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DETECTION OF THE TORSION CLASSES IN THE BRIESKORN

MODULES OF HOMOGENEOUS POLYNOMIALS

KHURRAM SHABBIR

Abstract. Let f ∈ C[X1, . . . , Xn] be a homogeneous polynomial and B(f)

be the corresponding Brieskorn module, which is the quotient of the polyno-
mial ring by some specific C-vector space and it has a C[t]-module structure.

The main results detect torsion classes in the Brieskorn module using explicit

computations with differential forms. We compute the torsion of the Brieskorn
module B(f) for two variables in case of non-isolated singularities and show

that torsion order is at most 1. In addition, we find some interesting families
in which B(f) is torsion free even in case of non-isolated singularities. We

exhibit several examples to compute the monomial basis for B(f) and the

construction of torsion elements for n > 2.

1. Introduction

The Brieskorn module B(f) associated to a homogeneous polynomial f is a free
C[t]-module of rank µ(f), the Milnor number of f , in the case of isolated singulari-
ties (Theorem 3.1). We derive an important consequence, saying that B(f)tors = 0
if and only if the homogeneous polynomial f has an isolated singularity at the
origin (Corollary 3.4). Here C(f) ⊂ B(f) is a naturally defined C[t]-submodule,
such that B(f)/C(f) = M(f). Then we discuss the case of two variables but allow
arbitrary singularities for the homogeneous polynomial f . In this case C(f) is free
of rank b1(F ), the first Betti number of the generic fiber F of f (Theorem 4.1).
By the result mentioned above, this implies that all torsion elements in B(f) have
torsion order one, i.e. t ·B(f)tors = 0 (Corollary 4.3). This result is exemplified on
the family of polynomials f = xpyq with (p, q) = 1 which is completely discussed
in [11].

In the present article, we find one family f = xpyq(x+ y)r, with 1 ≤ p ≤ q ≤ r
and gcd(p, q, r) = 1, in which the Brieskorn module is torsion free even in case of
non-isolated singularities for n = 2. This leads us to the general statement that
the torsion order of the Brieskorn module is at most 1. Also for n = 3, we compute
explicitly monomial basis for the Brieskorn module in Examples 5.1 and 5.2.
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In the general case of n variables, there is a very subtle result due to Dimca and
Saito which relates the eigenvalues of the monodromy of f to a specific (possibly
torsion) element in B(f), see Corollary 5.3. Then we exhibit several examples
of torsion elements constructed using this general approach. We find one more
very interesting Example 5.4 which provides torsion elements of order 2. The last
Example 5.5 shows that even for rather complicated examples (here the zero set
of f is a surface S with non-isolated singularities) one may still have 1 as the t-
torsion order. These torsion classes of B(f), in case of non-isolated singularities
are usually very interesting for the topology, e.g. some of them are related to the
monodromy of the corresponding global Milnor fibration of the polynomial, see for
instance Corollary 1.10 in [8].

2. Milnor algebra and Brieskorn module

Let f ∈ R = C[x1, . . . , xn] be a homogeneous polynomial of degree d > 1.
Then one can identify the following complex to the Koszul complex of the partial
derivatives fj = ∂f

∂xj
; j = 1, . . . , n in R

0 −→ Ω0 df∧−→ Ω1 df∧−→ · · · df∧−→ Ωn−1 df∧−→ Ωn −→ 0,

where Ωj denotes the regular differential forms of degree j on Cn.
Let Jf be a Jacobian ideal, spanned by the partial derivatives fj , j = 1, . . . , n,

in R, and M(f) = R/Jf be the Milnor algebra corresponding to f . We can have
the following isomorphism of graded vector spaces:

M(f)(−n) =
Ωn

df ∧ Ωn−1
.

Here, for any graded C[t]-module M , the shifted module M(m) is defined by setting
M(m)s = Mm+s for all s ∈ Z.

Now we define the (algebraic) Brieskorn module as the quotient

B(f) =
Ωn

df ∧ d(Ωn−2)

in analogy with the (analytic) local situation considered in [5], as well as the sub-
module

C(f) =
df ∧ Ωn−1

df ∧ d(Ωn−2)
.

