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LOCAL BOUNDS, HARNACK’S INEQUALITY AND HOLDER
CONTINUITY FOR DIVERGENCE TYPE ELLIPTIC
EQUATIONS WITH NON-STANDARD GROWTH

NOEMI WOLANSKI

ABSTRACT. We obtain a Harnack type inequality for solutions to elliptic equa-
tions in divergence form with non-standard p(z)-type growth. A model equa-
tion is the inhomogeneous p(z)-Laplacian. Namely,

Ap(pyu = div (|Vu|p(z)72Vu) = f(z) in Q,

for which we prove Harnack’s inequality when f € L0 () if max{1, %} <
qo < oo. The constant in Harnack’s inequality depends on u only through

|||u\p(”)||iﬁz5§;. Dependence of the constant on w is known to be necessary
in the case of variable p(z). As in previous papers, log-Holder continuity on
the exponent p(z) is assumed. We also prove that weak solutions are locally
bounded and Hélder continuous when f € L2(®)(Q) with ¢o € C(Q) and
max{1, %} < go(x) in Q. These results are then generalized to elliptic
equations

div A(z, u, Vu) = B(z, u, Vu)

with p(z)-type growth.

1. INTRODUCTION
The p(z)-Laplacian, defined as
Aoy = div(|Vu(z)|P®)~2va),

extends the Laplacian, where p(x) = 2, and the p-Laplacian, where p(z) = p with
1 < p < oo. This operator has been used in the modelling of electrorheological
fluids ([15]) and in image processing (|3l [4]), for instance.

Up to these days, a great deal of results have been obtained for solutions to
equations related to this operator. We will only state in this introduction those
results that are related to the ones we address in this paper.

One of the first issues that come into mind is the regularity of solutions to
equations involving the p(z)-Laplacian or more general elliptic equations with p(z)-
type growth. Another result —that among other things implies Holder continuity

p(x)
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74 NOEMI WOLANSKI

of solutions— is Harnack’s inequality. These two issues have been addressed in
several papers and we will describe in this introduction those results we are aware
of.

Let us state, for the record, that our main concern when starting our research was
to obtain Harnack’s inequality for nonnegative weak solutions of the inhomogeneous
equation

Apyu = flx) inQ (1.1)
that, strangely enough, had not been addressed previously.

By a weak solution we mean a function in W1P(®)(Q) that satisfies (T.1)) in the
weak sense. (See the definition and some properties of these spaces below).

When dealing with equations of p(x)-type growth it is always assumed that
1< p1 <p(z) < ps < ooin . Also, some kind of continuity is assumed since most
results on LP spaces cease to hold without any continuity assumption. In particular,
in order to get Harnack’s inequality, log-Holder continuity is always assumed and
we will do so in this paper. (See the definition of log-Holder continuity below).

Harnack’s inequality for solutions of with f = 0 states that, for any non-
negative bounded weak solution u, there exists a constant C' —that depends on
u— such that, for balls Br(zg) such that Byg(z¢) C Q,

sup u < C’[ inf u—i—R}.
Br(zo) Br(wo)

The dependence of C' on u cannot be removed as observed with an example in

[11]. In [II] the authors get this inequality for quasiminimizers of the functional

B |V [P®)
J(u)—/ﬂip(x) dx.

Solutions to with f = 0 are minimizers, and therefore, quasiminimizers.

In [II] the authors improve the dependence of C on w. In fact, in [I8] Harnack’s
inequality had been obtained with C depending on the L norm of w. In [I1]
instead, the dependence was improved to the L! norm of u for arbitrarily small
t > 1 if R is small enough depending only on p and ¢. In particular, by taking
t = p1 = infg p(x) they get a dependence on ||up($)||L1(B4R(xO)) that is finite by the
definition of a weak solution. In particular, no a priori L* bound is involved in
Harnack’s inequality.

Later on, the same inequality with a similar dependence on u was obtained for
solutions of an obstacle problem related to the functional J(u) in [10].

We would like to comment that [I8] dealt with a more general equation. Namely,
Apgyu = (Ab(z) — a(z)[ulP® "2y in Q

with a and b nonnegative and bounded and A a positive constant.

Also, Harnack’s inequality was proved for an operator called by the authors the
strong p(z)-Laplacian in [I].

As is well known, Holder continuity is deduced form Harnack’s inequality. Any-
way, there are methods that give Holder continuity for weak solutions without going
through Harnack’s inequality. A result of this kind that applies to more general

Rev. Un. Mat. Argentina, Vol. 56, No. 1 (2015)



HARNACK’S INEQUALITY FOR p(z)-TYPE ELLIPTIC EQUATIONS 75

equations —possibly inhomogeneous— can be found in [7] where the authors prove
that bounded weak solutions to

div A(z,u, Vu) = B(x,u, Vu) in (1.2)

are locally Holder continuous if A(z, s, &), B(x, s, £) satisfy the structure conditions:
For any My > 0 there exist positive constants «, C1,Cs, b such that, for x € Q,
|S| < MO» 5 € RN?

(a) A(J?, Sag) : 5 2> a'glp(z) —b.

(b) [A(z,5,8)] < CrlgP =1 +b.

(c) ’B(m, 8,5)} < ColgP@® +b.

The condition that u is bounded is essential when the growth of B in the gradient

variable is the one in (c). Boundedness is proved in [7] under the condition that
B(z,s,¢) grows as (|s| + [£])P@) 1, for instance.

Finally, let us comment that, under additional regularity assumptions on A
and B and some different structure conditions (in particular, under the necessary
assumption that p(z) be Holder continuous), Holder continuity of the derivatives
was obtained in [6]. (See also [2] for this result in the case of minimizers of the
functional J(u)).

In the present paper we are mainly concerned with Harnack’s inequality. Our
main goal is to obtain this inequality in the case of an inhomogeneous equation
with minimal integrability conditions on the right hand side —that in the case of
p constant stand for f € L%(2) with max{1l, N/p} < ¢ < co— (see the classical
paper [10]).

On the other hand, in several applications we found ourselves dealing with fam-
ilies of bounded nonnegative weak solutions —that are not uniformly bounded,
not even in LP®)-norm— and in need of using Harnack’s inequality with the same
constant C' for all the functions in the family. As stated above, we could not use
any of the known results (not even for solutions of with f = 0).

In the present paper, a careful follow up of the constants involved in the %roclfs
allows us to see that the dependence of C' on u is actually through ||u?(*) ||i%§(;f};)
where piR = supp,, p and p* = infp,, p. This makes all the difference in many
applications. Anyway, this was also the case in the previous papers on the homo-
geneous equation. Unfortunately, the results were not stated in this way so that
they could not be used in many situations.

We start our paper with the case of in order to show the ideas and tech-
niques in the simplest possible inhomogeneous case. Then, in Section [3] we consider
weak solutions to under the structure assumption: For any My > 0 there
exist a constant o and nonnegative functions go, Cy € L% (), ¢1,C1 € L1 (Q),

£.Co € L=(Q), Ky € L¥(Q), K§¥ € L(Q) with max{1, X} < ot < oo
(p1 = infq p), max{l,pl—J\il} < qo,q1 < oo such that, for every z € Q, |s| < Moy,
§ERY,

(1) Alz,s,6) - € > alg]P® — Co(x)|s[P™) — go(z),
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76 NOEMI WOLANSKI

(2) |A(z,5,6)| < g1(2) + C1(2)|s|P@ 1 + Ky (z) ¢ -1,
(3) [B(z,s,6)] < f(x) + Ca(a)|sP) = + Ky()[¢ [P,

and we prove

Theorem 1.1. Let Q C RN be a bounded, open set and let p be log-Hélder con-
tinuous in . Let A(x,s,§), B(x,s,§) satisfy the structure conditions (1), (2) and
(8). Let u > 0 be a bounded weak solution to and let My be such that u < M
in Q. Let Q' CC Q. Then, there exist C and 0 < Ry < min{1, 1 dist(Q2’, 0Q)} such
that, for every o € ', 0 < R < Ry,

sup v < C| inf u+ R+ uR|,
"=l -

where

1 1
IR _ iR _

1—-N P _N »
p= {R a2 Hf||L42(B4R(JL’0))} CT [R " HQOHL“O(BALR(IO))} )
1

_N oy ey

+ [R a“ ||gl||L<11(B4R($0))} e
The constant C' depends only on «, q;, the log-Hélder modulus of continuity of p

. AR _ 4R AR _ 4R

in QTR M G b Baneons BT L (Bantao,  and

HKS(Q;)HU?(leR(TO))’ where piR = SUPB,p(x0)Ps pﬁR = infB4R(900)p and

M= ||u||LpziR(Q). (Theorem ,

4R

Observe that ,upiR*p— is bounded independently of R.

Observe that, when the functions in the structure conditions are independent of
My, neither C' nor p depend on the L norm of u. Moreover, in this case any
weak solution is locally bounded (see Remark .

As usual, from Harnack’s inequality we get Holder continuity of bounded weak
solutions (Corollary [3.1)).

Let us remark that in this paper we prove that solutions to with f €
L@ (Q) with ¢o € C(Q) and max{1, %} < go(x) in Q are locally bounded
(Proposition . In the case of equation , if the functions in the structure
conditions are independent of My, the local boundedness of weak solutions also
holds (see Remark [3.2).

