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THE QUASI-STATE SPACE OF A C∗-ALGEBRA

IS A TOPOLOGICAL QUOTIENT

OF THE REPRESENTATION SPACE

SERGIO A. YUHJTMAN

Abstract. We show that for any C∗-algebra A, a sufficiently large Hilbert

space H and a unit vector ξ ∈ H, the natural application rep(A:H)
θξ−−→ Q(A),

π 7→ 〈π(−)ξ, ξ〉 is a topological quotient, where rep(A:H) is the space of

representations on H and Q(A) the set of quasi-states, i.e. positive linear
functionals with norm at most 1. This quotient might be a useful tool in

the representation theory of C∗-algebras. We apply it to give an interesting

proof of Takesaki–Bichteler duality for C∗-algebras which allows to drop a
hypothesis.

1. Introduction

The GNS construction relates positive linear functionals with cyclic representa-
tions of a C∗-algebra. If we have a C∗-algebra A, a Hilbert space H and a unit

vector ξ ∈ H, it is natural to consider the map rep(A:H)
θξ−→ Q(A), π 7→ 〈π(−)ξ, ξ〉,

from the set of representations of A on H to the set of quasi-states of A. If H is
large enough to contain (strictly) a copy of every cyclic representation, the GNS
construction is essentially equivalent to the surjectivity of θξ. Considering the
weak∗ topology on Q(A) and the correct topology in rep(A:H) described below,
the map θξ is continuous. Here we show that this map is a topological quotient
(Theorem 2.5 a). This property provides a more complete picture of the rela-
tionship between these fundamental objects of the theory. As an application, we
present an interesting perspective for Takesaki–Bichteler duality, that is summa-
rized by the diagram in the proof of Theorem 3.7. Even though our proof of the
duality preserves two key ingredients from Bichteler’s proof (Proposition 4.ii and
first lemma in [1]), it is conceptually more clear and it allows to drop the bound-
edness condition (definition 3.1, 2). From the proofs in [1] and [3] it is not possible
to directly avoid such hypothesis. We also review the concept of “field” relevant in
this context, giving a more elegant definition and explaining the equivalence with
the old ones. Thus, conditions in Theorem 3.7 are significantly better than those
imposed to the fields in [3] and [1].

For unital C∗-algebras we also show that the state space S(A) is a topological
quotient of the appropriate subspace of rep(A:H). This is 2.5 b.
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Our application of Theorem 2.5 to Takesaki–Bichteler duality only exploits the
universal property of the quotient in the case of affine scalar maps. We expect the
existence of other applications where the involved maps are nonlinear.

1.1. Notation.

• A will denote a C∗-algebra.
• If X is a Banach space, X∗ denotes its dual.
• S(A) = {ϕ ∈ A∗ | ϕ ≥ 0, ‖ϕ‖ = 1} the state space of A, with the weak*

topology.
• Q(A) = {ϕ ∈ A∗ | ϕ ≥ 0, ‖ϕ‖ ≤ 1}, the space of quasi-states, also with

the weak* topology.
• For ϕ ∈ A∗, ϕ ≥ 0, (πϕ, Hϕ, ξϕ) is the GNS triple. ‖ξϕ‖2 = ‖ϕ‖.

2. Main theorem

Let rep(A:H) be the set of possibly degenerate representations of A on H, this
is the set of ∗-algebra morphisms A → B(H). Here H is a Hilbert space of a
dimension greater than or equal to the dimension of every cyclic representation of
A. In case the supremum of these dimensions is finite, we will require the dimension
of H to be strictly larger than this number.

The relevant topology on rep(A:H) is the pointwise convergence topology with
respect to the wot, sot, σ-weak or σ-strong topologies in B(H). The next lemma
asserts that these topologies coincide.

Lemma 2.1. Let π be a representation of A on a Hilbert space H and (πj) a net
of such representations. Convergence πj(a) → π(a) for all a ∈ A is equivalent for
the wot, sot, σ-weak and σ-strong topologies on B(H).

