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COMPUTATION OF THE CANONICAL LIFTING VIA

DIVISION POLYNOMIALS

ALTAN ERDOĞAN

Abstract. We study the canonical lifting of ordinary elliptic curves over the

ring of Witt vectors. We prove that the canonical lifting is compatible with
the base field of the given ordinary elliptic curve which was first proved in

Finotti, J. Number Theory 130 (2010), 620–638. We also give some results

about division polynomials of elliptic curves defined over the ring of Witt
vectors.

1. Introduction

Let k be a perfect field of characteristic p > 0 and W (k) be the ring of p-typical
Witt vectors of k. Let E be an ordinary elliptic curve over k. A consequence of the
Serre–Tate theorem is that up to isomorphism there exists a unique elliptic curve
E over W (k) such that

(1) E⊗W (k) k
∼→ E

(2) EndW (k)(E)
∼→ Endk(E),

where both isomorphisms are obtained via the reduction (mod p) : E → E. The
elliptic curve E is called the canonical lifting of E over W (k). If the base ring W (k)
is understood we may only call it the canonical lifting of E. If E′ is any elliptic
curve over W (k) satisfying only the first condition we say that E′ is a lifting of E.
General references for a complete proof and a detailed analysis of the Serre–Tate
theorem and in particular the canonical lifting are [5] and [8].

We can formulate the problem of finding the canonical lifting in terms of the
j-invariants as follows. By definition, the j-invariant of E, denoted by j(E) ∈W (k)
depends only on the j-invariant of E, say j0. So we can define the following function:

Θ : kord −→W (k),

j0 7−→ j(E) = (j0, j1, . . . ),

where kord = {j0 ∈ k | elliptic curves with j-invariant j0 are ordinary}, E is the
canonical lifting of E, and each ji is a function of j0. The question of finding

2010 Mathematics Subject Classification. Primary 14H52; Secondary 14G05.
Key words and phrases. elliptic curves, Serre-Tate theorem, canonical lifting, division

polynomials.
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the canonical lifting in this form was first given in [7]. The first solution of this
question was also given there using the classical modular equation. This method
has been studied by Satoh, Skjernaa and Taguchi to give an algorithm to find the
canonical lifting and to count the rational points on elliptic curves over finite fields
[9]. Another remarkable approach was given by Voloch and Walker for finite k.
They proved the existence of a section of the reduction mod p map of the homo-
morphism E(W (k̄))→ E(k̄). This section is called the elliptic Teichmüller lift and
its existence is equivalent to say that E is the canonical lifting in the case of k being
a finite field. The study of the elliptic Teichmüller lift has been made by Finotti
and it has been used to determine the structure of Θ [3].

Here we will consider elliptic curves defined over imperfect fields and study
the canonical lifting of these elliptic curves. We will work on the reduction of
the canonical lifting modulo prime powers, i.e. on the canonical lifting over Witt
vectors of finite length denoted by Wn(k). We will prove that the canonical lifting
is compatible with the field over which the given ordinary elliptic curve is defined.
Explicitly we will prove the following theorem.

Theorem 1. Let K be a field of characteristic p ≥ 5, n ≥ 2 be an arbitrary integer
and E be an ordinary elliptic curve over K. Let Can(E) be the class of isomor-
phisms of the canonical lifting of E over Wn(K̄). Then there exists E ∈ Can(E)
which is defined over Wn(K), i.e. which can be given by a single Weierstrass equa-
tion with coefficients in Wn(K). In particular if we denote the j-invariant of E by
j(E) = (j0, j1, . . . , jn) then each jn is an element of K.

This theorem was proved in [3] in a computational way using Greenberg trans-
forms and elliptic Teichmüller lift. Also a similar result for separably closed K
using fppf-cohomology theory has been given in [1]. Here we give another proof
based on a simple fact which is directly used in the proof of the Serre–Tate theorem
in [5]. Naively we can state the idea of the proof as follows: the canonical lifting is
the unique lifting which has “lots of” nontrivial p-th power torsion points and the
existence of these points force the existence of the desired Weierstrass model.

We proceed as follows. First we give a brief overview of some aspects of the
Serre–Tate theorem. We restrict ourselves only to facts which we will need in
the proof. We will need some basic computational facts about Witt vectors. The
statements which we do not prove here in detail are easy consequences of results in
[10, §2.4-5]. We may also use some well known results about division polynomials
without any reference.