For solutions of with f € L9@)(Q), with gy as above, we also get local
Holder continuity with constant and exponent depending only on the compact
subset, p(x), go(), || F|) | 1 (qy and |[[u?@)][7% 2F (Corollary [2.3).

With the same ideas, a similar result can be obtained for solutions to
although we do not state this result.

On the other hand, if we replace the structure condition (3) by

(3) [B(x,s,6)] < flz) + Ca(a)|s[?) 7 + Ka()[€]P) 7" + blg [P
with b € R+, we obtain Harnack’s inequality for bounded weak solutions (Theo-
rem . In this case, the constant in Harnack’s inequality depends also on bMj
where My is a bound of wu.
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HARNACK’S INEQUALITY FOR p(z)-TYPE ELLIPTIC EQUATIONS 77

Again under the structure condition (3’), we deduce that if v is a bounded weak
solution, then wu is locally Hélder continuous (Corollary .

Finally, let us observe that even for the simplest homogeneous equation
with f = 0, Harnack’s inequality does not imply the strong maximum principle
which, in the case of p constant, states that a nonnegative weak solution that
vanishes at a point of a connected set must be identically zero. Therefore, a proof
of this principle that does not make use of Harnack’s inequality is needed. For the
case of p constant, an alternative proof was produced in [I7]. We adapt this proof
for the variable exponent case in Section 4. We also prove a boundary Hopf lemma.
For the sake of simplicity, we restrict ourselves to the p(x)-Laplacian.

NOTATION AND ASSUMPTIONS

Throughout the paper N will denote the spatial dimension and € will be an
open subset of RV,

Assumptions on p(z). We will assume that the function p(z) verifies
1<p <plx)<py<oo, xel

When we are restricted to a ball B, we use p” = p_(B,) and p', = p,(B,) to
denote the infimum and the supremum of p(z) over B,.

We also assume that p(x) is continuous up to the boundary and that it has
a modulus of continuity wr : R = R, ie. |p(x) — p(y)| < wr(lz —y|) if z,y €
Br(zo) C Q. We will assume that

Cr

=—— for0<r<1/2
|logr‘

wr(r)
and will refer to such a wg as a log-Holder modulus of continuity of p in Bg(z¢).
Observe that p log-Hoélder continuous implies that

pm PP < Kp o forO<r <R

for a constant K related to C'g. This fact will be used throughout the paper.
We will say that p is log-Holder continuous in € if wg is independent of the ball
BR(IE()) c Q.

Definition of weak solution. Let 1 < p; < p(z) < pa < oo in .
The space LP(*)(Q) stands for the set of measurable functions u such that
|u(z)|P®) € LY(Q). This is a Banach space with norm

. ulx p(x)
ooy = gy = int {3 > 05 [ (M) 0 <1},

The dual space of LP(®)(Q) is LP'(*)(Q) with ﬁ + p,%w) =1 for z € Q and

duality pairing [, fg dx.
Then, we let W1P()(Q) denote the space of measurable functions u such that u
and the distributional derivative Vu are in LP()(Q2). The norm

lellepey = Nlullpey + 1TVl llpe
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78 NOEMI WOLANSKI

makes W1P() a Banach space.

We call Wol’p(')(Q) the closure in the norm of WP(") of the set of those functions
in Wl’p(')(Q that have compact support in . When p is log-Holder continuous, it
coincides with the closure of C§°(2).

Observe that u € WHP() implies that |Vu[P(*)~2Vy € (Lp/(w))N.
For more definitions and results on these spaces we refer to [5] and [13].

Definition 1.1. We say that u is a weak solution to (T.2) if u € W'P(*)(Q) and,
for every ¢ € W&’p(x)(Q), there holds that
[ Aw,uta), Vu(a)) - Vola)do = [ Bla,u(w), Vu()o(a) da.

2. HARNACK’S INEQUALITY FOR SOLUTIONS TO Apyu = f
In this section we will prove the following result.

Theorem 2.1. Assume that p is locally log-Hélder continuous in Q). Let xg € )
and 0 < R < 1 is such that Byg(xo) C Q. There exists C' such that, if u is a
nonnegative weak solution of the problem

Apmyu=f inQ,

with f € L®(Q) for some max{l, I%} < qo < 00, then

s;pugc[glgu+R+Ru]7 (2.1)
R
where
1
1-N AR _
p= [R5 || fllLao(Ban(zon] =
The constant C depends only on N, p*f pif s qo, wag, s
pit-pt pit-pf o q ,
Hu||LSq,(B4R(zO)), ||u||LSm(B4R(IU)) (for certain ¢ = 15, with 1o, q € (1,00) and

q%) + % + % =1 depending on N, qo and p*f). Here s > piR —p*f s arbitrary and
wap 1s the modulus of log-Hélder continuity of p in Bag(xo).

The proof will be a consequence of three lemmas.

Lemma 2.1 (Caccioppoli type estimate). Let u > 1 and bounded such that
Apyu > —H(z)u?®=1 in a ball B and v > 0, or Apyu < H(z)uP®=1 in
B and v < 0. Here H > 0 is a measurable function. Then, for n € C§°(B) there
holds that

/u"’_1|Vu|p*np+ S/ uv—lnp++c|,y|—p+/ uV @) Lpps—p(@) gy ()

B B B (22)

+C|V|_1/ H(z)u TP 1pps
B

with C = C(p4,p—). Here p; = maxgp, p- = mingp.
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HARNACK’S INEQUALITY FOR p(z)-TYPE ELLIPTIC EQUATIONS 79

Proof. As is usual in the proof of these type of estimates we take as a test function
uInP+ € Wol’p(z)(Q), since u € WHP(@)(Q) and we are assuming that 1 < u €
L>(Q).

Assume first that A, yu > —H (2)uP®~1 and v > 0. We get

,y/u'yflnm‘vupv(r) < —p+/u7np+*1\Vu|p(m)*2Vu-Vn+/H(x)u7“’(m)*1np+

1
< p(x) v =1 P+
6p+/ l(x)|Vu| u'n

P+ v+p(z)—1,p+—p(x) p(z)
+/€p(m)—1p(x)u n V]

+ / H(x)uv+p(£)_1np+,

where 0 < € < 1 is to be chosen, and Lo L,

p(z) ' p'(z)
Now, we choose £ = min{1, ﬁ} so that
&+ 7 b+

2 <C )y P+l
p/(:E) — 27 Ep(m)ilp(x) —_ (erﬂp )’y I

and, in order to get ([2.2]), we bound
/u”‘lnp+|Vu|p* < /uv—lnm +/u7_177p+|Vu|p(:”).

Now, if Appyu < 1‘](:{:)1#’(9”)_1 and v < 0, since v > 1 we can proceed as before
and we get

fy/lﬂ’lnp*\VuV’(I) > —p+/u7np+’1\Vu|p(z)’2Vu -V —/H(az)u”’“’(z)’ln“.
Dividing by v we get

/uv—lnp+|vu|p(x) < Cpyly| 7P+ /uwnp+—1|vu|p(x)—2vU -Vn

+ Oy / H(z)u 7@ 1yps
Now the proof continues as before and we obtain (2.2]). (]

Lemma 2.2. Let p be log-Hélder continuous in By. Let u > 1 be bounded and such
that Apzyu > —H(z)uP@ =1 in By, where 0 < H € L%(By), with max{1, p%} <
qo < 0. Lett > 0. Then, for every 0 < p1 < p2 < 4 there holds that

c 1/t
supu < C(L) (][ ut) . (2.3)
B, P2 — P B,

1
The constant C' depends only on s, pi, pt, Mpi*pél—, wa, [|H(x)| L0 (By), 905 G

and t. Here M = (fB4 usq/)sq + (fB4 us’”o)sm, with ro,q" € (1,00) depending on
g0, p*, N and s > p% — p* is arbitrary.
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80 NOEMI WOLANSKI

Proof. We use Moser’s iteration technique and we follow the lines of the proof of
Lemma 4.6 in [10] for the treatment of the variable exponent. In our situation we
are more careful with the choice of k below in order to get our result, due to the
presence of a right hand side.

In what follows p; and p_ stand for the maximum and minimum values of p in

B,.
Let 0 <o < p <4. Let n € C§°(B,) such that n =1 in B, and |V7| < Cp_%
Let k = Nf;él with N:NwhenN>pf and, p* < N < qop* when N < p*.

Then, for 7 > 79 > 0 using (2.2), Sobolev inequality and the fact that kp_ <
pt = A],V_pp’_ 4 ue WP (B,) and, W, ?~ (B,) C L'(B,) continuously
for every 1 <t < oo when N < p* <p_,

(][ (uwtjp_ nm/pf)”p* ) 1/p-
<Cp ][|V P_p P+/p ‘P )I/ZL
T ety ) ol (fur e peor o)

1/p- 1/p-
< Cp(1+7) [(][lenm> + (][uv 1+p($)77p+ p(x |V,7‘p w))

1/p- 1/p-
+<][H(I)uvfl+p(r)np+) P }+Op(][uvl+pnp+p|vn|p) P .

