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VANISHING, BASS NUMBERS, AND COMINIMAXNESS OF

LOCAL COHOMOLOGY MODULES

JAFAR A’ZAMI

Abstract. Let (R,m) be a commutative Noetherian regular local ring and I

be a proper ideal of R. It is shown that Hd−1
p (R) = 0 for any prime ideal p of

R with dim(R/p) = 2, whenever the set {n ∈ N : R/p(n) is Cohen–Macaulay}
is infinite. Now, let (R,m) be a commutative Noetherian unique factorization

local domain of dimension d, I an ideal of R, and M a finitely generated R-
module. It is shown that the Bass numbers of the R-module Hi

I(M) are finite,

for all integers i ≥ 0, whenever height(I) = 1 or d ≤ 3.

1. Introduction

Throughout this paper, let R denote a commutative Noetherian local ring (with
identity), I a proper ideal of R, and M an R-module. The local cohomology mod-
ules Hi

I(M) arise as the derived functors of the left exact functor ΓI(−), where for
an R-module M , ΓI(M) is the submodule of M consisting of all elements annihi-
lated by some power of I, i.e.,

⋃∞
n=1(0 :M In). There is a natural isomorphism:

Hi
I(M) = lim−→

n≥1

ExtiR(R/In,M).

It is well-known that if (R,m) is a regular local ring of dimension d > 0 then
the top local cohomology module Hd

m(R) is not a finitely generated R-module.
But for each i ≥ 0 and each finitely generated module over an arbitrary Noether-
ian local ring (R,m) the R-module Hi

m(M) is Artinian and hence the R-module
HomR(R/m, Hi

m(M)) is finitely generated. This led Grothendieck to conjecture in
[7] that for any ideal I of a Noetherian ring R and any finitely generated R-module
M , the module HomR(R/I,Hi

I(M)) is finitely generated. This conjecture is not
true in general and a number of counterexamples are given by several authors (for
example see [8, 3, 6, 4]). In fact using [3, Theorem 3.9] it is easy to see that, for
any Noetherian ring of dimension d ≥ 3, there is an ideal I of R and a finitely
generated R-module M , such that the module HomR(R/I,Hi

I(M)) is not finitely
generated. Hartshorne was the first to present a counterexample to Grothendieck’s
conjecture (see [8] for details and proof). However, he defined an R-module M
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to be I-cofinite if SuppM ⊆ V (I) and ExtjR(R/I,M) is finitely generated for all
j. In this paper we prove the following about the vanishing of local cohomology
modules. Let (R,m) be a regular local ring of dimension d ≥ 2, and p ∈ Spec(R)
such that dim(R/p) = 2. If the set

A := {n ∈ N : R/p(n) is Cohen–Macaulay}

is infinite, then Hd−1
p (R) = 0. Also we consider the finiteness of the Bass numbers

and cominimaxness of local cohomology modules over unique factorization domains.
The main results of this paper in this direction are the following.

Theorem 1.1. Let (R,m) be a unique factorization domain of dimension d ≥ 1 and
M a finitely generated R-module. Let I be an ideal of R, such that height(I) = 1.
Then the Bass numbers µj(m, Hi

I(M)) are finite, for all i ≥ 0 and all j ≥ 0.

Theorem 1.2. Let (R,m) be a unique factorization domain of dimension d ≤ 3, I
an ideal of R and M a finitely generated R-module. Then the following statements
hold:

(i) The Bass numbers of the R-module Hi
I(M) are finite, for each i ≥ 0.

(ii) The R-module Hi
I(M) is I-cominimax, for each i ≥ 0.

For an R-module M , the cohomological dimension of M with respect to I is
defined as

cd(I,M) := max{i ∈ Z : Hi
I(M) 6= 0}.

For each R-module L, we denote by AsshR L (resp. mAssR L) the set {p ∈ AssR L :
dimR/p = dimL} (resp. the set of minimal primes of AssR L). Also, for any ideal
a of R, we denote {p ∈ SpecR : p ⊇ a} by V (a). Finally, for any ideal b of R, the
radical of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b for some
n ∈ N}. We recall that the R-module M is said to be I-cominimax if support of M
is contained in V (I) and ExtiR(R/I,M) is minimax for all i ≥ 0. The concept of
I-cominimax modules was introduced in [2], as a generalization of the important
notion of I-cofinite modules. Note that an R-module M is said to be minimax if
there exists a finitely generated submodule N of M such that M/N is Artinian
(see [13, 14]).

2. Main results

Theorem 2.1. Let (R,m) be a regular local ring of dimension d ≥ 2, and p ∈
Spec(R) such that dim(R/p) = 2. Then

Hd−1
p (R) ∼= lim−→

n≥1

Extd−1
R (R/p(n), R),

where for each n ∈ N, p(n) denotes the n-th symbolic power of the prime ideal p.