We fix the following notation. For any field k we denote by k′ and ks the
perfect and separable closures of k respectively. For any scheme T and any group
scheme G/T , G[N ] denotes the kernel of the multiplication by N on G. If G is a
p-divisible group then we may write G = (Gn, in), where Gn =ker(pn : G −→ G)
and in : Gn ↪→ Gn+1. For any elliptic curve X/k, TpX denotes the usual Tate
module. If G is the p-divisible group associated to an elliptic curve X/T then we
may use X[p∞] for G. For any group G, we write G0 and Get for the maximal
connected subgroup and the étale quotient of G respectively (see [12] and [13] for
the definition-construction of these groups).
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2. An overview of the Serre–Tate theorem

Let X be an ordinary elliptic curve over an algebraically closed field k of char-
acteristic p > 0, and B be an Artin local ring with residue field k. We denote any
lifting of X/k over B by X. Then we have the following exact sequences

0→ X̂(= X[p∞]0)→ X[p∞]→ X[p∞]et → 0,

0→ X̂(= X[p∞]0)→ X[p∞]→ X[p∞]et → 0,

where the first and the last nonzero p-divisible groups are of height 1, and so the
middle one is of height 2 in both sequences. Also X̂ and X̂ are Cartier duals
of X[p∞]et and X[p∞]et respectively. Since k is algebraically closed we have the

isomorphism X[p∞]et
∼→ Qp/Zp = (X(k)[pn], in) where we see X(k)[pn] as the

constant étale group Z/pnZ over k. By the same reason the first sequence splits.
Now for each n the isomorphism of B-groups

X̂[pn]
∼→ HomZ(X(k)[pn], µpn)

X̂ ∼→ HomZp(TpX(k),Gm),

which are obtained from the isomorphism of k-groups

X̂[pn]
∼→ HomZ(X(k)[pn], µpn)

X̂
∼→ HomZp(TpX(k),Gm),

give us the perfect pairings

Epn,X : X̂[pn]×X(k)[pn]→ µpn

EX : X̂× TpX(k)→ Gm

for each n, where Gm := Spec k[x, x−1] is the multiplicative group and µpn :=
Gm[pn].

Now we can construct a map TpA(k) → X̂(R). Let I be the maximal ideal of

B and r be a sufficiently large integer such that Ir+1 = 0. Since X̂ is a formal
Lie group over B, every element of X̂ is killed by pr. Now for any P ∈ X(k)

define φr(P ) = pr(P̂ ), where P̂ ∈ X(B) is any lifting of P . This gives a map

from X(k) into X(B). Note that this map is independent of the choice of P̂ and

so well-defined. The image of X(k)[pn] is in X̂(B). So we get a homomorphism

φr : X(k)[pn]→ X̂(B) which is compatible with pi : X(k)[pr+i]→ X(k)[pr]. Thus
we obtain a single homomorphism

φX : TpX(k)
πr−→ X(k)[pr]

φr−→ X̂(B).

We define

qX/B : TpX(k)⊗ TpX(k)→ Gm(B)

qX/B(α, β) = EX(φX, β).

Since the pairing EX is perfect, q = 1 if and only if φX = O, where O is the identity
element. The canonical lifting of X is defined to be the elliptic curve X such that
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the corresponding q is identically one. In other words X is the canonical lifting of
X if and only if φr = O. Note that the only condition on r is that Ir+1 = 0. If we
set r′ = min{r ∈ N : Ir+1 = 0} we obtain the following corollary.

Corollary 1. With the previous notation the following are equivalent.

(1) X is the canonical lifting of X.
(2) φr′ = O.
(3) φr = O for some (hence all) r ≥ r′.

3. Proof of the main theorem

Here we will prove Theorem 1. We will use Corollary 1 for B = Wn+1(k) and

r = n+ 1. Note that X(k)[pn+1]
∼→ Z/pn+1Z is cyclic so it is enough to show that

φr(P ) = O for some generator P ∈ X(k)[pn+1]. We will need the following lemma.

Lemma 1. Let K be any field of characteristic p > 0 and E be an ordinary elliptic
curve over K given by an affine Weierstrass equation

E : f(x0, y0) = 0.

Let P = (x0, y0) ∈ E(K̄) be any point. If pnP ∈ E(K) then xp
n

0 ∈ Ks. In

particular if P = (x0, y0) ∈ E[pn](K̄) then xp
n

0 ∈ Ks.