These modules are modules over the ring C[t] and the action of t is defined naturally

by multiplying the polynomial f . Sometimes B(f) is denoted by G
(0)
f and C(f) by

G
(−1)
f , see [9, 6]. Using Euler’s formula, we can see that

f.B(f) ⊂ C(f).

We have the following basic relation between the Milnor algebra and the Brieskorn
module (see [8, prop. 1.6]).
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Theorem 2.1.
df ∧ Ωn−1 = df ∧ d(Ωn−2) + f.Ωn.

In particular
B(f)/f.B(f) 'M(f).

Remark 2.2. The C[f ]-module P (f), which is defined as the quotient of all (n−1)-
forms by the closed (n− 1)-forms,

P (f) =
Ωn−1

(df ∧ Ωn−2 + dΩn−2)
⊇ Hn−1

f .

The latter is an extension of the relative cohomology group Hn−1
f . The quotient

P (f)/Hn−1
f is naturally isomorphic to C-space M(f). In several sources, P (f) is

referred to as the Petrov module. Using analytic tools or theory of perverse sheaves
and D-modules, they prove that under certain genericity-type assumptions on f ,
the highest relative cohomology module Hn−1

f and P (f) are finitely generated over

ring C[f ]. The exterior differential naturally projects as a bijective map d : P (f)→
B(f) which obviously is not a C[f ]-module homomorphism. For details one can
see [12].

3. The case of an isolated singularity

Here we assume that f ∈ C[x1, . . . , xn] is the homogeneous polynomial and M(f)
is the corresponding Milnor algebra which is a graded C-algebra with dimension
µ(f), the Milnor number when f has an isolated singularity at the origin. The
Brieskorn module B(f) is completely determined in this setting as follows.

Theorem 3.1. The C[t]-module B(f) is free of rank µ(f).

Proof. Indeed, a homogeneous polynomial f having an isolated singularity at the
origin induces a tame mapping f : Cn → C to which the results in [6], [7] and [10]
apply. �

Corollary 3.2. As a graded module over the graded ring C[t], one has an isomor-
phism

B(f) = M(f)⊗C C[t].

In particular, one has, at the level of the associated Poincaré series, the following
equality:

PB(f)(t) = PM(f)(t).
1

1− t
=

(1− td−1)n

(1− t)n+1
.

Example 3.3. For n = 3, let f(x, y, z) = x3+y3+z3 be a homogeneous polynomial
of degree 3;then a C-basis of M(f) is given as 1, x, y, z, xy, yz, xz, xyz. The same
8 monomials form a basis of B(f) as a free C[t]-module.

In this case PB(f)(t) = (1−t2)3

(1−t)4 = (1+t)3

1−t = (1 + 3t+ 3t2 + t3) + t(1 + 3t+ 3t2 +

t3) + t2(1 + 3t+ 3t2 + t3) + · · · = 1 + 4t+ 7t2 + 8t3 + 8t4 + 8t5 + . . . . In general, if
f = xd0 + xd1 + · · ·+ xdn then a C-basis of M(f) is given by

〈xa00 , . . . , xann ; 0 ≤ aj ≤ d− 2〉
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which is also C[t] basis of B(f).

Corollary 3.4. If 0 is an isolated singularity of the homogeneous polynomial f
then the C[t]-module B(f) is torsion free.

Proof. If 0 is an isolated singularity of the homogeneous polynomial f then clearly
the C[t]-module B(f) is torsion free. To prove the converse we prove its contra-
positive statement. Suppose that 0 is not an isolated singularity, then the Milnor
algebra M(f) is an infinite dimensional C-vector space. The isomorphism in Theo-
rem 2.1 implies that in this case B(f) is not finitely generated over C[t]. It follows
that the canonical projection

B(f)→ B(f)

is not an isomorphism, hence B(f)tors 6= 0. �

4. The case of non-isolated singularity (n = 2)

In this section we suppose that f ∈ C[x, y] is a homogeneous polynomial of
degree d which is not the power gr(which we will always assume) of some other
polynomial g ∈ C[x, y] for some r > 1. This condition is equivalent to asking
the generic fiber of f to be connected, and such polynomials are sometimes called
“primitive”. For more on this, see [4], final Remark, part (I).

