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CONNECTEDNESS OF THE ALGEBRAIC SET OF VECTORS

GENERATING PLANAR NORMAL SECTIONS OF

HOMOGENEOUS ISOPARAMETRIC HYPERSURFACES

CRISTIÁN U. SÁNCHEZ

Abstract. Let M ⊂ Sn+1 ⊂ Rn+2 be a homogeneous isoparametric hy-

persurface and consider the algebraic set of unit tangent vectors generating

planar normal sections at a point E ∈ M (denoted by X̂E [M ] ⊂ TE(M)).

The present paper is devoted to prove that X̂E [M ] is connected by arcs. This

in turn proves that its projective image X[M ] ⊂ RP(TE(M)) also has this

property.

1. Introduction

Table 1, below, includes all the homogeneous isoparametric hypersurfaces in
spheres. There are many other isoparametric hypersurfaces of spheres which are
not homogeneous but we shall not consider them here.

Our objective is to present a result concerning the manifolds in Table 1. This
property concerns their algebraic sets of unit tangent vectors generating planar

normal sections at a point E of M (denoted by X̂E [M ] ⊂ S (TE (M))). Hence its

projective image X [M ] ⊂ RP (TE (M)) of X̂E [M ] also has this property.

Theorem 1.1. For all the homogeneous isoparametric hypersurfaces Mn ⊂ Sn+1 ⊂
Rn+2 (those in Table 1), the algebraic set X̂E [M ] ⊂ S (TE (M)) is connected by
arcs.

The paper is organized as follows. In the next section we recall basic information

concerning the algebraic set X̂E [M ] and its projective image X [M ].
In Section 3 we indicate, for each M in Table 1, the polynomials that define

X̂E [M ]. We include the necessary notations to understand their meaning but
avoid the computations required to get them. Those computations are contained
in [11]. Section 3 has three natural subsections where the spaces M with the same
g are placed together. In Section 4 we indicate how to construct some subsets of

X̂E [M ] which are required in the proof of Theorem 1.1. In Section 5 we mention

the subsets that may be constructed, in X̂E [M ], for each of the corresponding
manifolds. The properties of these subsets are used in the proof of Theorem 1.1
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54 C. U. SÁNCHEZ

g M dim m1,m2

1 M1 = Sn n n

2 M2 = Sk × Sn−k n k, (n− k)

3 MR = SO (3) / (Z2 × Z2) 3 1, 1

3 MC = SU (3) /T 2 6 2, 2

3 MH = Sp (3) / (Sp (1))
3

12 4, 4

3 MO = F4/Spin (8) 24 8, 8

4 WR = SO (5) /T 2 8 2, 2

4 WC = U (5) /(SU (2)
2 × T 1) 18 4, 5

4 NR = SO (m)× SO (2) / (SO (m− 2)× Z2) 2m− 2 1,m− 2

4 NC = S (U (m)× U (2)) /
(
SU (m− 2)× T 2

)
4m− 2 2, 2m− 3

4 NH = Sp (m)× Sp (2) /(Sp (m− 2)× (Sp (1))
2
) 8m− 2 4, 4m− 5

4 N(9,6) = Spin (10) · T/ (SU (4) · T ) 30 6, 9

6 MB = G2/T
2 12 2, 2

6 MS = SO (4) /Z2 × Z2 6 1, 1

Table 1. Homogeneous isoparametric hypersurfaces in spheres

given in Section 6. Using a nice result from [4] we obtain in Section 7 an interesting
consequence of Theorem 1.1.

For these manifolds, g indicates the number of distinct constant principal cur-
vatures, dim is the corresponding dimension, and m1, m2 are their multiplicities.

2. The algebraic set of planar normal sections

Here we use M to indicate any of the hypersurfaces in Table 1. They are orbits
of a point E (‖E‖ = 1) in the tangent linear representation of some symmetric
space where the indicated group is contained in the isotropy.

By definition, normal sections are the curves obtained by cutting a submanifold
Mn of Rn+2 with the affine subspace generated by a unit tangent vector X ∈
TE (M) and the normal space T⊥E (M), at the given point E of M . Any unit
tangent vector X ∈ TE (M) defines a normal section. This curve can be given
a C∞ parametrization around E which is regular and can therefore be locally
parametrized by arc-length. Let us recall the following definition.

Definition 2.1. A curve γ (s) parametrized by arc-length in Rn+k such that E =
γ (0) is said to be planar at E if its first three derivatives γ′ (0), γ′′ (0), γ′′′ (0) are
linearly dependent in TE

(
Rn+k

)
.
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CONNECTEDNESS OF THE ALGEBRAIC SET OF VECTORS . . . 55

It is known that the unit vectors defining planar normal sections at the point
E ∈M are characterized by the following condition (see [9]).

Condition 2.2. The normal section of M defined by the unit vector X ∈ TE (M)
is planar at E if and only if

(
∇Xα

)
(X,X) = 0. �

Here α indicates the second fundamental form of M in Rn+2 at E and
(
∇α
)

its
usual covariant derivative. As in [9] we denote by

X̂E [M ] =
{
X ∈ TE (M) : ‖X‖ = 1,

(
∇Xα

)
(X,X) = 0

}
(2.1)

the algebraic set of unit vectors generating planar normal sections at E.
For isoparametric hypersurfaces in the sphere (the case considered here) this

algebraic set is determined by a single polynomial of degree three defined on
TE (M) but restricted to the unit sphere S (TE (M)). This polynomial is P (X) =〈(
∇Xα

)
(X,X) , H2

〉
, where {E,H2} is an orthonormal basis of TE (M)

⊥
, because(

∇Xα
)

(X,X) is orthogonal to E. We call P (X) the polynomial of normal sections

of M . The algebraic set X̂E [M ] is then defined by

X̂E [M ] = {X ∈ TE (M) : ‖X‖ = 1, P (X) = 0} .

Since X ∈ X̂E [M ] implies (−X) ∈ X̂E [M ] (the antipodal map of S (TE (M))

preserves X̂E [M ]) we may consider the quotient of X̂E [M ] by the antipodal map
of S (TE (M)) and obtain an algebraic set X [M ] ⊂ RP (TE (M)).

It is necessary to describe the polynomials defining X̂E [M ] for each M . In the
next section we indicate them and the notation required. As is clear from their
definition, the polynomials are homogeneous, have degree 3, and the variables in
each monomial have degree 1 ([9]). They are constructed in [11].

Since our objective is to prove that X̂E [M ] is connected by arcs, it is enough

to prove that ΛX̂E [M ] (the cone over X̂E [M ], without the vertex ) is connected by

arcs. This set ΛX̂E [M ] ⊂ (TE (M)− {0}) is defined by

ΛX̂E [M ] = {X ∈ TE (M) : X 6= 0, P (X) = 0} .

3. The polynomials

We indicate the corresponding polynomials that define X̂E [M ] for each manifold
in Table 1, following the order and the notation of the table.

Remark 3.1. The spaces corresponding to g = 1 and g = 2 are symmetric R-
spaces and by a well known result of D. Ferus [2] have parallel second fundamental
form in their corresponding ambient Euclidean spaces. So, for each of them, (if

n = dim (M)) we have X̂E [M ] = S(n−1) and X [M ] = RP(n−1). Therefore we do
not need to consider them in the proof of Theorem 1.1.

