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LOCAL BOUNDS, HARNACK’S INEQUALITY AND HÖLDER

CONTINUITY FOR DIVERGENCE TYPE ELLIPTIC

EQUATIONS WITH NON-STANDARD GROWTH

NOEMI WOLANSKI

Abstract. We obtain a Harnack type inequality for solutions to elliptic equa-
tions in divergence form with non-standard p(x)-type growth. A model equa-

tion is the inhomogeneous p(x)-Laplacian. Namely,

∆p(x)u := div
(
|∇u|p(x)−2∇u

)
= f(x) in Ω,

for which we prove Harnack’s inequality when f ∈ Lq0 (Ω) if max{1, N
p1
} <

q0 ≤ ∞. The constant in Harnack’s inequality depends on u only through

‖|u|p(x)‖p2−p1

L1(Ω)
. Dependence of the constant on u is known to be necessary

in the case of variable p(x). As in previous papers, log-Hölder continuity on
the exponent p(x) is assumed. We also prove that weak solutions are locally

bounded and Hölder continuous when f ∈ Lq0(x)(Ω) with q0 ∈ C(Ω) and

max{1, N
p(x)
} < q0(x) in Ω. These results are then generalized to elliptic

equations

divA(x, u,∇u) = B(x, u,∇u)

with p(x)-type growth.

1. Introduction

The p(x)-Laplacian, defined as

∆p(x)u := div(|∇u(x)|p(x)−2∇u),

extends the Laplacian, where p(x) ≡ 2, and the p-Laplacian, where p(x) ≡ p with
1 < p < ∞. This operator has been used in the modelling of electrorheological
fluids ([15]) and in image processing ([3, 4]), for instance.

Up to these days, a great deal of results have been obtained for solutions to
equations related to this operator. We will only state in this introduction those
results that are related to the ones we address in this paper.

One of the first issues that come into mind is the regularity of solutions to
equations involving the p(x)-Laplacian or more general elliptic equations with p(x)-
type growth. Another result —that among other things implies Hölder continuity
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of solutions— is Harnack’s inequality. These two issues have been addressed in
several papers and we will describe in this introduction those results we are aware
of.

Let us state, for the record, that our main concern when starting our research was
to obtain Harnack’s inequality for nonnegative weak solutions of the inhomogeneous
equation

∆p(x)u = f(x) in Ω (1.1)

that, strangely enough, had not been addressed previously.
By a weak solution we mean a function in W 1,p(x)(Ω) that satisfies (1.1) in the

weak sense. (See the definition and some properties of these spaces below).
When dealing with equations of p(x)-type growth it is always assumed that

1 < p1 ≤ p(x) ≤ p2 <∞ in Ω. Also, some kind of continuity is assumed since most
results on Lp spaces cease to hold without any continuity assumption. In particular,
in order to get Harnack’s inequality, log-Hölder continuity is always assumed and
we will do so in this paper. (See the definition of log-Hölder continuity below).

Harnack’s inequality for solutions of (1.1) with f ≡ 0 states that, for any non-
negative bounded weak solution u, there exists a constant C —that depends on
u— such that, for balls BR(x0) such that B4R(x0) ⊂ Ω,

sup
BR(x0)

u ≤ C
[

inf
BR(x0)

u+R
]
.

The dependence of C on u cannot be removed as observed with an example in
[11]. In [11] the authors get this inequality for quasiminimizers of the functional

J(u) =

∫
Ω

|∇u|p(x)

p(x)
dx.

Solutions to (1.1) with f ≡ 0 are minimizers, and therefore, quasiminimizers.

In [11] the authors improve the dependence of C on u. In fact, in [18] Harnack’s
inequality had been obtained with C depending on the L∞ norm of u. In [11]
instead, the dependence was improved to the Lt norm of u for arbitrarily small
t > 1 if R is small enough depending only on p and t. In particular, by taking
t = p1 = infΩ p(x) they get a dependence on ‖up(x)‖L1(B4R(x0)) that is finite by the
definition of a weak solution. In particular, no a priori L∞ bound is involved in
Harnack’s inequality.

Later on, the same inequality with a similar dependence on u was obtained for
solutions of an obstacle problem related to the functional J(u) in [10].

We would like to comment that [18] dealt with a more general equation. Namely,

∆p(x)u = (λb(x)− a(x))|u|p(x)−2u in Ω

with a and b nonnegative and bounded and λ a positive constant.
Also, Harnack’s inequality was proved for an operator called by the authors the

strong p(x)-Laplacian in [1].

As is well known, Hölder continuity is deduced form Harnack’s inequality. Any-
way, there are methods that give Hölder continuity for weak solutions without going
through Harnack’s inequality. A result of this kind that applies to more general
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HARNACK’S INEQUALITY FOR p(x)-TYPE ELLIPTIC EQUATIONS 75

equations —possibly inhomogeneous— can be found in [7] where the authors prove
that bounded weak solutions to

divA(x, u,∇u) = B(x, u,∇u) in Ω (1.2)

are locally Hölder continuous if A(x, s, ξ), B(x, s, ξ) satisfy the structure conditions:
For any M0 > 0 there exist positive constants α,C1, C2, b such that, for x ∈ Ω,
|s| ≤M0, ξ ∈ RN ,

(a) A(x, s, ξ) · ξ ≥ α|ξ|p(x) − b.
(b)

∣∣A(x, s, ξ)
∣∣ ≤ C1|ξ|p(x)−1 + b.

(c)
∣∣B(x, s, ξ)

∣∣ ≤ C2|ξ|p(x) + b.

The condition that u is bounded is essential when the growth of B in the gradient
variable is the one in (c). Boundedness is proved in [7] under the condition that
B(x, s, ξ) grows as (|s|+ |ξ|)p(x)−1, for instance.

Finally, let us comment that, under additional regularity assumptions on A
and B and some different structure conditions (in particular, under the necessary
assumption that p(x) be Hölder continuous), Hölder continuity of the derivatives
was obtained in [6]. (See also [2] for this result in the case of minimizers of the
functional J(u)).

In the present paper we are mainly concerned with Harnack’s inequality. Our
main goal is to obtain this inequality in the case of an inhomogeneous equation
with minimal integrability conditions on the right hand side —that in the case of
p constant stand for f ∈ Lq(Ω) with max{1, N/p} < q ≤ ∞— (see the classical
paper [16]).

On the other hand, in several applications we found ourselves dealing with fam-
ilies of bounded nonnegative weak solutions —that are not uniformly bounded,
not even in Lp(x)-norm— and in need of using Harnack’s inequality with the same
constant C for all the functions in the family. As stated above, we could not use
any of the known results (not even for solutions of (1.1) with f ≡ 0).

In the present paper, a careful follow up of the constants involved in the proofs

allows us to see that the dependence of C on u is actually through ‖up(x)‖p
4R
+ −p

4R
−

L1(B4R)

where p4R
+ = supB4R

p and p4R
− = infB4R

p. This makes all the difference in many
applications. Anyway, this was also the case in the previous papers on the homo-
geneous equation. Unfortunately, the results were not stated in this way so that
they could not be used in many situations.

We start our paper with the case of (1.1) in order to show the ideas and tech-
niques in the simplest possible inhomogeneous case. Then, in Section 3 we consider
weak solutions to (1.2) under the structure assumption: For any M0 > 0 there
exist a constant α and nonnegative functions g0, C0 ∈ Lq0(Ω), g1, C1 ∈ Lq1(Ω),

f, C2 ∈ Lq2(Ω), K1 ∈ L∞(Ω), K
p(x)
2 ∈ Lt2(Ω) with max{1, Np1

} < q2, t2 ≤ ∞
(p1 = infΩ p), max{1, N

p1−1} < q0, q1 ≤ ∞ such that, for every x ∈ Ω, |s| ≤ M0,

ξ ∈ RN ,

(1) A(x, s, ξ) · ξ ≥ α|ξ|p(x) − C0(x)|s|p(x) − g0(x),
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(2)
∣∣A(x, s, ξ)

∣∣ ≤ g1(x) + C1(x)|s|p(x)−1 +K1(x)|ξ|p(x)−1,

(3)
∣∣B(x, s, ξ)

∣∣ ≤ f(x) + C2(x)|s|p(x)−1 +K2(x)|ξ|p(x)−1,

and we prove

Theorem 1.1. Let Ω ⊂ RN be a bounded, open set and let p be log-Hölder con-
tinuous in Ω. Let A(x, s, ξ), B(x, s, ξ) satisfy the structure conditions (1), (2) and
(3). Let u ≥ 0 be a bounded weak solution to (1.2) and let M0 be such that u ≤M0

in Ω. Let Ω′ ⊂⊂ Ω. Then, there exist C and 0 < R0 ≤ min{1, 1
4 dist(Ω′, ∂Ω)} such

that, for every x0 ∈ Ω′, 0 < R ≤ R0,

sup
BR(x0)

u ≤ C
[

inf
BR(x0)

u+R+ µR
]
,

where

µ =
[
R1− N

q2 ‖f‖Lq2 (B4R(x0))

] 1

p4R
− −1

+
[
R−

N
q0 ‖g0‖Lq0 (B4R(x0))

] 1

p4R
− −1

+
[
R−

N
q1 ‖g1‖Lq1 (B4R(x0))

] 1

p4R
− −1

.

The constant C depends only on α, qi, the log-Hölder modulus of continuity of p

in Ω, µp
4R
+ −p

4R
− , Mp4R

+ −p
4R
− , ‖Ci‖Lqi (B4R(x0)), ‖Kp(x)

1 ‖L∞(B4R(x0)), and

‖Kp(x)
2 ‖Lt2 (B4R(x0)), where p4R

+ = supB4R(x0) p, p4R
− = infB4R(x0) p and

M = ‖u‖
L
p4R
− (Ω)

. (Theorem 3.1).

Observe that µp
4R
+ −p

4R
− is bounded independently of R.

Observe that, when the functions in the structure conditions are independent of
M0, neither C nor µ depend on the L∞ norm of u. Moreover, in this case any
weak solution is locally bounded (see Remark 3.2).

As usual, from Harnack’s inequality we get Hölder continuity of bounded weak
solutions (Corollary 3.1).

Let us remark that in this paper we prove that solutions to (1.1) with f ∈
Lq0(x)(Ω) with q0 ∈ C(Ω) and max{1, N

p(x)} < q0(x) in Ω are locally bounded

(Proposition 2.1). In the case of equation (1.2), if the functions in the structure
conditions are independent of M0, the local boundedness of weak solutions also
holds (see Remark 3.2).

For solutions of (1.1) with f ∈ Lq0(x)(Ω), with q0 as above, we also get local
Hölder continuity with constant and exponent depending only on the compact
subset, p(x), q0(x), ‖|f |q0(x)‖L1(Ω) and ‖|u|p(x)‖p2−p1

L1(Ω) (Corollary 2.3).

With the same ideas, a similar result can be obtained for solutions to (1.2)
although we do not state this result.

On the other hand, if we replace the structure condition (3) by

(3’)
∣∣B(x, s, ξ)

∣∣ ≤ f(x) + C2(x)|s|p(x)−1 +K2(x)|ξ|p(x)−1 + b|ξ|p(x)

with b ∈ R>0, we obtain Harnack’s inequality for bounded weak solutions (Theo-
rem 3.2). In this case, the constant in Harnack’s inequality depends also on bM0

where M0 is a bound of u.
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Again under the structure condition (3’), we deduce that if u is a bounded weak
solution, then u is locally Hölder continuous (Corollary 3.2).

Finally, let us observe that even for the simplest homogeneous equation (1.1)
with f ≡ 0, Harnack’s inequality does not imply the strong maximum principle
which, in the case of p constant, states that a nonnegative weak solution that
vanishes at a point of a connected set must be identically zero. Therefore, a proof
of this principle that does not make use of Harnack’s inequality is needed. For the
case of p constant, an alternative proof was produced in [17]. We adapt this proof
for the variable exponent case in Section 4. We also prove a boundary Hopf lemma.
For the sake of simplicity, we restrict ourselves to the p(x)-Laplacian.

Notation and assumptions

Throughout the paper N will denote the spatial dimension and Ω will be an
open subset of RN .

Assumptions on p(x). We will assume that the function p(x) verifies

1 < p1 ≤ p(x) ≤ p2 <∞, x ∈ Ω.

When we are restricted to a ball Br we use pr− = p−(Br) and pr+ = p+(Br) to
denote the infimum and the supremum of p(x) over Br.