In this case of non-isolated singularities the Milnor algebras M(f) and the
Brieskorn modules B(f) are not finitely generated. So we find an invariant other
than rank, called torsion of B(f), which is not finitely generated in general. We
completely classify the Brieskorn module in the case of two variables with non-
isolated singularities and show that torsion order is at most 1.

The following result follows from Proposition 7, part (ii) in [9].

Theorem 4.1. The submodule C(f) of the Brieskorn module B(f) is torsion free.

Definition 4.2. For b ∈ B(f), we say that b is t-torsion of order k ≥ 1 if tk · b = 0
and tk−1 · b 6= 0.

Corollary 4.3. The C[t]-torsion elements in B(f) are only those elements whose
t-torsion order is 1.

Proof. Let b ∈ B(f)tors, the submodule of C[t]-torsion elements. Since f : C2 → C
induces a locally trivial fibration over C∗, it follows that b is t-torsion, say of order
k. If k > 1, then

0 = tk · b = tk−1 · (tb).
By Theorem 2.1 we know that t · b ∈ C(f). Applying Theorem 3.1 we get that
t · b = 0 in C(f), i.e. t · b = 0 in B(f).

This is possible only if k = 1, since by Theorem 3.1 the submodule C(f) is
torsion free. �

The above corollary can be restated by saying that the following is a exact
sequence

0→ B(f)tors → B(f)
t→ C(f)→ 0.
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If we define B(f) = B(f)/B(f)tors, we get an isomorphism of graded C[t]-module

B(f)(−d) ' C(f).

Here, for any graded C[t]-module M , the shifted module M(m) is defined by setting
M(m)s = Mm+s for all s ∈ Z.

The following are some examples for infinite family given by the polynomial f
and the torsion order of the elements of B(f) is computed.

Example 4.4. Let f = xpyq with (p, q) = 1. The detailed computations for this
example could be found in [11]. Which clearly shows that the torsion order in this
case is exactly one.

The following is the case when B(f) is torsion free in case of non-isolated sin-
gularities.

Example 4.5. Let f = xpyq(x + y)r with 1 ≤ p ≤ q ≤ r and gcd(p, q, r) = 1.
Then df ∧ Ω1 = Jf · Ω2, where ideal

Jf = 〈pxp−1yq(x+ y)r + rxpyq(x+ y)r−1, qxpyq−1(x+ y)r + rxpyq(x+ y)r−1〉.

It follows that B(f)
C(f) '

S
Jf

is an infinite dimensional C-vector space spanned by all

monomials say xayb belongs to S\LT{Jf}, where LT{Jf} = {LT (g); g ∈ Jf} which
we can find after finding the Gröbner basis of Jf . Using Buchberger’s criterion and
then Macaulay’s basis theorem implies all these information (see for instance [1,
p. 329]).

In our case, we first compute the Gröbner basis of Jf and then we take leading
term of that ideal and get this monomial ideal, i.e.

LT (Jf ) = 〈xp+ryq−1, xp+r−1yq, xp+r−2yq+2〉.

It follows that

B(f)

C(f)
' S

Jf
=


xayb, a+ b ≤ p+ q + r − 2;

xayb, a+ b = p+ q + r − 1; (a, b) 6∈ {(p+ r, q − 1), (p+ r − 1, q)};
xayb, a+ b ≥ p+ q + r; a ≤ p+ r − 3 or b ≤ q − 2.

For such a monomial xayb consider the 2-form w = xaybdx ∧ dy. Then [w] 6= 0 in
B(f) since [w] 6= 0 in B(f)/C(f).