See [1, page 90] for the proof. In other words, the topology we consider on
rep(A:H) is that inherited from the product topology on B(H)A, where the topol-
ogy on B(H) can equivalently be the σ-weak, σ-strong, wot or sot. It is Hausdorff
because it is a subspace of a product of Hausdorff spaces.

For the proof of Theorem 2.5 we will need the following simple geometrical
lemma.

Lemma 2.2. Let H be a Hilbert space and α, β ∈ H unit vectors. Then there is a
unitary Uα→β such that Uα→β(α) = β and ‖Uα→β − Id‖ = ‖α− β‖.

Proof. In case β = kα for k ∈ C, then |k| = 1 and Uα→β := k.Id . Otherwise,
we define Uα→β as the identity on [α]⊥ ∩ [β]⊥ = [α, β]⊥. On the subspace [α, β]
we take an orthonormal basis (α, α′). Write β = rα + sα′, and β′ := −sα+ rα′,
obtaining an orthonormal basis (β, β′). Now define Uα→β |[α,β] by α 7→ β, α′ 7→ β′.
The following two identities are easy to check:

〈α− β, α′ − β′〉 = 0,

‖α− β‖ = ‖α′ − β′‖.
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For x ∈ H, let λα+ µα′ be the projection of x to [α, β]. We have:

‖x− Uα→β(x)‖2 = ‖λα+ µα′ − λβ − µβ′‖2 = ‖λ(α− β) + µ(α′ − β′)‖2

= (|λ|2 + |µ|2)‖α− β‖2.

So ‖x− Uα→β(x)‖ = ‖α− β‖.‖p[α,β](x)‖ ≤ ‖α− β‖.‖x‖. �

The proof of our main theorem makes use of the following proposition by
Bichteler. This is Proposition 4) (ii) in [1].

Proposition 2.3. Let A be a unital C∗-algebra and H a Hilbert space large enough
to contain a copy of any cyclic representation of A. Let ϕ ∈ Q(A), π ∈ rep(A:H),
ξ ∈ π(1)H such that 〈π(−)ξ, ξ〉 = ϕ.

For every V ⊂ rep(A:H) and W ⊂ H open neighborhoods of π and ξ respectively,
there is an open neighborhood U of ϕ such that for every ϕ′ ∈ U there are π′ ∈ V ,
ξ′ ∈W ∩ π′(1)H satisfying 〈π′(−)ξ′, ξ′〉 = ϕ′.

In the following proposition we manage to keep fixed the vector ξ′ in the previous
statement. We require H to contain strictly a copy of any cyclic representation
of A. Of course, this detail only makes a difference when H is finite dimensional.
Besides, we need π(1)H ( H.

Proposition 2.4. Let A be a unital C∗-algebra and H a Hilbert space of dimension
d, greater than or equal to the dimension of any cyclic representation of A, plus 1.
Let ξ ∈ H be a unit vector. Then, for every π ∈ rep(A:H) such that π(1)H ( H
and V 3 π open, θξ(V ) is a neighborhood of θξ(π) = ϕ.

Proof. We might assume V = {π′ ∈ rep(A:H) | ‖π′(ai)ξj − π(ai)ξj‖ < ε} for

finite families (ai), (ξj) with ‖ai‖ = ‖ξj‖ = 1. Let Hπ := π(1)H = π(A)H. Let
η = π(1)ξ. We have ξ − η ⊥ Hπ. Take H ′ ( H such that Hπ ⊂ H ′ ⊂ [ξ − η]⊥ and
H ′ contains a copy of every cyclic representation of A. Now take

V ′ := {π′ ∈ rep(A:H ′) | ‖π′(ai)ξj − π(ai)ξj‖ <
ε

2
}

(we assume π′(a)(H ′⊥) = 0 for π′ ∈ rep(A:H ′), so V ′ is an open subset of rep(A:H ′)
containing π).

