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METALLIC STRUCTURES ON RIEMANNIAN MANIFOLDS

CRISTINA-ELENA HREŢCANU AND MIRCEA CRASMAREANU

Abstract. Our aim in this paper is to focus on some applications in differ-

ential geometry of the metallic means family (a generalization of the golden

mean) and generalized Fibonacci sequences, using a class of polynomial struc-
tures defined on Riemannian manifolds. We search for properties of the in-

duced structure on a submanifold by metallic Riemannian structures and we

find a necessary and sufficient condition for a submanifold to be also a metallic
Riemannian manifold in terms of invariance. Also, the totally geodesic, min-

imal and respectively totally umbilical hypersurfaces in metallic Riemannian

manifolds are analyzed and the Euclidean space and its hypersphere is treated
as example.

1. Introduction

In this paper we find some applications of the metallic means family and general-
ized Fibonacci sequences on Riemannian manifolds. Recall that a very interesting
generalization of the golden mean was introduced in 1997 by Vera W. de Spinadel
in [26]-[30] and called metallic means family or metallic proportions. The members
of the metallic means family have the property of carrying the name of a metal, like
the golden mean and its relatives: the silver mean, the bronze mean, the copper
mean and many others.

The outline of this paper is as follows: in section 2 we provide a detailed survey
regarding the metallic means family, secondary Fibonacci numbers, and we define
the (p, q)-Fibonacci hyperbolic sine and cosine functions useful in our approach.

In section 3 we introduce the notion of metallic structure on a Riemmannian
manifold and we establish several properties of the metallic structure as a gen-
eralization of the golden structure defined and studied by the present authors in
[3], [14] and [15]. More precisely, a metallic structure is a polynomial structure
as defined by Goldberg, Yano and Petridis in [11] and [12], with the structural
polynomial Q(J) = J2 − pJ − qI.

In section 4 we focus on the geometry of submanifolds endowed with structures
induced by metallic Riemannian structures, due to an analogy with the theory of
submanifolds in almost product manifolds ([1]-[2], [24], [25]). We find conditions
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for this kind of submanifold to be also a metallic Riemannian manifold in terms of
invariance.

In the last section we search for properties of induced structures on hypersur-
faces in metallic Riemannian manifolds with a special view towards totally geodesic,
minimal and respectively totally umbilical hypersurfaces. An example of metallic
Riemannian structure is given on the Euclidean space, and its hypersphere is ana-
lyzed with the tools of the previous section.

2. Preliminaries

The members of the metallic means family share important mathematical prop-
erties that constitute a bridge between mathematics and design; e.g., the silver
mean has been used in describing fractal geometry, [4]. Some members of the
metallic means family (golden mean and silver mean) appeared already in the
sacred art of Egypt, Turkey, India, China and other ancient civilizations, [31].
The members of the metallic means family are closely related to quasiperiodic dy-
namics, [26]. The relationships between the Hausdorff dimension of higher order
Cantor sets and the golden mean or silver mean was investigated by El Naschie
([18]-[21]), who proved: Bijection Theorem, Golden Mean Theorem, Modified Fi-
bonacci Theorem, Silver Mean Theorem, Arithmetic Mean Theorem, and showed
that the n-dimensional triadic Cantor set has the same Hausdorff dimension as the
dimension of a random inverse golden mean Sierpinski space to the power n − 1
([18, 17]).

Fix two positive integers p and q. The positive solution of the equation

x2 − px− q = 0

is named member of the metallic means family ([26]-[30]). These numbers, denoted
by:

σp,q =
p+

√
p2 + 4q

2
, (1)

are also called (p, q)-metallic numbers.
Some properties studied in this paper are related with the generalized secondary

Fibonacci sequence (GSFS) ([30], [36], [16]), given by relations of the type:

G(n+ 1) = pG(n) + qG(n− 1), n ≥ 1 (2)

where p, q, G(0) = a and G(1) = b are real numbers. The members of generalized
secondary Fibonacci sequences are: a, b, pb+ qa, p(pb+ qa) + qb, . . . .