Now compute df ∧ dΩ0:

df ∧ d(P (x, y)) = (pxp−1yq(x+ y)r + rxpyq(x+ y)r−1dx+ qxpyq−1(x+ y)r

+ rxpyq(x+ y)r−1dy) ∧ (∂P∂x dx+ ∂P
∂y dy)

= ((pxp−1yq(x+ y)r + rxpyq(x+ y)r−1)∂P∂y

− (qxpyq−1(x+ y)r + rxpyq(x+ y)r−1)∂P∂x )dx ∧ dy,

where P (x, y) ∈ C[x, y].
To find torsion part in B(f). We know that for n = 2, the submodule C(f)

is torsion free using Theorem 3.1 and the only C[t]-torsion elements in B(f) are

Rev. Un. Mat. Argentina, Vol. 56, No. 2 (2015)



90 KHURRAM SHABBIR

t-torsion of order 1 using Corollary 4.3. Hence

B(f)tors = {w ∈ B(f) such that t · [w] = [f · w] = 0 in B(f)}.

It follows that w ∈ B(f)tors if f · w ∈ df ∧ dΩ0, which is equivalent to saying
that the corresponding system of equations getting from f · w = df ∧ d(P (x, y))
has a solution. So we have checked that for any triplet (p, q, r) = 1, we don’t

have a solution for any w ∈ B(f)
C(f) ⊆ B(f) of the system corresponding to f · w =

xa+pyb+q(x + y)r = df ∧ d(P (x, y)), where P (x, y) is polynomial with suitable
degree, which we can obtain after expansion and comparing coefficients of both sides
of the preceding equations and see that the ranks of the corresponding homogeneous
and non-homogeneous systems of equations do not agree. Hence our B(f) is torsion
free.

5. Eigenvalues of the monodromy and torsion in the general case

Now we compute the Brieskorn lattice explicitly for some examples in the case
of more than two variables.

Example 5.1. Let f(x, y, z) = xyz. Then df∧Ω2 = Jf ·Ω3, where Jf = 〈yz.xz, xy〉.
It follows that B(f)

C(f) '
S
Jf

is an infinite dimensional C-vector space with a monomial

basis given by 〈1, xk, yk, zk〉k≥1.
For such a monomial xaybzc consider the 3-form w = xaybzcdx∧ dy ∧ dz. Then

[w] 6= 0 in B(f) since [w] 6= 0 in B(f)
C(f) .

For sake of simplicity we take w1 = xaybzcdx, w2 = xαyβzγdy and w3 =
xφyϕzψdz, where w1, w2, w3 ∈ Ω1. Now we compute df ∧ dwi in each case and
then put them together. But here in the case of monomial, due to symmetry it is
enough to work with one of the above forms, say w1 = xaybzcdx; the remaining ones
will give us the same result. So df ∧ dw1 = (cxa+1ybzc − bxa+1ybzc)dx∧ dy ∧ dz =
(c− b)xa+1ybzcdx ∧ dy ∧ dz.

The coefficient is 0 iff there is a k ∈ N such that b = c = k for k ≥ 1.
Since

C(f) =
Jf · Ω3

df ∧ dΩ1
=
〈yz, xz, xy〉Ω3

df ∧ dΩ1

we want to find a system of generators of the C-vector space C(f). This system
is given by the classes of the elements w ∈ 〈yz, xz, xy〉Ω3, which do not belong to
df ∧ dΩ1. To compute them it is enough to look at monomials, i.e.

{xαyβzγdx ∧ dy ∧ dz, withα ≥ 1, β ≥ 1, γ ≥ 1⇔ xαyβzγ ∈ 〈yz, xz, xy〉}.

We know that

df ∧ dΩ1 = (c− b)xa+1ybzcdx ∧ dy ∧ dz.
So if a + 1 = α, b = β, c = γ, and c − b 6= 0, i.e. a = α − 1, b = β, c = γ, with
a ≥ 0, b, c ≥ 1, then

df ∧ dΩ1

c− b
= xαyβzγdx ∧ dy ∧ dz.
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Hence, the only elements xαyβzγdx∧dy∧dz which do not appear in the denominator
of C(f) are xa+1ybzcdx∧ dy ∧ dz, where c = b⇔ c = k, b = k; k ≥ 1, a = j, j ≥ 0.
It follows that C(f), as a C-vector space, is spanned by xkykzk for k ≥ 1. Hence
the monomial basis for B(f) = 〈1, xk, yk, zk, (xyz)k〉k≥1. It is clear that

B(f)tors = 〈(xk, yk, zk)k≥1〉.