According to Proposition 2.3, if we take W ⊂ H ′ the δ-ball centered at η, there is
an open set U 3 ϕ such that for any ϕ′ ∈ U there is a π′ ∈ V ′ and η′ ∈W ∩π′(1)H ′

satisfying 〈π′(−)η′, η′〉 = ϕ′. (Note: we can choose U such that |ϕ′(1)−ϕ(1)| < ε1

∀ϕ′ ∈ U , so
∣∣∣|ϕ′‖−‖ϕ‖∣∣∣ < ε1). Now we only need to rotate π′ slightly by a unitary

U in such a way that 〈U−1π′(−)Uξ, ξ〉 = ϕ′. The image of ξ by U must be a unit
vector ξ′ close to ξ such that ξ′ − η′ ⊥ π′(1)H.

In case ξ = η, since ‖η′‖ ≤ 1, we can take v ∈ H ′⊥ such that ‖η′ + v‖ = 1, and
define ξ′ := η′ + v. We have

‖ξ − ξ′‖2 = ‖η − (η′ + v)‖2 = ‖η − η′‖2 + ‖v‖2 = ‖η − η′‖2 + 1− ‖η′‖2.
Since ‖η − η′‖ < δ we have ‖η′‖ > 1 − δ, and we can easily make (taking δ

sufficiently small) ‖ξ − ξ′‖ < ε2, to be determined.
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In case ξ 6= η, we take ξ′ = η′ + λ(ξ − η). To determine λ:

‖ξ′‖2 = |λ|2.‖ξ − η‖2 + ‖η′‖2 = |λ|2.(1− ‖η‖2) + ‖ϕ′‖ = |λ|2.(1− ‖ϕ‖) + ‖ϕ′‖,

so we choose λ = ( 1−‖ϕ′‖
1−‖ϕ‖ )

1
2 to obtain ‖ξ′‖ = 1. Since ‖ϕ′‖ is arbitrarily close to

‖ϕ‖, λ is arbitrarily close to 1 and therefore ξ′ is arbitrarily close to ξ (‖ξ−ξ′‖ < ε2)
as long as δ is sufficiently small.

Now, having ξ′ we just apply U := Uξ→ξ′ ∈ U(H) (Lemma 2.2), and take
π′′(−) := U−1π′(−)U . Since π′ ∈ V and ‖U − Id‖ = ‖ξ′ − ξ‖ < ε2, we have:

‖π′′(ai)ξj − π(ai)ξj‖ < ‖π′′(ai)ξj − π′(ai)ξj‖+
ε

2

and

‖π′′(ai)ξj − π′(ai)ξj‖ = ‖U−1π′(ai)Uξj − π′(ai)ξj‖
≤ ‖U−1π′(ai)Uξj − U−1π′(ai)ξj‖+ ‖U−1π′(ai)ξj − π′(ai)ξj‖

< 2ε2 <
ε

2

for ε2 <
ε
4 . So we get π′′ ∈ V and θξ(π

′′) = ϕ′. �

Theorem 2.5. Let A be a C∗-algebra and H a Hilbert space of dimension d, large
enough to contain strictly a copy of any cyclic representation of A. Let ξ ∈ H be a
unit vector. Then

(a) the application

rep(A:H)
θξ−→ Q(A)

π 7−→ 〈π(−)ξ, ξ〉
is a quotient map.

(b) for unital A, the restriction repξ(A:H)
θξ−→ S(A) is a quotient, where

repξ(A:H) = {π ∈ rep(A:H) | ξ ∈ π(1)H}.

Proof. Continuity of θξ is trivial. Although surjectivity may be intuitively clear
from the GNS construction, we will describe in detail a generic preimage for ϕ ∈
Q(A). We must embed a GNS representation of ϕ in H in such a way that the
orthogonal projection of ξ to the essential space is the cyclic vector of the GNS
triple. To achieve this, take a unit vector v orthogonal to ξ, define η = ‖ϕ‖ξ +

(‖ϕ‖ − ‖ϕ‖2)
1
2 v. This η satisfies ‖η‖2 = ‖ϕ‖ and ξ − η ⊥ η. By hypothesis, it is

possible to embed Hϕ into [ξ − η]⊥ taking ξϕ to η. Define π ∈ rep(A:H) as πϕ
through the isometry Hϕ ↪→ H, being 0 on the orthogonal to the image of Hϕ. We
have θξ(π) = ϕ.