We also assume that p(x) is continuous up to the boundary and that it has
a modulus of continuity ωR : R → R, i.e. |p(x) − p(y)| ≤ ωR(|x − y|) if x, y ∈
BR(x0) ⊂ Ω. We will assume that

ωR(r) =
CR∣∣ log r

∣∣ for 0 < r ≤ 1/2,

and will refer to such a ωR as a log-Hölder modulus of continuity of p in BR(x0).
Observe that p log-Hölder continuous implies that

r−(pr+−p
r
−) ≤ KR for 0 < r ≤ R

for a constant KR related to CR. This fact will be used throughout the paper.
We will say that p is log-Hölder continuous in Ω if ωR is independent of the ball

BR(x0) ⊂ Ω.

Definition of weak solution. Let 1 < p1 ≤ p(x) ≤ p2 <∞ in Ω.
The space Lp(x)(Ω) stands for the set of measurable functions u such that

|u(x)|p(x) ∈ L1(Ω). This is a Banach space with norm

‖u‖Lp(·)(Ω) = ‖u‖p(·) = inf
{
λ > 0 :

∫
Ω

( |u(x)|
λ

)p(x)

dx ≤ 1
}
.

The dual space of Lp(x)(Ω) is Lp
′(x)(Ω) with 1

p(x) + 1
p′(x) = 1 for x ∈ Ω and

duality pairing
∫

Ω
fg dx.

Then, we let W 1,p(·)(Ω) denote the space of measurable functions u such that u
and the distributional derivative ∇u are in Lp(·)(Ω). The norm

‖u‖1,p(·) := ‖u‖p(·) + ‖|∇u|‖p(·)
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makes W 1,p(·) a Banach space.

We call W
1,p(·)
0 (Ω) the closure in the norm of W 1,p(·) of the set of those functions

in W 1,p(·)(Ω that have compact support in Ω. When p is log-Hölder continuous, it
coincides with the closure of C∞0 (Ω).

Observe that u ∈W 1,p(·) implies that |∇u|p(x)−2∇u ∈
(
Lp
′(x)
)N

.
For more definitions and results on these spaces we refer to [5] and [13].

Definition 1.1. We say that u is a weak solution to (1.2) if u ∈ W 1,p(x)(Ω) and,

for every φ ∈W 1,p(x)
0 (Ω), there holds that∫

A(x, u(x),∇u(x)) · ∇φ(x) dx =

∫
B(x, u(x),∇u(x))φ(x) dx.

2. Harnack’s inequality for solutions to ∆p(x)u = f

In this section we will prove the following result.

Theorem 2.1. Assume that p is locally log-Hölder continuous in Ω. Let x0 ∈ Ω
and 0 < R ≤ 1 is such that B4R(x0) ⊂ Ω. There exists C such that, if u is a
nonnegative weak solution of the problem

∆p(x)u = f in Ω,

with f ∈ Lq0(Ω) for some max{1, N
p4R
−
} < q0 ≤ ∞, then

sup
BR

u ≤ C
[

inf
BR

u+R+Rµ
]
, (2.1)

where

µ =
[
R1− N

q0 ‖f‖Lq0 (B4R(x0))

] 1

p4R
− −1 .

The constant C depends only on N , p4R
− , p4R

+ , s, q0, ω4R, µp
4R
+ −p

4R
− ,

‖u‖p
4R
+ −p

4R
−

Lsq′ (B4R(x0))
, ‖u‖p

4R
+ −p

4R
−

Lsr0 (B4R(x0)) (for certain q′ = q
q−1 , with r0, q ∈ (1,∞) and

1
q0

+ 1
q + 1

r0
= 1 depending on N , q0 and p4R

− ). Here s ≥ p4R
+ − p4R

− is arbitrary and

ω4R is the modulus of log-Hölder continuity of p in B4R(x0).

The proof will be a consequence of three lemmas.

Lemma 2.1 (Caccioppoli type estimate). Let u ≥ 1 and bounded such that
∆p(x)u ≥ −H(x)up(x)−1 in a ball B and γ > 0, or ∆p(x)u ≤ H(x)up(x)−1 in
B and γ < 0. Here H ≥ 0 is a measurable function. Then, for η ∈ C∞0 (B) there
holds that∫

B

uγ−1|∇u|p−ηp+ ≤
∫
B

uγ−1ηp+ + C|γ|−p+

∫
B

uγ+p(x)−1ηp+−p(x)|∇η|p(x)

+ C|γ|−1

∫
B

H(x)uγ+p(x)−1ηp+ ,

(2.2)

with C = C(p+, p−). Here p+ = maxB p, p− = minB p.
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Proof. As is usual in the proof of these type of estimates we take as a test function

uγηp+ ∈ W
1,p(x)
0 (Ω), since u ∈ W 1,p(x)(Ω) and we are assuming that 1 ≤ u ∈

L∞(Ω).
Assume first that ∆p(x)u ≥ −H(x)up(x)−1 and γ > 0. We get

γ

∫
uγ−1ηp+ |∇u|p(x) ≤ −p+

∫
uγηp+−1|∇u|p(x)−2∇u · ∇η +

∫
H(x)uγ+p(x)−1ηp+

≤ εp+

∫
1

p′(x)
|∇u|p(x)uγ−1ηp+

+

∫
p+

εp(x)−1p(x)
uγ+p(x)−1ηp+−p(x)|∇η|p(x)

+

∫
H(x)uγ+p(x)−1ηp+ ,

where 0 < ε ≤ 1 is to be chosen, and 1
p(x) + 1

p′(x) = 1.

Now, we choose ε = min{1, γ
2(p+−1)} so that

εp+

p′(x)
≤ γ

2
,

p+

εp(x)−1p(x)
≤ C(p+, p−)γ−p++1,

and, in order to get (2.2), we bound∫
uγ−1ηp+ |∇u|p− ≤

∫
uγ−1ηp+ +

∫
uγ−1ηp+ |∇u|p(x).

Now, if ∆p(x)u ≤ H(x)up(x)−1 and γ < 0, since u ≥ 1 we can proceed as before
and we get

γ

∫
uγ−1ηp+ |∇u|p(x) ≥ −p+

∫
uγηp+−1|∇u|p(x)−2∇u · ∇η −

∫
H(x)uγ+p(x)−1ηp+ .

Dividing by γ we get∫
uγ−1ηp+ |∇u|p(x) ≤ Cp+|γ|−p+

∫
uγηp+−1|∇u|p(x)−2∇u · ∇η

+ C|γ|−1

∫
H(x)uγ+p(x)−1ηp+ .

Now the proof continues as before and we obtain (2.2). �

Lemma 2.2. Let p be log-Hölder continuous in B4. Let u ≥ 1 be bounded and such
that ∆p(x)u ≥ −H(x)up(x)−1 in B4, where 0 ≤ H ∈ Lq0(B4), with max{1, N

p4
−
} <

q0 ≤ ∞. Let t > 0. Then, for every 0 < ρ1 < ρ2 ≤ 4 there holds that

sup
Bρ1

u ≤ C
( ρ2

ρ2 − ρ1

)C(
–

∫
–
Bρ2

ut
)1/t

. (2.3)

The constant C depends only on s, p4
+, p4

−, Mp4
+−p

4
− , ω4, ‖H(x)‖Lq0 (B4), q0, q

and t. Here M =
(

–
∫
–
B4
usq
′)sq′

+
(

–
∫
–
B4
usr0

)sr0
, with r0, q

′ ∈ (1,∞) depending on

q0, p4
−, N and s ≥ p4

+ − p4
− is arbitrary.
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Proof. We use Moser’s iteration technique and we follow the lines of the proof of
Lemma 4.6 in [10] for the treatment of the variable exponent. In our situation we
are more careful with the choice of κ below in order to get our result, due to the
presence of a right hand side.

In what follows p+ and p− stand for the maximum and minimum values of p in
Bρ.

Let 0 < σ < ρ ≤ 4. Let η ∈ C∞0 (Bρ) such that η ≡ 1 in Bσ and |∇η| ≤ C 1
ρ−σ .

Let κ = N̂
N̂−p4

−
with N̂ = N when N > p4

− and, p4
− < N̂ < q0p

4
− when N ≤ p4

−.

Then, for γ ≥ γ0 > 0 using (2.2), Sobolev inequality and the fact that κp− ≤
p∗− = Np−

N−p− when N > p4
−, u ∈W 1,p−(Bρ) and, W

1,p−
0 (Bρ) ⊂ Lt(Bρ) continuously

for every 1 < t <∞ when N ≤ p4
− ≤ p−,(

–

∫
–
(
u
γ−1+p−
p− ηp+/p−

)κp−)1/κp−

≤ Cρ
(

–

∫
–
∣∣∇(u γ−1+p−

p− ηp+/p−
)∣∣p−)1/p−

≤ C γ − 1 + p−
p−

ρ
(

–

∫
– uγ−1ηp+ |∇u|p−

)1/p−
+ Cρ

p+

p−

(
–

∫
– uγ−1+p−ηp+−p− |∇η|p−

)1/p−

≤ Cρ(1 + γ)

[(
–

∫
– uγ−1ηp+

)1/p−
+
(

–

∫
– uγ−1+p(x)ηp+−p(x)|∇η|p(x)

)1/p−

+
(

–

∫
–H(x)uγ−1+p(x)ηp+

)1/p−
]

+ Cρ
(

–

∫
– uγ−1+p−ηp+−p− |∇η|p−

)1/p−
.

Here the constant C depends on p4
+, p4

− and γ0.

Since, by the choice of N̂ , there holds that q0 >
N̂
p4
−

, there exists 1 < q < N̂
N̂−p4

−

such that 1
q + 1

q0
< 1. Let r0 ∈ (1,∞) given by 1

q + 1
q0

+ 1
r0

= 1. Now we bound

–

∫
– uγ−1ηp+ ≤ –

∫
– uγ−1+p−ηp+ ≤

(
–

∫
– u(γ−1+p−)qηqp+

)1/q

≤ C
( 1

ρ− σ

)p+
(

–

∫
–
Bρ

u(γ−1+p−)q
)1/q

since η ≤ 1 ≤ 4
(ρ−σ) . And, with M1 =

(
–
∫
–
B4
usq
′
)1/sq′

, q′ = q
q−1 , s ≥ p+ − p−,

–

∫
– uγ−1+p(x)ηp+−p(x)|∇η|p(x) ≤ C

( 1

ρ− σ

)p+

–

∫
–
Bρ

uγ−1+p−up(x)−p−

≤ C
( 1

ρ− σ

)p+
(

–

∫
–
Bρ

u(γ−1+p−)q
)1/q(

–

∫
–
Bρ

u(p(x)−p−)q′
)1/q′

≤ C
( 1

ρ− σ

)p+

M
p+−p−
1

(
–

∫
–
Bρ

u(γ−1+p−)q
)1/q

.
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Similarly,

–

∫
– uγ−1+p−ηp+−p− |∇η|p− ≤ C

( 1

ρ− σ

)p+
(

–

∫
–
Bρ

u(γ−1+p−)q
)1/q

.

Finally, with M2 =
(

–
∫
–
B4
usr0

)1/sr0
, s ≥ p+ − p−,

–

∫
–H(x)uγ−1+p(x)ηp+ ≤ –

∫
–
Bρ

H(x)uγ−1+p−up+−p−

≤
(

–

∫
–
Bρ

H(x)q0
)1/q0(

–

∫
–
Bρ

u(γ−1+p−)q
)1/q(

–

∫
–
Bρ

ur0(p+−p−)
)1/r0

≤ CMp+−p−
2

( 1

ρ− σ

)p+
(

–

∫
–
Bρ

u(γ−1+p−)q
)1/q

,

with C depending on q0, p+, p− and ‖H‖Lq0 (B4). In fact, ρ−
N
q0 ≤ Cρ−p

4
− ≤

Cρ−p− ≤ Cρ−p+ ≤ (ρ− σ)−p+ .
Since M = M1 +M2 ≥ 1 we conclude that

(
–

∫
–
(
u
γ−1+p−
p− ηp+/p−

)κp−)1/κp−
≤ Cρ(1 + γ)

M
p+
p−
−1

(ρ− σ)p+/p−

(
–

∫
–
Bρ

u(γ−1+p−)q
)1/qp−

,

with C depending on q0, p4
+, p4

−, ‖H(x)‖Lq0 (B4) and γ0.
Let us now take β > p− − 1. Then, β = γ − 1 + p−, with γ = β − (p− − 1) > 0.