The ratio G(n + 1)/G(n) of two consecutive generalized secondary Fibonacci
numbers converges to:

• the golden mean φ = 1+
√

5
2 if p = q = 1, determined by the ratio of two

consecutive classical Fibonacci numbers;
• the silver mean σ2,1 = 1 +

√
2 for p = 2 and q = 1, determined by the ratio

of two consecutive Pell numbers ([7]);

• the bronze mean σ3,1 = 3+
√

13
2 for p = 3 and q = 1, which plays an impor-

tant role in studying topics such as dynamical systems and quasicrystals;
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• the subtle mean σ4,1 = 2 +
√

5 = φ3 ([22]), which plays a significant
role in the theory of Cantorian fractal-like micro-space-time E∞ and also
is involved in a fundamental way in noncommutative geometry and four
manifold theory ([23]);
• the copper mean σ1,2 = 2 for p = 1 and q = 2,

• the nickel mean σ1,3 = 1+
√

13
2 for p = 1 and q = 3 and so on.

If q = 1 and p = k in (2) we obtain the k-Fibonacci sequence ([5]) given recur-
rently by:

Fk,n+1 = kFk,n + Fk,n−1, Fk,0 = 0, Fk,1 = 1,

for n ≥ 1. If k := x is a real variable then Fx,n correspond to the Fibonacci
polynomials defined and studied in different contexts in [6]-[10].

Based on the analogy given by Binet’s formulas between extended Fibonacci
numbers and the classical hyperbolic function, the symmetrical Fibonacci sine and
the symmetrical Fibonacci cosine given respectively as follows:

sFs(x) =
φx − φ−x√

5
, cFs(x) =

φx + φ−x√
5

(3)

are studied in [31]-[36]. Also, in [10], k-Fibonacci hyperbolic sine and cosine func-
tions are studied, given respectively by:

sFkh(x) =
σxk − σ

−x
k

σk + σ−1
k

, cFkh(x) =
σxk + σ−xk
σk + σ−1

k

, (4)

under the condition that σk = k+
√
k2+4
2 is the positive root of the characteristic

equation associated to the k-Fibonacci sequence.
In analogous way as in (3) and (4), using generalized secondary Fibonacci se-

quences and the metallic number σp,q given in (1), we can define the (p, q)-Fibonacci
hyperbolic sine and cosine functions given respectively as follows:

sF(p,q)h(x) =
(σp,q)

x − (q−1σp,q)
−x

σp,q + (q−1σp,q)−1
, cF(p,q)h(x) =

(σp,q)
x + (q−1σp,q)

−x

σp,q + (q−1σp,q)−1
. (5)

We pointed out that the (p, q)-Fibonacci hyperbolic sine and cosine functions
verify the following properties:

sF(p,q)h(2) = p, cF(p,q)h(1) = 1,

sF(p,q)h(1) + cF(p,q)h(1) =
2σp,q

2σp,q − p
, sF(p,q)h(1)− cF(p,q)h(1) = −2

σp,q − p
2σp,q − p

.

3. Metallic Riemannian structures

In this section a class of polynomial structures, named by us metallic structures,
is introduced in Riemannian manifolds.

Definition 3.1. A polynomial structure on a manifold M is called a metallic
structure if it is determined by an (1, 1) tensor field J which satisfies the equation

J2 = pJ + qI
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18 CRISTINA-ELENA HREŢCANU AND MIRCEA CRASMAREANU

where p, q are positive integers and I is the identity operator on the Lie algebra
X(M) of the vector fields on M .

Since the Riemannian geometry is the most used framework of the differential
geometry, let us add a metric to our study. We say that a Riemannian metric g is
J-compatible if:

g(JX, Y ) = g(X, JY )

for every X,Y ∈ X(M), which means that J is a self-adjoint operator with respect
to g. This condition is equivalent in our framework with:

g(JX, JY ) = p · g(X, JY ) + q · g(X,Y ).

Definition 3.2. A Riemannian manifold (M, g) endowed with a metallic structure
J so that the Riemannian metric g is J-compatible is named a metallic Riemannian
manifold and (g, J) is called a metallic Riemannian structure on M .