Now we assume A unital and postpone the general case, because we need part
(b). Take D ⊂ Q(A) such that V := θ−1

ξ (D) is open. We must see that D is open
to conlude that θξ is a quotient map. Let ϕ ∈ D. Take a preimage π of ϕ such
that π(1)H ( H. By Proposition 2.4, θξ(V ) is a neighborhood of ϕ, so D is open.

(b) Clearly we have the restriction repξ(A:H)
θξ−→ S(A). Furthermore

θ−1
ξ (S(A)) = repξ(A:H). Let D ⊂ S(A) be a set such that θ−1

ξ (D) is open in
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THE QUASI-STATE SPACE OF A C∗-ALGEBRA 61

repξ(A:H), so θ−1
ξ (D) = V ∩ repξ(A:H) with V open in rep(A:H). Let ϕ ∈ D.

We take π ∈ θ−1
ξ (ϕ) such that π(1)H ( H, as before. By Proposition 2.4, θξ(V )

contains an open neighborhood U 3 ϕ, U open in Q(A). Now it is easy to check
that

U ∩ S(A) ⊂ θξ(V ∩ repξ(A:H)) ⊂ D.
Thus, D is open in S(A).

Finally, we prove the general case of (a). Consider the minimal unitization Ã.

By restriction, we have a continuous map repξ(Ã:H)
r−→ rep(A:H). Besides, the

restriction S(Ã)→ Q(A) is a homeomorphism. We have:

repξ(Ã:H) //

r

��

S(Ã)

'
��

rep(A:H)
θξ // Q(A)

Since θξ ◦ r is a quotient by part (b), θξ is a quotient. �

Remark 2.6. In case d is finite, rep(A:H) is compact, so θξ is a closed map. To see

compactness of rep(A:H), consider the map rep(A:H)→ BA1
1 , π 7→ (a 7→ π(a)),

where B1 ⊂ B(H) and A1 ⊂ A are the respective unit balls. BA1
1 has the product

topology of the norm topology in B1, it is a compact space. The map is a topological
subspace and the image is closed.

3. Application to Takesaki–Bichteler duality

Takesaki–Bichteler duality allows to recover an arbitrary C∗-algebra from its
representation theory. The elements of A coincide with the set of certain continuous
fields on rep(A:H). Here we remove the boundedness hypothesis on the fields,
clarify the remaining conditions and present an elegant proof through Theorem 2.5.

See [2] for very interesting duality theorems with rep(A:H) replaced by Irr(A:H),
the space of irreducible representations. These dualities are not only related to
Gelfand duality but also to Tannaka duality for compact groups or its generalization
to locally compact groups, Tatsuuma duality.

Let us start by reviewing the concept of field that is used in Takesaki–Bichteler’s
theorem. We provide a simpler definition than those from [3] and [1], and explain
why it is equivalent to them.

Definition 3.1. A field over rep(A:H) is a map rep(A:H)
T−→ B(H) that satisfies:

0) T (0) = 0

1) For an intertwiner H
S−→ H between π1 and π2 (Sπ1(a) = π2(a)S ∀a ∈

A), it holds ST (π1) = T (π2)S. In other words: T is compatible with
intertwiners.

2) {‖T (π)‖}π∈rep(A:H) is bounded.

Clearly, every a ∈ A induces a field.
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62 SERGIO A. YUHJTMAN

Proposition 3.2. The following condition is equivalent to item 1 in the previous
definition.

1’) T is compatible with intertwiners that are partial isometries.