Recalling that ρp− ≤ Cρp+ for a constant C that depends only on the log-Hölder
continuity of p,(

–

∫
–
Bσ

uκβ
)1/κ

≤ C
( ρ
σ

)N
κ

Mp+−p−
( ρ

ρ− σ

)p+

(1 + β)p−
(

–

∫
–
Bρ

uqβ
)1/q

. (2.4)

Let us call

φ(f, t, E) :=
(

–

∫
–
E

|f |t
)1/t

.

Then, if β > p− − 1, s ≥ p+ − p−, we have for a constant C depending on p4
+, p4

−,
‖H(x)‖Lq0 (B4) and γ0 > 0 such that β − (p− − 1) ≥ γ0,

φ(u, κβ,Bσ) ≤ C1/βM
p+−p−

β (1 + β)p−/β
( ρ
σ

) N
κβ
( ρ

ρ− σ

)p+/β

φ(u, qβ,Bρ).

And we have a result quite similar to Lemma 4.6 in [10]. For the sake of com-
pleteness we finish the proof.

To this end, we write κβ = κ̄β̄ with κ̄ = κ
q and β̄ = qβ. Recall that, due to the

choice of q, we have q < κ. So that κ̄ > 1 and

φ(u, κ̄β̄, Bσ) ≤ Cq/β̄M
q(p+−p−)

β̄ (1+β̄)qp−/β̄
( ρ
σ

) N
κ̄β̄
( ρ

ρ− σ

)qp+/β̄

φ(u, β̄, Bρ). (2.5)
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Let 0 < ρ1 < ρ2 ≤ 4 and let us call rj = ρ1 + 2−j(ρ2 − ρ1). We will consider
(2.5) with σ = rj+1 and ρ = rj . Observe that

ρ

σ
=

rj
rj+1

≤ 2,
ρ

ρ− σ
=

rj
rj − rj+1

=
ρ1 + 2−j(ρ2 − ρ1)

2−(j+1)(ρ2 − ρ1)
≤ 2j+1 ρ2

ρ2 − ρ1
.

Assume first that t > q(p4
+ − 1). Take β̄j = κ̄jt. There holds that β̄j = qβj with

βj = κ̄j tq . And, γj = βj − (p
rj
− − 1) ≥ t

q − (p4
+ − 1) = γ0 > 0.

Then, the constant C in every step of the iteration may be taken depending on

γ0 and independent of j. Thus, we have with C0 depending on p4
+.p

4
−, Mp4

+−p
4
− ,

ω4, ‖H(x)‖Lq0 (B4), q0 and t,

φ(u, κ̄j+1t, Brj+1
) ≤ Cqt

−1κ̄−jM
q(p4

+−p
4
−)

tκ̄j (1 + κ̄jt)κ̄
−jqt−1p4

+

( rj
rj+1

)Nt−1κ̄−(j+1)

×
( rj
rj − rj+1

)qp4
+t
−1κ̄−j

φ(u, κ̄jt, Brj )

≤ C κ̄
−j

0 (1 + κ̄jt)κ̄
−jqt−1p4

+

(
2j+1 ρ2

ρ2 − ρ1

)qp4
+t
−1κ̄−j

φ(u, κ̄jt, Brj ).

Iterating this inequality we get

φ(u, κ̄j+1t, Brj+1) ≤ C
∑j
i=0 κ̄

−i

0

( j∏
i=0

(1 + tκ̄i)t
−1κ̄−i

)qp4
+
( ρ2

ρ2 − ρ1

)qp4
+t
−1 ∑j

i=0 κ̄
−i

×
(
2qp+t

−1)∑j
i=0(i+1)κ̄−i

φ(u, t, Bρ2
).

Letting j →∞,

sup
Bρ1

u ≤ C
1

1−κ̄−1

0

( ∞∏
i=0

(1 + tκ̄i)t
−1κ̄−i

)qp4
+(

2qp
4
+t
−1)∑∞

i=0(i+1)κ̄−i

×
( ρ2

ρ2 − ρ1

)qp+t
−1 1

1−κ̄−1
(

–

∫
–
Bρ2

ut
)1/t

,

and the lemma is proved for t > q(p4
+ − 1) since

∏∞
i=0(1 + tκ̄i)t

−1κ̄−i ≤ C.
In order to get the result for 0 < t ≤ q(p4

+ − 1) we proceed again as in [10] and
use the extrapolation result Lemma 3.38 in [12] with s = ∞, p > q(p4

+ − 1) fixed
(here q is the one in our paper, s and p the ones in [12]) and q = t (here q is the
one in [12] and not the one in our paper) that we state below. �

Lemma 2.3 (Lemma 3.38 in [12]). Suppose that 0 < q < p < s ≤ ∞, ξ ∈ R, and
that B = Br(x0) is a ball. If a nonnegative function v ∈ Lp(B) satisfies(

–

∫
–
λB′

vs dx
)1/s

≤ c1(1− λ)ξ
(

–

∫
–
B′
vp dx

)1/p

for each ball B′ = B(x0, r
′) with r′ ≤ r and for all 0 ≤ λ < 1, then(

–

∫
–
λB

vs dx
)1/s

≤ c(1− λ)ξ/θ
(

–

∫
–
B

vq dx
)1/q
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for all 0 ≤ λ < 1. Here c = c(p, q, s, ξ, c1) and θ ∈ (0, 1) such that

1

p
=
θ

q
+

1− θ
s

.

Remark 2.1. Observe that it is enough to prove Lemma 2.2 for t ≥ t0 > 0 with t0
arbitrary depending only on p4

+, p4
−, q, and then use Lemma 2.3 in order to get the

result for 0 < t < t0. This means that, in order to prove Lemma 2.2, it is enough
to get (2.5) for β̄ ≥ qβ0 with, for instance, β0 ≥ 2(p4

+ − 1) (this means to have
γ0 ≥ p4

+ − 1).

Now, we prove a weak Harnack inequality for supersolutions. There holds

Lemma 2.4 (Weak Harnack’s inequality). Let p be log-Hölder continuous in B4.
Let 0 ≤ H ∈ Lq0(B4) with max{1, N

p4
−
} < q0 ≤ ∞ and let s ≥ p4

+ − p4
−. There

exists t0 > 0 depending only on s, p4
−, p4

+, ‖H(x)‖Lq0 (B4), ω4 and Mp4
+−p

4
− , with

M =
(

–
∫
–
B4
usq
′)sq′

+
(

–
∫
–
B4
usr0

)sr0
for some choice of 1 < q′ = q

q−1 <∞ depending

on N , p4
−, q0, 1 < r0 < ∞, with 1

q0
+ 1

q + 1
r0

= 1; C > 0 depending on the same

constants and also on t0, q0, q such that, for u ≥ 1 and bounded with ∆p(x)u ≤
H(x)up(x)−1 in B4 there holds that

inf
B1

u ≥ C
(

–

∫
–
B2

ut0
)1/t0

.

Proof. The proof follows the lines of the one of Lemma 2.2. This time we use
Caccioppoli’s inequality (2.2) with γ < −γ0 = −(p4

− − 1) < 0. We call again

κ = N̂
N̂−p4

−
with N̂ as in the proof of Lemma 2.2 and choose q and r0 as in that

Lemma. Then, we take 0 < σ < ρ ≤ 4. For β = γ + (p− − 1) < 0 we prove that

φ(u, qβ,Bρ) ≤ C1/|β|(1 + |β|)p+/|β|
( ρ

ρ− σ

)p+/|β|
φ(u, κβ,Bσ). (2.6)

Here C is a constant depending on s, q0, q, p4
+, p4

−, γ0 = p4
− − 1, ‖H(x)‖Lq0 (B4)

and Mp4
+−p

4
− .

In fact, we proceed as in the proof of Lemma 2.2 until we get (2.4). Then, since
β < 0 we get (2.6).

Observe that (2.6) holds for any β < 0 since this is equivalent to γ < −(p−−1) ≤
−(p4

− − 1).
In order to finish the proof it is necessary to prove that there exists t0 > 0

and C̄ > 0 depending only on p4
+, p4

−, ‖H(x)‖Lq0 (B4), M
p4

+−p
4
− and the log-Hölder

modulus of continuity of p in B4 such that

φ(u, t0, B2) ≤ C̄φ(u,−t0, B2). (2.7)

Then, we choose β = − t0q in (2.6) in order to start the iterative process.
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In order to prove (2.7), we let 0 < r ≤ 2 and we bound by using Caccioppoli’s
inequality (2.2) with γ = 1− p2r

− , η ∈ C∞0 (B2r) with η ≡ 1 in Br, |∇η| ≤ C
r ,

–

∫
–
Br

|∇ log u|p
2r
− = –

∫
–
Br

u−p
2r
− |∇u|p

2r
− ≤ C –

∫
–
B2r

u−p
2r
− ηp

2r
+ |∇u|p

2r
−

≤ C –

∫
–
B2r

u−p
2r
− ηp

2r
+ +

C

(p2r
− − 1)p

2r
+

–

∫
–
B2r

up(x)−p2r
− ηp

2r
+ −p(x)|∇η|p(x)

+
C

p2r
− − 1

–

∫
–
B2r

H(x)up(x)−p2r
− ηp

2r
+ −p(x)

≤ C(p4
+, p

4
−)
[
1 + r−p

2r
+ M

p4
+−p

4
−

1

]
+

C

p2r
− − 1

–

∫
–
B2r

H(x)up(x)−p2r
− .

The last term can be bound in the following way:

–

∫
–
B2r

H(x)up(x)−p2r
− ≤

(
–

∫
–
B2r

Hq0
)1/q0(

–

∫
–
B2r

u(p2r
+ −p

2r
− )q′0

)1/q′0

≤ Cr−N/q0‖H‖Lq0 (B4)

(
–

∫
–
B2r

u(p2r
+ −p

2r
− )r0

)1/r0

≤ Cr−p
2r
+ ‖H‖Lq0 (B4)M

p2r
+ −p

2r
−

2

since q′0 ≤ r0, N
q0
< p4
− ≤ p2r

− ≤ p2r
+ , 0 < r ≤ 2.

Gathering all these estimates we get

–

∫
–
Br

|∇ log u|p
2r
− ≤ C(p4

+, p
4
−, ‖H‖Lq0 (B4), ω4) r−p

2r
+ Mp4

+−p
4
− .

Now the proof follows in a standard way. By Poincaré’s inequality applied to

f = log u, using that rp
2r
− ≤ Crp

2r
+ ,

–

∫
–
Br

|f − fBr |p
2r
− ≤ Crp

2r
− –

∫
–
Br

|∇f |p
2r
− ≤ C(p4

+, p
4
−, ‖H‖Lq0 (B4), ω4)Mp4

+−p
4
− .

Since this holds for every ball Br with r ≤ 2, by the John–Nirenberg Lemma
there exist constants C1 and C2 depending only on p4

−, p4
+, ‖H‖Lq0 (B4), ω4 and

Mp4
+−p

4
− such that

–

∫
–
B2

eC1|f−fB2
| ≤ C2,

where fB2
= –
∫
–
B2
f .

We conclude that(
–

∫
–
B2

eC1f
)(

–

∫
–
B2

e−C1f
)

=
(

–

∫
–
B2

eC1(f−fB2
)
)(

–

∫
–
B2

e−C1(f−fB2
)
)

≤
(

–

∫
–
B2

eC1|f−fB2
|
)2

≤ C2
2 ,

and we have (2.7) with t0 = C1.
Now the proof of the lemma ends by an iterative process similar to the one in

Lemma 2.2. In fact, we call κ̄ = κ
q , β̄ = qβ, and for the iteration we let β̄j = −κ̄jt0,
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rj = 1 + 2−j . Hence, γj = βj − (p
rj
− − 1) = −κ̄j t0q − (p

rj
− − 1) ≤ −γ0 := −(p4

− − 1).

Then, with C̄ the constant in (2.7), using that p
rj
− , p

rj
+ ≤ p4

+,

C̄−1φ(u, t0, B2) ≤ φ(u,−t0, B2) ≤ C
∑j
i=0 κ̄

−i

0

( j∏
i=0

(1 + t0κ̄
i)t
−1κ−i

)q0p4
+

×
(
2qp

4
+t
−1
0
)∑j

i=0(i+2)κ̄−i

φ(u,−κ̄j+1t0, Brj+1
).