Remark 3.1. If we consider p = q = 1 in Definition 3.2 then we obtain that (g, J)
is a golden Riemannian structure of M ([3], [15]).

The following proposition gives the main properties of a general metallic struc-
ture:

Proposition 3.1. A metallic structure J has the following properties:
(1) For every integer number n ≥ 1:

Jn = G(n)J + qG(n− 1)I,

where (G(n))n≥0 is the generalized secondary Fibonacci sequence with G(0) = 0
and G(1) = 1.

(2) J is an isomorphism on the tangent space TxM for every x ∈M . It follows
that J is invertible and its inverse J = J−1 = 1

qJ −
p
q I is not a metallic structure

but is still polynomial, more precisely a quadratic one:

qJ
2

+ pJ − I = 0.

(3) The eigenvalues of J are the metallic numbers σp,q and p− σp,q.

It is known, from [12], that a polynomial structure on a manifold M defined by
a smooth tensor field of (1, 1)-type induces an generalized almost product structure
F , i.e. F 2 = I, on M with the number of distributions of F equal to the number
of distinct irreducible factors of the structure polynomial over the real field while
the projectors are expressed as polynomials in F .

Proposition 3.2. Every almost product structure F induces two metallic struc-
tures on M given as follows:

J1 =
p

2
I +

(
2σp,q − p

2

)
F, J2 =

p

2
I −

(
2σp,q − p

2

)
F.

Conversely, every metallic structure J on M induces two almost product structures
on this manifold:

F = ±
(

2

2σp,q − p
J − p

2σp,q − p
I

)
. (6)
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METALLIC STRUCTURES ON RIEMANNIAN MANIFOLDS 19

In particular, if the almost product structure F is a Riemannian one then J1, J2

are also metallic Riemannian structures.

Proposition 3.3. On a metallic manifold (M,J) there are two complementary
distributions Dl and Dm corresponding to the projection operators

l =
σp,q

2σp,q − p
· I − 1

2σp,q − p
· J, m =

σp,q − p
2σp,q − p

· I +
1

2σp,q − p
· J.

Remark 3.2. The above operators l and m verify:

l+m = I, l2 = l, m2 = m, J ◦ l = l◦J = (p−σp,q)l, J ◦m = m◦J = σp,qm.

Thus l and m define complementary distributions Dl and Dm corresponding to
these projections.

Using (5), the projection operators have the following form:

l =
sF(p,q)h(1) + cF(p,q)h(1)

2
(I − 1

σp,q
J),

m = −
sF(p,q)h(1)− cF(p,q)h(1)

2
(I +

σp,q
q
J).

Also, the almost product structure F from (6) induced by a metallic structure J
is:

F =
sF(p,q)h(1) + cF(p,q)h(1)

σp,q
· (J − p

2
· I). (7)

Remark 3.3. The complementary distributions Dl,Dm are orthogonal with re-
spect to the J-compatible metric g, i.e. g(l·,m·) = 0.

4. Induced structures on submanifolds by metallic
Riemannian structures

Let us consider that M is an n-dimensional submanifold of codimension r,
isometrically immersed in an (n + r)-dimensional metallic Riemannian manifold
(M, g, J) with n, r ∈ N∗.

We denote by TxM the tangent space of M in a point x ∈M and by T⊥x M the
normal space of M in x. Let i∗ be the differential of the immersion i : M → M .
The induced Riemannian metric g on M is given by g(X,Y ) = g(i∗X, i∗Y ) for
every X,Y ∈ X(M). We consider a local orthonormal basis {N1, . . . , Nr} of the
normal space T⊥x M . Hereafter we assume that the indices α, β, γ run over the
range {1, . . . , r}.

For every X ∈ TxM the vector fields J(i∗X) and J(Nα) can be decomposed in
tangential and normal components as follows:

J(i∗X) = i∗(P (X)) +

r∑
α=1

uα(X)Nα

J(Nα) = i∗(ξα) +

r∑
β=1

aαβNβ
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20 CRISTINA-ELENA HREŢCANU AND MIRCEA CRASMAREANU

where P is an (1, 1) tensor field on M , ξα ∈ X(M), uα are 1-forms on M and (aαβ)r
is an r × r matrix of smooth real functions on M .