Moreover,

B(f) =
B(f)

B(f)tors
' C(f)

is free C[t]-module of rank 1 = b2(F ), where F : xyz− 1 = 0. Indeed F ' C∗×C∗,
which is homotopically equivalent to S1 × S1.

Example 5.2. Let f = xyz + x3 + y3 be nodal cubic. Then df ∧ Ω2 = Jf · Ω3

where ideal

Jf = 〈yz + 3x2, xz + 3y2, xy〉.

It follows that B(f)
C(f) '

S
Jf

is an infinite dimensional C-vector space spanned by

all monomials say xaybzc belongs to S \ LT{Jf}, where LT{Jf} = {LT (g); g ∈
Jf}, which we can find after finding the Gröbner basis of Jf . Using Buchberger’s
criterion and then Macaulay’s basis Theorem implies all this information (see for
instance [1, p. 329]).

In our case, we first compute Gröbner basis of Jf , and the leading term ideal is
given by

LT (Jf ) = 〈xy, y2, x2, yz2, xz2〉.
It follows that

S

Jf
= {xaybzc; a = 1, b = 0, 0 ≤ c ≤ 1 or a = 0, b = 1, 0 ≤ c ≤ 1 or a = 0 = b}.

For the sake of simplicity, we take w1 = xaybzcdx, w2 = xαyβzγdy and w3 =
xφyϕzψdz, where w1, w2, w3 ∈ Ω1; then compute df ∧ dΩ1 in each case and put
them together. After the computations in each case of the above forms we get the
following three expressions:

df ∧ dw1 = ((b− c)xa+1ybzc − 3cxayb+2zc−1)dx ∧ dy ∧ dz,

df ∧ dw2 = ((γ − α)xαyβ+1zγ − 3γxα+2yβzγ−1)dx ∧ dy ∧ dz,

df ∧ dw3 = ((ϕ− φ)xφyϕzψ+1 + 3ϕxφ+2yϕ−1zψ − 3φxφ−1yϕ+2zψ)dx ∧ dy ∧ dz.

Since B(f) is a graded module, we can consider the graded pieces one at a time.
Elements in B(f) are equivalence classes, so keeping in mind the three expressions
above we just take one representative of each class and get B0(f) = C〈1〉. For
degrees greater than one we have that if degree = d = 3s, s ≥ 1, then Bd(f) =
〈xyzd−2, zd〉; otherwise Bd(f) = 〈xzd−1, yzd−1, zd〉, so the monomial basis for B(f)
is

B(f) = 〈xz3k, xz3k+1, yz3k, yz3k+1, xyz3k+1, zk〉k≥0.
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It is clear that B(f)tors = 〈zk; k ≥ 1(k is not a multiple of 3)〉. Moreover,

B(f) =
B(f)

B(f)tors
=



1

xzk, k ≥ 0 but k 6= 3s− 1, s ≥ 1

yzk, k ≥ 0 but k 6= 3s− 1, s ≥ 1

xyz3k+1, k ≥ 0

z3k, k ≥ 1

is free C[t]-module of rank 5 = b2(F ), where F : xyz + x3 + y3 − 1 = 0.
χ(F ) = 1 − b1 + b2 where b′is are Betti numbers and C : {xyz + x3 + y3 = 0}.

The map F : {xyz + x3 + y3 = 1} −→ U = P2 \ C is Z3-covering, which implies
that π1(F ) � π1(U) = Z3 of index 3, where U = P2 \ C and then b1(F ) = 0.

Since χ(F ) = 3 ·χ(U) where χ(U) = χ(P2)\χ(C) = 3−1 = 2 (χ(C) = 1 since C
is homotopically equivalent to s1 ∨ s2). So χ(F ) = 3 · 2 = 6 and χ(F ) = 1− b1 + b2
imply b2(F ) = 5. For more details see for instance [3, Ch. 4].