Thus, (
–

∫
–
B2

ut0
)1/t0

≤ C lim
j→∞

φ(u,−κjt0, Brj ) = C inf
B1

u,

and the lemma is proved. �

We can improve on Lemma 2.4 in the following way (see [14] where this im-
provement was done in the case of p constant):

Lemma 2.5 (Improved weak Harnack’s inequality). Under the assumptions of
Lemma 2.4, let 0 < t < N

N−p4
−

(p4
−−1) if p4

− < N , t > 0 arbitrary if p4
− ≥ N . Then,

there exists a constant C with the same dependence as the constant in Lemma 2.4
and also depending on t, such that(

–

∫
–
B2

ut
)1/t

≤ C inf
B1

u.

Proof. We prove that, for every t in this range, t0 the one in Lemma 2.4, 0 < ρ1 <
ρ2 ≤ 4, there holds that (

–

∫
–
Bρ1

ut
)1/t

≤ C̄
(

–

∫
–
Bρ2

ut0
)1/t0

(2.8)

for a constant C̄ depending on t, t0, ρ1, ρ2, Mp4
+−p

4
− , p4

+, p4
−, and q0.

This will prove the lemma if we replace in the proof of Lemma 2.4 the ball B2

by Bρ2 with 2 < ρ2 < 4 and we take ρ1 = 2 in (2.8).
In order to prove (2.8), we proceed as in Lemma 2.4 but we are more careful

with the choice of κ. In fact, as in Lemma 2.4 we choose κ = N̂
N̂−p4

−
, with N̂ = N

if p4
− < N and p4

− < N̂ < q0p
4
− if p4

− ≥ N . In this latter case, we choose N̂ close

enough to p4
− so that κ−1t = t

(
1− p4

−

N̂

)
< p4
− − 1.

Observe that κ−1t < p4
− − 1 also if p4

− < N . In fact, in this case we have

κ = N
N−p4

−
and the inequality holds by our hypothesis on t.

Then, we choose q as in Lemma 2.4. That is, 1 ≤ q′0 < q < κ.
In order to prove (2.8) we go back to (2.4). Recall that we get this inequality if

γ ≤ −γ0 < 0 and β = γ + p− − 1.
Then, as in Lemma 2.4, we take β̄ = qβ, κ̄ = κ

q > 1.

Now, for j ∈ N and i = 0, 1, . . . , j we let β̄ij = κ̄i−(j+1)t. Then, βij = κ̄i−(j+1) t
q

and γij = βij − (p− − 1) ≤ κ̄−1 t
q − (p− − 1) ≤ κ−1t− (p4

− − 1) = −γ0 < 0.
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Now, we iterate inequality (2.5) for i = 0, . . . , j with ρ = ri, σ = ri+1, and
ri = ρ1 + 2−i(ρ2 − ρ1). We get

‖u‖
Lκ̄β̄jj (Brj+1

)
≤ C̄‖u‖

Lβ̄0j (Br0 )

for a constant C̄ depending on j, q, ρ1, ρ2, Mp4
+−p

4
− , p4

+, p4
−. Thus, we get (2.8)

once we observe that ρ1 ≤ rj+1, r0 = ρ2, κ̄β̄jj = t, β̄0j = κ̄−(j+1)t, and we choose

j large so that κ̄−(j+1)t ≤ t0. �

Now, by modifying the proof of Lemmas 2.1 and 2.2 we will prove that weak
subsolutions are locally bounded from above and weak supersolutions are locally
bounded from below. This is already known when p1 > N since weak super- and
sub-solutions belong to W 1,p1(Ω) ⊂ L∞(Ω) if p1 > N .

We start with a variation of Caccioppoli’s inequality:

Lemma 2.6. Let u ∈ W 1,p(x)(B) such that ∆p(x)u ≥ −H(x)(1 + |u|)p(x)−1 in a
ball B and γ ≥ 1. Here H ≥ 0 is a measurable function. Then, for η ∈ C∞0 (B)
there holds that∫

B

Fn(u+ + 1)|∇u+|p−ηp+ ≤
∫
B

Fn(u+ + 1)ηp+

+ C

∫
B

u
p(x)
+ Fn(u+ + 1)ηp+−p(x)|∇η|p(x)

+ C

∫
B

H(x)(u+ + 1)p(x)−1Gn(u+ + 1)ηp+ ,

(2.9)

with u+ = max{u, 0}, C = C(p+, p−). Here p+ = maxB p, p− = minB p.
In (2.9), the functions Fn and Gn are defined, for s ≥ 1, by

Gn(s) =

∫ s

1

Fn(τ) dτ,

Fn(s) =

{
sγ−1 if 1 ≤ s ≤ n,
nγ−1 if s ≥ n.

Proof. We proceed as in the proof of Lemma 2.1. This time we take as test function

φ = Gn(u+ + 1)ηp+ ∈W 1,p(x)
0 (B) for every γ ≥ 1. We get∫

Fn(u+ + 1)|∇u+|p(x)ηp+ ≤ −p+

∫
Gn(u+ + 1)ηp+−1|∇u+|p(x)−1|∇η|

+

∫
H(x)(u+ + 1)p(x)−1Gn(u+ + 1)ηp+

≤ C
∫
u+Fn(u+ + 1)ηp+−1|∇u+|p(x)−1|∇η|

+

∫
H(x)(u+ + 1)p(x)−1Gn(u+ + 1)ηp+ ,

since Gn(u+ + 1) = 0 if u+ = 0 and Gn(s) ≤ Fn(s)(s−1), as Fn is a nondecreasing
function in [1,∞).
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Now, by applying Young inequality we get∫
Fn(u+ + 1)|∇u+|p(x)ηp+ ≤ C

∫
u
p(x)
+ Fn(u+ + 1)ηp+−p(x)|∇η|p(x)

+

∫
H(x)(u+ + 1)p(x)−1Gn(u+ + 1)ηp+ ,

and the lemma is proved. �

We can now prove the weak maximum principle. There holds

Lemma 2.7. Let p be log-Hölder continuous in B4. Let u ∈W 1,p(x)(B4) such that
∆p(x)u ≥ −H(x)(|u|+ 1)p(x)−1 in B4, where 0 ≤ H ∈ Lq0(B4) with max{1, N

p4
−
} <

q0 ≤ ∞. Then, there exists 0 < ρ̄ ≤ 4 such that, for every 0 < ρ1 < ρ2 < ρ̄ and for
every 0 < t <∞, there holds that

sup
Bρ1

u+ ≤ C
( ρ2

ρ2 − ρ1

)C(
–

∫
–
Bρ2

(u+ + 1)t
)1/t

. (2.10)

The constant C depends only on p4
+.p

4
−, Mp4

+−p
4
− , ‖H(x)‖Lq0 (B4), t and q0.

ρ̄ depends on q0, p
4
− and the log-Hölder modulus of continuity of p in B4. Here

M =
(

–
∫
–
B4
|u|p

4
−
)1/p4

− .

Proof. We start from (2.9) with γ ≥ 1. Let

Ln(s) =

∫ s

1

(
Fn(τ)

)1/p−
dτ.

Then

|∇Ln(u+ + 1)|p− = Fn(u+ + 1)|∇u+|p− ,

and we have∫
|∇
(
ηp+/p−Ln(u+ + 1)

)
|p−

=

∫
Fn(u+ + 1)|∇u+|p−ηp+ + C

∫
Ln(u+ + 1)p−ηp+−p− |∇η|p−

≤ C
[ ∫

Fn(u+ + 1)ηp+ +

∫
up+Fn(u+ + 1)ηp+−p|∇η|p

+

∫
H(x)(u+ + 1)p−1Gn(u+ + 1)ηp+ +

∫
Ln(u+ + 1)p−ηp+−p− |∇η|p−

]
.

We bound, for s ≥ 1,

Fn(s) ≤ sγ−1,

Ln(s) ≤ Fn(s)1/p−(s− 1) ⇒ Ln(u+ + 1)p− ≤ (u+ + 1)γ−1+p− ,

sp−1Gn(s) ≤ spFn(s) ≤ sγ−1+p ⇒ (u+ + 1)p−1Gn(u+ + 1) ≤ (u+ + 1)γ−1+p.
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Thus, by the Sobolev inequality with κ = N̂
N̂−p−

and N̂ as in Lemma 2.2,(
–

∫
–Ln(u++1)κp−ηκp+

)1/κ

≤ Cρp− –

∫
– |∇

(
ηp+/p−Ln(u+ + 1)

)
|p−

≤ Cρp−
[

–

∫
–(u+ + 1)γ−1ηp+ + –

∫
–(u+ + 1)γ−1+p−ηp+−p− |∇η|p−

+ –

∫
–(u+ + 1)γ−1+pηp+−p|∇η|p + –

∫
–H(x)(u+ + 1)γ−1+pηp+

]
.

We take ρ̄ ≤ 4 such that pρ̄+− p
ρ̄
− < min{p4

−/q
′, p4
−/r0}, with q′ and r0 as in the

proof of Lemma 2.2. Let 0 < σ < ρ ≤ ρ̄, η ∈ C∞0 (Bρ), 0 ≤ η ≤ 1, η ≡ 1 in Bσ,

|∇η| ≤ C
ρ−σ and let us proceed as in the proof of Lemma 2.2.

Observe that, by the choice of ρ̄, there exists s ≥ p+ − p− such that sq′ ≤ p4
−

and sr0 ≤ p4
−, and we fix such an s for the next steps.

We can proceed with the proof as long as u+ ∈ Lq(γ−1+p−)(Bρ) with q as in
the proof of Lemma 2.2. This is the case for any value of γ ≥ 1 if p− ≥ N . If

instead p− < N , there holds that N̂ = N and 1 < q < N
N−p− . Therefore, if we take

γ = 1 we will have u+ ∈ Lq(γ−1+p−)(Bρ) as needed in order to continue with the
estimates. Thus we get, with β = γ − 1 + p−,(

–

∫
–
Bσ

Ln(u+ + 1)κp−
)1/κβ

≤ C
( ρ
σ

)N/κβ( ρ

ρ− σ

)p+/β(
–

∫
–
Bρ

(u+ + 1)qβ
)1/qβ

.

Since the right hand side is independent of n and finite as long as u+ ∈ Lqβ(Bρ)
(for instance, if β = p− so that qβ ≤ p∗−), we can pass to the limit and get(

–

∫
–
Bσ

(u+ + 1)κβ
)1/κβ

≤ C
[
1 + (1 + β)p−/β

( ρ
σ

)N/κβ( ρ

ρ− σ

)p+/β(
–

∫
–
Bρ

(u+ + 1)qβ
)1/qβ]

.

In fact, there holds that

Ln(s)→ p−
γ − 1 + p−

(
s
γ−1+p−
p− − 1

)
=
p−
β

(
s
β
p− − 1

)
.

As in Lemma 2.2 we call κ̄ = κ
q , β̄ = qβ and get(

–

∫
–
Bσ

(u+ + 1)κ̄β̄
)1/κ̄β̄

≤ C
[
1 + (1 + β)qp−/β̄

( ρ
σ

)N/κ̄β̄( ρ

ρ− σ

)qp+/β̄(
–

∫
–
Bρ

(u+ + 1)β̄
)1/β̄]

≤ 2C(1 + β)qp−/β̄
( ρ
σ

)N/κ̄β̄( ρ

ρ− σ

)qp+/β̄(
–

∫
–
Bρ

(u+ + 1)β̄
)1/β̄

.
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Now we can proceed as in Lemma 2.2 with the iterative process. In each step we
use that u+ ∈ Lβ̄j (Brj ) in order to deduce that u+ ∈ Lβ̄j+1(Brj+1

) and continue

with the iteration, starting with β̄0 = p4
−
∗
.

In this way we prove (2.10) for t = p4
−
∗

if p4
− < N , any positive number if

p4
− ≥ N . Now, if p4

− < N and 0 < t < p4
−
∗

we use Lemma 2.3 to get the result.
In particular, for ρ2 = ρ̄ we get (2.10) with t = p4

−. So that, u ∈ L∞(Bρ̃) for any
ρ̃ < ρ̄. Therefore, u+ ∈ Lt(Bρ2

) for every t > 0 if ρ2 < ρ̄ and we can proceed
with the proof without any restriction on t. So that (2.10) holds for every t > 0 if
0 < ρ1 < ρ2 < ρ̄. �

In a similar way, we can prove

Lemma 2.8. Let u ∈W 1,p(x)(B) such that ∆p(x)u ≤ H(x)(|u|+ 1)p(x)−1 in a ball
B and γ ≥ 1. Here H ≥ 0 is a measurable function. Then, for η ∈ C∞0 (B) there
holds that∫

B

Fn(u− + 1)|∇u−|p−ηp+ ≤
∫
B

Fn(u− + 1)ηp+

+ C

∫
B

u
p(x)
− Fn(u− + 1)ηp+−p(x)|∇η|p(x)

+ C

∫
B

H(x)u
p(x)−1
− Gn(u− + 1)ηp+

(2.11)

with u− = max{−u, 0}, C = C(p+, p−). Here p+ = maxB p, p− = minB p.
In (2.11), the functions Fn and Gn are defined as in Lemma 2.6.