In a similar manner as in [1]-[2] and [14]-[15], it is easy to verify:

Proposition 4.1. The structure Σ = (P, g, uα, ξα, (aαβ)r) induced on the subman-

ifold M by the metallic Riemannian structure (g, J) on M satisfies the following
equalities:

(i) P 2(X) = pP (X) + qX −
∑
α

uα(X)ξα,

(ii) uα(P (X)) = puα(X)−
∑
β

aαβuβ(X),

(iii) aαβ = aβα,

(iv) uβ(ξα) = qδαβ + paαβ −
∑
γ

aαγaγβ ,

(v) P (ξα) = pξα −
∑
β

aαβξβ

(vi) uα(X) = g(X, ξα),

(vii) g(PX, Y ) = g(X,PY ),

(viii) g(PX,PY ) = pg(X,PY ) + qg(X,Y ) +
∑
α

uα(X)uα(Y ),

(8)

for every X,Y ∈ X(M), where δαβ is the Kronecker delta.

Definition 4.1. ([2]) A submanifold M in a manifold M endowed with a structural
tensor field J (i.e. J is a tensor field on M) is called invariant with respect to J if
J(TxM) ⊂ TxM for every x ∈M .

Remark 4.1. The induced structure Σ = (P, g, uα, ξα, (aαβ)r) on a submanifold
M by the metallic Riemannian structure (g, J) is invariant if and only if uα = 0
(equivalently ξα = 0) for every α ∈ {1, . . . , r}.

Proposition 4.2. The matrix A := (aαβ)r of the structure Σ induced on an in-
variant submanifold M by the metallic Riemannian structure (g, J) from the Rie-
mannian manifold (M, g) is a metallic matrix, that is a matrix which verifies

A2 = p · A+ q · Ir,
where Ir is the identically matrix of order r.

Proof. Using that M is an invariant submanifold in M , from (8) (iv) we obtain∑
γ aαγaγβ = p · aαβ + q · δαβ for every α, β ∈ {1, . . . , r}. �

In a similar manner as in [1] we obtain the following property:

Proposition 4.3. Let Σ = (P, g, uα, ξα, (aαβ)r) be the induced structure on a sub-

manifold M by the metallic Riemannian structure (g, J) on M . Then M is an
invariant submanifold with respect to J if and only if the induced structure (P, g)
on M is a metallic Riemannian structure whenever P is non-trivial.
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Proof. From (8) (i), if (g, P ) is a metallic Riemannian structure then
∑
αuα(X)ξα =

0. Thus, we get (by taking the g-product with X) that∑
α

uα(X)g(X, ξα) =
∑
α

(uα(X))2 = 0

which is equivalent with uα(X) = 0 for every α ∈ {1, 2, . . . , r} and this fact implies
that M is invariant.

Conversely, if M is an invariant submanifold then P 2 = pP + qI and we obtain,
using (7), (8) (i) and (8) (vii), that (P, g) is a metallic Riemannian structure. �

5. Hypersurfaces in metallic Riemannian manifolds

In this section we find some properties of an n-dimensional hypersurface M (i.e.
submanifold of codimension r = 1) in a metallic Riemannian manifold (Mn+1, g, J).
The totally geodesic, minimal and respectively umbilical hypersurfaces in metallic
Riemannian manifolds are studied.

We denote the covariant differential in M by ∇ and the covariant differential in
M determined by the induced metric g on M by∇. We denote by A the Weingarten
operator on TM with respect to the local unit normal vector field N of M in M .

Proposition 5.1. The structure Σ = (P, g, u, ξ, a) verifies the equalities:

(i) P 2(X) = pP (X) + qX − u(X)ξ,

(ii) u(P (X)) = (p− a)u(X),

(iii) u(ξ) = q + pa− a2,

(iv) P (ξ) = (p− a)ξ,

(v) u(X) = g(X, ξ),

(vi) g(PX, Y ) = g(X,PY ),

(vii) g(PX,PY ) = pg(X,PY ) + qg(X,Y ) + u(X)u(Y ),

(9)

for every X,Y ∈ X(M).