Here the constant C' depends on pi, p* and .
Since, by the choice of N there holds that gy > 4 , there exists

1/p—

such that % + q—o < 1. Let rg € (1,00) given by 2 7t q—o + % = 1. Now we bound

][Uwflnm S][valﬂbnm < (][U(V*Hm)qnqm)l/q
< C( 1 )p+ <][ u(7_1+p7)q)1/q
- \p—oO B,

N 1/sq
sincen <1< ( . And, with M; = (fB4u5‘1) ¢ =5, s> pr —p_,

q—

][u“f—lﬂf(l')nm—p(w)|vn|p(l‘) < C( 1 )p+][ uY~Hp—p(@)—p-
BP

p—o0

<c( ! )p+ (][ u(v—1+p7)q)1/q(][ WP =P/
p—0 B, B,

< C( ! )me*"’* (][ u(v—1+p-)q)1/q.
- \p—o B,
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HARNACK’S INEQUALITY FOR p(z)-TYPE ELLIPTIC EQUATIONS 81

Similarly,

][Uy—1+p7np+—p7|vn|p, < C’( 1 >P+ (][ U(V_pr)q)l/q.
p—0 B

P

Finally, with My = (fB4 u”")l/sro, s>py —p_,

][H(x)uv—Hp(I)nm S][ H (z)u) ~1HP= P+ —P-
BP

< ( ][BP )" ( ][BP w7 (][B wroteep)) 7

_ 1 P 1/q
e (L) (f, o)
I3

with C' depending on qo, py, p— and ||H| pwp,). In fact, p_% < Cp—Pi <
Cp™P- <Cp P+ < (P — 0)*P+‘
Since M = M7 + My > 1 we conclude that

yoite 1/kp— M P- 1/ap-
- /p—)"P- (v=1+p-)
(][(u =) ) SC,O(1+’V)(p_U)p+/p7 (][B uw T ") ;

P

with C' depending on qo, p, p%, |H ()| Lw(B,) and Yo

Let us now take 3 >p_ — 1. Then, =v—1+p_, withy=8—(p_- —1) > 0.
Recalling that pP— < CpP+ for a constant C' that depends only on the log-Hélder
continuity of p,

N
n

()" <o) o () aor(f, ) e

otfeg)= (f 119"

Then, if 8 >p_ —1, s > py —p_, we have for a constant C' depending on pi, Pt
| H(z)||Lao (B,) and yo > 0 such that 3 — (p— — 1) > v,

Let us call

Py —P_ % p+/B
Olu, B, By) < CYOMTT (14877 (£) 7 (L) 6(u. 48, B,).
o p—o0o
And we have a result quite similar to Lemma 4.6 in [I0]. For the sake of com-
pleteness we finish the proof. -
To this end, we write k8 = k8 with k = % and 8 = ¢fB. Recall that, due to the
choice of ¢, we have ¢ < k. So that & > 1 and

_ = a(p4—p_) _ = L
= < (/8 5 ap—/B(P\=5 P
O, 5B, By) < CVPM T (B P (D) (L

ar+/B _
) 6w 8.B,). (25)
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Let 0 < p1 < p2 < 4 and let us call r; = p; + 277 (pa — p1). We will consider
(2.5) with ¢ =r;;1 and p = ;. Observe that

P_ T g P _ ] :Pl+2_j(P2—Pl)<2]‘+1

P2
o i p—o  ri—riz1 270D (py —py) p2—p1
Assume first that ¢ > ¢(p} — 1). Take B; = Rt. There holds that 3; = ¢j; with
Bij=rL And, v =8 —(pZ —1) > L —(p} —1) = >0.
Then, the constant C' in every step of the iteration may be taken depending on
7o and independent of j. Thus, we have with Cy depending on pi M pi_pi,
W4, HH('T>||L‘IO(B4)7 qo and t,

i+1 t—1g—J M P NE gt~ 1pt ] Nt='g=G+D
¢(U‘? R]"F t? BTJ'+1) S Cq ~ M tRJ (1 + I;}‘]t)ﬂ q p+ (f)
j+1

4 4—1-—7

T gLt R .

X (73) ¢(u, F't, By,)
Ty~ Ti+1

d)(u? E:jta BT’j)'

< CE (14 /IR e <2j+1 p2 )qpit YR
P2 — pP1
Iterating this inequality we get
, i i i\ aph
¢(u7 RJ—Ht’ BTJ‘+1) < C()Ei:(] " (H(l + t"%l)t " Z) ( P
i=0 P2 =P

4 i
)qp+t Yo RTY

x (2t g, B,).

y Yy Hpa

Letting j — oo,

% ad s =1 —i qp4 _ = (i Rl
supu < Cj "' (H(l + tR")* 'R ) * (quit 1)Zz:o( +1)
Bey i=0

" ( P2 )qp+t_117;71 (][ t)l/t
u )
P2 — 01 By,

and the lemma is proved for ¢ > ¢(p} — 1) since [[;=,(1 + tr)ET < O

In order to get the result for 0 < t < g(p% — 1) we proceed again as in [10] and
use the extrapolation result Lemma 3.38 in [12] with s = oo, p > ¢(p% — 1) fixed
(here ¢ is the one in our paper, s and p the ones in [12]) and ¢ = t (here ¢ is the
one in [I2] and not the one in our paper) that we state below. O

Lemma 2.3 (Lemma 3.38 in [12]). Suppose that 0 < g <p < s < o0, £ €R, and
that B = B,.(xg) is a ball. If a nonnegative function v € LP(B) satisfies

(][ v° d:c)l/s < el _)\)E(][ WP d$>1/p
AB’ )

for each ball B' = B(xg,7") with v’ <r and for all 0 < X\ < 1, then
1/s 1/q
(][ v® dx) < (1 — N5/ (][ v? dm)
AB B
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HARNACK’S INEQUALITY FOR p(z)-TYPE ELLIPTIC EQUATIONS 83

for all0 < A < 1. Here ¢ = ¢(p,q,s,&,¢1) and 0 € (0,1) such that
1 6 1-6
+ .

p g s

Remark 2.1. Observe that it is enough to prove Lemma for t >ty > 0 with ¢y
arbitrary depending only on p‘i, p*, ¢, and then use Lemma in order to get the
result for 0 < ¢ < tg. This means that, in order to prove Lemma [2.2] it is enough
to get for B > ¢By with, for instance, By > 2(p% — 1) (this means to have

Yo >pi —1).
Now, we prove a weak Harnack inequality for supersolutions. There holds

Lemma 2.4 (Weak Harnack’s inequality). Let p be log-Hélder continuous in By.
Let 0 < H € L9%(By4) with max{l,p%} < qo < 0o and let s > pi —pt. There

exists tg > 0 dep?nding only on s, p*, pi, | H ()| Lao (By), wa and Mpi_Pi, with
M = (fB4 usq/)sq + (3‘:34 us’"ﬂ)sm for some choice of 1 < ¢’ = qﬁ—l < oo depending
on N, p*, qo, 1 < 19 < 00, with q% + % + % = 1; C > 0 depending on the same

constants and also on to, qo, q such that, for u > 1 and bounded with Ayyu <
H(z)uP™)=" in By there holds that

igfu > C(][ uto)l/to.
1 B,

Proof. The proof follows the lines of the one of Lemma [2.2] This time we use
Caccioppoli’s inequality (2.2) with v < —y = —(p* — 1) < 0. We call again

K= Nivp4 with N as in the proof of Lemma |2.2| and choose ¢ and ry as in that

Lemma. Then, we take 0 < 0 < p < 4. For f =~+ (p— — 1) < 0 we prove that

)p+/|/3\

é(u,qB, B,) < C/PI(1 + |5|)p+/\ﬁ|( p

- é(u, k8, B,). (2.6

Here C' is a constant depending on s, qg, ¢, pi, pt, v =pt —1, | H ()| Lao (By)
and MP+—PL.

In fact, we proceed as in the proof of Lemma until we get (2.4)). Then, since
B < 0 we get (2.6).

Observe that (2.6 holds for any 8 < 0 since this is equivalent to vy < —(p_—1) <
—(pt - 1).

In order to finish the proof it is necessary to prove that there exists o > 0

— 4 4

and C' > 0 depending only on p?, pt, |H(x)||Lw0B,), MP+ P~ and the log-Holder
modulus of continuity of p in By such that

d(u, to, Ba) < Cp(u, —tg, Bo). (2.7)

Then, we choose 8 = —%” in ([2.6]) in order to start the iterative process.
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In order to prove (2.7)), we let 0 < r < 2 and we bound by using Caccioppoli’s
inequality (2.2) with v =1—p?", n € C§°(Bay) withn=11in B,, [Vp| < £,

Fowoga™ =f v <cf ur it vt
B, Ba,

r

<C u PP c _ ][ wp @)= (@) |7 ()
= JBa (p? — 1)+ J B,,
C 2
+ = H(m)up(:”) PPy p(x)
p_ - Ba,
4 4
<CEh )[4 s e
- Ba

The last term can be bound in the following way:

H(z)u?@—PY < (][ qu)l/qo (][ u(p?ﬁ'—pzf)qé)l/qz’
Bgr B2r B2'r

™ i ]‘/T
< Cr_N/q°||H||qu(B4) (][ Mt )m) 0
B

2r
_or 2r 2_r
< Cr P+ ||H||qu(B4)M2p+ P

since g}y < 7o, qﬂo<p‘£ <pr<pi0<r<2
Gathering all these estimates we get

][ IVlogulP™ < CpY,pt, | H| poo(pyyswa) 7 P% MPHP~.