We also have

Lemma 2.9. Let p be log-Hölder continuous in B4. Let u ∈W 1,p(x)(B4) such that
∆p(x)u ≤ H(x)(|u| + 1)p(x)−1 in B4, where 0 ≤ H ∈ Lq0(B4) with max{1, N

p4
−
} <

q0 ≤ ∞. Then, there exists ρ̄ such that for every 0 < ρ1 < ρ2 < ρ̄ < 4 and any
0 < t <∞ there holds that

sup
Bρ1

u− ≤ C
( ρ2

ρ2 − ρ1

)C(
–

∫
–
Bρ2

(u− + 1)t
)1/t

.

The constant C depends on t, p4
+.p

4
−, Mp4

+−p
4
− , ‖H(x)‖Lq0 (B4) and q0. ρ̄ depends

on q, r0, p4
− for certain q, r0 ∈ (1,∞) such that 1

q0
+ 1
q + 1

r0
= 1, and the log-Hölder

modulus of continuity of p in B4. Here M =
(

–
∫
–
B4
|u|p

4
−
)1/p4

− .

We conclude

Proposition 2.1 (Weak maximum principle). Let Ω ⊂ RN be bounded and p be
log-Hölder continuous in Ω. Let u ∈ W 1,p(x)(Ω) such that ∆p(x)u ≥ −H(x)(|u| +
1)p(x)−1 in Ω, with 0 ≤ H ∈ Lq0(x)(Ω), with q0 ∈ C(Ω), max{1, N

p(x)} < q0(x) for

every x ∈ Ω. Let Ω′ ⊂⊂ Ω. Then, u is bounded from above in Ω′. More precisely,
for every 0 < t <∞,

sup
Ω′

u ≤ C̃
[
1 + ‖u‖Lt(Ω′′)

]
,
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where Ω′′ =
{
x ∈ Ω,dist(x,Ω′) < 1

2 dist(Ω′, ∂Ω)
}

. Here C̃ depends on t, Ω′, p1,

p2, q0(x), ‖|H|q0(x)‖L1(Ω), the log-Hölder modulus of continuity of p in Ω, and

‖|u|p(x)‖L1(Ω).

If ∆p(x)u ≤ H(x)(|u| + 1)p(x)−1 in Ω, there holds that u is bounded from below

by −C̃
[
1 + ‖u‖Lt(BΩ′′)

]
.

Proof. Let 0 < R = min{1, 1
4 dist(Ω′, ∂Ω)}. For x0 ∈ Ω′, let ū(x) = u(x0+Rx)

R ,

p̄(x) = p(x0+Rx) and H̄(x) = RH(x0+Rx). Then, ∆p̄(x)ū ≥ −H̄(x)(|ū|+1)p̄(x)−1

in B4.
We claim that there exists 0 < r̄ < 1, q̄0 > 0, possibly depending on x0, such

that q0(x0 +Rx) ≥ q̄0 > max{1, N
p̄4r̄
−
} for every x ∈ B4r̄. In fact, if p̄(0) < N we let

ρ1 such that p̄(x) < N in B4ρ1 . Then, let ε > 0 such that q0(x0) ≥ N
p̄(0) + 3ε and

ρ2 ≤ ρ1 such that q0(x0 +Rx) ≥ q̄0 := N
p̄(0) + 2ε in B4ρ2

. Finally, r̄ ≤ ρ2 such that
N
p̄(x) −

N
p̄(0) < ε in B4r̄. So, in B4r̄ we have q0(x0 +Rx) ≥ q̄0 > max{1, N

p4r̄
−
}.

Now, if p̄(0) ≥ N , we let first ρ1 and ε > 0 such that q0(x0 +Rx) ≥ q̄0 := 1 + 2ε
in B4ρ1 and then, r̄ ≤ ρ1 such that N

p̄(x) ≤ 1 + ε in B4r̄. So we have q0(x0 +Rx) ≥
q̄0 > max{1, N

p̄4r̄
−
} in B4r̄.

We can assume that r̄ is small so that p̄4r̄
+ − p̄4r̄

− < min{p1/q
′, p1/r0} with q and

r0 as in Lemma 2.2, ( 1
q̄0

+ 1
q + 1

r0
= 1). Then, by Lemma 2.7 (observe that we may

take ρ̄ = 4r̄ in that lemma by the conditions imposed to r̄), for every 0 < t <∞,

sup
Br̄

ū ≤ C
[
1 + ‖ū‖Lt(B2r̄)

]
with C depending on t, r̄, p1, p2, the log-Hölder modulus of continuity of p in Ω′′,
q̄0, r0, ‖H̄‖Lq̄0 (B4r̄) and Mp2−p1 , where M = ‖u‖Lp1 (Ω′′).

Observe that ‖H̄‖Lq̄0 (B4r̄) ≤ C
[
1 + ‖||H|q0(x)‖L1(Ω)

]1/ infΩ q0
with C depending

on R, r̄ and q0.
Thus, any point x0 ∈ Ω′ has a neighborhood Br̄R(x0) where

sup
BRr̄(x0)

u ≤ C̃
[
1 + ‖u‖Lt(B2Rr̄)(x0)

]
with C̃ depending on the neighborhood, on t, p(x), q(x), ‖|H(x)|q0(x)‖1/ infΩ q0

L1(Ω) and

‖|u|p(x)‖1/ infΩ p
L1(Ω) .

Since Ω′ is compact, we get the result on the upper bound.
Analogously, if ∆p(x)u ≤ H(x)|u|p(x)−1 in Ω we find a similar uniform bound

from above for u− in Ω′. So, we get the lower bound. �

As a corollary we get local bounds for weak solutions to (1.1). There holds

Corollary 2.1. Let Ω ⊂ RN be bounded and p log-Hölder continuous in Ω. Let
u ∈W 1,p(x)(Ω) be a weak solution to

∆p(x)u = f in Ω,
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with f ∈ Lq0(x)(Ω) with q0 ∈ C(Ω) such that max{1, N
p(x)} < q0(x) in Ω. Then, u

is locally bounded.

Proof. Let H(x) = |f(x)|. Then,

|∆p(x)u| = |f(x)| ≤ H(x)(|u|+ 1)p(x)−1.

The result follows by applying Propositon 2.1. �

Now, we prove Harnack’s inequality for solutions to (1.1).

Proof of Theorem 2.1. Without loss of generality we may assume that x0 = 0.
Let u and f be as in the statement. Let p̄(x) = p(Rx).

If f 6≡ 0 in B4R, let H̃(x) = R|f(Rx)|,

ū(x) = 1 + ‖H̃‖
1

p4R
− −1

Lq0 (B4) +
u(Rx)

R
,

and

H(x) =
H̃(x)

‖H̃‖Lq0 (B4)

.

If f ≡ 0 in B4R, let

ū(x) = 1 +
u(Rx)

R
and

H(x) ≡ 0.

Then,
max
B4

p̄ = max
B4R

p, min
B4

p̄ = min
B4R

p,

and for x, y ∈ B4,

|p̄(x)− p̄(y)| ≤ ω4R(R|x− y|) ≤ ω4R(|x− y|)
if 0 < R ≤ 1, and∣∣∆p̄(x)ū(x)

∣∣ =
∣∣Rf(Rx)

∣∣ ≤ H(x)
(

1+‖H̃‖
1

p4R
− −1

Lq0 (B4) +
(u(Rx)

R

))p4R
− −1

≤ H(x)ūp̄(x)−1.

Therefore, we can apply Lemmas 2.2 and 2.4 (recall that we already know that
u is locally bounded and therefore, ū is bounded in B4) with ρ1 = 1, ρ2 = 2 and
t = t0 to obtain

sup
B1

ū ≤ C
(

–

∫
–
B2

ūt0
)1/t0

≤ C inf
B1

ū.

Recall that ‖H‖Lq0 (B4) = 1 or ‖H‖Lq0 (B4) = 0. Thus, C is independent of H
and so it depends on f only through its dependence on ū.

Since ū(x) =
u(Rx)+R+R‖H̃‖

1
p4R
− −1

Lq0 (B4)

R there holds that

sup
BR

u ≤ C
[

inf
BR

u+R+R‖H̃‖
1

p4R
− −1

Lq0 (B4)

]
.
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Now, ‖H̃‖Lq0 (B4) = R1− N
q0 ‖f‖Lq0 (B4R). And

M̄
p̄4

+−p̄
4
−

1 :=
(

–

∫
–
B4

ūsq
′
) p̄4

+−p̄
4
−

sq′

≤ C
[
R−1

(
–

∫
–
B4R

usq
′
)1/sq′

+ 1 + ‖H̃‖
1

p4R
− −1

Lq0 (B4)

]p4R
+ −p

4R
−

≤ C
[(
‖u‖Lsq′ (B4R) + 1 +

(
R1− N

q0 ‖f‖Lq0 (B4R)

) 1

p4R
− −1

]p4R
+ −p

4R
−
,

since R−(p4R
+ −p

4R
− ) ≤ C with C independent of R. In particular, M̄

p̄4
+−p̄

4
−

1 is bounded
independently of R.

The same kind of bound holds for M̄
p̄4

+−p̄
4
−

2 . So, the theorem is proved. �

Remark 2.2. Observe that, since q0 >
N
p4R
−

, there holds that

1 +
1− N

q0

p4R
− − 1

> 1−
p4R
− − 1

p4R
− − 1

= 0.

Thus, (2.1) can be stated as:

sup
BR(x0)

u ≤ C
[

inf
BR(x0)

u+R+RδL
]

(2.12)

for a certain δ > 0.

The power δ can be made independent of R. In fact, we may take δ = 1+
1− N

q0

p1−1 >

0 if N ≥ q0 > N
p1

, with p1 = infΩ p, and δ = 1 +
1− N

q0

p2−1 > 1 if q0 > N , with

p2 = supΩ p. Here L :=
(
1 + ‖f‖Lq0 (Ω)

) 1
p1−1 ≥ ‖f‖

1

p4R
− −1

Lq0 (B4R).

Remark 2.3. Observe that, since p is continuous in Ω, if R is small enough, we
may choose s ≥ p4R

+ − p4R
− such that sq′ ≤ p4R

− and sr0 ≤ p4R
− . So, the constant C

in (2.3) depends on u only through ‖|u|p(x)‖p
4R
+ −p

4R
−

L1(B4R(x0)).

A similar comment applies to (2.1) and (2.12).

From Harnack’s inequality we get Hölder continuity of weak solutions. There
holds

Corollary 2.2. Let Ω ⊂ RN be bounded and p log-Hölder continuous in Ω with
1 < p1 ≤ p(x) ≤ p2 < ∞ in Ω. Let f ∈ Lq0(Ω) with max{1, Np1

} < q0 ≤ ∞. Let u

be a weak solution to

∆p(x)u = f in Ω. (2.13)

Then, u is locally Hölder continuous in Ω with constant and exponent depending
only on the compact subdomain and on p1, p2, q0, ‖f‖Lq0 (Ω), the log-Hölder modulus

of continuity of p in Ω and Mp2−p1 and where M = ‖|u|p(x)‖L1(Ω).
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Proof. Once we have Harnack’s inequality, the proof is standard. Let Ω′ ⊂⊂ Ω.
There exist L,R0, δ > 0 such that for any nonnegative weak solution v of (2.13),
any x0 ∈ Ω′ and 0 < R ≤ R0,

sup
BR(x0)

v ≤ C
[

inf
BR(x0)

v +R+RδL
]
. (2.14)

Now, apply (2.14) with R = 2−(j+1)R0 to the functions v1 = Mj − u(x) and
v2 = u(x)−mj , where Mj = supB2−jR0

(x0) u, mj = infB2−jR0
(x0) u, to obtain that

oscj+1 u ≤ ν oscj u+ C(L)Rδ,

with 0 < ν < 1, and the result follows (see [9] for the details). The constant and
exponent of the Hölder continuity in Ω′ depend only on ν, C(L) and δ. �

By applying Corollary 2.2 on small enough neighborhoods of points x0 ∈ Ω′ ⊂⊂
Ω —as in Proposition 2.1— we get local Hölder continuity with variable q0. There
holds

Corollary 2.3. Let Ω ⊂ RN be bounded and p log-Hölder continuous in Ω, with 1 <
p1 ≤ p(x) ≤ p2 <∞ in Ω. Let f ∈ Lq0(x)(Ω), with q0 ∈ C(Ω) and max{1, N

p(x)} <
q0(x) in Ω. Let u be a weak solution to

∆p(x)u = f in Ω.