So we start with
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56 C. U. SÁNCHEZ

3.1. Spaces with g = 3. These are the so called Cartan isoparametric hypersur-
faces MR, MC, MH, and MO. We indicate only required facts to understand the
notation; see [11] for details. Let F = R, C, H, or O, and denote by M3 (F ) the
3×3 matrices with entries in F . Let H3 (F ) =

{
u ∈M3 (F ) : ut = u

}
, where x 7→ x

denotes conjugation in F . An element u ∈ H3 (F ) is of the form

u =

 ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 , ξj ∈ R, xj ∈ F. (3.1)

The H3 (F ) are real Jordan algebras with the product u ◦ v = 1
2 (uv + vu). The

compact groups SO (3) ⊂ SU (3) ⊂ Sp (3) ⊂ F4 act as groups of automorphisms of
the corresponding algebras. Their actions preserve the function tr (u).

Let us consider the subspaces U (F ) = {u ∈ H3 (F ) : tr(u) = 0} (F = R, C, H,
O) which are invariant by the corresponding groups.

Let us take the point E = diag (−1, 0, 1) ∈ U (F ), ∀F and consider the orbits
MF of E by the mentioned groups. Let us take in each U (F ) the inner product
〈u, v〉 = 1

2 tr (u ◦ v). The subspaces U with these inner products are our ambient
Euclidean spaces for the manifolds MR, MC, MH, and MO. Note that ‖E‖ = 1.
Let us consider in U (F ) the subspace

a = {diag (ξ1, ξ2, ξ3) : ξ1 + ξ2 + ξ3 = 0} . (3.2)

The normal space to MF at E is the same for all F , namely TE (MF )
⊥

= a. We
may identify the tangent space at E with the subspace of U

TE (MF ) =


 0 x3 x2

x3 0 x1

x2 x1 0

 , xj ∈ F = R,C,H,O

 .

The polynomials determining the algebraic sets X̂E [MF ] for MF are defined on
TE (MF ) (F = R, C, H, O):

PF (X) = Re ((x1x2)x3) , xj ∈ F = R,C,H,O. (3.3)

In all cases, the trilinear function Re ((x1x2)x3) is invariant by cyclic permutation
and satisfies Re ((ab) c) = Re (a (bc)).

3.2. Spaces with g = 4. We have to divide these spaces in several groups.

3.2.1. Spaces WR and WC. The polynomials for WR and WC may be simultaneously
described. We follow [8, p. 27] and reproduce the necessary notation. Let us take
the vector space p over the field F (F = R or C) of skew symmetric, 5× 5 matrices
over F , that is, p = {Z ∈M5 (F ) : Zt = −Z}. We use the notation

Z =


0 −z1 −z3 −z5 −z7

z1 0 −z4 −z6 −z8

z3 z4 0 −z2 −z9

z5 z6 z2 0 −z10

z7 z8 z9 z10 0

 ∈ p, zj = xj + iyj , j = 1, . . . , 10.
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The real case (F = R) is given by the condition yj = 0, j = 1, . . . , 10. In p we
consider the inner product defined by

〈Z,W 〉 = −1

2
Re
(
tr
(
Z
(
W
)))

= Re

10∑
j=1

zjwj

and the subspace a = {H (ξ1, ξ2) : ξj ∈ R} ⊂ p, where

H (ξ1, ξ2) = ξ1 (E2,1 − E1,2) + ξ2 (E4,3 − E3,4) , ξj ∈ R.

Then (ξ1, ξ2) is an orthonormal coordinate system for a.
We take the basic vector E defined by

E = H (t1, t2) = H
(

cos
(π

8

)
, sin

(π
8

))
, ‖E‖ = 1.

Our manifold WF (F = R or C) is the orbit of E by the adjoint action of the
corresponding group (SO (5) or U (5)) on p.

The normal and tangent spaces at E are

TE (WF )
⊥

= a

TE (WF ) = {Z ∈ p : x1 = x2 = 0}

}
F = R,C

We have that dimR (TE (WR)) = 8, while dimR (TE (WC)) = 18.
For F = R, we may write a tangent vector to WR at E as X = (0, 0, x3, . . . , x10)

and the polynomial of normal sections is

PR(X) = t1 (x7x9x4 + x7x10x6 − x8x3x9 − x8x5x10)

+ t2 (−x7x9x5 − x8x9x6 + x10x3x7 + x10x4x8) .

On the other hand, on the vector Z = (0, 0, x3, . . . , x10, y1, . . . , y10) tangent to WC
at E the polynomial is

PC (Z) = t1C + t2D,

with

C = (−y2x3y6 − y2y3x6 + y2x5y4 + y2y5x4)

+ (x4x7x9 + x4y7y9 + y4x7y9 − y4y7x9)

+ (−x3x8x9 − x3y8y9 − y3x8y9 + y3y8x9)

+ (x6x7x10 + x6y7y10 + y6x7y10 − y6y7x10)

+ (−x5x8x10 − x5y8y10 − y5x8y10 + y5y8x10) ,

D = (−y1x3y6 − y1y3x6 + y1x5y4 + y1y5x4)

+ (−x5x9x7 − x5y9y7 − y5x9y7 + y5y9x7)

+ (x3x10x7 + x3y10y7 + y3x10y7 − y3y10x7)

+ (−x6x9x8 − x6y9y8 − y6x9y8 + y6y9x8)

+ (x4x10x8 + x4y10y8 + y4x10y8 − y4y10x8) .

Clearly PC (Z) reduces to PR (X) when the imaginary parts yj , (j = 1, . . . , 10)
vanish.
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58 C. U. SÁNCHEZ

3.2.2. Spaces NR, NC and NH. These submanifolds are defined via Clifford sys-
tems. The reader interested in the construction of these Clifford systems should
consult [3]. Since our objective are the polynomials, we shall limit ourselves to
indicate the manifolds. We have three infinite families. Note that here n ≥ 3.

The spaces where the Clifford systems act are respectively R2n, R4n, R8n. But
since C2n ' R4n, H2n ' R8n, we may think that our system is defined on Fn⊕Fn =
F 2n (F = R, C, H). Then we shall consider the largest case NH in H2n = Hn⊕Hn
and explain the required reductions to get the other ones.

We write the elements of H2n = Hn ⊕Hn as

((u1, u2 . . . , un) , (v1, . . . vn−1, vn)) ∈ H2n (uj , vk ∈ H).

The inner product on H2n is

〈
((u1, u2 . . . , un) , (v1, . . . vn−1, vn)) ,

(
(u′1, u

′
2 . . . , u

′
n) ,
(
v′1, . . . v

′
n−1, v

′
n

))〉
=

n∑
j=1

〈
uj , u

′
j

〉
+
〈
vj , v

′
j

〉
,

where
〈
uj , u

′
j

〉
is the inner product of quaternions. The manifolds are the orbits,

by the corresponding groups, of E ∈ H2n given by

E = ((t1, 0, . . . , 0) , (0, . . . , 0, t2)) , t1 = cos
(π

8

)
, t2 = sin

(π
8

)
.

We take the unit vector Ω = ((t2, 0, . . . , 0) , (0, . . . , 0,−t1)) orthogonal to E. The

normal space at E is TE (M)
⊥

= RE ⊕ RΩ and the tangent space to NH at E is

TE (NH) = {((α, u2 . . . , un) , (v1, . . . vn−1, δ)) ∈ H2n : uj , vj ∈ H,
α, δ pure quaternions} (3.4)

To write down our polynomial we introduce the following notation:

α = a1i+ a2j + a3k,

δ = d1i+ d2j + d3k,

ur = br,o + br,1i+ br,2j + br,3k (2 ≤ r ≤ n− 1),

vr = cr,o + cr,1i+ cr,2j + cr,3k (2 ≤ r ≤ n− 1),

un = bn,o + bn,1i+ bn,2j + bn,3k,

v1 = c1,o + c1,1i+ c1,2j + c1,3k.

