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POSINORMAL FACTORABLE MATRICES

WITH A CONSTANT MAIN DIAGONAL

H. C. RHALY JR. AND B. E. RHOADES

Abstract. Sufficient conditions are found for a posinormal factorable matrix

with a constant main diagonal to be hyponormal. Those conditions are satis-
fied by some Toeplitz matrices, and a non-Toeplitz example is also presented.

Along the way, a more general result is also obtained.

1. Introduction

A lower triangular infinite matrix M = [mij ], acting through multiplication to
give a bounded linear operator on `2, is factorable if its entries are

mij =

{
aicj if j ≤ i,
0 if j > i,

where ai depends only on i, and cj depends only on j; the matrix M is terraced if
cj = 1 for all j. Note that (C, 1), the Cesàro matrix of order one, is terraced with
ai = 1/(i+ 1) for all i.

The operator M is posinormal if MM∗ = M∗PM for some positive operator P ,
called the interrupter, and M is hyponormal if it satisfies 〈(M∗M−MM∗)f, f〉 ≥ 0
for all f in `2. Posinormal operators were introduced and studied in [13], where it
was observed that the set of all posinormal operators on any Hilbert space is an
enormous collection that includes every invertible operator and all the hyponormal
operators. Some key facts about posinormal operators appear in the following
results found in [13, Theorem 2.1 and Corollary 2.3].

Proposition 1.1. For a bounded linear operator A on a Hilbert space H, the
following statements are equivalent:

(1) A is posinormal;
(2) RanA ⊆ RanA∗;
(3) AA∗ ≤ γ2A∗A for some γ ≥ 0; and
(4) There exists a bounded operator T on H such that A = A∗T .

Note that if A is hyponormal, then condition (3) is satisfied with γ = 1.
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Proposition 1.2. If A is posinormal, then KerA ⊆ KerA∗.

Progress in the study of posinormal operators has been surveyed in [8]. Other
studies involving these operators can be found in [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 17,
18, 19].

The fact that hyponormality implies posinormality is central to our work here.
In an earlier paper [14], posinormality was used to determine sufficient conditions
for a terraced matrix to be hyponormal. That approach was extended to a special
subcollection of the factorable matrices in [15], and here we extend that approach
to another special subcollection: those posinormal factorable matrices whose main
diagonal is constant. Consequently, this study may be considered as a continuation
of a larger program on posinormal and hyponormal operators.

2. Main result

We note that up to this point, the only case for which significant progress has
been made extending the approach of [14] to factorable matricesM = M({ai}, {cj})
is the case in which the interrupter P is diagonal (see [15]). In the case that we
investigate now, P itself may not be diagonal, but the finite sections of Q :≡ I −P
can be reduced to a diagonal matrix.

Assume that ai, cj 6= 0 for all i, j. To obtain P , we start with the matrix B =
[bij ] defined by

bij =


ci[1/cj − aj+1/(cj+1aj)] if i ≤ j,
−aj+1/aj if i = j + 1,

0 if i > j + 1.

We know that if B is bounded on `2 and both {an} and {an/cn} are positive
decreasing sequences that converge to 0, then M is posinormal since M* = BM
(see [15]). For M to be hyponormal, it must then be true that for all f in `2,

〈(M∗M −MM∗)f, f〉 = 〈(M∗M − (M∗B∗)(BM)f, f〉 = 〈(I−B∗B)Mf,Mf〉 ≥ 0.

Consequently, we conclude that M will be hyponormal when Q = I−P ≥ 0, where
P = B∗B; we note that the range of M contains all the en’s from the standard
orthonormal basis for `2.

Using the entries of P as displayed in [15, Section 3], we find that the matrix
Q = [qij ] has entries given by

qij =



c2i c
2
i+1(a2

i−a
2
i+1)−(

∑i
k=0 c2k)(ci+1ai−ciai+1)2

c2i c
2
i+1a

2
i

if i = j,

(ci+1ai−ciai+1)[cj(
∑j+1

k=0 c2k)aj+1−cj+1(
∑j

k=0 c2k)aj ]

cici+1cjcj+1aiaj
if i > j,

(cj+1aj−cjaj+1)[ci(
∑i+1

k=0 c2k)ai+1−ci+1(
∑i

k=0 c2k)ai]

cici+1cjcj+1aiaj
if i < j.

In order to show thatQ is positive, it suffices to show thatQN , theN th finite section
of Q (involving rows i = 0, 1, 2, . . . , N and columns j = 0, 1, 2, . . . , N), has positive
determinant for each positive integerN . We assume that cn+1an 6= cnan+1 for all n,
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and we proceed in the following way. For N ≥ 1 and i = N − 1, N − 2, . . . , 2, 1, 0
(in that order), multiply row i by

t(i) :≡ ciai(ci+2ai+1 − ci+1ai+2)/[ci+2ai+1(ci+1ai − ciai+1)]

and subtract from row i+1. Call the new matrix Q′N and reduce it in the following
manner. For j = N − 1, N − 2, . . . , 2, 1, 0 (in that order), multiply column j by
t(j) and subtract from column j + 1. The resulting matrix is tridiagonal with the
following form:

YN :≡



d0 s0 0 . . . 0 0
s0 d1 s1 . . . 0 0
0 s1 d2 . . . . 0
...

...
...

. . .
...

...
0 0 . . . . dN−1 sN−1

0 0 0 . . . sN−1 dN


,

where d0 =
c20c

2
1(a2

0−a
2
1)−c20(c1a0−c0a1)2

c20c
2
1a

2
0

, dn = 1−a2
n+1

a2
n
− (c2n−c

2
n−1)a2

n−1(cn+1an−cnan+1)2

c2n+1a
2
n(cnan−1−cn−1an)2

,

and sn−1 = (cn+1an−cnan+1)(cnan−cn−1an−1)
cn+1an(cnan−1−cn−1an) for 1 ≤ n ≤ N . Note that detYN =

detQ′N = detQN . Our computations have proved the following result.