Now the proof follows in a standard way. By Poincaré’s inequality applied to
27 27
f =logu, using that rP- < CrP+ |

2r 2r 2r 4 _ 4
7[ o P < O ][ VAP < Chpt | H | oo 5y, wa) MPE
B,

r

Since this holds for every ball B, with r < 2, by the John—Nirenberg Lemma
there exist constants C; and Co depending only on p*, pi, |H|| L9 (B,)> wa and

Mpi -l such that
][ eC1l el < Oy,
B>

where fp, =f5 [.
We conclude that

(][32 eclf) (7[32 e—clf) _ <][B ecl(f—fBz)) (][B e—cl(f—f32)>

2 2
2
< (][ ecllf—fle) <2
B>

and we have (2.7) with to = C;.
Now the proof of the lemma ends by an iterative process similar to the one in

Lemma@ In fact, we call K = g, B = ¢B, and for the iteration we let Bj = —RJt,
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r; =1+277. Hence, v, = 8, — (p” — 1) = —F@j%“ — (7 —1) < =y = —(p* - 1).

Then, with C the constant in (2.7)), using that p”, p/ < pi,

S i g J N p4
C*1¢(u, to, B2) < ¢(u, —tp, Ba) < COZZ'=O (H(l + bRl 1, ) 0Py
1=0

i

X (2qPit31)Zz:°(i+2)ki o(u, =&, By, ).
Thus,
1/t -
(][ u) " < C lim $(u,~wity, By,) = Cintu
Bs B

j—oo

and the lemma is proved. O

We can improve on Lemma in the following way (see [14] where this im-
provement was done in the case of p constant):

Lemma 2.5 (Improved weak Harnack’s inequality). Under the assumptions of
Lemma let0 <t < Nivp4 (pt —1) if p < N, t > 0 arbitrary if p > N. Then,
there exists a constant C with the same dependence as the constant in Lemma
and also depending on t, such that

(][32 ut) e < Ciglfu.

Proof. We prove that, for every ¢ in this range, ¢y the one in Lemma[2.:4] 0 < p; <
p2 < 4, there holds that

(][B ut)l/t<C(][B ut(’)l/to (2.8)

Pl P2

for a constant C' depending on ¢, tg, p1, p2, Mpi*p‘i, pi, p*, and qq.

This will prove the lemma if we replace in the proof of Lemma the ball By
by B,, with 2 < p < 4 and we take p; =2 in .

In order to prove , we proceed as in Lemma but we are more careful

with the choice of k. In fact, as in Lemma we choose k = #, with N = N

if p* < N and p* < N < qop* if p* > N. In this latter case, we choose N close
4

1};) <pt -1
Observe that k't < p* — 1 also if p* < N. In fact, in this case we have
N—Lp‘i and the inequality holds by our hypothesis on ¢.

Then, we choose ¢ as in Lemma That is, 1 < ¢ < ¢ < k.

In order to prove (2.8) we go back to (2.4). Recall that we get this inequality if
y<—vw<0and f=~+p_ -1

Then, as in Lemma we take 8 = g8, i% = g > 1 o

Now, for j € Nand ¢ =0,1,...,j we let §;; = 7i=U+D¢ Then, Bij = Rl*(ﬁrl)é

and v;; = Bi; — (p— — 1) < R_lé —(p- =1 <wH—(pt —1)=—y <0.

enough to p? so that k=1t = ¢(1—

KR =
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Now, we iterate inequality (2.5) for ¢ = 0,...,j with p = r;, ¢ = r;41, and
i = p1+ 27" (p2 — p1). We get

HUHLRBN(B ) < C||u||LBOj(B )

for a constant C' depending on j, ¢, p1, p2, MP+—P~ , 4, p*. Thus, we get (2.8)
once we observe that p1 < 41, 7o = p2, nﬂ” =1, BOJ = &=+t and we choose
j large so that &=+t < ¢. O

Now, by modifying the proof of Lemmas [2.1] and [2.2] we will prove that weak
subsolutions are locally bounded from above and weak supersolutions are locally
bounded from below. This is already known when p; > N since weak super- and
sub-solutions belong to W1P1(Q) C L*°(Q) if p; > N.

We start with a variation of Caccioppoli’s inequality:

Lemma 2.6. Let u € W'P®)(B) such that Apyu > —H(x)(1 + lu )P =1 in q
ball B and v > 1. Here H > 0 is a measumble functzon. Then, for n € C§°(B)
there holds that

[ Pt + DV < [ B+
B
+C [ AR 0 T (20)

* C/ H(x)(uy + 1P G, (uy + 1)y,

with u+ = max{u,0}, C = C(p4,p-). Here p, = maxpp, p— = mingp.
In , the functions Fy, and G, are defined, for s > 1, by

nY—1 if s >n.

{57_1 if 1 <s<n,

Proof. We proceed as in the proof of Lemmal[2.1] This time we take as test function
¢ = Gp(ug + 1)nP+ € W, Lp( )( B) for every v > 1. We get

/ Fo(us + )| Vuy PO < —p, / Gty + 1P~ Vg POV
Jr/H(f17)(u+ + 1P G, (uy + P
= / wy By (uy + )P~ Vg PO vy

+/H(x)(u+ + 1)POG, (uy + P,

since Gp(ug +1) =0if uy =0 and G, (s) < F,(s)(s—1), as F), is a nondecreasing
function in [1, 00).
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Now, by applying Young inequality we get
/Fn(U+ +1)|Vu [P < C/Uﬁ(m)Fn(w + L)y PO P
+ [ @)+ 07016 g+
and the lemma is proved. O

We can now prove the weak maximum principle. There holds
Lemma 2.7. Let p be log-Hélder continuous in By. Let u € WP (By) such that
Apyu > —H(2)(Ju| + 1)P@ =1 in By, where 0 < H € L% (B,) with max{1, %} <

qo < o0. Then, there exists 0 < p < 4 such that, for every 0 < p1 < p2 < p and for
every 0 < t < oo, there holds that

o =eG25) (f, o) o

P2

The constant C' depends only on pi.pt, MPEPE |H ()| Lo (By), t and qo.
p depends on qo,p* and the log-Hélder modulus of continuity of p in By. Here

4
M = ()‘334 |u|p4*)1/p_.
Proof. We start from (2.9)) with v > 1. Let
o s 1/p—
L,(s) = / (Fa(7)) dr.
1

Then
(VL (s + 1P~ = Fu(us + 1)[Vuy

and we have
J19G - Lo+ 1)p-
_ /Fn(u+ 1)V PP + C’/Ln(u+ - 1)P= PP [V |P-
< c[/Fn(u+ F P+ /uiFn(u+ )PP
+ /H(x)(u+ 1P G (uy + P + /Ln(u+ 1)l
We bound, for s > 1,
Fo(s) <8771,

Lo(s) < Fu(s)VP=(s = 1) = Ly(ugp +1)P~ < (ug +1)77 17—,
PTG (5) < sPF,(s) < 8771P = (uy + 1D)PTIGu(uy +1) < (ug +1)77 1P,
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Thus, by the Sobolev inequality with x = % ivp and N as in Lemma

1/k
(][Ln<u++1>ﬂpwﬂp+)
< Cor 19077 Lofus + 1))
<cp [][m Ll 4 ]l<u+ L) g pe -

s + 0O H@) 17 ]

We take p < 4 such that pi —p” < min{p* /¢, p* /ro}, with ¢ and r( as in the
proofofLemma Let 0 <o <p<p,neC(B,),0<n<1n=1in B,,
V| < p_% and let us proceed as in the proof of Lemma

Observe that, by the choice of p, there exists s > p, — p_ such that sq¢’ < p*
and srg < p*, and we fix such an s for the next steps.

We can proceed with the proof as long as uy € LIO~P-)(B,) with ¢ as in
the proof of Lemma @ This is the case for any value of v > 1 if p_ > N. If
instead p_ < N, there holds that N = N and 1 < ¢ < N—Lp,' Therefore, if we take
v =1 we will have uy € L’I('Y*”p—)(Bp) as needed in order to continue with the
estimates. Thus we get, with 8 =~v—1+p_,

(][B Ln(u++1)r€p7)1/nﬁ SC(g)N/nﬁ<pp0)P+/ﬁ<][B (u++1)Qﬂ)1/qﬁ.

Since the right hand side is independent of n and finite as long as u; € L% (B))
(for instance, if § = p_ so that ¢ < p* ), we can pass to the limit and get

(][B (u++1)“ﬁ>1/ﬁﬂ

SC[1+(1+5)P7/B(§)N/”B( p )P+/B<][B (u++1)q6)1/‘15]

p—o ,

In fact, there holds that

P- e ) = P

As in Lemmaﬁ we call & = %, B = qB and get

(][B (uy + 1)’%5)1/%

SC[1+(1+B)QP—/5(£>N/RE( p )q”*/g(][B (up +1)7 1/5]

o p—0o ,

< 20(1+6)QP—/5<3)N/RB( p )qzbr/ﬁ(][B (u++1)5>1/6.

o p—0 )
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Now we can proceed as in Lemma [2.2 with the iterative process. In each step we
use that uy € L% (B,,) in order to deduce that u; € L%+ (B, . ) and continue
with the iteration, starting with By = p* ™.