Then, u is locally Hölder continuous in Ω with constant and exponent depending
only on the compact subdomain and on p1, p2, q0(x), ‖|f |q0(x)‖L1(Ω), the log-Hölder

modulus of continuity of p in Ω and ‖|u|p(x)‖p2−p1

L1(Ω) .

3. Harnack’s inequality for solutions to general elliptic equations

In this section we will generalize the results of Section 2 to elliptic equations
with p(x)-type growth. More precisely,

divA(x, u,∇u) = B(x, u,∇u) in Ω. (3.1)

We assume that for every M0 > 0 there exist a constant α and nonnegative

functions g0, C0 ∈ Lq0(Ω), g1, C1 ∈ Lq1(Ω), f, C2 ∈ Lq2(Ω), K
p(x)
2 ∈ Lt2(Ω),

K1 ∈ L∞(Ω) for some max{1, N
p1−1} < q0, q1 ≤ ∞ (p1 = infΩ p), max{1, Np1

} <
q2, t2 ≤ ∞, such that, for every x ∈ Ω, |s| ≤M0, ξ ∈ RN ,

(1) A(x, s, ξ) · ξ ≥ α|ξ|p(x) − C0|s|p(x) − g0(x),
(2)

∣∣A(x, s, ξ)
∣∣ ≤ g1(x) + C1|s|p(x)−1 +K1|ξ|p(x)−1,

(3)
∣∣B(x, s, ξ)

∣∣ ≤ f(x) + C2|s|p(x)−1 +K2|ξ|p(x)−1.

We start with a Caccioppoli type estimate.

Lemma 3.1. Let 1 ≤ u ∈ L∞(B) be such that divA(x, u,∇u) ≥ −
(
H2(x)up(x)−1+

G2(x)|∇u|p(x)−1
)

in a ball B and γ > 0, or divA(x, u,∇u) ≤ H2(x)up(x)−1 +

G2(x)|∇u|p(x)−1 in a ball B and γ < 0. Assume that there exists a positive constant
α such that

(1) A(x, u(x),∇u(x)) · ∇u(x) ≥ α|∇u(x)|p(x) −H0(x)u(x)p(x) in B.
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(2)
∣∣A(x, u(x),∇u(x))

∣∣ ≤ H1(x)up(x)−1 +G1(x)|∇u|p(x)−1 in B

for certain nonnegative measurable functions Hi, Gj, i = 0, 1, 2, j = 1, 2.
Let η ∈ C∞0 (B), η ≥ 0. Then, there exists a constant C that depends only on

p+ = supB p, p− = infB p and α such that∫
uγ−1ηp+ |∇u|p− ≤

∫
uγ−1ηp+ + C

[
|γ|−1

∫
(H0 +H2)uγ+p(x)−1ηp+

+ |γ|−1

∫
H1u

γ+p(x)−1ηp+−1|∇η|

+ |γ|−p+

∫
G
p(x)
1 uγ+p(x)−1ηp+−p(x)|∇η|p(x)

+ |γ|−p+

∫
G
p(x)
2 uγ+p(x)−1ηp+−p(x)

]
.

(3.2)

Here p+ = pB+, p− = pB−.

Proof. Let us consider the case of γ > 0. As in the proof of Lemma 2.2 we take
uγηp+ as test function. Then,

αγ

∫
uγ−1ηp+ |∇u|p(x) ≤ −p+

∫
H1u

γ+p(x)−1ηp+−1|∇η|

− p+

∫
G1u

γηp+−1|∇u|p(x)−1|∇η|

+

∫
H2u

γ+p(x)−1ηp+ +

∫
G2u

γηp+ |∇u|p(x)−1

+

∫
H0u

γ+p−1ηp+ .

As in the proof of Lemma 2.2,∫
G1u

γηp+−1|∇u|p(x)−1|∇η| ≤ αγ

4p+

∫
uγ−1ηp+ |∇u|p(x)

+ Cγ−p++1

∫
G
p(x)
1 uγ+p(x)−1ηp+−p(x)|∇η|p(x).

Similarly,∫
G2u

γηp+ |∇u|p(x)−1 ≤ αγ

4

∫
uγ−1ηp+ |∇u|p(x)

+ Cγ−p++1

∫
G
p(x)
2 uγ+p(x)−1ηp+−p(x).

Hence, since ∫
uγ−1ηp+ |∇u|p− ≤

∫
uγ−1ηp+ +

∫
uγ−1ηp+ |∇u|p(x),

we have (3.2).
The case of γ < 0 is done in a similar way. �
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Once we have a Caccioppoli type estimate we can get results similar to Lem-
mas 2.2 and 2.4.

So, we have

Lemma 3.2. Let p be log-Hölder continuous in B4. Let u ≥ 1 and bounded be
such that divA(x, u,∇u) ≥ −

(
H2(x)up(x)−1 + G2(x)|∇u|p(x)−1

)
in B4. Assume

that there exists a positive constant α such that

(1) A(x, u(x),∇u(x)) · ∇u(x) ≥ α|∇u(x)|p(x) −H0(x)u(x)p(x) in B4,
(2)

∣∣A(x, u(x),∇u(x))
∣∣ ≤ H1(x)up(x)−1 +G1(x)|∇u|p(x)−1 in B4.

Here Hi ∈ Lqi(B4), i = 0, 1, 2, G
p(x)
2 ∈ Lt2(B4) with max{1, N

p4R
−
} < qi, t2 ≤ ∞ for

i = 0, 2, max{1, N
p4R
− −1

} < q1 ≤ ∞, G1 ∈ L∞(B4) and they are nonnegative. Then,

for every 0 < σ < ρ ≤ 4 and t > 0 there holds that

sup
Bρ1

u ≤ C
( ρ2

ρ2 − ρ1

)C(
–

∫
–
Bρ2

ut
)1/t

.

The constant C depends only on s, p4
+, p4

−, ω4, qi, t2, t, α, ‖Hi‖Lqi (B4),

‖Gp(x)
1 ‖L∞(B4), ‖G

p(x)
2 ‖Lt2 (B4), ‖u‖

p4
+−p

4
−

Lsq′ (B4)
, ‖u‖p

4
+−p

4
−

Lss2 (B4) and ‖u‖p
4
+−p

4
−

Lsri (B4) for cer-

tain q′ = q
q−1 , r0 ∈ (1,∞) with 1

qi
+ 1

q + 1
ri

= 1, i = 0, 1, 2, 1
t2

+ 1
q + 1

s2
= 1. Here

s ≥ p4
+ − p4

− is arbitrary.

Proof. We proceed as in the proof of Lemma 2.2. If p4
− ≥ N we choose N̂ = N .

If p4
− < N we choose N̂ such that p4

− < N̂ < qip
4
− for i = 0, 1, 2 and also p4

− <

N̂ < t2p
4
−. Then, we choose 1 < q < N̂

N̂−p4
−

such that 1
qi

+ 1
q < 1 for i = 0, 1, 2 and

1
t2

+ 1
q < 1. Finally, we take ri ∈ (1,∞) such that 1

qi
+ 1

q + 1
ri

= 1 and s2 ∈ (1,∞)

such that 1
t2

+ 1
q + 1

s2
= 1.

We will be calling Mi+2 =
(

–
∫
–
B4
usri

)1/sri
, i = 0, 1, 2, M1 =

(
–
∫
–
B4
usq
′
)1/sq′

,

M5 =
(

–
∫
–
B4
uss2

)1/ss2
, M =

∑5
j=1Mj .

The terms involvingH0, H2 are treated exactly as the term withH in Lemma 2.2.
The term involving H1 is treated similarly. We have

–

∫
–H1(x)uγ+p(x)−1ηp+−1|∇η|

≤ C

ρ− σ

(
–

∫
–
Bρ

Hq1
1

)1/q1(
–

∫
–
Bρ

uq(γ+p−−1)
)1/q(

–

∫
– ur1(p+−p−)

)1/r1

≤ C

(ρ− σ)1+ N
q1

‖H1‖B4
M

p+−p−
3

(
–

∫
–
Bρ

uq(γ+p−−1)
)1/q

≤ C

(ρ− σ)p+
‖H1‖B4M

p+−p−
3

(
–

∫
–
Bρ

uq(γ+p−−1)
)1/q

,

since 1 + N
q1
< p4
− ≤ p− ≤ p+.
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And

–

∫
–G

p(x)
2 uγ+p(x)−1ηp+ ≤ ρ−

N
t2 ‖Gp(x)

2 ‖Lt2 (B4)

(
–

∫
–
Bρ

uq(γ+p−−1)
)1/q

×
(

–

∫
–
Bρ

us2(p+−p−)
)1/s2

≤ C

(ρ− σ)−p+
M

p+−p−
5 ‖Gp(x)

2 ‖Lt2 (B4),

since N
t2
< p4
− ≤ p− ≤ p+, 0 < ρ− σ < ρ < 4.

Let us now look at the term involving G1, which is bounded by

C

(ρ− σ)p+
‖Gp(x)

1 ‖L∞(B4)M
p+−p−
1

(
–

∫
– uq(γ+p−−1)

)1/q

.

Now, the proof follows with no change. �

Also, we have

Lemma 3.3 (Weak Harnack). Let p be log-Hölder continuous in B4. There exist
t0 > 0 such that, for s ≥ p4

+ − p4
− there exists C such that, if u ≥ 1 and bounded is

such that divA(x, u,∇u) ≤ H2(x)up(x)−1 +G2(x)|∇u|p(x)−1 in B4 and there exists
a positive constant α such that

(1) A(x, u(x),∇u(x)) · ∇u(x) ≥ α|∇u(x)|p(x) −H0(x)u(x)p(x) in B4,
(2)

∣∣A(x, u(x),∇u(x))
∣∣ ≤ H1(x)up(x)−1 +G1(x)|∇u|p(x)−1 in B4,

with Hi ∈ Lqi(B4), G
p(x)
2 ∈ Lt2(B) for some max{1, N

p4R
−
} < qi, t2 ≤ ∞, i = 0, 2,

max{1, N
p4
−−1
} < q1 ≤ ∞ and G1 ∈ L∞(B) and they are nonnegative, there holds

that

inf
B1

u ≥ C
(

–

∫
–
B2

ut0
)1/t0

. (3.3)

The constant C depends only on s, p4
+, p4

−, ω4, qi, t2, t, α, ‖Hi‖Lqi (B4),

i = 0, 1, 2, ‖Gp(x)
2 ‖Lt2 (B4), ‖G

p(x)
1 ‖L∞(B4),

(
–
∫
–
B4
usq
′) p4

+−p
4
−

sq′ ,
(

–
∫
–
B4
usri

) p4
+−p

4
−

sri , i =

0, 1, 2 and
(

–
∫
–
B4
uss2

) p4
+−p

4
−

ss2 for certain q′ = q
q−1 , ri ∈ (1,∞) such that 1

qi
+ 1
q + 1

ri
=

1, s2 ∈ (1,∞) such that 1
t2

+ 1
q + 1

s2
= 1. Here s ≥ p4

+ − p4
− is arbitrary.

Proof. We proceed as in the proof of Lemma 2.4 by using (3.2) and the ideas in
Lemma 3.2. Recall that in this process we have γ ≤ −(p4

− − 1).
In this way we get (2.6). As in Lemma 2.4, in order to finish the proof we need

to find t0 > 0 such that (2.7) holds for u. So we bound, by using (3.2), for an
arbitrary 0 < r ≤ 2, η ∈ C∞0 (B2r) with 0 ≤ η ≤ 1, η ≡ 1 in Br, |∇η| ≤ C

r and
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γ = 1− p2r
− ,

–

∫
–
Br

|∇ log u|p
2r
− = –

∫
–
Br

u−p
2r
− |∇u|p

2r
− ≤ C –

∫
–
B2r

u−p
2r
− ηp

2r
+ |∇u|p

2r
−

≤ C –

∫
–
B2r

u−p
2r
− ηp

2r
+ +

C

(p2r
− − 1)

–

∫
–(H0 +H2)up(x)−p2r

− ηp
2r
+

+
C

(p2r
− − 1)

–

∫
–H1u

p(x)−p2r
− ηp

2r
+ −1|∇η|

+
C

(p2r
− − 1)p

2r
+

–

∫
–G

p(x)
1 up(x)−p2r

− ηp
2r
+ −p(x)|∇η|p(x)

+
C

(p2r
− − 1)p

2r
+

–

∫
–G

p(x)
2 up(x)−p2r

− ηp
2r
+ .