(3.5)
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CONNECTEDNESS OF THE ALGEBRAIC SET OF VECTORS . . . 59

Then we may write the polynomial defining X̂E [NH]:

QH(X) = (t1c1,o + t2bn,o) (a1c1,1 + a2c1,2 + a3c1,3 + d1bn,1 + d2bn,2 + d3bn,3)

+ (t1c1,o + t2bn,o)

n−1∑
r=2

(br,ocr,o + br,1cr,1 + br,2cr,2 + br,3cr,3)

+ (−t1c1,1 + t2bn,1) (c1,oa1 − c1,3a2 + c1,2a3 − d1bn,o − d3bn,2 + d2bn,3)

+ (−t1c1,1 + t2bn,1)

n−1∑
r=2

(−cr,1br,o + cr,obr,1 − cr,3br,2 + cr,2br,3)

+ (−t1c1,2 + t2bn,2) (c1,3a1 + c1,oa2 − c1,1a3 − d2bn,o + d3bn,1 − d1bn,3)

+ (−t1c1,2 + t2bn,2)

n−1∑
r=2

(−cr,2br,o + cr,3br,1 + cr,obr,2 − cr,1br,3)

+ (−t1c1,3 + t2bn,3) (−c1,2a1 + c1,1a2 + c1,oa3 + d1bn,2 − d2bn,1 − d3bn,o)

+ (−t1c1,3 + t2bn,3)

n−1∑
r=2

(−cr,3br,o − cr,2br,1 + cr,1br,2 + cr,obr,3) .

For the other two spaces NR and NC, we notice that, for F = R, we have
α = δ = 0, us = bs,o, vs = cs,o ∈ R, while for F = C, α = a1i and δ = d1i are pure
imaginary and ur = br,o + br,1i, vr = cr,o + cr,1i ∈ C. Then we have for NR:

QR(X) = (t1c1,o + t2bn,o)

n−1∑
r=2

br,ocr,o,

and for NC:

QC(X) = (t1c1,o + t2bn,o) (a1c1,1 + d1bn,1)

+ (t1c1,o + t2bn,o)

n−1∑
r=2

(br,ocr,o + br,1cr,1)

+ (−t1c1,1 + t2bn,1) (c1,oa1 − d1bn,o)

+ (−t1c1,1 + t2bn,1)

n−1∑
r=2

(−cr,1br,o + cr,obr,1) .

3.2.3. The space N(9,6). This space has dimension 30 and m1 = m3 = 9, m2 =
m4 = 6. The ambient is the tangent space of the symmetric space EIII of dimension
32. We adopt the following notation for the ambient space R32, which we identify
with H8:

(A,B) =

([
a1 a2

a3 a4

]
,

[
b5 b6
b7 b8

])
, ar, bs ∈ H.

We set the inner product on H8 as

〈(A,B) , (C,D)〉 =

4∑
s=1

〈as, cs〉+

8∑
k=5

〈bk, dk〉 ,
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60 C. U. SÁNCHEZ

where 〈as, cs〉 is the inner product of quaternions.
We take

E =

([
t1 0
0 0

]
,

[
0 t6
0 0

])
, Ω =

([
t6 0
0 0

]
,

[
0 (−t1)
0 0

])
,

where, as before, t1 = cos
(
π
8

)
, t6 = sin

(
π
8

)
. Clearly ‖E‖ = 1 and the normal space

to N(9,6) at E is the subspace TE
(
N(9,6)

)⊥
= RE⊕RΩ. In turn the tangent space

at E is

TE
(
N(9,6)

)
=

{[
α a2

a3 a4

]
,

[
b5 β
b7 b8

]}
, (3.6)

with ar, bs ∈ H and α, β pure quaternions.
To present the polynomial, we require the following refined notation:

as = us,0 + ius,1 + jus,2 + kus,3, s = 2, 3, 4,

br = vr,0 + ivr,1 + jvr,2 + kvr,3, r = 5, 7, 8,

α = iα1 + jα2 + kα3,

β = iβ1 + jβ2 + kβ3.

(3.7)

Then the expression of the polynomial for X ∈ TE
(
N(9,6)

)
is

P(9,6)(X) = (t1v5,0 + t6u2,0) [〈α, b5〉+ 〈a2, β〉+ 〈a3, b7〉+ 〈a4, b8〉]
+ (−t1v5,1 + t6u2,1) [〈α, ib5〉+ 〈a2, iβ〉 − 〈a3, ib7〉 − 〈a4, ib8〉]
+ (−t1v5,2 + t6u2,2) [〈α, jb5〉+ 〈a2, jβ〉 − 〈a3, jb7〉 − 〈a4, jb8〉]
+ (−t1v5,3 + t6u2,3) [〈α, kb5〉+ 〈a2, kβ〉 − 〈a3, kb7〉 − 〈a4, kb8〉]
+ (t1v8,0 − t6u3,0) [〈α, b8〉+ 〈a2, b7〉 − 〈a3, β〉 − 〈a4, b5〉]
+ (−t1v7,1 + t6u4,1) [〈α, b7i〉+ 〈a2, b8i〉+ 〈a3, b5i〉+ 〈a4, βi〉]
+ (−t1v7,2 + t6u4,2) [〈α, b7j〉+ 〈a2, b8j〉+ 〈a3, b5j〉+ 〈a4, βj〉]
+ (−t1v7,3 + t6u4,3) [〈α, b7k〉+ 〈a2, b8k〉+ 〈a3, b5k〉+ 〈a4, βk〉]
+ (−t1v7,0 − t6u4,0) [−〈α, b7〉+ 〈a2, b8〉+ 〈a3, b5〉 − 〈a4, β〉] .

3.3. Spaces with g = 6. These are MB and MS. The complex simple Lie algebra
gC2 , of type G2, has only two real forms, namely the compact one g2 and the split
(or normal) real form g. The real algebra g has a Cartan decomposition g = k⊕ p.
That is, the subalgebra k and the complementary subspace p satisfy

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k,

and k⊕ ip = g2 is the compact real form. As in [8] we identify p with pu := ip by
the map

iX 7→ X, (3.8)

which in turn identifies g2 and g. Furthermore we have k ' so (4).
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CONNECTEDNESS OF THE ALGEBRAIC SET OF VECTORS . . . 61

As in [5] and [6], it is possible to choose a convenient orthonormal basis for g2,
{Hj : 1 ≤ j ≤ 14}, such that

SpanR {H3, H4, H5, H6, H7, H8} = k ' so (4) ,

SpanR {H1, H2, H9, H10, H11, H12, H13, H14} = p,

a = SpanR {H1, H2} .

a is a Cartan subalgebra of g2 (and hence a maximal abelian subspace of p). Since
the Cartan subalgebra a is contained in p, the restricted roots coincide with the
roots of gC2 . We take the point E = H1, which happens to be a regular element in
a; then the orbits of E by the compact groups G2 and SO (4) are both principal
orbits.

MB = G2/T
2 = G2 (E) ⊂ g2,

MS = SO (4) / (Z2 × Z2) = SO (4) (E) ⊂ p ⊂ g2,

MB ⊂ S (g2) = S13MS ⊂ S (p) = S7.

We have

TE (MB) = [g2, E] = SpanR {[Hj , E] : 3 ≤ j ≤ 14} ,
TE (MS) = [k, E] = SpanR {[Hj , E] : 3 ≤ j ≤ 8} ,

T⊥E (MB) = T⊥E (MS) = SpanR {H1, H2} = a.