Theorem 2.1. Suppose M = M({ai}, {cj}) is a factorable matrix that acts as a
bounded operator on `2 and that the following conditions are satisfied:

(1) both {an} and {an/cn} are strictly decreasing sequences that converge to 0;
(2) the matrix B defined above is a bounded operator on `2; and
(3) detYN ≥ 0 for all N .

Then M is hyponormal.

We observe that with the procedure used above, the entry in the northwest
corner of QN has remained unchanged, whereas the procedure used in [14] left the
entry in the southeast corner unchanged.

Before continuing on, we point out that results such as [1, Proposition 1] are
sometimes useful in demonstrating that the tridiagonal matrix YN has a positive
determinant; that is true of our first example.

Example 2.2. Let M denote the factorable matrix associated with ai = 1/(i+ 2)2

and cj = j+1 for all i, j. Theorem 2.1 can be used to show that M is hyponormal,
since it can be verified that dn > 0 for all n and that dn−1dn ≥ 4s2

n−1 for all n ≥ 1.
The details are left to the interested reader.

We note that the hyponormality of Example 2.2 cannot easily be seen directly
from the definition.

Returning to our primary focus, in the case where {ancn} is a constant sequence,
YN becomes a diagonal matrix, and that leads to the following corollary, which will
be useful in our next two examples.

Corollary 2.3. Suppose M = M({ai}, {cj}) is a factorable matrix that acts as a
bounded operator on `2 and that the following conditions are satisfied:
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(1) both {an} and {an/cn} are strictly decreasing sequences that converge to 0;
(2) the matrix B defined above is a bounded operator on `2;
(3) {ancn} is a constant sequence; and
(4) d0 = [c20c

2
1(a2

0−a2
1)−c20(c1a0−c0a1)2]/[c20c

2
1a

2
0] ≥ 0, and dn = 1−a2

n+1/a
2
n−

cnan−1(cn+1an − cnan+1)2/[c2n+1a
2
n(cnan−1 − cn−1an)] ≥ 0 for all n ≥ 1.

Then M is hyponormal.

Example 2.4 (Toeplitz matrix). Consider the matrix M with ai = ri and cj = r−j

for all i, j where 0 < r < 1. It can be demonstrated that M and B are bounded,
and it is clear that conditions (1) and (3) of the corollary are satisfied. It is
straightforward to verify that d0 = r2(1 − r2) > 0 and dn = 0 for all n ≥ 1, and
hence M is hyponormal.

We note that for the matrix M in Example 2.4, the scalar multiple (1 − r2)M
can be shown to satisfy the inequality in [16, Theorem 1] ensuring hyponormality,
although M itself does not satisfy that inequality. The use of our Corollary 2.3 has
avoided that scaling problem while demonstrating hyponormality for this operator.
We point out that the result in [16] was obtained without invoking posinormality.

The following is another example whose hyponormality cannot easily be seen
directly from the definition.

Example 2.5. If M is the factorable matrix associated with ai = 1/[
∑i

k=0 2k] and

cj =
∑j

k=0 2k for all i, j, then M and B can be shown to be bounded (the details
are left to the reader). Clearly M satisfies conditions (1) and (3) of Corollary 2.3.
Since d0 = 8/81 and

dn = 2n+2[3(2n)− 1][22n+2 − 9(2n−1) + 1]/{[3(2n−1)− 1](2n+2 − 1)4} > 0

for all n ≥ 1, M is hyponormal.

In contrast with what was seen for Example 2.4, we observe that when M is the
matrix from Example 2.5, there cannot exist a scalar α > 0 such that αM satisfies
the inequality in [16, Theorem 1]; for that would require (1 − α)(2k+2 − 1)2 =
(2k+1 − 1)2 for all k. So our work here using posinormality has demonstrated
hyponormality for an example that does not satisfy that inequality from [16], even
when one resorts to positive scalar multiples.

3. Remarks

Two classes of triangular infinite matrices that appear often in the literature
are the Hausdorff matrices and the weighed mean matrices. The only Hausdorff
matrices with constant main diagonal are those that are scalar multiples of the
identity matrix. A weighted mean matrix is a lower triangular matrix with entries

pj/Pi, where {pj} is a nonnegative sequence with p0 > 0, and Pi =
∑i

j=0 pj . A

weighted mean matrix is factorable, with ai = 1/Pi and cj = pj for all i, j. It is
not hard to show that there are no weighted mean matrices with constant main
diagonal.

In closing, we note that the attention focused here on the role of the diagonal
sequence {cnan} has led to an alternative version of [15, Theorem 8].

Rev. Un. Mat. Argentina, Vol. 55, No. 1 (2014)



POSINORMAL FACTORABLE MATRICES WITH CONSTANT MAIN DIAGONAL 23

Theorem 3.1. Suppose M = M({ai}, {cj}) is a lower triangular factorable matrix
that acts as a bounded operator on `2 and that the following conditions are satisfied:

(1) both {an} and {an

cn
} are positive decreasing sequences that converge to 0;

(2) the matrix B = [bij ] (defined in the previous section) is a bounded operator
on `2;

(3) the sequence {(
∑n

k=0 c
2
k)an

cn
} is constant; and

(4) the sequence {cnan} is nonincreasing.

Then M is posinormal with a diagonal interrupter, and furthermore, M is hyponor-
mal.

The change is in condition (4); using condition (3), it is not hard to show that
the new condition (4) is equivalent to the original condition (4) as stated in [15].
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