According to [8], just before Remark 1.9, one has for q ≤ n an inclusion

tn−q−1 : Hf,(q+1)d−j → Hf,nd−j = Hn−1(F,C)λ,

where λ = exp( 2πj
√
−1

d ), with j = 0, 1, . . . , d− 1.
Solve the equation n = (q+1)d−j, i.e. n = qd+(d−j) is the Euclidean division

if j 6= 0.

We get the following (see [8, Corollary 1.10]):

Corollary 5.3. Assume that exp( 2πn
√
−1

d ) is not an eigenvalue of the monodromy
of f . Then there is a k ≥ 0 such that

tk · [w] = [fk · dx1 ∧ · · · ∧ dxn] = 0

in B(f), which is equivalent to the following: There is a positive integer k such
that fkw ∈ df ∧ dΩn−2.

Using the above corollary, we compute the torsion order of B(f) in the general
case.

Example 5.4. Let f = x2y2z + x5 + y5, n = 3, d = 5.
For w = dx ∧ dy ∧ dz, to find the value of k such that tk · [w] = 0 in B(f) is

equivalent to saying that fk ·w ∈ df ∧ dΩ1. We have to check for which value of k
we have solutions of the equation

fk · w =
[
(2xy2z + 5x4)(∂R∂y −

∂Q
∂z ) + (2x2yz + 5y4)(∂P∂z −

∂R
∂x )

+ x2y2(∂Q∂x −
∂P
∂y )

]
dx ∧ dy ∧ dz,

where P,Q,R ∈ C[x, y, z] are homogeneous polynomials of degree 5k − 3.
For k = 1, we get a system of non-homogeneous linear equations in which we

have 15 unknowns and 13 equations. Then using the software matlab we compute
the rank of the corresponding homogeneous system (containing 13 rows and 15
columns) and get 8. On the other hand, the rank of the non-homogeneous system
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(containing 13 rows and 16 columns) is 9, which shows that this system has no
solution.

For k = 2, we get another system of non-homogeneous linear equations contain-
ing 102 unknowns and 58 equations. Then using matlab we compute the rank of
the corresponding homogeneous system (containing 58 rows and 102 columns) and
get 56. This time the corresponding non-homogeneous system (containing 58 rows
and 103 columns) has also rank 56, which shows that this system of equations has a
solution. An explicit solution for k = 2 is P = −6x5yz, Q = 6x4y3−x3y2z2−4xy5z
and R = 1/5(x6y − xy6). Hence [w] has t-torsion order 2 in B(f).

The last example shows that even for rather complicated examples (here the
zero set of f is a surface S with non-isolated singularities) one may still have 1 as
the t-torsion order of [ωn].

Example 5.5. Let f = x2y2 + y2z2 + x2z2 − 2xyz(x+ y + z), n = 3, d = 4.
For w = dx ∧ dy ∧ dz, to find the value of k such that tk · [w] = 0 in B(f) is

equivalent to saying that fk ·w ∈ df ∧ dΩ1. We have to check for which value of k
we have solutions of the equation

fk · w =
[
(2xy2 + 2xz2 − 4xyz − 2y2z − 2yz2)(∂R∂y −

∂Q
∂z )

+ (2x2y + 2yz2 − 2x2z − 4xyz − 2xz2)(∂P∂z −
∂R
∂x )

+ (2y2z + 2x2z − 2x2y − 2xy2 − 4xyz)(∂Q∂x −
∂P
∂y )

]
dx ∧ dy ∧ dz,

where P,Q,R ∈ C[x, y, z] are homogeneous polynomials of degree 3k − 1.
For k = 1, we get a system of non-homogeneous linear equations in which we

have 15 unknowns and 12 equations. Then using matlab we compute the rank of
the corresponding homogeneous system (containing 12 rows and 15 columns) and
get 9. On the other hand, the rank of the non-homogeneous system (containing 12
rows and 16 columns) is also 9, which shows that this system has a solution. Hence
[w] has t-torsion order 1 in B(f).
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