On X =
∑14
j=3 rj [Hj , E] ∈ TE (MB), the polynomial for X̂E [MB] is of the form

PB (X) = r3r5r7 + r3r6r8 + r3r11r13 + r3r12r14

+ r4r12r13 + r7r9r11 + r8r9r12

+ (−r4r6r7 − r5r9r13 − r6r10r13 − r6r9r14 − r7r10r12)

+
2

3

√
3 (−r3r6r7 − r3r12r13 − r6r9r13 + r7r9r12)

+ 3 (r4r5r8 + r5r10r14 + r8r10r11 − r4r11r14) ,

(3.9)

and the polynomial defining X̂E [MS] is obtained by restricting PB (X) to TE (MS)
(i.e., vanishing rj , 9 ≤ j ≤ 14). We get

PS(X) = r3r5r7 + r3r6r8 + (−r4r6r7) +
2√
3

(−r3r6r7) + 3 (r4r5r8) . (3.10)

4. Pro-sets

As in Section 2 we use M to indicate any of the hypersurfaces in Table 1.
The polynomials of normal sections of our isoparametric hypersurfaces M are de-
fined in TE (M) where we have (in all cases) an orthogonal system of coordinates
{x1, . . . , xm} and the polynomials are written is terms of these variables. As we

mentioned above, the polynomials P (X) defining X̂E [M ] have degree 3 and the
variables in each monomial have degree 1.
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We want to indicate the presence of certain subsets of each set of variables
which are (when they exist) particularly important to our objective of proving
Theorem 1.1.

Definition 4.1. We shall say that a subset A ⊂ {x1, . . . , xm} is a pro-set for the
polynomial P (X) if each of its monomials has one and only one variable in the
subset A.

In the next section we describe pro-sets for each P (X) where they exist. Each
pro-set A defines, obviously, a corresponding companion “subspace” V (A) ⊂
(TE (M)− {0}) by vanishing the variables included in A:

V (A) = {X 6= 0 ∈ TE (M) : xj (X) = 0, ∀xj ∈ A} . (4.1)

Note that we are excluding {0} and we call them “subspaces” of (TE (M)− {0}).
It is obvious that V (A) ⊂ ΛX̂E [M ].

5. Description of pro-sets

We shall indicate only two pro-sets (when they exist) for each space even if there
are others. As mentioned above, we have a companion “subspace” for each of them.

5.1. In the spaces with g = 3. By (3.3) for each F = R,C,H,O we have two
obvious pro-sets, namely Ak = {xk}, k = 1, 2. Notice that Ak contains one real
variable for F = R, two for F = C, four for F = H, and eight for F = O. We have
the associated “subspaces” which are denoted by Vk (MF ) for k = 1, 2. Clearly
dimVk (MF ) = 2, 4, 8, 16, k = 1, 2, for F = R,C,H,O, respectively.

Let us denote by S (Vk (MF )) the unit sphere in Vk (MF ). We notice that

S (V1 (MF )) ∩ S (V2 (MF )) ⊃ {X ∈ TE (MF ) : ‖x3‖2 = 1} ' S (F ) 6= ∅,

and dim (S (F )) = 0, 1, 3, 7 (F = R,C,H,O).
We must observe also that

V1 (MF ) + V2 (MF ) = (TE (MF )− {0}) , F = R,C,H,O. (5.1)

5.2. In the spaces with g = 4.

5.2.1. Spaces WR and WC. For WR = SO (5) /T 2 we have the polynomial PR(X)
with variables {x3, . . . , x10}. We find the pro-sets

A1 (WR) = {x7, x8} , A2 (WR) = {x9, x10} ,

and the associated “subspaces” V1 (WR) and V2 (WR). Here the dimension of
V1 (WR) and V2 (WR) is 6. Then dim (V1 (WR) ∩ V2 (WR)) = 4. Therefore
S(V1(WR)) ∩ S(V2(WR)) ' S3.

Similarly for WC (recalling that zj = xj + iyj) we find pro-sets

A1 (WC) = {y1, y2, x7, y7, x8, y8} ,
A2 (WC) = {x3, y3, x5, y5, x9, y9, x10, y10} ,
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and the corresponding “subspaces” are V1 (WC) and V2 (WC). Then the dimension
of V1 (WC) is 12 and that of V2 (WC) is 10. Again dim (V1 (WC) ∩ V2 (WC)) = 4 and
S (V1 (WC)) ∩ S (V2 (WC)) ' S3.

We must observe also that, in both cases,

V1 (WF ) + V2 (WF ) = (TE (MF )− {0}) , F = R,C. (5.2)

5.2.2. Spaces NR, NC, NH. Note that here n ≥ 3.

• For NR. Recalling (3.5) we see that for NR we have α = β = 0 and the
whole set of variables is {cr,o, bs,o, r = 1, . . . , n− 1, s = 2, . . . , n}. Two
pro-sets for QR(X) are

A1 (NR) = {c1,o, bn,o} ,
A2 (NR) = {br,o}2≤r≤n−1 ,

and associated to them we have V1 (NR) and V2 (NR). Let us observe that
dimV1 (NR) = 2n− 4 and dimV2 (NR) = n. Also notice that

S (V1 (NR)) ∩ S (V2 (NR)) ⊃
{
X ∈ TE (NR) :

∑n−1
s=2 c

2
s,o = 1

}
' Sn−3, (5.3)

V1 (NR) + V2 (NR) = (TE (NR)− {0}) . (5.4)

• For NC. We have the set of variables

α = a1i, δ = d1i,

us = bs,o + bs,1i, vs = cs,o + cs,1i s = 1, . . . , n,

and two pro-sets for QC(X) are

A1 (NC) = {c1,1, bn,1, vr}2≤r≤n−1 ,

A2 (NC) = {a1, d1, ur}2≤r≤n−1 .

The associated “subspaces” are V1 (NC) and V2 (NC). We have

S (V1 (NC)) ∩ S (V2 (NC)) ⊃
{
X ∈ TE (NC) : |c1,o|2 + |bn,o|2 = 1

}
' S1,

V1 (NC) + V2 (NC) = (TE (NC)− {0}) . (5.5)

• For NH. Looking at QH(X) and (3.5) we find

A1 (NH) = {α, δ, vr}2≤r≤n−1 ,

A2 (NH) = {α, δ, ur}2≤r≤n−1 .
(5.6)

They are pro-sets, but we notice that here we have a situation different
from previous cases, that is

A1 (NH) ∩A2 (NH) = {α, δ} . (5.7)

The corresponding “subspaces” are V1 (NH) and V2 (NH) and we observe
that

S (V1 (NH)) ∩ S (V2 (NH)) ⊃
{
X ∈ TE (NH) : |v1|2 + |un|2 = 1

}
' S7. (5.8)

We have here another difference with the previous cases. Namely,

V1 (NH) + V2 (NH) & (TE (MF )− {0}) . (5.9)
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This situation is responsible for the need of an ad hoc proof for this space.
• For N(9,6). The polynomial P(9,6) (X), when expanded in its real variables,

has 252 monomials and a patient search into them shows that there are no
pro-sets among its 30 variables.

5.3. In the spaces with g = 6. In MB, whose polynomial is (3.9), we have the
pro-sets

A1 (MB) = {r3, r4, r9, r10} , A2 (MB) = {r5, r6, r11, r12}
and corresponding “subspaces” V1 (MB) and V2 (MB). Clearly,

S (V1 (MB)) ∩ S (V2 (MB)) ⊃
{
X ∈ TE (MB) : r2

7 + r2
8 + r2

13 + r2
14 = 1

}
' S3.

Furthermore,
V1 (MB) + V2 (MB) = (TE (MB)− {0}) .

Similarly for MS:

A1 (MS) = {r3, r4} , A2 (MS) = {r5, r6} ,
with “subspaces” V1 (MB) and V2 (MB). We have here

S (V1 (MS)) ∩ S (V2 (MS)) ⊃
{
X ∈ TE (MS) : r2

7 + r2
8 = 1

}
' S1,

and also
V1 (MS) + V2 (MS) = (TE (MS)− {0}) .

6. Proof of the theorem

This section contains the proof of Theorem 1.1.