In this way we prove for t = p*” if p* < N, any positive number if
pt > N. Now, if p* < N and 0 < t < p** we use Lemma to get the result.
In particular, for ps = p we get with ¢t = p%. So that, u € L>(Bj) for any
p < p. Therefore, uy € L'(B,,) for every ¢ > 0 if po < p and we can proceed
with the proof without any restriction on ¢t. So that holds for every ¢t > 0 if
0 < p1 <p2<p. U

In a similar way, we can prove
Lemma 2.8. Let u € WHP(®)(B) such that Apyu < H(x)(Jul + 1P =1 in q ball

B and v > 1. Here H > 0 is a measurable function. Then, for n € C§°(B) there
holds that

[ Bt s 0ivupop < [ Faa e
B B
+C [ O (a0 O (2
B

+ C’/ H(x)u’i(x)_lGn(u_ + 1)nP+
B

with u_ = max{—wu,0}, C = C(p4,p—). Here p; = maxgp, p— = mingp.
In (2.11)), the functions F,, and G,, are defined as in Lemma .

We also have
Lemma 2.9. Let p be log-Hélder continuous in By. Let u € WP@)(By) such that
Apyu < H(z)(|u] + 1)P@) =1 in By, where 0 < H € L% (B,) with max{1, %} <

qo < oo. Then, there exists p such that for every 0 < p1 < p2 < p < 4 and any
0 <t < oo there holds that

- <0( 20 (f, )

1
The constant C depends on t, p% .p* Mpi’pﬁ, | H ()| oo B,y and qo. p depends
on q, ro, p* for certain q,ro € (1,00) such that q% + % + % =1, and the log-Holder

4
modulus of continuity of p in By. Here M = (fB4 \u|p47)1/p‘.

We conclude

Proposition 2.1 (Weak maximum principle). Let  C RN be bounded and p be
log-Hélder continuous in Q0. Let u € WHP@(Q) such that Ayyu > —H(2)(|u| +
DP@=1 in Q, with 0 < H € LP@)(Q), with ¢y € C(Q), max{1, %} < qo(x) for
every x € . Let Q' CC Q. Then, u is bounded from above in )'. More precisely,
for every 0 <t < o0,

sg/pu < 5’[1 + [JullLe @ |
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where Q" = {x € Q,dist(z, ) < %dist(Q’,@Q)}. Here C depends on t, SV, p1,
P2, qo(z), ||[H|®@||11 (0, the log-Holder modulus of continuity of p in Q, and
P 1 e -

If Apeyu < H(z)(|u| + P@)=1 in Q, there holds that u is bounded from below

by ~C[1+ l[ull e (|-

Proof. Let 0 < R = min{1, 1 dist(,09)}. For z € €, le t u(z) = M
p(x) = p(zo+Rz) and H(x) = RH(zo+ Rx). Then, Ay,yu > — (x)(|u|+1)p(””) 1
in B4.

We claim that there exists 0 < ¥ < 1, go > 0, possibly depending on z(, such
that go(zo + Rx) > go > max{l, %} for every x € Byr. In fact, if p(0 ) < N we let
p1 such that p(x) < N in By,,. Then, let ¢ > 0 such that go(zo) > _(0) + 3¢ and
p2 < p1 such that go(zo + Rx) > qo := W + 2¢ in By,,. Finally, 7 < ps such that
ﬁ%) - ?1\6) < e in Byz. So, in Byr we have qo(zg + Rzx) > §o > max{l, %}

Now, if p(0) > N, we let first p; and € > 0 such that go(xg + Rxz) > go := 1+ 2¢
in By,, and then, 7 < p; such that % < 1+4¢in Bys. So we have ¢o(zg + Rzx) >
do > max{1, %} in Byr.

We can assume that 7 1s Small so that p _4T —p* < min{p1/q’,p1/r0} with ¢ and

ro as in Lemma (q0 +1 vl E =1). Then by Lemma (observe that we may
take p = 47 in that lemma by the conditions imposed to 7), for every 0 < t < oo,

sup < C 1+ il 11z, |
with C depending on ¢, 7, p1, p2, the log-Holder modulus of continuity of p in ",

do, 7o, ||H|\qu(34f) and MP>~P1, where M = |[u| pr1 (o).

Observe that || H|| a0 5,,) < C[1 + |H|H\q°(”‘)||L1(Q)]1/ian ? with C' depending
on R, 7 and qq.
Thus, any point zg € Q' has a neighborhood Brr(zg) where

sup u < C[l + Hu”Lt(Ban(IO)]
Br#(z0)

with C' depending on the neighborhood, on t, p(z), ¢(z), |||H (z)|%® ||1/lan % and
alP 1 ey

Since €’ is compact, we get the result on the upper bound.
Analogously, if A,yu < H(z)|u|P™~1 in Q we find a similar uniform bound
from above for u_ in €. So, we get the lower bound. O

As a corollary we get local bounds for weak solutions to (1.1]). There holds

Corollary 2.1. Let Q C RN be bounded and p log-Hélder continuous in 2. Let
u € WHPE)(Q) be a weak solution to

Ap(m)u = f m Q,
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with f € L@ (Q) with qo € C(Q) such that max{1, W]\;)} < qo(x) in Q. Then, u
18 locally bounded.
Proof. Let H(z) = |f(x)|. Then,
Ayl = 1 f(@)] < H(x)(|Ju] + 1P
The result follows by applying Propositon O

Now, we prove Harnack’s inequality for solutions to (1.1]).

Proof of Theorem[2.1] Without loss of generality we may assume that z¢ = 0.
Let u and f be as in the statement. Let p(x) = p(Rzx).
If f #0in Bysg, let H(z) = R|f(Rz)|,

1

~ ~ ST u(Rx)
u(x) =1+ HH||LQU(B4) + R
and -
H
Hz)= —=——"— (2) )
[ H || oo (1)
If f=0in Byg, let
_ u(Rx)
=1
a(z) =1+ 42
and
H(z)=0
Then,
maxp =gaxp,  minp=minp,

and for x,y € By,

p(z) = p(y)| < war(Rlz — y[) <war(|z —yl)
if0<R<1,and
u(Rx)
R
Therefore, we can apply Lemmas [2.2) n and [2.4] - (recall that we already know that

u is locally bounded and therefore, @ is bounded in By) with p; = 1, po = 2 and
t = to to obtain

,1 B
| &gyl \—uw&w<Hm0+wmwm+< U < H(z)a?@",

1/t0
supﬁgC(][ ﬂto) < C'inf a.
B

B B
Recall that ||[H||za0p,) = 1 or [|H||zw0(p,) = 0. Thus, C is independent of H
and so it depends on f only through its dependence on .

1
4R
. _ u(Ra)+R+RIH||,
Since u(x) = - = L%(B“) there holds that

supu < C’[lnfu + R+ RHH||L¢10(B4)]
Br
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~ _N
Now, [|H|[zs0 () = B | fll oo (Byn)- And

4 -5t

T , 7
Mf+ - ::(][B ﬂsq) 4
4
1 sq' 1/5 —1
<c[r(f ) L]
o 1 AR _ AR

1- N AR 1 Py —pP_
< O (ullpew (g + 2+ (B9 fll o) ™ ,

4R 4R
Py —pP_

AR _ =44

since R~ (%" =) < C with C independent of R. In particular, Mf+ P~ is bounded
independently of R.

_ o4 4
The same kind of bound holds for M§ +7P= So, the theorem is proved. (|

Remark 2.2. Observe that, since gy > 41?, there holds that

1— N 4R _ 1
q p— —
1+péiR 01 >1_p§R—1 =0
Thus, (2.1) can be stated as:
sup u < C| inf u+R+R‘SL] (2.12)
Br(zo) Br (o)

for a certain § > 0.

The power ¢ can be made independent of R. In fact, we may take § = 1+ “" >

01fN2q0>pﬂl,wmhplszgp,andé 1+ ‘“i>11fq0>Nw1th

L T
p2 = supg p. Here L:= (14| fllLa@) " * > HfIILq0 (Baz)"

Remark 2.3. Observe that, since p is continuous in €2, if R is small enough, we
may choose s > p4R — p*f such that sq¢’ < p4R and srg < p*. So, the constant C

in (2.3) depends on u only thrOugh |||u\p I)HLI 43(10))
A similar comment applies to and

From Harnack’s inequality we get Holder continuity of weak solutions. There
holds

Corollary 2.2. Let Q C RN be bounded and p log-Hélder continuous in 0 with
1<pr <p(z) <py <ooin Let f e LY(Q) with max{l, pﬂl} < gy < oo. Letu
be a weak solution to

Ap(m)u = f in . (2.13)
Then, u is locally Holder continuous in ) with constant and exponent depending
only on the compact subdomain and on py,p2, qo, || f|lzw0 ), the log-Hélder modulus
of continuity of p in Q and MP2~P1 and where M = ||[|ulP® || 11 (q).
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Proof. Once we have Harnack’s inequality, the proof is standard. Let Q' cC Q.
There exist L, Ry, > 0 such that for any nonnegative weak solution v of (2.13]),
any zp € @ and 0 < R < Ry,

sup v<C[ inf v+R+ R‘EL}. (2.14)
Br(xo) Br(zo)
Now, apply ([2.14) with R = 2-U*+D Ry to the functions v, = M; — u(x) and
vg = u(x) —m;, where M, = SUPB, ;. (a0) U M = infBrjRo(zO) u, to obtain that
oscjp1u < voscju-+ C(L)R’,
with 0 < v < 1, and the result follows (see [9] for the details). The constant and
exponent of the Holder continuity in £’ depend only on v, C'(L) and 4. (]

By applying Corollary on small enough neighborhoods of points 2y € Q' CC
) —as in Proposition we get local Holder continuity with variable gg. There
holds

Corollary 2.3. Let Q C RY be bounded and p log-Hélder continuous in 2, with 1 <
p1 < p(x) <pa <ooin Q. Let f € L@ (Q), with gy € C() and max{1, WI\;)} <
qo(z) in Q. Let u be a weak solution to

Ap(x)u = f in Q.