Remark 5.1. (i) If a is the constant function on M equal with p then u ◦ P = 0,
P (ξ) = 0 and ‖ξ‖2 = q. More generally, if M is a non-invariant hypersurface then
Im(a) ∈ (p− σp,q;σp,q) and

‖ξ‖ =
√
−a2 + p · a+ q. (10)

(ii) Let us remark that for ξ = 0 (which is equivalent with u = 0) we have J |M = P
and J(N) = aN , thus (M, g, P ) is a metallic Riemannian manifold. In other words,
M is an invariant hypersurface of a metallic Riemannian manifold (M, g, J) if and
only if the normal vector N on M is an eigenvector of the structure J (i.e. J(N) =
a·N) with the eigenvalue the function a from the structure Σ = (P, g, u, ξ, a) on M .

Proposition 5.2. M is an invariant and orientable hypersurface in a metallic
Riemannian manifold (M, g, J) if and only if the structure Σ = (P, g, u, ξ, a) in-
duced on M by the metallic Riemannian structure (J,g) has the function a equal
with the metallic number a = σp,q or a = p− σp,q.
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22 CRISTINA-ELENA HREŢCANU AND MIRCEA CRASMAREANU

Proposition 5.3. If Σ = (P, g, u, ξ, a) is the induced structure on a hypersurface
M isometrically immersed in a metallic Riemannian manifold (M, g, J) then for
every X ∈ X(M):

(P (X)− (p− a)X) ⊥ ξ.
In particular, for a = p:

P (X) ∈ ξ⊥ := {X ∈ X(M)/X ⊥ ξ}

for every X ∈ X(M) and TM = KerP ⊕ ξ⊥.

The Gauss and Weingarten formulae for a hypersurface M isometrically im-
mersed in the Riemannian manifold (M, g) are respectively given as follows:

∇̄XY = ∇XY + h(X,Y )N, ∇̄XN = −A(X),

where h is the second fundamental tensor corresponding to N and h(X,Y ) =
g(AX,Y ).

In a similar manner as in [14] we remark that:

Proposition 5.4. If M is a hypersurface in a metallic Riemannian manifold
(M, g, J) and J is parallel with respect to the Levi-Civita connection ∇ on M (i.e.
∇J = 0) then the elements of the structure Σ = (P, g, u, ξ, a) have the following
properties: 

(i) (∇XP )(Y ) = g(AX,Y )ξ + u(Y )AX,

(ii) (∇Xu)(Y ) = −g(AX,PY ) + ag(AX,Y ),

(iii) ∇Xξ = −P (AX) + aAX,

(iv) X(a) = −2u(AX).

(11)

Remark 5.2. (i) Using (11) (iii) and (8) (vii) in (11) (ii), we obtain

(∇Xu)(Y ) = g(∇Xξ, Y ). (12)

(ii) Let M be an invariant hypersurface in a metallic Riemannian manifold (M, g, J)
with J parallel with respect to the Levi-Civita connection ∇ on M and let Σ =
(P, g, ξ, u, a) be the structure induced on M . Then P is parallel with respect to ∇.

Recall the following well-known definition: M is said to be totally geodesic if
its second fundamental form vanishes identically, that is h = 0 or equivalently the
Weingarten operator A = 0.

In a similar manner as in [1] and [2] where T. Adati studied the properties
of submanifolds in an almost product manifold, we obtain some properties for
submanifolds in metallic Riemannian manifolds, as follows:

Theorem 5.1. Let M be a non-invariant hypersurface of a metallic Riemannian
manifold (M, g, J) with J parallel with respect to the Levi-Civita connection ∇ on
M (i.e. ∇J = 0) and let Σ = (P, g, ξ, u, a) be the induced structure on M by (g, J).
Then the following properties are equivalent: (i) M is totally geodesic; (ii) ∇P = 0;
(iii) ∇ξ = 0; (iv) ∇u = 0.
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Proof. If we suppose that M is totally geodesic (i.e. AX = 0), from (11) (i)-(iii)
we obtain ∇P = 0, ∇u = 0 and ∇ξ = 0.