6.1. General case. We shall do first the proof for the spaces in Table 1 differ-
ent from NH andN(9,6). We use the generic notation M for our manifold and let
{x1, . . . , xm} be the orthogonal coordinates in TE (M) in which the polynomial
PM (X) is written. We have determined two pro-sets Aj (M) (j = 1, 2) and corre-
sponding “subspaces” Vj (M). In all cases considered (those in Table 1 except NH
andN(9,6)) we have

A1 (M) ∩A2 (M) = ∅
V1 (M) + V2 (M) = (TE (M)− {0})

S (V1 (M)) ∩ S (V2 (M)) 6= ∅.
(6.1)

Let us take now an arbitrary point X in ΛX̂ [M ]. We write it in terms of the
coordinates as X = (x1, . . . , xm) 6= 0; it satisfies PM (X) = 0. Now, with the
coordinates of X, we construct two new points in TE (M), namely

Y : coodinates of X that are in A1(M), others 0;

Z: coodinates of X that are not in A1(M), others 0.
(6.2)

We have now three alternatives, namely

((1)) Y 6= 0 and Z 6= 0,

((2)) Y = 0 =⇒ Z = X 6= 0,

((3)) Z = 0 =⇒ Y = X 6= 0.

(6.3)
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(The alternative Y = 0 = Z is ruled out since X ∈ ΛX̂ [M ].)
Let us assume first that we have the situation ((1)) in (6.3). We must observe

that by definition and (6.1) we have Z ∈ V1 (M) and Y ∈ V2 (M), and also 〈Y, Z〉 =
0. Let us take now the points

X (t) = (tY ) + Z ∈ TE (M) , ∀t ∈ [0, 1] .

Of course X (1) = X ∈ ΛX̂ [M ] and X (0) = Z ∈ V1 (M) ⊂ ΛX̂ [M ]. Also, by
assumption ((1)) (6.3), X (t) 6= 0, ∀t ∈ (0, 1].

Since A1 (M) is a pro-set, in every monomial of PM (X) there is one and only
one variable in A1 (M) and we see that

PM (X (t)) = tPM (X) = 0, ∀t ∈ (0, 1] .

Then we have that

X (t) ∈ ΛX̂ [M ] , ∀t ∈ [0, 1] ,

and therefore we have a continuous curve X (t) ∈ ΛX̂E [M ], ∀t ∈ [0, 1], which joins

the starting point X ∈ ΛX̂E [M ] to the point Z ∈ V1 (M) ⊂ ΛX̂ [M ].

So we have proved that any X ∈ ΛX̂E [M ] for which ((1)) of (6.3) holds can

be joined, by a continuous curve contained in ΛX̂E [M ], to a point in V1 (M) ⊂
ΛX̂ [M ].

We have to consider now the cases ((2)) and ((3)) in (6.3).
Assume ((2)). If X = Z ∈ V1 (M) then it obviously can be joined (by a contin-

uous curve contained in V1 (M)) to any other point in V1 (M) ⊂ ΛX̂ [M ].
Assume ((3)). We have X = Y ∈ V2 (M), then (as was shown for all the

hypersurfaces M 6= NH, N(9,6)) we have that S (V1 (M))∩S (V2 (M)) ⊃ Sp for some
p ≥ 0. Then we have two sets, connected by arcs, namely V1 (M) and V2 (M), with
at least a point in common. Therefore any point X ∈ V2 (M) can be joined (by a

continuous curve in ΛX̂E [M ]) to any other in V1 (M). This shows that ΛX̂E [M ]

is connected by arcs, and in turn so are X̂E [M ] and X [M ].
We present now a somewhat different proof for NH.

6.2. Proof for NH. The reasons for taking this case separately are (5.7) and (5.9).

We take an arbitrary point X in ΛX̂ [NH]; then

QH (X) = 0, X 6= 0, (6.4)

and write it in coordinates as

X = ((α, u2, . . . , un) , (v1, . . . , vn−1, δ)) ∈ TE (NH) ,

uj , vj ∈ H, α, δ pure quaternions.

Now (with the coordinates of X) we construct two new points in TE (M) as in
(6.2) but with A1 (NH) (5.6) instead of A1 (M). Then Z and Y are respectively of
the form

Z = ((0, u2, . . . , un−1, un) , (v1, 0 . . . , 0, 0)) ∈ V1 (NH) ⊂ ΛX̂ [NH] ,

Y = ((α, 0, . . . , 0, 0) , (0, v2 . . . , vn−1, δ)) .
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We may write X as X = Y + Z and have again the three alternatives ((1)), ((2))
and ((3)) in (6.3).

Let us assume first that ((1)) holds. Then Z ∈ V1 (NH) ⊂ ΛX̂E [NH] but Y is

neither in V1 (NH) nor V2 (NH) (so it may not even be in ΛX̂E [NH]). However
〈Y,Z〉 = 0.

Let us take again

X (t) = (tY ) + Z, ∀t ∈ [0, 1] ,

which in this case takes the form

X (t) = ((tα, u2 . . . , un) , (v1, tv2, . . . , tvn−1, tδ)) , t ∈ [0, 1] .

X(1) = X ∈ ΛX̂E [NH] and X(0) = Z ∈ V1 (NH) ⊂ ΛX̂E [NH].
Again, since A1 (NH) (5.6) is a pro-set, we see that

QH (X (t)) = tQH (X) = 0, ∀t ∈ (0, 1] .

Then X(t) ∈ ΛX̂E [NH], ∀t ∈ [0, 1], and we we have a continuous curve

X (t) ∈ ΛX̂E [NH] , ∀t ∈ [0, 1]

which joins the starting pointX ∈ ΛX̂E [NH] to the point Z ∈ V1 (NH) ⊂ ΛX̂E [NH].
Also Z ∈ V1 (NH) can be joined to any other point in V1 (NH) (by a continuous

curve contained there). So we have proved that any X ∈ ΛX̂E [NH] such that

Y 6= 0 6= Z can be joined, by a continuous curve contained in ΛX̂E [NH], to any
point in V1 (NH).

Now we have to study the other alternatives in (6.3).
Assume ((2)), i.e., Y = 0, Z = X 6= 0. Then there is nothing to prove since we

already have X ∈ V1 (NH) and so it can be joined, by a curve in V1 (NH), to any
other point there.

Assume ((3)), i.e., Z = 0. Then we have Y = X ∈ ΛX̂E [NH]. In this situation
the above procedure (multiplying by t) leads to 0. So we have to use a different
approach.

Let us recall that we are assuming now

Y = X = ((α, 0, . . . , 0, 0) , (0, v2 . . . , vn−1, δ)) ∈ ΛX̂E [NH] (6.5)

and

‖Y ‖2 = ‖α‖2 + ‖δ‖2 +

n−1∑
s=2

‖vs‖2 .

Under assumption ((3)) we have a new alternative, namely

(3.1) ‖α‖2 + ‖δ‖2 = 0,

(3.2) ‖α‖2 + ‖δ‖2 6= 0.
(6.6)

If we have (3.1) then clearly Y = X ∈ V2 (NH) and, since (5.8) holds, we can
join Y = X to any point in V1 (NH).
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We may assume from now on that (3.2) holds. Then we have a new alternative:

(3.2.1)

n−1∑
s=2

‖vs‖2 6= 0,

(3.2.2)

n−1∑
s=2

‖vs‖2 = 0,

(6.7)

and study, separately, both situations.
Let us assume first (3.2.1). Since Y = X, we have QH (Y ) = QH (X) = 0 and

by (6.5) and (3.5), for our Y , we have

br,s = 0, 2 ≤ r ≤ n and 0 ≤ s ≤ 3.