Proof. Let E(pn) = E ⊗K K, where the product is taken via the pn-th power
homomorphism pn : K → K. Then we have the relative Frobenius Fn : E → E(pn)

which simply sends (x0, y0) to (xp
n

0 , yp
n

0 ). Now pn : E → E factors through Fn as

pn : E
Fn

−→ E(pn) Vn

−→ E, where V n is the dual of Fn called Verschiebung. Since
E is ordinary, V n is an étale map [6, §12.3.6]. Let P : Spec K̄ → E be a point
such that pnP is a K-point. This means that pnP : Spec K̄ → E factors through
SpecK. Then we have the following commutative diagram.

Spec K̄
Fn◦P−−−−→ E(pn)y yV n

SpecK −−−−→ E

Let Q ∈ E be the image of SpecK. Then Q̂ := Fn ◦ P (Spec K̄) ∈ (V n)−1(Q).

Since V n is étale we have that the residue field of E(pn) at Q̂ denoted by κ(Q̂) is
a separable extension of the residue field of E at Q which is just K. This implies
that Fn ◦ P factors through SpecKs, i.e. we have the composition

Fn ◦ P : Spec K̄ → SpecKs → E(pn).

Thus Fn ◦ P is a Ks-point, i.e. xp
n

0 ∈ Ks. �

By Corollary 1 it is enough to work with p-th power torsion points to find
the canonical lifting. Now we will give some basic facts about division polynomials
which we will need in the proof. Any elliptic curve C over any scheme on which 6 is
invertible can be (Zariski) locally given by equations of the form Y 2 = X3+AX+B
[6, §2.2]. This condition is satisfied in our case as we assume p ≥ 5. Since we
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will work on the local ring Wn(K) we may assume that we have a single global
Weierstrass equation of this form. Let N be a positive integer. Let Ψ = ΨC,N be
the N -division polynomial, i.e. the polynomial whose roots give the x-coordinates
of the nontrivial N -torsion points. We say that a point P ∈ C(Wn(K̄)) is nontrivial
if P (mod p) 6= O. It is well known that if N is odd, then Ψ ∈ Z[A,B][x] [11].

Now we explain what we mean by saying that the canonical lifting has “lots
of” nontrivial p-th power torsion points. Let E be the canonical lifting of E.
Take a non-identity point P = (x0, y0) ∈ E(K̄)[pr] for some r ≥ n. Take any

lifting P̂ ∈ E(Wn(K̄)). Then by Corollary 1, P̂ must be a pr-torsion point. The

converse is also true, i.e. if any lifting P̂ ∈ E(Wn(K̄)) of any P ∈ E(K̄)[pr] for

some r ≥ n is a pr-torsion point then E is the canonical lifting. If we put P̂ =
((x0, x1, . . . , xn−1), (y0, y1, . . . , yn−1)) then Ψ((x0, x1, . . . , xn−1)) = 0 for infinitely
many x1, x2, . . . , xn. This obviously puts a condition on the coefficients of Ψ. As
the coefficients of Ψ are completely determined by A and B this a posteriori puts
a condition on A and B.

In [2], Cassels shows that for any N , the division polynomials Ψ = ΨN of such
a cubic equation is defined over Z[A,B] and satisfy (Ψ2)′ ≡ 0 (mod N), where ()′

means the derivative with respect to x. This result will play a key role in the proof.
Now fix K, p, n and an ordinary elliptic curve

E : y2
0 = x3

0 + a0x0 + b0

as stated in Theorem 1, where a0, b0 ∈ K. Let a1, . . . , an and b1, . . . , bn be alge-
braically independent indeterminates and consider the Weierstrass equation

E : (y0, y1, . . . , yn)2 = (x0, x1, . . . , xn)3 + (a0, a1, . . . , an)(x0, x1, . . . , xn)

+ (b0, b1, . . . , bn)

defined over Wn+1(F ), where F = K({ai, bi}). It maps to E under the reduction
map Wn+1(F )→ F so it defines an elliptic curve over Wn+1(F ). Since char(K) 6= 2
we have that for any odd N , ΨΨ′ ∈ N.Wn+1(F )[x]. We can state this in a different
way as the following technical lemma.

Lemma 2. The pn+1-division polynomial Ψ of E satisfies Ψ′ ∈ pn+1.Wn+1(F )[x],
i.e. Ψ′ = 0 in Wn+1(F )[x].