Then, u is locally Holder continuous in € with constant and exponent depending

only on the compact subdomain and on p1,pa2, qgo(x), || \f|qo(fr) llL1(q), the log-Hélder

modulus of continuity of p in Q and |||u|p(I)H’£21z5)l,

3. HARNACK’S INEQUALITY FOR SOLUTIONS TO GENERAL ELLIPTIC EQUATIONS

In this section we will generalize the results of Section [2] to elliptic equations
with p(z)-type growth. More precisely,
div A(z,u, Vu) = B(z,u, Vu) in Q. (3.1
We assume that for every My > 0 there exist a constant a and nonnegative
functions go,Co € L(Q), g1,Cy € L1(Q), f,Cy € L=(Q), K2 ¢ Lt2(Q),
K; € L*(Q) for some max{l,pl—Ail} < qo,q1 < o0 (p1 = infq p), max{l,pﬂl} <
@2, t2 < 00, such that, for every x € Q, |s| < My, £ € RV,
(1) A(z,5,6) - € > af¢]P™ — Co|s[P™) — go(x),
(2) |A(z,5,€)| < g1(x) + Cu|s|P®) =1 + Ky |gp) =1,
(3) [B(x,5,6)| < f(2) + Cafs|P*) 71 + Kofg[P(™) 1
We start with a Caccioppoli type estimate.
Lemma 3.1. Let 1 < u € L®(B) be such that div A(z, u, Vu) > — (Ha(z)uP® 14
Ga(2)|Vul[P® 1) in a ball B and v > 0, or div A(z,u, Vu) < Ha(z)uP® -1 4+

Go(z)|VulP®) =1 in a ball B and~y < 0. Assume that there exists a positive constant
o such that

(1) A(z,u(z), Vu(z)) - Vu(z) > a|Vu(z)|P® — Ho(z)u(z)?@ in B.
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(2) |A(z, u(z), Vu(z))| < Hy(z)uP® =1 + G (2)|Vu|P® =1 in B
for certain nonnegative measurable functions H;, G, 1=0,1,2, j =1,2.
Let n € C§°(B), n > 0. Then, there ezists a constant C' that depends only on
p+ =supgp, p— = infpp and o such that

[ v < [t se [m“ [ o+t e
+|")/|71\/H1U’Y+p(m)717]p+71|v77|

(3.2)
+ || 7P+ /fo(’”)u7+p(w)*1np+*p(w)|Vn|p(9:)

+ ||+ /Gg(m)uv-%p(z)—lnm—p(z)} _

Here py = p%,p_ = p".

Proof. Let us consider the case of v > 0. As in the proof of Lemma [2:2] we take
uYnP+ as test function. Then,

av/u%ln”*IVUIp(m) < fp+/H1u”“’(m)*1n”+’1|Vn\
S e
¢ [+ [
+/H0u'y+p_117p+.
As in the proof of Lemma
/Glu”np+_1|Vu|p(”“')_1|V77| < %/uv—lnmwwp(ﬂ
b Oyt / GP® @) 14— (@) [y (),
Similarly,
/G2uvnp+|vu|p(x)*l < %/uwflnm‘vu‘p@)
JrCufpwrl/Gg(x)qurp(x)*lnm*p(m).
Hence, since
/ TP |Vl < / u TP / u P |V,

we have (3.2).
The case of v < 0 is done in a similar way. ]
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Once we have a Caccioppoli type estimate we can get results similar to Lem-

mas 2.2] and .4

So, we have

Lemma 3.2. Let p be log-Hélder continuous in By. Let u > 1 and bounded be
such that div A(z,u, Vu) > —(Ha(z)uP@ =1 + Go(z)|Vul[P®~1) in By. Assume
that there exists a positive constant o such that

(1) A(z,u(z), Vu(z)) - Vu(z) > o|Vu(z)[P® — Hy(x)u(z)P® in By,
2) |A(z,u(z), Vu(z))| < Hi(z)u?@ =1 + G1(z)|VulP® =1 in By,

Here H; € L% (By), i = 0,1,2, G5 € L'(By) with max{1, 2z} < g;,1> < 00 for
i= 0,2, max{1, #} < q1 <00, G € L*™(By) and they are nonnegative. Then,
for every 0 <o < p <4 andt > 0 there holds that

Bp s C(pr_Qpl)C(]lB Ut)l/t'

p1 P2

The constant C depends only on s, pi, P, wa, qi, to, t, a | HillLas (By)

pi—pt pi—pt p?
||G€<””)||Lm<34 3 1G5 2y, Tl (a2 123,y ond [l LWI(B | for cer-
tain ¢’ = ,roe(loo)wzthl—l— +——1 1—012——1— +——1 Here

s> p4 p7 18 arbitrary.

[[ul

Proof. We proceed as in the proof of Lemma If p* > N we choose N = N.
If p* < N we choose N such that p* < N < qu4 for i = 0,1,2 and also p* <

N < t2p Then, we choose 1 < g < A_ such that + < 1fori=0,1,2 and
—|— < 1. Flnally, we take r; € (1, oo) such that - —|— —i— =1 and s2 € (1,00)
such that —|— —|— = =1.

1/sr; , 1/sq’
We will be calling Mo = (f& us”) ,i=0,1,2, M, = (3534 usq)

882 5
(]CB SSZ) s M= Zj:l M;.
The terms involving Hy, H» are treated exactly as the term with H in Lemmal[2.2]
The term involving H; is treated similarly. We have

][Hl(ff)uwp(m)’ln”*’llvn\

¢ (][ qul)l/“(][ uq(wp,_n)“q(][unw-pf))”“
p—0 Bp B,

IN

<< |Hy g, M5~ witrr--0)
1+ 4473
(p—o) By
1/
< g (fwoen)
(p—o)p+ B,

sincel+qﬂ1<p‘i§p_§p+.
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And

1
][Gg(r)u7+p(z)—1np+ < p’%HGQ(m)HLtz(B@(][ uqmﬂ’*_l)) /o
B

P

X (][ u“%‘(m—pf))l/52
Bﬂ

C

S e A (S PREN)

since%<pf <p_<pi,0<p—0o<p<4
Let us now look at the term involving Gy, which is bounded by

¢ —P— ) e
(p_W”G]f(m)HLO@(B@M{Dr P (][UQ(’YJrP— 1)) '

Now, the proof follows with no change. O

Also, we have

Lemma 3.3 (Weak Harnack). Let p be log-Hélder continuous in By. There exist
to > 0 such that, for s > pi —p* there exists C such that, if w > 1 and bounded is
such that div A(x, u, Vu) < Ho(x)uP® =1 4 Gy(2)|Vul|P®) =1 in By and there exists
a positive constant o such that

(1) A(x,u(z), Vu(r)) - Vu(z) > a|Vu(r)|P® — Ho(z)u(z)P® in By,
(2) |A(x,u(x), Vu(x))’ < Hy(2)uP@ =1 + Gy (2)|[VulP® =1 in By,

with H; € L% (By), Gg(m) € L*2(B) for some max{1, p%} < gi,ta < 00,1 =0,2,
max{1, zﬁ} < q1 <00 and Gy € L*®(B) and they are nonnegative, there holds

that
1/t0
i > to . .
%fu_C(][Bu ) (3.3)

2

The constant C' depends only on s, pi, pt, wa, ¢, to, t, a, | Hill i (B4)»
p47 P+*P4,
’ )

i =012, |GF eam, 1GY o), (fp,0) 7 (fp,w) 70 L i=
P4*Pi

i
0,1,2 and (UCB4 u®2) =2 for certain ¢ = le, r; € (1,00) such that i+%+% =
1, s9 € (1,00) such that i + % + i = 1. Here s > p% — p* is arbitrary.

Proof. We proceed as in the proof of Lemma by using and the ideas in
Lemma Recall that in this process we have v < —(p* — 1).

In this way we get (2.6). As in Lemma in order to finish the proof we need
to find ¢y > 0 such that holds for u. So we bound, by using , for an
arbitrary 0 < r < 2, n € C§°(Bgy) with 0 <n <1, n=1in B,, |[Vn| < % and
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v=1-p%,

][ [V logul?™ :][ w P |V < C][ T v
B, .

