, and this completes the

proof. �

Proof of Proposition 2.8. We note that

gη(n) = n−ηn!
η
n gn.

By using Stirling’s formula, we have(
n!

1
n

n

)η
= e−η

(
1 +

log
√

2πn

n
+O

( log2 n

n2

))η

= e−η +
ηe−η log

√
2πn

n
+O

( log2 n

n2

)
.

(4.3)

We use this relation and the relation (4.2) in the form gn = cgn+R(n), say. Thus,
we obtain

gη(n) = e−ηcgn+ ηe−ηcg log
√

2πn+ e−ηR(n) +O
( log2 n

n

)
. (4.4)

We put the expression of R(n) in the above approximation to get

gη(n) = e−ηcgn+ c+
e−ηcg

2
((η + 1) log n+ λ log log n)

− e−ηcgΨn(z)− e−ηcgΨn(z,D) + E2,
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where c =
e−ηcg

2 log( (2π)η+1

β ) is an absolute constant, and we have

E2 = E2(n,D)�η E(n,D) +O
( log2 n

n

)
�ν,η log

log n

logD
+

1

log n
.

We consider the sequence G′ = (g′η(n))n>1 defined by

g′η(n) = gη(n)− e−ηcg
2

((η + 1) log n+ λ log log n) .

Approximation of the Weyl sum related to the sequence G′ is exactly the same as
what we have done in the proof of Proposition 2.6. Following a similar argument,
we get finally∑

n6X

e(hg′η(n))�ν,η,h Xz
− 1

3 +
X log logX

logX
+

P (z)

| sin(e−ηcghP (z)π)|
,

for any integer h > 1 and for 2 6 z 6 logX. The assumption of the irrationality
of e−ηcg implies

∑
n6X e(hg

′
η(n)) = o(X), which takes care of our assertion for

the sequence G′ =
(
g′η(n)

)
n>1

, and consequently for the sequence G = (gη(n))n>1.

This completes the proof. �

Proof of Proposition 2.10. We have gη(n) = f(n)−ηn!
ηd
n gn. By using the approxi-

mation (4.3), we obtain

f(n)−ηn!
ηd
n = a−ηe−ηd

(
1 +

ηd log
√

2πn

n
+O

( log2 n

n2

))(
1 +O

( logs n

n2

))

= a−ηe−ηd

(
1 +

ηd log
√

2πn

n
+O

( logv n

n2

))
,

where v = max{2, s}. We consider the relation (4.2) in the form gn = cgn+R(n),
say, to get

gη(n) = a−ηe−ηd

(
1 +

ηd log
√

2πn

n
+O

( logv n

n2

))
(cgn+R(n))

= a−ηe−ηdcgn+ a−ηe−ηdηdcg log
√

2πn+ a−ηe−ηdR(n) +O
( logv n

n

)
.

This relation has similar structure as (4.4), and the continuation of the proof is
similar to the proofs of Proposition 2.6 and Proposition 2.8. �

Proof of Proposition 2.11. We note that gη(n) =
(
n!

η
n gn

) 1
η+1 . We use the relation

(4.3), and we consider the relation (4.2) in the form gn = cgn+R(n), say, to write
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gη(n) =

(
e−ηnη

(
1 +

η log
√

2πn

n
+O

( log2 n

n2

))
(cgn+R(n))

) 1
η+1

=

(
e−ηcgn

η+1

(
1 +

η log
√

2πn

n
+
R(n)

cgn
+O

( log2 n

n2

))) 1
η+1

.

Thus, we obtain

gη(n) =
(
e−ηcg

) 1
η+1 n+

η (e−ηcg)
1
η+1

η + 1
log
√

2πn+
(e−ηcg)

1
η+1

cg(η + 1)
R(n) +O

( log2 n

n

)
.

Similar to the proof of Proposition 2.10, this relation concludes the proof. �
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