Proof. Since pn+1 = 0 in Wn+1(F )[x], Ψ′ 6= 0 implies that Ψ is a zero divisor in the
polynomial ring Wn+1(F )[x]. This can occur if and only if there exists a nonzero
A ∈ Wn+1(F ) such that AΨ = 0. But by construction Ψ(mod p) = ΨE,pn(x) is
not identically zero. Thus coefficients of some terms of Ψ are nonzero modulo p,
i.e. they are units in Wn+1(F ). So AΨ = 0 can not occur for any nonzero A, i.e.
Ψ can not be a zero divisor. So we have Ψ′ = 0. �

Now we give a proposition about the structure of p-th power division polynomials
of E.
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Proposition 1. Let E and E be given as above. Then the pn+1-division poly-
nomial Ψ of E is of the form Ψ = (Ψ0,Ψ1, . . . ,Ψn), where each Ψi is a poly-

nomial of xp
n+1

0 over the ring Z[a0, a1, . . . , ai, b0, b1, . . . , bi]. Moreover Ψi is lin-
ear with respect to ai and bi, i.e. Ψi = αiai + βibi + γi for some αi, βi, γi ∈
Z[a0, a1, . . . , ai−1, b0, b1, . . . , bi−1, x

pn+1

0 ].

Proof. Let Ψ = ΨE,pn+1 = Al+Al−1X+· · ·+A1X
l−1+A0X

l, where Ai ∈Wn+1(F )
and X = (x0, x1, . . . , xn). Indeed Ai are polynomials with integer coefficients in
the variables (a0, a1, . . . , an), (b0, b1, . . . , bn). To simplify computations which will
be made below, we may consider Ai as an element in Wn+1(F̄ ) via the inclusion
map Wn+1(F ) ↪→Wn+1(F̄ ). By Lemma 2 for each monomial AiX

l−i of Ψ we have
that (l − i)Ai ∈ (pn+1). Let νp denote the p-adic valuation of rational integers.
Let νp(l − i) = ti and l − i = ptivi for some non-negative rational integer vi. If
ti > n+ 1 then

Xvip
ti

= (x0, x1, . . . , xn)vip
ti

= (xvip
ti

0 , 0, . . . , 0).

If ti ≤ n+ 1, then Ai ∈ (pn+1−ti). Since char(F ) = p we have

Xpti = (x0, x1, . . . , xn)p
ti

= (xp
ti

0 , 0, 0 . . . , 0, yj+1, yj+2, . . . , yn)

= (xp
ti

0 , 0, 0 . . . , 0) + (0, 0, 0 . . . , 0, y′j+1, y
′
j+2, . . . , y

′
n),

where ys and y′s are some polynomials in xi, j ≥ ti and the coordinates of both yj+1

and y′j+1 are (j + 1). Put u = (xp
ti

0 , 0, 0 . . . , 0) and π = (0, 0, 0 . . . , 0, y′j+1, y
′
j+2,

. . . , y′n). So we have AiX
l−i = Ai(u+π)vi . To ease notation we set r = n+1−ti and

Ai = (0, 0, . . . , 0, cr, cr+1, . . . , cn). Note that πpn+1−ti = 0 and so AiX
l−i = Aiu

vi .
Thus in any case we have

AiX
l−i = Ai(x

vip
ti

0 , 0, 0, . . . , 0) = (0, . . . , 0, cr(x
vip

ti

0 )p
r

, cr+1(xvip
ti

0 )p
r+1

, . . . )

= (0, . . . , 0, crx
vip

n+1

0 , cr+1x
vpi p

n+1

0 , . . . ).

But Ai is a polynomial in (a0, a1, . . . , an) and (b0, b1, . . . , bn) with integer coeffi-
cients, so we have that each cs is a polynomial in a0, a1, . . . , as, b0, b1, . . . , bs with
integer coefficients. By addition and multiplication rules of the ring of Witt vectors
we can see that cs is linear with respect to as and bs. Adding all the monomials
AiX

l−i we can see that Ψ is of the desired form. �

After this preparation we can start the proof of Theorem 1.

Proof of Theorem 1. Since p ≥ 5 any elliptic curves E/K and E/Wn(K̄) can be
given by Weierstrass models

E : y2
0 = x3

0 + a0x0 + b0

E : (y0, y1, . . . , yn)2 = (x0, x1, . . . , xn)3 + (a0, a1, . . . , an)(x0, x1, . . . , xn)

+ (b0, b1, . . . , bn).