Proof. 1) ⇒ 1’) is trivial. Let us prove the converse. Assume that T is compatible

with intertwiners that are partial isometries and take an arbitrary intertwiner π1
S−→

π2, S ∈ B(H). The operator S has a polar decomposition S = UP , where P =

(S∗S)
1
2 and U maps (S∗S)

1
2 y to Sy and the orthogonal complement to 0. Since S

is an intertwiner, π2
S∗−−→ π1 is an intertwiner and also are π1

P−→ π1 and π1
U−→ π2. T

is compatible with U by hypothesis. It only remains to prove that T is compatible
with any positive intertwiner P of a representation π1 with itself. Taking r > 0
small enough, rP has its spectrum inside [0, 2π). eirP is a unitary equivalence, so
it is compatible with T (i.e. it commutes with T (π1)). But irP is the logarithm of
eirP , so P also commutes with T (π1). �

Proposition 3.3. Let π ∈ rep(A:H), pπ be the orthogonal projection to the essen-
tial space of π, and T a field over rep(A:H). Then T (π) = pπT (π)pπ.

Proof. Let pπ⊥ = 1 − pπ, the orthogonal projection to π(A)H
⊥

. It defines an

intertwiner π
p
π⊥−−−→ 0, so we have (1 − pπ)T (π) = T (0)pπ⊥ = 0, T (π) = pπT (π).

Besides, pπ is an endomorphism of π, so pπT (π) = T (π)pπ. �

With the operations defined pointwise and the norm ‖T‖ = supπ ‖T (π)‖, the set
of fields is a C∗-algebra. Actually, they form the universal von Neumann algebra
of A (see [3, Theorem 3], [1, proposition in page 95], [4, Proposition 4.7]). Recall
that the universal von Neumann algebra of a C∗-algebra A can also be constructed
as the bicommutant of the universal representation

⊕
ϕ∈S(A) πϕ or as the bidual

A∗∗ with the natural involution and Arens multiplication.
The definition of “field” by Takesaki can be summarized as follows: it is a

bounded map rep(A:H)
T−→ B(H) with the property T (π) = pπT (π)pπ, compatible

with unitary equivalences (in the sense of our condition 3.1 1) and finite direct

sums. For direct sums, it is necessary to consider a unitary H ⊕H J−→ H, so the
condition can be expressed:

AdJ(T (π1)⊕ T (π2)) = T (AdJ(π1 ⊕ π2))

where AdJ(−) := J(−)J∗. Our definition is stronger because we have compati-
bility with arbitrary intertwiners and Proposition 3.3. The converse can be done
through Proposition 3.2: a field compatible with direct sums and unitary equiva-
lences will be compatible with intertwiners that are partial isometries. We prefer
not to write down the details. Actually, it is technically unnecessary, since we
already know that both definitions lead to the enveloping von Neumann algebra
of A.

Takesaki–Bichteler duality asserts that a C∗-algebra can be recovered as the set
of continuous fields rep(A:H)→ B(H), where the topology on B(H) might be the
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σ-weak, σ-strong, wot or sot. Elements in A clearly induce continuous fields for all
these topologies on B(H). Since wot is the weakest among these, we have that sot-
continuous, σ-weak-continuous and σ-strong-continuous fields are wot-continuous.
Hence, it will suffice to prove that wot-continuous fields are elements of A.

In order to deduce the duality theorem from Theorem 2.5, we need the following
lemma taken from Bichteler’s article ([1, first lemma, parts (iii) and (iv)]).

Recall that any Banach space V can be recovered from the bidual as those
elements V ∗ → C that are continuous for the w∗-topology. This lemma in particular
says that for a C∗-algebra A it suffices to have continuity on Q(A) instead of all
A∗.

Definition 3.4. Let AN0(Q(A)) be the set of affine bounded C-valued functions
on Q(A) taking the value 0 at 0. It is a normed space for the supremum norm.
AC0(Q(A)) will be the subspace of AN0(Q(A)) of continuous functions.

Lemma 3.5. There is a Banach space isomorphism A∗∗ → AN0(Q(A)) that re-
stricts to a bijection A→ AC0(Q(A)).