Then we may eliminate, from the polynomial QH, the terms containing these vari-
ables. By doing this we get

0 = QH (Y ) = (t1c1,o) (a1c1,1 + a2c1,2 + a3c1,3)

+ (−t1c1,1) (c1,oa1 − c1,3a2 + c1,2a3)

+ (−t1c1,2) (c1,3a1 + c1,oa2 − c1,1a3)

+ (−t1c1,3) (−c1,2a1 + c1,1a2 + c1,oa3) .

(6.8)

Now we take

Y (t) = (((tα) , 0, . . . , 0, 0) , (0, v2 . . . , vn−1, (tδ))) , ∀t ∈ [0, 1] .

Then, considering (6.8), we see that

QH (Y (t)) = t (QH (Y )) = 0, ∀t ∈ [0, 1] .

Then, in the same way as before, we can join Y = X ∈ ΛX̂E [NH], by a continuous

curve contained in ΛX̂E [NH], to a point of the form

H = ((0, 0, . . . , 0, 0) , (0, v2 . . . , vn−1, 0)) .

This H is not zero, due to (3.2.1) in (6.7), and H ∈ V2 (NH) but is not contained
in V1 (NH) ∩ V2 (NH). However (by (5.8)) we can, in turn, join H to any point in

V1 (NH) by a continuous curve contained in ΛX̂E [NH].

It remains to consider the case (3.2.2) in (6.7) (we still have Y = X ∈ ΛX̂E [NH]).
If (3.2.2) holds then Y is of the form

Y = X = ((α, 0, . . . , 0, 0) , (0, 0 . . . , 0, δ)) ∈ ΛX̂E [NH] . (6.9)

We must show that also in this case we can find a continuous curve in ΛX̂E [NH]
joining Y to one point in V1 (NH).

Let us consider an extra point C of the form

C = ((0, 0, . . . , 0, un) , (v1, 0, . . . , 0, 0)) ∈ V1 (NH) ∩ V2 (NH)

defined as follows. Recalling the notation (3.5), we may take un and v1 real. That
is,

un = bn,o, v1 = c1,o, bn,q = 0 = c1,q, 2 ≤ q ≤ 3.
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Furthermore, calling λ2 = ‖α‖2 + ‖δ‖2 = ‖Y ‖2 (we may take λ > 0 since we are in
(3.2.2)) we take

|v1|2 + |un|2 = c21,o + b2n,o = λ2.

Then 〈C, Y 〉 = 0 and by definition

1

λ
C ∈ S (V1 (NH)) ∩ S (V2 (NH)) .

Let us consider now in S (TE (NH)) the curve

Ω (θ) = cos (θ)
C

λ
+ sin (θ)

Y

λ
, θ ∈

[
0,
π

2

]
λΩ (θ) = ((sin (θ)α, 0, . . . , 0, cos (θ) bn,o) , (cos (θ) c1,o, 0, . . . , 0, sin (θ) δ)) .

Now, a glance at QH shows that we have

QH (λΩ (θ)) = 0, ∀θ ∈
[
0,
π

2

]
,

and so any point of the form (6.9) can be joined to a point in the intersection

V1 (NH) ∩ V2 (NH) by a continuous curve in ΛX̂ [NH]. This finally proves that

ΛX̂ [NH] is connected by arcs.

6.3. The case N(9,6). We can compute the shape operator AΩ on TE
(
N(9,6)

)
and

obtain the eigenspaces. There are two of dimension 9 and two of dimension 6.
It is now convenient to set the following notation: we write a quaternion q =
q0 + iq1 + jq2 + kq3 as

q = q0 + Iq, Iq = iq1 + jq2 + kq3. (6.10)

The eigenspaces are:

Q1 =
{
X ∈ TE

(
N(9,6)

)
: −u4,0 = v7,0,−u2,0 = v5,0, u3,0 = v8,0,

Ia4 = Ib7, Ia2 = Ib5, others = 0
}
,

Q2 =
{
X ∈ TE

(
N(9,6)

)
: u4,0 = v7,0, u2,0 = v5,0,−u3,0 = v8,0,

− Ia4 = Ib7,−Ia2 = Ib5, others = 0
}

W1 =
{
X ∈ TE

(
N(9,6)

)
: α, Ia3, others = 0

}
, (6.11)

W2 =
{
X ∈ TE

(
N(9,6)

)
: β, Ib8, others = 0

}
. (6.12)

Clearly we have dimQj = 9 and dimWj = 6 for j = 1, 2.
Our interest in these subspaces comes from the fact that they vanish the poly-

nomial P(9,6) (X). This is a general fact [9, Proposition 4.1] but can be checked
directly with P(9,6) (X) and is obvious for the subspaces W1 and W2. We consider
their direct sums, which are:

space dimension

Q1 ⊕Q2 18

W1 ⊕W2 12

Qr ⊕Ws, 1 ≤ r, s ≤ 2 15
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because they also vanish the polynomial P(9,6) (X) [9, Corollary 4.2] (again this can
be verified by direct computation). We shall use Λ (W1 ⊕W2), Λ (Q1 ⊕Q2) and
Λ (Qr ⊕Ws) to indicate the set of non-zero vectors in these subspaces.

The subspace Q1 ⊕ Q2 consists of the nine 2-dimensional planes (the other
variables zero)

(v5,k, u2,k) , 0 ≤ k ≤ 3

(v7,h, u4,h) , 0 ≤ h ≤ 3

(v8,0, u3,0) .

(6.13)

As indicated in the Appendix, the polynomial P(9,6) (X) splits as a sum (8.1).

Let us note that Ω(9,6) (X) = P(9,6) (X)
∣∣
(Q1⊕Q2)

. Note also that we may consider

Ω(9,6) (X) defined in the whole space TE
(
N(9,6)

)
since the other 12 variables do

not appear in this polynomial. But since P(9,6) (X) vanishes on X ∈ Λ (Q1 ⊕Q2)
we have the following important fact:

Ω(9,6) ≡ 0 on TE
(
N(9,6)

)
.

Therefore the polynomial P(9,6) (X) reduces to Θ(9,6) (X) on the tangent space

TE
(
N(9,6)

)
, that is,

P(9,6)(X) = Θ(9,6)(X).

Let us consider now the 2-dimensional plane

(v8,0, u3,0) (6.14)

and take new orthogonal coordinates in it. We have a line that vanishes the factor
(t1v8,0 − t6u3,0), that is

(t1v8,0 − t6u3,0) = 0⇐⇒ v8,0 =
t6
t1
u3,0 ⇐⇒ (v8,0, u3,0) = u3,0

(
t6
t1
, 1

)
,

and by taking the orthogonal vector
(

1,− t6t1
)

we may set new orthogonal coordi-

nates in the plane (6.14) as follows:[
v8,0

u3,0

]
=

[ t6
t1

1

1 − t6t1

] [
y
x

]
=:

[ 1
t1
t6y + x

y − 1
t1
t6x

]
.

By replacing the new variables in the factor (t1v8,0 − t6u3,0) (which is the only
place in Θ(9,6) (X) where the variables (v8,0, u3,0) appear) we obtain

(t1v8,0 − t6u3,0) =

(
t1

(
1

t1
t6y + x

)
− t6

(
y − 1

t1
t6x

))
=:

1

t1

(
t21 + t26

)
x

=
1

t1
x,
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and we may replace this into Θ(9,6)(X) getting

Θ(9,6)(X) = (t1v5,0 + t6u2,0) Φ1 + (−t1v5,1 + t6u2,1) Φ2

+ (−t1v5,2 + t6u2,2) Φ3 + (−t1v5,3 + t6u2,3) Φ4

+
1

t1
x [〈α, b8〉 − 〈a3, β〉]

+ (−t1v7,1 + t6u4,1) Φ6 + (−t1v7,2 + t6u4,2) Φ7

+ (−t1v7,3 + t6u4,3) Φ8 + (−t1v7,0 − t6u4,0) Φ9.