So that

–

∫
–
Br

|∇ log u|p
2r
− ≤ C

[
1 + ‖H0‖Lq0 (B4)r

−N/q0
(

–

∫
–
Br

uq
′
0(p+−p−)

)1/q′0

+ ‖H2‖Lq2 (B4)r
−N/q2

(
–

∫
–
Br

uq
′
2(p+−p−)

)1/q′2

+ ‖H1‖Lq1 (B4)r
−(1+ N

q1
)
(

–

∫
–
Br

uq
′
1(p+−p−)

)1/q′1

+ ‖Gp(x)
1 ‖L∞(B4)r

−p2r
+

(
–

∫
–
Br

uq
′(p+−p−)

)1/q′

+ ‖Gp(x)
2 ‖Lt2 (B4)r

−N/t2
(

–

∫
–
Br

ut
′
2(p+−p−)

)1/t′2
]
.

Now, since q′i < ri, t
′
2 < s2,

–

∫
–
Br

|∇ log u|p
2r
− ≤ C

[
1 + ‖H0‖Lq0 (B4)r

−N/q0M
p+−p−
2 + ‖H2‖Lq2 (B4)r

−N/q2M
p+−p−
4

+ ‖H1‖Lq1 (B4)r
−(1+ N

q1
)M

p+−p−
3 + ‖Gp(x)

1 ‖L∞(B4)r
−p2r

+ M
p+−p−
1

+ ‖Gp(x)
2 ‖Lt2 (B4)r

−N/t2M
p+−p−
5

]
.

Finally, since 0 < r ≤ 2, N
qi

< p4
−, i = 0, 2, N

t2
< p4

−, 1 + N
q1
≤ p4

− and

p4
− ≤ p2r

− ≤ p2r
+ ,

–

∫
–
Br

|∇ log u|p
2r
−

≤ C
[
1 +

3∑
i=0

‖Hi‖Lqi (B4) + ‖Gp(x)
1 ‖L∞(B4) + ‖Gp(x)

2 ‖Lt2 (B4)

]
r−p

2r
+ Mp4

+−p
4
− .

Now the proof follows in a standard way as in Lemma 2.4 �
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Remark 3.1 (Improved weak Harnack). With the same proof as that of Lemma 2.5
we can improve on Lemma 3.3. In fact, (3.3) holds for any t0 > 0 if p4

− ≥ N and

for any 0 < t0 <
N

N−p4
−

(p4
− − 1) if N > p4

−.

Remark 3.2 (Local bounds). As in the previous section, by modifying the proof
of Lemmas 3.1 and 3.2, we get that if u satisfies weakly∣∣divA(x, u,∇u)

∣∣ ≤ H2(x)(|u|+ 1)p(x)−1 +G2(x)|∇u|p(x)−1 in Ω

and

(1) A(x, u(x),∇u(x)) · ∇u(x) ≥ α|∇u(x)|p(x) −H0(x)(|u(x)|+ 1)p(x) in Ω,
(2)

∣∣A(x, u(x),∇u(x))
∣∣ ≤ H1(x)(|u|+ 1)p(x)−1 +G1(x)|∇u|p(x)−1 in Ω,

with 0 ≤ Hi ∈ Lqi(x)(Ω), 0 ≤ G1 ∈ L∞(Ω), 0 ≤ G
p(x)
2 ∈ Lt2(x)(Ω) with qi, t2 ∈

C(Ω) and max{1, N
p(x)} < q2(x), t2(x) in Ω, max{1, N

p(x)−1} < q0(x), q1(x) in Ω,

there holds that u is locally bounded.

Then, as in the proof of Corollary 2.2, we get that, if the structure conditions
(1), (2), (3) do not depend on M0, weak solutions to (3.1) are locally bounded. In
fact, we let u be a weak solution to (3.1) and

Hi(x) = gi(x) + Ci(x), i = 0, 1,

H2(x) = f(x) + C2(x),

Gj(x) = Kj(x), j = 1, 2.

Then,∣∣ divA(x, u,∇u)
∣∣ =

∣∣B(x, u,∇u)
∣∣ ≤ H2(x)(|u(x)|+ 1)p(x)−1 +G2(x)|∇u(x)|p(x)−1

and

(1) A(x, u(x),∇u(x)) · ∇u(x) ≥ α|∇u(x)|p(x) −H0(x)(|u(x)|+ 1)p(x) in Ω,
(2)

∣∣A(x, u(x),∇u(x))
∣∣ ≤ H1(x)(|u|+ 1)p(x)−1 +G1(x)|∇u|p(x)−1 in Ω.

So, we get that u is locally bounded.

We can now prove Harnack’s inequality for solutions of general elliptic equations
with non-standard growth.

Theorem 3.1. Let Ω ⊂ RN be bounded and let be p log-Hölder continuous in
Ω. Let A(x, s, ξ), B(x, s, ξ) satisfy the structure conditions (1), (2) and (3) for
certain nonnegative functions g0, C0 ∈ Lq0(Ω), g1, C1 ∈ Lq1(Ω), f, C2 ∈ Lq2(Ω),

K1 ∈ L∞(Ω), K
p(x)
2 ∈ Lt2(Ω), with max{1, N

p1−1} < q0, q1 ≤ ∞, max{1, Np1
} <

q2, t2 ≤ ∞.
Let Ω′ ⊂⊂ Ω. There exists R ≤ min{1, 1

4 dist(Ω′, ∂Ω)} such that, if u ≥ 0 is a
bounded weak solution to (3.1) in Ω, there exists and C > 0 such that, for every
x0 ∈ Ω′,

sup
BR(x0)

u ≤ C
[

inf
BR(x0)

u+R+ µR
]
. (3.4)
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Here

µ =
[
R1− N

q2 ‖f‖Lq2 (B4R)

] 1

p4R
− −1

+
[
R−

N
q0 ‖g0‖Lq0 (B4R)

] 1

p4R
− −1

+
[
R−

N
q1 ‖g1‖Lq1 (B4R)

] 1

p4R
− −1

.

The constant C depends only on s, p4R
+ , p4R

− , ω4R, qi, t2, α, µp
4R
+ −p

4R
− ,

‖Ci‖Lqi (B4R(x0)), i = 0, 1, 2, ‖Kp(x)
2 ‖Lt2 (B4R(x0)), ‖Kp(x)

1 ‖L∞(B4R(x0)),

‖u‖p
4R
+ −p

4R
−

Lsq′ (B4R(x0))
, ‖u‖p

4R
+ −p

4R
−

Lsri (B4R(x0)) i = 0, 1, 2, ‖u‖p
4R
+ −p

4R
−

Lss2 (B4R(x0)) for certain q′ = q
q−1 ,

ri ∈ (1,∞) such that 1
qi

+ 1
q + 1

ri
= 1, s2 ∈ (1,∞) such that 1

t2
+ 1

q + 1
s2

= 1. Here

s ≥ p4
+ − p4

− is arbitrary.

Observe that µp
4R
+ −p

4R
− is bounded independently of R.

Proof. Without loss of generality we will assume that x0 = 0. Let us call

H0(x) =
g0(Rx)

R−
N
q0 ‖g0‖Lq0 (B4R)

+Rp(Rx)−1C0(Rx)

H1(x) =
g1(Rx)

R−
N
q1 ‖g1‖Lq1 (B4R)

+Rp(Rx)−1C1(Rx)

H2(x) =
f(Rx)

R−
N
q2 ‖f‖Lq2 (B4R)

+Rp(Rx)C2(Rx)

G1(x) = K1(Rx)

G2(x) = RK2(Rx).

Let

ū(x) = 1 + µ+
u(Rx)

R
, p̄(x) = p(Rx).

If a function is identically zero in B4R(x0) the corresponding term does not
appear in the definition of the functions Hi.

Then, ‖G1(x)p̄(x)‖L∞(B4) ≤ ‖K1(x)p(x)‖L∞(B4R) and, for i = 0, 1,(
–

∫
–
B4

Hqi
i

)1/qi
≤ CN,qi

[
1 +

(∫
B4R

Rqi(p(x)−1)−NCqii

)1/qi]
≤ CN,qi

[
1 + ‖Ci‖Lqi (B4R)

]
,

since qi >
N

p1−1 for i = 0, 1 and 0 < R ≤ 1.

On the other hand, since q2 >
N
p1

,(
–

∫
–
B4

Hq2
2

)1/q2
≤ CN,q2

[
1 +

(∫
B4R

Rq2p(x)−NCq22

)1/q2]
≤ CN,q2

[
1 + ‖C2‖Lq2 (B4R)

]
,

Rev. Un. Mat. Argentina, Vol. 56, No. 1 (2015)



100 NOEMI WOLANSKI

and, since t2 >
N
p1

,(
–

∫
–
B4

G
t2p̄(x)
2

)1/t2
≤ CN,t2

[
1 +

(∫
B4R

Rt2p(x)−NK
t2p(x)
2

)1/t2]
≤ CN,q2

[
1 + ‖Kp(x)

2 ‖Lt2 (B4R)

]
.

On the other hand, for 0 < R ≤ 1 let

Ā(x, s, ξ) := A
(
Rx,R(s− 1− µ), ξ

)
.

Then, Ā
(
x, ū(x),∇ū(x)

)
= A

(
Rx, u(Rx),∇u(Rx)

)
and we have∣∣∣ div Ā

(
x, ū(x),∇ū(x)

)∣∣∣ ≤ Rf(Rx) +RC2(Rx)u(Rx)p(Rx)−1

+RK2(Rx)|∇u(Rx)|p(Rx)−1

≤ H2(x)ū(x)p̄(x)−1 +G2(x)|∇ū(x)|p̄(x)−1.

Also,∣∣∣Ā(x, ū(x),∇ū(x)
)∣∣∣ ≤ g1(Rx) + C1(Rx)u(Rx)p(Rx)−1 +K1(Rx)|∇u(Rx)|p(Rx)−1

≤ H1(x)ū(x)p̄(x)−1 +G1(x)|∇ū(x)|p̄(x)−1

and

Ā
(
x, ū(x),∇ū(x)

)
· ∇ū(x) ≥ α|∇u(Rx)|p(Rx) − C0(Rx)u(Rx)p(Rx)−1 − g0(Rx)

≥ α|∇ū(x)|p̄(x) −H0(x)ū(x)p̄(x)−1.

Thus, since ū ≥ 1 and

‖ū‖p̄
4
+−p̄

4
−

Lt(B4) ≤ C
[
1 + µp

4R
+ −p

4R
− +R−

N
t (p4R

+ −p
4R
− )‖u‖p

4R
+ −p

4R
−

Lt(B4R)

]
≤ C

[
1 + µp

4R
+ −p

4R
− + ‖u‖p

4R
+ −p

4R
−

Lt(B4R)

]
,

by applying Lemmas 3.2 and 3.3 to ū we get the result. �

Remark 3.3. Since p is continuous in Ω we can choose R small enough in such

a way that, by choosing s small enough, M
p4R

+ −p
4R
−

j ≤
(

–
∫
–
B4R(x0)

up1
) p4R

+ −p4R
−

p1 ≤

c
(
1 +

( ∫
Ω
up(x)

) p2
p1
−1)

, j = 1, . . . , 5, where p1 = infΩ p, p2 = supΩ p and the
constant c depends only on the log-Hölder modulus of continuity of p in Ω.

So that, if moreover the constant α and the functions g0, g1, f, C0, C1, C2,K1

and K2 in the structure conditions do not depend on M0, Harnack’s inequality
holds —on small enough balls depending only on p— for any nonnegative weak

solution, with a constant C depending on u only through
( ∫

Ω
up(x)

) p2
p1
−1

.

From Harnack’s inequality we get Hölder continuity. There holds
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Corollary 3.1. Let Ω ⊂ RN bounded. Let p be log-Hölder continuous in Ω and
p1 = infΩ p(x). Let A(x, s, ξ), B(x, s, ξ) satisfy the structure conditions (1), (2),
(3) at the beginning of the section. Assume that g0, C0 ∈ Lq0(Ω), g1, C1 ∈ Lq1(Ω)

and max{1, N
p1−1} < q0, q1 ≤ ∞, f, C2 ∈ Lq2(Ω), K

p(x)
2 ∈ Lt2(Ω) and max{1, Np1

} <
q2, t2 ≤ ∞. Finally, assume K1 ∈ L∞(Ω).