" ” C ) )
< C][B u P npi + (p?T—l)][(HO + HQ)up(m)fpz npi
2r -
C x)— 27 2r
m][Hlup( )—p= nP+ 1‘V77|
C . o
+ (21)172T][G117( )y p(@)—p2 npi —p(x)|vn|p(w)
pZr ¥

+

" (Cl)f G @
pZ — 1)

So that

B

’ 1/4
+ ||H2||L<12(B4)7"_N/q2 (][ qu(m—p,)) 2
B’V‘

-+ 3 : /4
+ | Hy | par (BT (qu)(][ qu(p+_p—)>
B

s

’ 1/q
+ G oo (Y (][ uf (P+*P—>) /e

+ ||G’2’(”’)||Lt2(34)r*N/tz (][ ut’z(mfpf))l/tz} .

B,

utzé(m—m)) 1/4o

r

Now, since ¢} < r;, th < s2,
27 - — —p_
]l |V log "~ gc[1+|\H0||LQO(B4)T—N/QOM§+ " || Ho| pas gy N M
B,
(14N _ x _p2r —p_
1 o (™ MEETE 4 |G oo (P M
+ IIG’S(I)Hm(m)’“_N/tZM?*p*]-

Finally, since 0 < r < 2, g <pt, i=02 % <pi 1+ Y < ptoand

q1
pt <p* <pir,

][ |V log u|p2f

3

& T _2r 4 4
= 0[1 + Z [ Hill Loi (B) + ||G117( )||L°°(B4) + ||G§( )HL*2(B4)]T Y
=0
Now the proof follows in a standard way as in Lemma [2.4] 0O

Rev. Un. Mat. Argentina, Vol. 56, No. 1 (2015)



98 NOEMI WOLANSKI

Remark 3.1 (Improved weak Harnack). With the same proof as that of Lemma
we can improve on Lemma In fact, (3.3) holds for any to > 0 if p* > N and

for any 0 < g < Nivp4 (p* —1)if N >p*.

Remark 3.2 (Local bounds). As in the previous section, by modifying the proof
of Lemmas [3.1] and we get that if u satisfies weakly

| div A(z,u, Vu)| < Ha(z)(Ju| + 1)P@=1 4 Gy (2)| V[P~ in Q

and
(1) A(z,u(z), Vu(z)) - Vu(z) > a|Vu(z)[P® — Hy(z)(ju(z)] + 1)PE) in Q,
(2) Az, u(=), Vu(@))| < Hi(z)(Ju] + 1771 + G1(2)[VulPP " in Q,
with 0 < H; € L4@)(Q), 0 < Gy € L=(Q), 0 < G2 € LL®(Q) with g;,t, €
C(Q2) and max{l,%} < go(x),ta(x) in Q, max{l,#} < qo(z),q1(x) in Q,
there holds that w is locally bounded.
Then, as in the proof of Corollary we get that, if the structure conditions

(1), (2), (3) do not depend on My, weak solutions to (3.1 are locally bounded. In
fact, we let u be a weak solution to (3.1)) and

H,(.T) :gl(m)+cl($)7 7’:0’15
Hy(x) = f(z) + Ca(x),
Gj(ac) = Kj($)7 j = 1,2.

Then,
| div Az, u, V)| = Bz, u, V)| < Hox) (Julz)| + 1P + Cola) [ Vu(z)P)

and
(1) A(z,u(x), Vu(z)) - Vu(z) > a|Vu(x)|p("E) — Ho(z)(Ju(x)] + l)p(x) in Q,
(2) |A(z, u(z), Vu(@))| < Hi(z)(ju| + 1)PO 1+ Gy ()| Va P~ in Q.
So, we get that wu is locally bounded.

We can now prove Harnack’s inequality for solutions of general elliptic equations
with non-standard growth.

Theorem 3.1. Let Q C RYN be bounded and let be p log-Hélder continuous in
0. Let A(x,s,€), B(z,s,§) satisfy the structure conditions (1), (2) and (3) for
certain nonnegative functions go,Co € L1(Q), g1,C1 € L1(Q), f,Cy € L2(Q),
Ky € L=(Q), K39 e L=(Q), with max{1, -2} < go,q1 < oo, max{l, ¥} <
q2,t2 < 00.

Let ' CC Q. There exists R < min{1, 1 dist(Q’,09)} such that, if u > 0 is a
bounded weak solution to in Q, there exists and C > 0 such that, for every
Xo € Q/,

sup u < C[ inf u+ R+ pR]. (3.4)
Br(wo) Br(wo)
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Here

J S
AR

N ARy N ;
= R i + [R5 g0l (mm | 7

1
PAR 1

_N
+ R gl |
The constant C' depends only on s, pJr . AR war, @, ta, a, uPiR_pf ,
ICil gy ¢ = 012 IS g ||Kf<””’\|m3m<zo»,

i il =0,1,2, | ¢

||u| L4 (Bar(z0)) Lsn B4R(x0)) fm“ certain ¢ = -4

. e

|UHL552(B4R zo q—1’
€ (1,00) such that - 4 = —|— = =1, 89 € (1,00) such that i —|— = =1. Here
s> pi —p* s arbztrary

Observe that upiR*pél—R is bounded independently of R.

Proof. Without loss of generality we will assume that xg = 0. Let us call

Ho(z) = _ﬂgO(Rx) + RPU =10y (Ra)
R 0 HQOHL“O(BU?.)

Hyw) = — 280D petro-icy (R
R o Hgl”L‘Zl (Bar)

Hy(z) = Jf (Fz) + RP(RD 0y (Ry)
R™% || fl| Loz (Byr)

G1(z) = K1(Rzx)

Gs(r) = RK3(Rx)

Let
u(Rx
ulx)=1+p+ %, p(z) = p(Rx).

If a function is identically zero in Bygr(zg) the corresponding term does not
appear in the definition of the functions H;.
Then, HGl(x)p(x)HLoo(m) < ||K1(m)p(z)HLoo(B4R) and, for i =0, 1,

<][ H;zi)l/q"’ < Cn.ua {1 + ( Rq,,-(p(z)_l)_NCgi)l/qi}
By Ban

< CN,qi [1 + HCilqui(Bm)]’

sinceqi>plL71 fori=0,1and 0 < R < 1.
On the other hand, since go > pﬂl,

(][ ng)l/q2 < Chn,g [1 + ( Rq2p($)_NC§2)1/q2:|
By o

< CN,qz [1 + ||C2||Lq2 (B4R)]’
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and, since ty > pﬂ,

_ 1/t 1/t
( G;zp(@) 2 < CN,t2 [1 + ( Rtgp(z)*NKézp(w)) 2:|
By

< COngy [T+ IKE | poa (3] -
On the other hand, for 0 < R <1 let
A(z,s,€) == A(Rz,R(s — 1 — p),§).
Then, A(z,u(z), Vi(z)) = A(Rz,u(Rz), Vu(Rz)) and we have

Bur

| div A(z, a(x), Va(@)| < RF(R2) + RCy(Ra)u(Re)r )
+ RE,(Ra)|Vu(Ra) [P~
< Hy(z)a(2)P @ 4+ Ga(z)|Va(z)|P) L,
Also,
‘fl(m,ﬂ(z), Vﬁ(x))‘ < g1(Rz) + C(Rx)u(Rx)P B =1 4 K\ (Rx)|Vu(Rz) PR~
< Hy(2)a(z)P@ =1 + Gy ()| Va(z) P!

and

Az, u(z), Vu(z)) - Vu(z) > | Vu(Ra) PR — Cy(Rayu(Re)? B — go(Rz)
> o|Va(z)[P® — Hy(z)u(z)P® L,

Thus, since @ > 1 and

pt—pt 4R_ 4R _ 4R R_pik
Hu”Lt(B ) < C[1+ pP+ 7= + R~ F @it -—pt )||“||Lt(B4R)]

_pAR
< Ol 4P P2 4 ||uHLt B4R) |,

by applying Lemmas [3.2] and [3:3] to @ we get the result. O

Remark 3.3. Since p is continuous in ) we can choose R small enough in such
4R 4R
p —pP_

i e P1 5
a way that, by choosing s small enough, M; < (me(mo) u ) 1 <

c(1+ (fq up(“’))%fl), j = 1,...,5 where p; = infgp, po = supgp and the
constant ¢ depends only on the log-Hoélder modulus of continuity of p in €.

So that, if moreover the constant a and the functions gg, g1, f, Co, C1,Ca, K1
and K5 in the structure conditions do not depend on M,, Harnack’s inequality
holds —on small enough balls depending only on p— for any nonnegative weak

P2
solution, with a constant C' depending on u only through ( [, uP®) = '

From Harnack’s inequality we get Holder continuity. There holds
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Corollary 3.1. Let Q C RN bounded. Let p be log-Hélder continuous in Q and
p1 = infop(x). Let A(z,s, &), B(x,s,§) satisfy the structure conditions (1), (2),
(3) at the begmning of the section. Assume that go,Co € L?(Q), g1,C1 € L1 ()
and max{1, > N1 < qo,q1 < 00, f,Co € L2(Q), KP™ ¢ Lt2(Q) and max{1, pﬂl} <
q2,t2 < 00. Fmally, assume K1 € L>(Q).

Then, there holds that any bounded weak solution to 18 locally Holder con-
tinuous in €.

If the functions in the structure conditions are independent of My, any weak
solution is locally Hélder continuous and the constant and Holder exponent are
independent of the L bound.