(6.15)

It is important to observe that the polynomial Θ(9,6) does not depend on the
variable y. However this variable must be considered.

6.4. Proof for N(9,6). We have in (3.6) and (3.7) the variables that we considered
in the expression of P(9,6)(X). Now we may use the new set of variables

{x, y, α, β, a2, Ia3, a4, b5, b7, Ib8} , (6.16)

where we use (6.10), the new variables (x, y) and the old variables retain its meaning
in (3.7).

We divide the new set of variables into the disjoint sets

(x, y, 0, 0, a2, 0, a4, b5, b7, 0) ∈ Q1 ⊕Q2,

(0, α, β, 0, Ia3, 0, 0, 0, Ib8) ∈W1 ⊕W2,

Q1 ⊕Q2 ⊕W1 ⊕W2 = TE
(
N(9,6)

)
.

Let us take now an arbitrary point X0 ∈ ΛX̂
[
N(9,6)

]
(then X0 6= 0), which we

may write, using the new variables, as

X0 = (x, y, α, β, a2, Ia3, a4, b5, b7, Ib8) : Θ(9,6)(X0) = 0.

As before, we may write X0 = Y + Z, where

Y = (x, y, 0, 0, a2, 0, a4, b5, b7, 0) ∈ Q1 ⊕Q2,

Z = (0, 0, α, β, 0, Ia3, 0, 0, 0, Ib8) ∈W1 ⊕W2,

and we have again the alternative (6.3).
We assume first ((1)) of (6.3), that is, Y 6= 0 6= Z. Under this assumption we

divide our considerations into two possible cases, namely x = 0 and x 6= 0.

First case, x = 0. If the point X0 ∈ ΛX̂
[
N(9,6)

]
has the form

X0 = (0, y, α, β, a2, Ia3, a4, b5, b7, Ib8) , Θ(9,6)(X0) = 0;

then Θ(9,6)(X0) reduces to

Θ(9,6) (X0) = (t1v5,0 + t6u2,0) Φ1 + (−t1v5,1 + t6u2,1) Φ2

+ (−t1v5,2 + t6u2,2) Φ3 + (−t1v5,3 + t6u2,3) Φ4

+ (−t1v7,1 + t6u4,1) Φ6 + (−t1v7,2 + t6u4,2) Φ7

+ (−t1v7,3 + t6u4,3) Φ8 + (−t1v7,0 − t6u4,0) Φ9,
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and we consider the points

X (s) = (0, y, sα, sβ, a2, sIa3, a4, b5, b7, sIb8) , s ∈ [0, 1].

Since all the factors Φj are linear in the variables {α, β, Ia3, Ib8} we see that, for
every s ∈ (0, 1], we have the equality

Θ(9,6) (X (s)) = sΘ(9,6) (X0) = 0

and hence (since Y ∈ Λ (Q1 ⊕Q2) ⊂ ΛX̂
[
N(9,6)

]
) we have that

X (s) ∈ ΛX̂
[
N(9,6)

]
, ∀s ∈ [0, 1] .

Second case, x 6= 0. In this case the point X0 ∈ X̂
[
N(9,6)

]
has the form

X0 = (x, y, α, β, a2, Ia3, a4, b5, b7, Ib8) , x 6= 0, Θ(9,6) (X0) = 0.

We take now the points

X (s) =
((
s2
)
x, y, α, β, sa2, Ia3, sa4, sb5, sb7, Ib8

)
, s ∈ [0, 1] ,

and we see that each one of the nine terms of Θ(9,6)(X(s)) in (6.15) has a factor

s2 (because each term that does not contain x has two factors, a parenthesis and
a bracket and each one of these is linear in the variables multiplied by s; on the
other hand, the variables in the factor companion of x are not multiplied by s).

Hence we have

Θ(9,6) (X (s)) =
(
s2
)

Θ(9,6) (X0) = 0, s ∈ (0, 1] ,

which again yields

X (s) ∈ ΛX̂
[
N(9,6)

]
, ∀s ∈ (0, 1] ,

and in turn (since Z = X (0) ∈ Λ (W1 ⊕W2) ⊂ ΛX̂
[
N(9,6)

]
) we have again

X (s) ∈ ΛX̂
[
N(9,6)

]
, ∀s ∈ [0, 1] .

Now we have to consider the other two possibilities, namely ((2)) and ((3)) of
(6.3). Then X0 is a point in either Λ (W1 ⊕W2) or Λ (Q1 ⊕Q2). But now by
means of

Λ (Qr ⊕Ws) , 1 ≤ r, s ≤ 2,

we can go between any point in Λ (Q1 ⊕Q2) and any other in Λ (W1 ⊕W2) by a

continuous curve in ΛX̂
[
N(9,6)

]
. This completes the proof of Theorem 1.1. �

7. Consequence for Ξ(M)

Given a point p in the isoparametric submanifold M we have the algebraic set

X̂p [M ] and by considering (as in [9]) this set for each point in M we obtain a
subset of the unit tangent bundle of M which we have denoted by Ξ (M). The
topology of Ξ (M) is the one induced from the unit tangent bundle S(T (M)) of M .

The objective of this section is to show that for the submanifolds M in Table 1
the set Ξ (M) is also connected by arcs.

Theorem 7.1. For all the homogeneous isoparametric hypersurfaces Mn ⊂ Sn+1 ⊂
Rn+2 (those in Table 1), the set Ξ(M) ⊂ S(T (M)) is connected by arcs.
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Proof. Let M be such a submanifold. Then the tangent bundle splits as a direct
sum

T (M) = D1 ⊕ · · · ⊕Dg

of the simultaneous eigenspaces of the shape operators (which commute because the
normal bundle is flat). The distributions Dj are autoparallel and hence integrable
with totally geodesic leaves which are round spheres.

To prove that Ξ (M) is connected by arcs we use Theorem D in [4], which says
that any two points, say p and q, in M can be joined by a piecewise differentiable
curve in M whose differentiable pieces are tangent to one of the Dj . In Theorem D

we take I = {1, . . . , g}; then the ψi (i ∈ I) generate W̃ , which is the hypothesis of
that theorem (see [12] for details).

We take two arbitrary points p and q in M . The piecewise differentiable curve
γ in M joining points p and q in M given by Theorem D in [4], can be taken to be

γ : [0, b] −→M, γ (0) = p, γ (b) = q,

and the interval [0, b] has a partition

0 < s1 < s2 < · · · < sh−1 < sh = b

such that γ|[sj ,sj+1] is a geodesic in one of the spheres integrating one of the distri-

butions Dk for each j = 0, . . . , h − 1, and we may assume that the images of two
consecutive subintervals [sj , sj+1] belong to different spheres (otherwise we may
take a single geodesic joining the initial point of the first piece and the final point
of the second one).

At each point γ (sj), j = 1, . . . , h− 1, we have two vectors in Tγ(sj) (M), the left
and right derivatives of γ at sj which are orthogonal (since they belong to different
Dj at γ (sj)). Let us denote these two derivatives by

γ′ (sj (−)) and γ′ (sj (+)) , j = 1, . . . , h− 1.

We have also the derivatives at the two extremes of the interval [0, b], that is

γ′ (0 (+)) and γ′ (b (−)) .

Let us take now two arbitrary points vp ∈ X̂p [M ] and wq ∈ X̂q [M ] in Ξ (M)
for some p and q in M . Let γ be the curve described above (joining p and q) given
by Theorem D.