We denote the j-invariant of E by j. If j 6= 0, 1728 then we put t0 = j/(1728− j),
a0 = 3t0 and b0 = 2t0. Then E becomes y2

0 = x3
0 + 3t0x0 + 2t0. Similarly we put
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COMPUTATION OF THE CANONICAL LIFTING VIA DIVISION POLYNOMIALS 69

(a0, a1, . . . , an) = 3(t0, t1, . . . , tn) and (b0, b1, . . . , bn) = 2(t0, t1, . . . , tn), where ti for
i ≥ 1 are independent variables. If j = 0 we set ai = 0 and bi = ti for i = 0, 1, . . . , n.
Similarly if j = 1728 then we set bi = 0 and ai = ti for i = 0, 1, . . . , n. So in any

case Ψi can be written as a polynomial in xp
n+1

0 and tj over Z for j ≤ i, and is
linear with respect to ti. So for i ≥ 1 we can write Ψi = αiti + βi, where αi,

βi ∈ Z[t0, t1, . . . , ti−1, x
pn+1

0 ]. Now we take a generator P = (x0, y0) ∈ E(K̄)[pn+1].
Note that Ψ0 is the pn+1-division polynomial of the ordinary elliptic curve E/K.
So for P = (x0, y0) ∈ E[pn+1](K̄) we have that Ψ0(x0) = 0.

Now we do induction. For i = 1, both α1 and β1 is a polynomial in t0, and

xp
n+1

0 . The existence of the canonical lifting guarantees at least one solution of
α1t1 + β1 = 0 for some t1 ∈ K̄. So either α1 6= 0 or α1 = β1 = 0. In the second
case we can choose t1 ∈ K. So we may only consider the first case, i.e. the case
where t1 = β1/α1 is uniquely determined. But note that ti is independent of the
choice of x0. We can replace P = (x0, y0) by any other P = (x′0, y

′
0) ∈ E[pn+1](K̄).

Now let G be the absolute Galois group of K. For any σ ∈ G and x0 ∈ Ln we
have that σ(x0) ∈ Ln because the division polynomials are defined over Z[t0] and
t0 ∈ K. So we may replace x0 by σ(x0) for any σ ∈ G. If we see α1 and β1 as
functions of x0 we have that

σ(α1(x0)) = α1(σ(x0))

σ(β1(x0)) = β1(σ(x0)).

Thus we can see t1 as the unique solution of the system of equations

{σ(α1(x0))t1 + σ(β1(x0)) = 0}σ∈G.
But this implies that β1/α1 is fixed by G and so t1 = β1/α1 ∈ K ′ ∩Ks = K. Now
assume that we can find tj ∈ K such that αjtj + βj = 0 for any j = 1, 2, . . . , i− 1
and x0 ∈ Ln. Again we obtain a linear equation αiti + βi = 0. By the same
argument of the initial step we can see that ti is either uniquely determined or can
be arbitrarily chosen in K̄ according to whether αi = 0 or not. In the first case we
again see that G fixes βiαi which implies that ti must be in K. This completes the
proof. �

It may be possible to drop the assumption p ≥ 5 in the theorem. Note that if
p = 2 or 3 any elliptic curve given by the Weierstrass equation

y2 = x3 +Ax+B

is supersingular. In [2], Cassels starts with an equation of this form and proves
that (Ψ2

N )′ ∼= 0 (mod N). If this result can be improved for other types of Weier-
strass equations which correspond to ordinary elliptic curves for p = 2 and 3 then
Theorem 1 can be easily generalized to any positive characteristic. But in any case
we can use the method of the proof to compute the canonical lifting. We give a
simple example to illustrate this.

Let k = F3 and J be an indeterminate. Consider the elliptic curve E defined
over k(J)

E : y2
0 = x3

0 + x2
0 − t0.
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Note that j(E) = 1/t0, so E is ordinary. Also for any t0 ∈ k̄∗, E is an ordinary

elliptic curve over k̄. One can easily see that P = (x0, y0) = (t
1/3
0 , t

1/3
0 ) is a 3-

torsion point. Now we take a general Weierstrass equation over W2(k(J)) lifting
the above one

E : (y0, y1)2 = (x0, x1)3 + (x0, x1)2 + (−t0, t1).

So in the notation of Corollary 1 we have r′ = 1. Although in the proof we used
pr

′+1-torsion points for simplicity, it is enough to work with pr-torsion points in

practice. Let P̂ = ((t
1/3
0 , x1), (t

1/3
0 , y1)) be any lifting of P . We want that 3P̂ = O,

i.e. 2P̂ = −P̂ . So we just need to equate the x-coordinates of 2P̂ and −P̂ . Now
by an easy computation using the doubling formula we can see that t1 satisfies the
equation

x12
0 − x3

0t
3
0 − x6

0t0 + x3
0t

2
0 + t1 = 0.

Putting x0 = t
1/3
0 we see that t1 = 0.
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