Proof. Under these assumptions, for every My > 0, ' CC €, there exist a universal
constant C, a radius Ry > 0 and 6 > 0 such that for every 0 < R < Rg, zg €
and any weak solution 0 < v < My,

sup v < C[ inf v+ R‘S]. (3.5)
Br(zo) Br(zo)

In fact, we apply (3.4) and observe that we are assuming that go, g1 > 5 N . So

1 N _ 1 N _
that 1 — oﬁzliqul 50>01 qp“Rlzliqilm 51>O
On the other hand, if ¢ > N, 1—&—(1——)174R 7> l—i-(l——) 7 =0y > 1, if

X <q2 <N, 1+(1——) Sy 2 L+ (L= ) g =02 > 0.

p2—

P1—
Once we have (3.5, we deduce that u is Holder continuous in a standard way
by applying (3.5) With R = Ry27UtD to vi(z) = supg u — u(x) and to

vo(z) = u(z) —infp

Rg2~J (zq)
rgz—i (g U Here, Mo = supg u (see [9] for the details).

Recall that, when the functions in the structure condition are independent of My,
any weak solution is locally bounded. So that they are locally Holder continuous

and the Holder exponent and constant are independent of the L* bounds. O

Now, we assume that A and B satisfy the following structure conditions: For
every My > 0 there exist a constant a and nonnegative functions f, go, g1, Co, C1,
Cs, K1, Ko as before and b € R+ such that, for every z € Q, |s| < My, ¢ € RV,

(1) A(w,5,€) - & > alg?™) = Co|s|"™) — go(x),
2) |A(z,5,6)| < gi(@) + CufsP) =1 + Ky g1,
) |Bla,s,6)| < f(x) + Cals[Pt) =1 4 Ko |¢[P)1 4 blg [Pl

We will prove Harnack’s inequality for bounded weak solutions.

In fact, for 0 < u < My we can reduce the problem to the case of b = 0 treated
before since, on one hand, there holds that

div Az, u, Vu) > —(f () + Co(2)uP @~ + Ko (2)|VulP =1 4 5| Vu[P®))  in B,
=

div A(z, u, Vu) > —(f(z) + Co(2)uP@ =1 + Ko (2)|Vu/P® 1) in B,,
with zzlv(x, $,&) = eg(s’MO)A(:E, s, &) satisfying
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(1) Ale,u(z), Va(x)) - Vu(z) > ae~ 0 Tu(a) @) — Co(a)u(z)?@) — go(a),
(2) |Ale, ule), Va(@))| < g1(2) + C1(@)u(@)©! + K (2)| Vala) )

On the other hand, again for 0 < u < M there holds that

div A(z,u, Vu) < f(z) 4+ Co(x)uP @~ + Ky ()| VulP ™~ + 5| VuP™  in B,
=

div A(z, u, V) < eaMo(f(2) + Co(2)u? @~ 4+ Ky (z)|[VuPD 1) in B,

with A(xz,s, &) = eg(MO*S)A(x, s, &) satistying,
(1) Aw,u(@), Vu(@) - Vu(z) > a|Vu(@)Pe) — Mo (comu(w )+ g0(@)-
2) |A(z, u(z), Vu(z))| < ex™o (g1 (2)+C1 () fu(@) [P+ Ky () | Vu(e) PO

Thus, there holds

Theorem 3.2. Let Q C RN be bounded and let p be log-Hélder continuous in Q.
Let A(x,s,£), B(x,s,&) satisfy the structure conditions (1), (2), (8’). Let u > 0
be a bounded weak solution to and let My be such that u < My in Q. Let
Q' CcC Q. There exists Ry < min{l, }dist(Q',00)} such that if zo € Q' and
0 < R < Ry,

sup u < C| inf u+ R+ uR|,
sy = CLoE,) -

where

JE —
iR

_ 1-& p4_’%—1 N S
p= R fllLe(Bin) + R |lg0ll oo (Ban)

1
iR _

_N -
+ [R5 a3 | 7
The constant C' depends only on bMy, «, s, q;, 1 = 0,1, 2, the log-Holder modulus
4 4 4 4
of continuity of p in €, ,up+R*p—R, and M”+R*p—R, where p4 = SUPg, . (z) Ps P— =
. T T 4
i0f 5y o) P BT 2 (Banteos 1ES Lo (Bunaoyy: M = zj_lM- and M, =
\1/sq .\ 1/sT;
(me(mo) u'?) /51 , Mo = (jCB4R(1E0) u") / for certain ' = L5 depending on
gi, p1 and N and r; € (1,00), 1 =0,1,2 wzth -+ —l———l Heres>p+—p,
18 arbitrary.
Observe that upiR_piR and MP¥ P2 qre bounded independently of R.

Proof. Theorem [3.2] is obtained from Lemmas [3.2] and [3.3] applied to @ with the
operator A replaced by A and A respectively. O

With the same proof as that of Corollary 3] we get the following regularity
result.

Corollary 3.2. Let 2 C RY be bounded. Let A and B satisfy the structure condi-
tions (1),(2), (3’). Let u be a bounded weak solution to (3.1]) in Q with p log-Hélder
continuous. Then u is locally Holder continuous in €.
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Remark 3.4. Observe that under condition (3’) the constant in Harnack’s in-
equality and the Holder exponent and constant of a bounded weak solution depend
explicitly on the L*° bound.

4. STRONG MAXIMUM PRINCIPLE FOR p(x)—SUPERHARMONIC FUNCTIONS

In this section we prove the strong maximum principle for p(z)-superharmonic
functions. As stated at the introduction, the strong maximum principle cannot be
deduced from Harnack’s inequality as in the case p constant. Instead, we will use
some barriers constructed in [§].

Proposition 4.1 (Lemma B.4 in [8]). Suppose that p(x) is Lipschitz continuous.
Let w, = Me‘“‘””'z, for M >0 and rq > |x| > ro > 0. Then there exist p9,e0 > 0
such that, if p > po and |Vp|leo < €o,

J— :1/‘2 J— —_— .

e M VPP Ay wy > Cr (= Ca||Vpllso|log M) in By, \ By,
Here 01702 depend Only On T, ', P+, P—, Ho = :U'O(p-‘rap—aNa va”OOvTQ?Tl); and
€0 =50(p+,p7,7"17r2)-

Then we have

Corollary 4.1. Suppose that p(z) is Lipschitz continuous. Let Ag > 0. Then, there
exists 69 > 0 depending on py, p—, |Vp|leo and Ao, and for every 0 < A < Ag
there ezists oy > 0 depending on the same constants and also on A such that, if
moreover § < &g and p > g, the function

|z—=zq|2
S S e
w(z) = A € . c
e"1 —eH
satisfies
Apmyw >0 in Bs(wo) \ Bs/2(20),
w=20 on 8B5(x0),
w=A on 0Bs9(x0).

Proof. Set w(x) = fw(zo + 6x), p(x) = p(xo + 6xz). Let M = ﬁ. Then,

w(x)=Me e e |Vp(x)| = 8| Vp(ao + 62)).

Hence, by Proposition 1] if ¢ is small and 4 is large depending only on py, p_
and || Vp|| oo,

,u_le“‘xle_l|V®|2_’3Ap(z)w(x) > C1(p — C2||Vp|loo|log M|)in B\ By .
Observe that M = Aet/ ‘:_fﬁ. Therefore, if i is large there holds that
1< M < 4Aet*,

so that
|log M| < Ap.
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Hence, in this situation,
e MY VB 2P Ay @ (2) > Oy (1 — Cod||VpllaA) >0 in By \ By
if, moreover, § is small depending on Cy, Cy, Ag and ||VD||so- O

We can now prove our main result in this section. We follow the ideas of the
proof in [I7] for the case p constant.

Theorem 4.1. Suppose that p(x) is Lipschitz continuous. Let Q@ C RN be con-
nected and 0 < uw € C1(Q) such that Apyu < 0 in Q. Then, either u=0 in Q or
u >0 in Q.

Proof. Assume the result is not true. Then, since €2 is connected, d{u > 0}NQ # (.
Let 1 € {u > 0} such that dist(z1,d{u > 0}) < dist(z1,09), and let y € H{u >
0} N Q such that r = [x1 — y| = dist(x1,0{u > 0}). Let Ag = supp, (,,)u. Let do
be the constant in Corollary £.1] By choosing x( on the line between 1 and y and
taking 6 = |rg — y| we may assume that § < dy and Bs(zg) C {u > 0}. Let now
A= infaBé/z(mo) u. Then, 0 < A < Ag. Therefore, by taking w as in Corollary
we have
u(z) > w(z) >0 in Bs(wo) \ Bs/a(wo)-
Since u(y) = w(y) = 0, there holds that
[Vu(y)| = [Vw(y)| > 0.

But this is a contradiction since y € d{u > 0} NQ, u > 0 in Q and u € C*(Q) so
that Vu(y) = 0. O

Remark 4.1. Recall that in [2] it was proved that solutions to A, yu = 0 are
obe. Thus, Theorem applies to nonnegative weak solutions.

loc

With a similar proof we get

Theorem 4.2. Under the assumptions of Theorem [[.1], if, moreover, there exists
y € 0Q such that there is a ball B contained in Q such that y € OB, u € C(B),
u > 0 in B and u(y) = 0, then for x € B close enough to y there holds that
u(xz) > co(x — y) - v, where cg > 0 and v is the unitary direction from y to the
center of the ball B.

If, moreover, u € CY(Q U {y}), there holds that either w = 0 in Q or else

agi(yy) > 0. Here v is as above.
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