Then, there holds that any bounded weak solution to (3.1) is locally Hölder con-
tinuous in Ω.

If the functions in the structure conditions are independent of M0, any weak
solution is locally Hölder continuous and the constant and Hölder exponent are
independent of the L∞ bound.

Proof. Under these assumptions, for everyM0 > 0, Ω′ ⊂⊂ Ω, there exist a universal
constant C, a radius R0 > 0 and δ > 0 such that for every 0 < R ≤ R0, x0 ∈ Ω′

and any weak solution 0 ≤ v ≤M0,

sup
BR(x0)

v ≤ C
[

inf
BR(x0)

v +Rδ
]
. (3.5)

In fact, we apply (3.4) and observe that we are assuming that q0, q1 >
N

p1−1 . So

that 1 − N
q0

1
p4R
− −1

≥ 1 − N
q0

1
p1−1 := δ0 > 0, 1 − N

q1
1

p4R
− −1

≥ 1 − N
q1

1
p1−1 := δ1 > 0.

On the other hand, if q2 ≥ N , 1 +
(
1− N

q2

)
1

p4R
− −1

≥ 1 +
(
1− N

q2

)
1

p2−1 := δ2 ≥ 1, if

N
p1
< q2 < N , 1 +

(
1− N

q2

)
1

p4R
− −1

≥ 1 +
(
1− N

q2

)
1

p1−1 := δ̄2 > 0.

Once we have (3.5), we deduce that u is Hölder continuous in a standard way
by applying (3.5) with R = R02−(j+1) to v1(x) = supBR02−j(x0)

u − u(x) and to

v2(x) = u(x)− infBR02−j(x0)
u. Here, M0 = supΩ u (see [9] for the details).

Recall that, when the functions in the structure condition are independent ofM0,
any weak solution is locally bounded. So that they are locally Hölder continuous
and the Hölder exponent and constant are independent of the L∞ bounds. �

Now, we assume that A and B satisfy the following structure conditions: For
every M0 > 0 there exist a constant α and nonnegative functions f , g0, g1, C0, C1,
C2, K1, K2 as before and b ∈ R>0 such that, for every x ∈ Ω, |s| ≤M0, ξ ∈ RN ,

(1) A(x, s, ξ) · ξ ≥ α|ξ|p(x) − C0|s|p(x) − g0(x),
(2)

∣∣A(x, s, ξ)
∣∣ ≤ g1(x) + C1|s|p(x)−1 +K1|ξ|p(x)−1,

(3’)
∣∣B(x, s, ξ)

∣∣ ≤ f(x) + C2|s|p(x)−1 +K2|ξ|p(x)−1 + b|ξ|p(x).

We will prove Harnack’s inequality for bounded weak solutions.
In fact, for 0 ≤ u ≤M0 we can reduce the problem to the case of b = 0 treated

before since, on one hand, there holds that

divA(x, u,∇u) ≥ −
(
f(x) + C2(x)up(x)−1 +K2(x)|∇u|p(x)−1 + b|∇u|p(x)

)
in Br

⇒

div Ã(x, u,∇u) ≥ −
(
f(x) + C2(x)up(x)−1 +K2(x)|∇u|p(x)−1

)
in Br,

with Ã(x, s, ξ) = e
b
α (s−M0)A(x, s, ξ) satisfying
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(1) Ã(x, u(x),∇u(x)) · ∇u(x) ≥ αe− b
αM0 |∇u(x)|p(x) − C0(x)u(x)p(x) − g0(x),

(2)
∣∣Ã(x, u(x),∇u(x))

∣∣ ≤ g1(x) + C1(x)|u(x)|p(x)−1 +K1(x)|∇u(x)|p(x)−1.

On the other hand, again for 0 ≤ u ≤M0 there holds that

divA(x, u,∇u) ≤ f(x) + C2(x)up(x)−1 +K2(x)|∇u|p(x)−1 + b|∇u|p(x) in Br

⇒

div Ā(x, u,∇u) ≤ e bαM0
(
f(x) + C2(x)up(x)−1 +K2(x)|∇u|p(x)−1

)
in Br

with Ā(x, s, ξ) = e
b
α (M0−s)A(x, s, ξ) satisfying,

(1) Ā(x, u(x),∇u(x)) · ∇u(x) ≥ α|∇u(x)|p(x) − e bαM0
(
C0(x)u(x)p(x) + g0(x)

)
.

(2)
∣∣Ā(x, u(x),∇u(x))

∣∣ ≤ e bαM0
(
g1(x)+C1(x)|u(x)|p(x)−1+K1(x)|∇u(x)|p(x)−1.

Thus, there holds

Theorem 3.2. Let Ω ⊂ RN be bounded and let p be log-Hölder continuous in Ω.
Let A(x, s, ξ), B(x, s, ξ) satisfy the structure conditions (1), (2), (3’). Let u ≥ 0
be a bounded weak solution to (3.1) and let M0 be such that u ≤ M0 in Ω. Let
Ω′ ⊂⊂ Ω. There exists R0 ≤ min{1, 1

4 dist(Ω′, ∂Ω)} such that if x0 ∈ Ω′ and
0 < R ≤ R0,

sup
BR(x0)

u ≤ C
[

inf
BR(x0)

u+R+ µR
]
,

where

µ =
[
R1− N

q0 ‖f‖Lq2 (B4R)

] 1

p4R
− −1

+
[
R−

N
q0 ‖g0‖Lq0 (B4R)

] 1

p4R
− −1

+
[
R−

N
q1 ‖g1‖Lq1 (B4R)

] 1

p4R
− −1

.

The constant C depends only on bM0, α, s, qi, i = 0, 1, 2, the log-Hölder modulus

of continuity of p in Ω, µp
4R
+ −p

4R
− , and Mp4R

+ −p
4R
− , where p+ = supB4R(x0) p, p− =

infB4R(x0) p, ‖Kp(x)
1 ‖L∞(B4R(x0)), ‖K

p(x)
2 ‖Lt2 (B4R(x0)), M =

∑4
j=1Mj and M1 =(

–
∫
–
B4R(x0)

usq
′)1/sq′

, Mi+2 =
(

–
∫
–
B4R(x0)

usri
)1/sri

for certain q′ = q
q−1 depending on

qi, p1 and N and ri ∈ (1,∞), i = 0, 1, 2 with 1
qi

+ 1
q + 1

ri
= 1. Here s ≥ p+ − p−

is arbitrary.

Observe that µp
4R
+ −p

4R
− and Mp4R

+ −p
4R
− are bounded independently of R.

Proof. Theorem 3.2 is obtained from Lemmas 3.2 and 3.3 applied to ū with the

operator A replaced by Ã and Ā respectively. �

With the same proof as that of Corollary 3.1 we get the following regularity
result.

Corollary 3.2. Let Ω ⊂ RN be bounded. Let A and B satisfy the structure condi-
tions (1),(2), (3’). Let u be a bounded weak solution to (3.1) in Ω with p log-Hölder
continuous. Then u is locally Hölder continuous in Ω.
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Remark 3.4. Observe that under condition (3’) the constant in Harnack’s in-
equality and the Hölder exponent and constant of a bounded weak solution depend
explicitly on the L∞ bound.

4. Strong maximum principle for p(x)-superharmonic functions

In this section we prove the strong maximum principle for p(x)-superharmonic
functions. As stated at the introduction, the strong maximum principle cannot be
deduced from Harnack’s inequality as in the case p constant. Instead, we will use
some barriers constructed in [8].

Proposition 4.1 (Lemma B.4 in [8]). Suppose that p(x) is Lipschitz continuous.

Let wµ = Me−µ|x|
2

, for M > 0 and r1 ≥ |x| ≥ r2 > 0. Then there exist µ0, ε0 > 0
such that, if µ > µ0 and ‖∇p‖∞ ≤ ε0,

µ−1eµ|x|
2

M−1|∇w|2−p∆p(x)wµ ≥ C1(µ− C2‖∇p‖∞| logM |) in Br1 \Br2 .

Here C1, C2 depend only on r2, r1, p+, p−, µ0 = µ0(p+, p−, N, ‖∇p‖∞, r2, r1), and
ε0 = ε0(p+, p−, r1, r2).

Then we have

Corollary 4.1. Suppose that p(x) is Lipschitz continuous. Let A0 > 0. Then, there
exists δ0 > 0 depending on p+, p−, ‖∇p‖∞ and A0, and for every 0 < A ≤ A0

there exists µ0 > 0 depending on the same constants and also on A such that, if
moreover δ ≤ δ0 and µ ≥ µ0, the function

w(x) = A
e−µ

|x−x0|
2

δ2 − e−µ

e−
µ
4 − e−µ

satisfies 
∆p(x)w ≥ 0 in Bδ(x0) \Bδ/2(x0),

w = 0 on ∂Bδ(x0),

w = A on ∂Bδ/2(x0).

Proof. Set w̄(x) = 1
δw(x0 + δx), p̄(x) = p(x0 + δx). Let M = A

e−
µ
4 −e−µ

. Then,

w̄(x) = M e−µ|x|
2

+ c, |∇p̄(x)| = δ|∇p(x0 + δx)|.

Hence, by Proposition 4.1, if δ is small and µ is large depending only on p+, p−
and ‖∇p‖∞,

µ−1eµ|x|
2

M−1|∇w̄|2−p̄∆p̄(x)w̄(x) ≥ C1(µ− C2‖∇p̄‖∞| logM |)in B1\B1/2.

Observe that M = Aeµ/4 1
1−e−3µ/4 . Therefore, if µ is large there holds that

1 ≤M ≤ 4Aeµ/4,

so that

| logM | ≤ Aµ.
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Hence, in this situation,

µ−1eµ|x|
2

M−1|∇w̄|2−p̄∆p̄(x)w̄(x) ≥ C1(1− C2δ‖∇p‖∞A)µ ≥ 0 in B1 \B1/2

if, moreover, δ is small depending on C1, C2, A0 and ‖∇p‖∞. �

We can now prove our main result in this section. We follow the ideas of the
proof in [17] for the case p constant.

Theorem 4.1. Suppose that p(x) is Lipschitz continuous. Let Ω ⊂ RN be con-
nected and 0 ≤ u ∈ C1(Ω) such that ∆p(x)u ≤ 0 in Ω. Then, either u ≡ 0 in Ω or
u > 0 in Ω.

Proof. Assume the result is not true. Then, since Ω is connected, ∂{u > 0}∩Ω 6= ∅.
Let x1 ∈ {u > 0} such that dist(x1, ∂{u > 0}) < dist(x1, ∂Ω), and let y ∈ ∂{u >
0} ∩ Ω such that r = |x1 − y| = dist(x1, ∂{u > 0}). Let A0 = supBr(x1) u. Let δ0
be the constant in Corollary 4.1. By choosing x0 on the line between x1 and y and
taking δ = |x0 − y| we may assume that δ ≤ δ0 and Bδ(x0) ⊂ {u > 0}. Let now
A = inf∂Bδ/2(x0) u. Then, 0 < A ≤ A0. Therefore, by taking w as in Corollary 4.1
we have

u(x) ≥ w(x) ≥ 0 in Bδ(x0) \Bδ/2(x0).

Since u(y) = w(y) = 0, there holds that

|∇u(y)| ≥ |∇w(y)| > 0.

But this is a contradiction since y ∈ ∂{u > 0} ∩ Ω, u ≥ 0 in Ω and u ∈ C1(Ω) so
that ∇u(y) = 0. �

Remark 4.1. Recall that in [2] it was proved that solutions to ∆p(x)u = 0 are

C1,α
loc . Thus, Theorem 4.1 applies to nonnegative weak solutions.

With a similar proof we get

Theorem 4.2. Under the assumptions of Theorem 4.1, if, moreover, there exists
y ∈ ∂Ω such that there is a ball B contained in Ω such that y ∈ ∂B, u ∈ C(B),
u > 0 in B and u(y) = 0, then for x ∈ B close enough to y there holds that
u(x) ≥ c0(x − y) · ν, where c0 > 0 and ν is the unitary direction from y to the
center of the ball B.

If, moreover, u ∈ C1(Ω ∪ {y}), there holds that either u ≡ 0 in Ω or else
∂u(y)
∂ν > 0. Here ν is as above.
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[5] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesque and Sobolev Spaces with variable
exponents, Lecture Notes in Mathematics 2017, Springer, 2011. MR 2790542.

[6] X. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form,

J. Differential Equations 235 (2007), 397–417. MR 2317489.
[7] X. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TM&A
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