If we suppose that ∇P = 0 then, from (11) (i) we obtain that g(AX,Y )ξ +
g(Y, ξ)AX = 0 for every X,Y ∈ X(M). Applying g(Y, ·) in the last equality
it follows that 2 · g(AX,Y )g(Y, ξ) = 0. If we consider that Y = ξ in the last
equality, we obtain g(AX, ξ)‖ξ‖2 = 0 and using ‖ξ‖ 6= 0 (because M is a non-
invariant hypersurface in the metallic Riemannian manifold (M, g, J)) we obtain
g(AX, ξ) = 0 for every X ∈ X(M).

On the other hand, using Y = AX in g(AX,Y )ξ + g(Y, ξ)AX = 0, we obtain
g(AX,AX)ξ = 0. Since ξ 6= 0, we have that ‖AX‖ = 0, therefore M is totally
geodesic. Also, using AX = 0 in (11) (ii)-(iii) we obtain ∇ξ = 0, ∇u = 0.

If we suppose that ∇ξ = 0, from (11) (iii) we have P (AX) = a · AX and
P 2(AX) = a · P (AX) = a2 ·AX.

From (9) (i) we have P 2(AX) = p·P (AX)+q ·AX−u(AX)ξ and using (11) (iv),
u(AX) = − 1

2X(a) and (10), ‖ξ‖2 = q+pa−a2 where ‖ξ‖ 6= 0 ( M is a non-invariant

hypersurface in M) we obtain:

AX = −X(a)

2‖ξ‖2
· ξ, (13)

for every X ∈ X(M).

Using P (AX) = a · AX and (9) (iv) we obtain (p − 2a) · X(a)
2‖ξ‖2 ξ = 0. From

‖ξ‖ 6= 0 we obtain X(a) = 0 or the function a is a constant a = p
2 on M , which

imply X(a) = 0. Using (13) we obtain AX = 0 for every X ∈ X(M), therefore
M is totally geodesic. Also, from AX = 0 in (11) (i)-(ii) we obtain ∇P = 0 and
∇u = 0.

If we suppose that ∇u = 0, using (12) we obtain ∇ξ = 0, which implies that M
is totally geodesic and ∇P = 0. �

Recall that a hypersurface M in the Riemannian manifold (M, g) is said to be
minimal if:

trace(AN ) =

n∑
j=1

g(ANej , ej)

vanishes identically, where {e1, . . . , en} is an orthonormal basis of the tangent space
TxM in every point x ∈M .

Theorem 5.2. Let M be a non-invariant hypersurface of a metallic Riemannian
manifold (M, g, J) with J parallel with respect to the Levi-Civita connection ∇
on M , and let Σ = (P, g, ξ, u, a) be the induced structure on M by (g, J). If∑n
j=1(∇ejP )ej =

∑n
j=1 u(ej)A(ej) then M is minimal.

Remark 5.3. If Σ = (P, g, ξ, u, a) is the induced structure on an umbilical (A =
λI) hypersurface M in a metallic Riemannian manifold (M, g, J) with ∇J = 0 we
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have for any X,Y ∈ X(M):
(i) (∇XP )(Y ) = λ[g(X,Y )ξ + g(Y, ξ)X],

(ii) (∇Xu)(Y ) = λ[ag(X,Y )− g(X,PY )],

(iii) ∇Xξ = λ(aX − P (X)), ∇ξξ = λ(2a− p)ξ
(iv) X(a) = −2λg(X, ξ).

As consequence, from (11) (iii) and (10) we get:

Theorem 5.3. If M is an invariant umbilical (λ 6= 0) hypersurface in a metallic
Riemannian manifold (M, g, J) with ∇J = 0 and Σ = (P, g, ξ, u, a) is the induced
structure on M by (g, J), then P = aI, where a is a constant function on M equal
with the metallic number a = σp,q or a = p− σp,q.