Proof. The map A∗∗ → AN0(Q(A)) is defined by restriction from A∗ to Q(A). It is
straightforward to check that it is a Banach space isomorphism (see [1, first lemma]
or [4, Lemma 5.2]). For the second part, we prefer the following proof instead of
the one from [1].

Through the isomorphism we have A ⊂ AC0(Q(A)). We must prove that equal-

ity holds. Take f ∈ AC0(Q(A)). We have continuous maps Q(A)×Q(A)
f̄−→ C,

f̄(ϕ,ψ) = f(ϕ)− f(ψ), and Q(A)×Q(A)
m−→ A∗h, m(ϕ,ψ) = ϕ− ψ (A∗h is the her-

mitian part of A∗ with the w∗-topology). Since Q(A) × Q(A) is compact and A∗h
Hausdorff, m is closed, and therefore a quotient if we restrict the codomain to the
image.

Q(A)×Q(A)
m //

f̄
&&LL

LLL
LLL

LLL
A∗h

f̃

��
C

The image of m contains the unit ball, because every ϕ ∈ A∗h can be written as

ϕ1 − ϕ2 with ϕ1, ϕ2 ≥ 0 and ‖ϕ‖ = ‖ϕ1‖+ ‖ϕ2‖. Thus, f̃ is w∗-continuous on the

unit ball. As a consequence of the Krein–Smulian theorem, f̃ is continuous on A∗h.
Analogously, it is continuous on A∗ah and therefore on A∗. Hence we conclude that
f comes from an element of A. �

Remark 3.6. Taking S(A) instead of Q(A) we have that A∗∗ ' AN(S(A)) and,
for unital A, A ' AC(S(A)) (where AN(S(A)) is the space of affine bounded
C-valued functions on S(A) and AC(S(A)) the subspace of continuous functions).

Proof. It is straightforward to check that AN0(Q(A)) = AN(S(A)). To obtain
AC0(Q(A)) = AC(S(A)) for unital A, we must prove that continuity on S(A)
implies continuity on Q(A). So take f ∈ AN0(Q(A)) continuous on S(A) and
ϕµ → ϕ in Q(A). Evaluating at 1, we have ‖ϕµ‖ → ‖ϕ‖. If ϕ = 0 we have
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64 SERGIO A. YUHJTMAN

|f(ϕµ)| = ‖ϕµ‖.|f(
ϕµ
‖ϕµ‖ )| ≤ ‖ϕµ‖.‖f‖∞ → 0 for those µ such that ϕµ 6= 0 and

f(ϕµ) = 0 if ϕµ = 0; so f(ϕµ) → 0. If ϕ 6= 0, for large enough µ we have ϕµ 6= 0
and

f(ϕµ) = ‖ϕµ‖f(
ϕµ
‖ϕµ‖

)→ ‖ϕ‖f(
ϕ

‖ϕ‖
) = f(ϕ). �

Theorem 3.7 (Takesaki–Bichteler duality). Every C∗-algebra A is isomorphic to

the set of wot-continuous maps rep(A:H)
T−→ B(H) compatible with intertwiners

that are partial isometries and such that T (0) = 0. Here H is a Hilbert space large
enough to contain strictly a copy of any cyclic representation of A.

Proof. We already know that an element of A defines a continuous field. Now take
a wot-continuous T as in the statement.

Since θξ is surjective, there is only one way to define fT in order to make the
following square commutative:

rep(A:H)
θξ //

T

��

Q(A)

fT

��
B(H)

〈(−)ξ,ξ〉 // C

Compatibility of T with intertwiners allows to prove that fT is well defined and
affine in a straightforward manner. Since T (0) = 0, we have fT (0) = 0. Continuity
of T implies continuity of fT because θξ is a topological quotient (Theorem 2.5a).
By Lemma 3.5, fT is an element of A. �

Remark 3.8. For unital A, a field over rep(A:H) only needs to be continuous on
repξ(A:H) to be an element of A. This is because of part (b) of Theorem 2.5 and
Remark 3.6.
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