Since X̂p [M ] is arc-wise connected, we can join vp to γ′ (0 (+)) by a con-

tinuous curve in X̂p [M ]. Outside the singular set, that is, if a point t is in

([0, b]− {s1, s2, . . . , sh−1}), then γ′ (t) ∈ X̂γ(t) [M ]. Now at each {s1, s2, . . . , sh−1}
we have the two orthogonal derivatives γ′ (sj (−)) and γ′ (sj (+)), j = 1, . . . , h− 1,
and they satisfy

γ′ (sj (−)) ∈ S (Dr (γ (sj))) , for some 1 ≤ r ≤ g,
γ′ (sj (+)) ∈ S (Du (γ (sj))) , for some 1 ≤ u ≤ g,
u 6= r.
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Since, by [9, p. 45, Cor. 4.2], we have that

S (Dr (γ (sj))⊕Du (γ (sj))) ⊂ X̂γ(sj) [M ] ,

we can join γ′(sj(−)) and γ′(sj(+)) by a continuous curve in X̂γ(sj) [M ].

When we reach the final point γ(b) we may join γ′(b(−)) ∈ X̂q[M ] to wq ∈ X̂q[M ]

by a continuous curve in X̂q[M ].
Then we can join vp to wq by a continuous curve in Ξ (M). �

8. Appendix

With the coordinates in (3.7) the expression of the polynomial P(9,6) (X) is
given under (3.7). It has nine terms and each of them consists of two factors (one
between parentheses and the other between brackets). We want to split each factor
between brackets into two terms, placing in the first one the terms containing u3,0

and v8,0 and lumping the rest of them into Φj . We write the bracket from each
term (indicated by the order in the polynomial) as follows.

The first bracket is

(b1) [〈α, b5〉+ 〈a2, β〉+ 〈a3, b7〉+ 〈a4, b8〉] = [u3,0v7,0 + u4,0v8,0] + Φ1,

where, as indicated above,

Φ1 = 〈α, b5〉+ 〈a2, β〉+ (u3,1v7,1 + u3,2v7,2 + u3,3v7,3)

+ (u4,1v8,1 + u4,2v8,2 + u4,3v8,3) .

We continue similarly with the brackets in the other eight terms:

(b2) [〈α, ib5〉+ 〈a2, iβ〉 − 〈a3, ib7〉 − 〈a4, ib8〉]
= [− (u3,0 (−v7,1))− (u4,1 (v8,0))] + Φ2,

Φ2 = 〈α, ib5〉+ 〈a2, iβ〉 − (u3,1v7,0 − u3,2v7,3 + u3,3v7,2)

− (−u4,0v8,1 + u4,3v8,2 − u4,2v8,3) ;

(b3) [〈α, jb5〉+ 〈a2, jβ〉 − 〈a3, jb7〉 − 〈a4, jb8〉]
= [− (u3,0 (−v7,2))− (u4,2 (v8,0))] + Φ3,

Φ3 = 〈α, jb5〉+ 〈a2, jβ〉 − (u3,1v7,3 + u3,2v7,0 − u3,3v7,1)

− (−u4,3v8,1 − u4,0v8,2 + u4,1v8,3) ;

(b4) [〈α, kb5〉+ 〈a2, kβ〉 − 〈a3, kb7〉 − 〈a4, kb8〉]
= [− (u3,0 (−v7,3))− (u4,3 (v8,0))] + Φ4,

Φ4 = 〈α, kb5〉+ 〈a2, kβ〉 − u3,1 (−v7,2) + u3,2 (v7,1) + u3,3 (v7,0)

− (u4,0 (−v8,3) + u4,1 (−v8,2) + u4,2 (v8,1)) .

The fifth term

(b5) U = (t1v8,0 − t6u3,0) [〈α, b8〉+ 〈a2, b7〉 − 〈a3, β〉 − 〈a4, b5〉]
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does not contain u3,0 and v8,0 in the bracket so we split this one as

U = (t1v8,0 − t6u3,0) [〈a2, b7〉 − 〈a4, b5〉] + (t1v8,0 − t6u3,0) [〈α, b8〉 − 〈a3, β〉] .

We continue the splitting with the previous procedure:

(b6) [〈α, b7i〉+ 〈a2, b8i〉+ 〈a3, b5i〉+ 〈a4, βi〉]
= [+ (u2,1v8,0) + (u3,0 (−v5,1))] + Φ6,

Φ6 = 〈α, b7i〉+ 〈a4, βi〉+ (u3,1 (v5,0) + u3,2 (v5,3) + u3,3 (−v5,2))

+ (u2,0 (−v8,1) + u2,2 (v8,3) + u2,3 (−v8,2)) ;

(b7) [〈α, b7j〉+ 〈a2, b8j〉+ 〈a3, b5j〉+ 〈a4, βj〉]
= [+ (u2,2 (v8,0)) + (u3,0 (−v5,2))] + Φ7,

Φ7 = 〈α, b7j〉+ 〈a4, βj〉+ (u3,1 (−v5,3) + u3,2 (v5,0) + u3,3 (v5,1))

+ ((u2,0 (−v8,2) + u2,1 (−v8,3) + u2,3 (v8,1))) ;

(b8) [〈α, b7k〉+ 〈a2, b8k〉+ 〈a3, b5k〉+ 〈a4, βk〉]
= [+ (u2,3 (v8,0)) + (u3,0 (−v5,3))] + Φ8,

Φ8 = 〈α, b7k〉+ 〈a4, βk〉+ (u3,1 (v5,2) + u3,2 (−v5,1) + u3,3 (v5,0))

+ (u2,0 (−v8,3) + u2,1 (v8,2) + u2,2 (−v8,1)) ;

(b9) [−〈α, b7〉+ 〈a2, b8〉+ 〈a3, b5〉 − 〈a4, β〉]
= [+ (u2,0v8,0) + (u3,0 (v5,0))] + Φ9,

Φ9 = −〈α, b7〉 − 〈a4, β〉+ (u3,1 (v5,1) + u3,2 (v5,2) + u3,3 (v5,3))

+ (u2,1 (v8,1) + u2,2 (v8,2) + u2,3 (v8,3)) .

With this procedure we may write

P(9,6) (X) = Ω(9,6) (X) + Θ(9,6) (X) , (8.1)

where

Ω(9,6) (X) = (t1v5,0 + t6u2,0) [u3,0v7,0 + u4,0v8,0]

+ (−t1v5,1 + t6u2,1) [− (u3,0 (−v7,1))− (u4,1 (v8,0))]

+ (−t1v5,2 + t6u2,2) [− (u3,0 (−v7,2))− (u4,2 (v8,0))]

+ (−t1v5,3 + t6u2,3) [− (u3,0 (−v7,3))− (u4,3 (v8,0))]

+ (t1v8,0 − t6u3,0) [〈a2, b7〉 − 〈a4, b5〉]
+ (−t1v7,1 + t6u4,1) [(u2,1v8,0) + (u3,0 (−v5,1))]

+ (−t1v7,2 + t6u4,2) [(u2,2 (v8,0)) + (u3,0 (−v5,2))]

+ (−t1v7,3 + t6u4,3) [(u2,3 (v8,0)) + (u3,0 (−v5,3))]

+ (−t1v7,0 − t6u4,0) [(u2,0v8,0) + (u3,0 (v5,0))] .
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and

Θ(9,6) (X) = (t1v5,0 + t6u2,0) Φ1 + (−t1v5,1 + t6u2,1) Φ2

+ (−t1v5,2 + t6u2,2) Φ3 + (−t1v5,3 + t6u2,3) Φ4

+ (t1v8,0 − t6u3,0) [〈α, b8〉 − 〈a3, β〉]
+ (−t1v7,1 + t6u4,1) Φ6 + (−t1v7,2 + t6u4,2) Φ7

+ (−t1v7,3 + t6u4,3) Φ8 + (−t1v7,0 − t6u4,0) Φ9.
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