Remark 5.4. Conversely, ifM is a hypersurface in a metallic Riemannian manifold
(M, g, J) with ∇J = 0 and Σ = (P, g, ξ, u, a) is the induced structure on M by
(g, J) with P = aI, then ∇ξ = 0. Thus, we obtain:

Theorem 5.4. If M is a hypersurface in a metallic Riemannian manifold (M, g, J)
with ∇J = 0 and Σ = (P, g, ξ, u, a) is the induced structure on M by (g, J) with
P = aI, then we have only one of the following conclusions:

(i) M is an invariant hypersurface and a is a metallic number;
(ii) M is a non-invariant totally geodesic hypersurface in the metallic Riemannian

manifold (M, g, J).

An example of induced structure on a hypersphere in a metallic Rie-
mannian manifold. We consider the (a + b)-dimensional Euclidean space Ea+b

as ambient space (a, b ∈ N∗). Let J : Ea+b → Ea+b be the (1, 1) tensor field defined
for every point (x1, . . . , xa, y1, . . . , yb) ∈ Ea+b by:

J(x1, . . . , xa, y1, . . . , yb) = (σp,qx
1, . . . , σp,qx

a, (p− σp,q)y1, . . . , (p− σp,q)yb).
It follows that J2 = pJ + qI and the scalar product 〈, 〉 on Ea+b is J-compatible.
Thus (Ea+b, 〈〉, J) is a metallic Riemannian manifold.

In Ea+b we can get the hypersphere

Sa+b−1(r) =
{

(x1, . . . , xa, y1, . . . , yb),

a∑
i=1

(xi)2

︸ ︷︷ ︸
r21

+

b∑
j=1

(yj)2

︸ ︷︷ ︸
r22

= r2
}
,

which is a submanifold of codimension 1 in Ea+b.
In every point (x1, . . . , xa, y1, . . . , yb) := (xi, yj) ∈ Sa+b−1(r) (i ∈ {1, . . . , a}

and j ∈ {1, . . . , b}) we consider the normal vector field to Sa+b−1(r) given by
N = 1

r (xi, yj).

In every point (xi, yj) ∈ Ea+b we have a tangent vector on Sa+b−1(r)

(X1, . . . , Xa, Y 1, . . . , Y b) := (Xi, Y j) ∈ T(x1,...,xa,y1,...,yb)(S
a+b−1(r))

if and only if
∑a
i=1 x

iXi +
∑b
j=1 y

jY j = 0.
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From the decompositions of J(N) and J(Xi, Y j) respectively, in tangential and
normal components on T(xi,yj)S

a+b−1(r) we obtain:

J(N) = ξ +A ·N ; J(Xi, Y j) = P (Xi, Y j) + u(Xi, Y j) ·N,

where (X1, . . . , Xa, Y 1, . . . , Y b) := (Xi, Y j) is a tangent vector field on Sa+b−1(r),
P is an (1, 1) tensor field on Sa+b−1(r), ξ ∈ X(Sa+b−1(r)), u is an 1-form on
Sa+b−1(r), and A is a smooth real function on Sa+b−1(r).

Using A = 〈J(N), N〉, ξ = J(N) − A · N , u(Xi, Y j) = 〈(Xi, Y j), ξ〉 and
P (Xi, Y j) = J(Xi, Y j) − u(Xi, Y j) · N , the elements of the induced structure
Σ = (P, 〈〉, ξ, u,A) on Sa+b−1(r) by the metallic Riemannian structure (J, 〈〉) on
Ea+b are given as follows:

A =
σp,qr

2
1 + (p− σp,q)r2

2

r2

ξ =
2σp,q − p

r3
(r2

2 · xi,−r2
1 · yj)

u(X) =
2σp,q − p

r
µ

P (X) = (σp,qX
i − 2σp,q − p

r2
µxi, (p− σp,q)Y j −

2σp,q − p
r2

µyj)

where X := (Xi, Y j) = (X1, . . . , Xa, Y 1, . . . , Y b) is a tangent vector field on

Sa+b−1(r) and µ :=
∑a
i=1 x

iXi = −
∑b
j=1 y

jY j . In conclusion, Sa+b−1(r) is a
non-invariant hypersurface.
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