Proof. Since for each n ≥ 1 there is s ∈ R\p such that s(p(n)/pn) = 0, it follows
that dim(p(n)/pn) ≤ 1, and so by the local duality theorem,

Extd−2
R (p(n)/pn, R) = 0.
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Also, since the ideal AnnR(p(n)/pn) contains an R-regular sequence as x1, . . . , xd−1,
it follows from [11, §18 Lemma 2] that

Extd−1
R (p(n)/pn, R) ∼= HomR/(x1,...,xd−1)(p

(n)/pn, R/(x1, . . . , xd−1)).

So, as m 6∈ AssR(R/(x1, . . . , xd−1)) it follows that m 6∈ AssR(Extd−1
R (p(n)/pn, R)).

Hence, Γm(Extd−1
R (p(n)/pn, R)) = 0. Now the exact sequence

0→ p(n)/pn → R/pn → R/p(n) → 0

induces the exact sequence

Extd−2
R (p(n)/pn, R) = 0→ Extd−1

R (R/p(n), R)

→ Extd−1
R (R/pn, R)→ Extd−1

R (p(n)/pn, R).

From this exact sequence we get an exact sequence

0→ Γm(Extd−1
R (R/p(n), R))

→ Γm(Extd−1
R (R/pn, R))→ Γm(Extd−1

R (p(n)/pn, R)) = 0.

Therefore, by the local duality theorem, as

Supp Extd−1
R (R/p(n), R) ⊆ V (m),

it follows that
Γm(Extd−1

R (R/p(n), R)) = Extd−1
R (R/p(n), R)

and so
Γm(Extd−1

R (R/pn, R)) ∼= Extd−1
R (R/p(n), R).

On the other hand, using the Lichtenbaum-Hartshorne vanishing theorem, it is
easy to see that

SuppHd−1
p (R) ⊆ V (m),

and hence
Γm(Hd−1

p (R)) = Hd−1
p (R).

Therefore, as for each pair of positive integers n, k the natural commutative diagram

R/pn+k
fn+k //

gn

��

R/p(n+k)

g′n
��

R/pn
fn

// R/p(n)

induces a commutative diagram

Extd−1
R (R/p(n), R)

f̃n∼= //

g̃′n
��

Γm(Extd−1
R (R/pn, R))

g̃n
��

Extd−1
R (R/p(n+k), R)

f̃n+k∼=

// Γm(Extd−1
R (R/pn+k, R))
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it follows that

Hd−1
p (R) = Γm(Hd−1

p (R)) ∼= lim−→
n≥1

Γm(Extd−1
R (R/pn, R)) ∼= lim−→

n≥1

Extd−1
R (R/p(n), R),

as required. �

Corollary 2.2. Let (R,m) be a regular local ring of dimension d ≥ 2, and p ∈
Spec(R) such that dim(R/p) = 2. If the set

A := {n ∈ N : R/p(n)is Cohen–Macaulay}

is infinite, then Hd−1
p (R) = 0.

Proof. The assertion follows from Theorem 2.1, using the local duality theorem. �

Lemma 2.3. Let R be a Noetherian local ring of dimension d ≥ 3, x ∈ m and I

an ideal of R such that I ⊆ Rx. Then the R-homomorphism Hj
I (M)

.x−→ Hj
I (M)

is an isomorphism, for each j ≥ 2.

Proof. See [1, Lemma 2.5]. �

Lemma 2.4. Let R be a Noetherian ring, I an ideal of R, M a finitely generated
R-module such that dimM ≤ 2. Then the R-module Hi

I(M) is I-cofinite, for each
i ≥ 0. In particular, the Bass numbers of Hi

I(M) are finite.

Proof. See [1, Lemma 2.11]. �

Theorem 2.5. Let (R,m) be a unique factorization domain of dimension d ≥ 1 and
M a finitely generated R-module. Let I be an ideal of R, such that height(I) = 1.
Then the Bass numbers µj(m, Hi

I(M)) are finite, for all i ≥ 0 and all j ≥ 0.

Proof. As theR-moduleH0
I (M) is finitely generated, in view of [10, Corollary 3.9] it

is enough to prove that ExtjR(R/m, Hi
I(M)) = 0, for j = 0, 1, 2, . . . and i = 2, 3, . . . .

Now suppose that i ≥ 2 and let

X := {p ∈ mAssR R/I | height p = 1},
Y := {p ∈ mAssR R/I | height p ≥ 2}.

Then X 6= ∅. Let J =
⋂

p∈X p. Since R is a UFD, it follows from [11, Exercise 20.3]
that J is a principal ideal, so there is an element x ∈ R such that J = Rx. Hence
if Y = ∅ then

√
I = J , and so it follows from [5, Theorem 3.3.1] that Hi

I(M) = 0

for all i > 1. Therefore we may assume that Y 6= ∅. Then
√
I = Rx ∩K, where

K =
⋂

p∈Y p. Therefore as Hi
I(M) = Hi√

I
(M) and

√
I ⊆ Rx, it follows from

Lemma 2.3 that the R-homomorphism Hi
I(M)

.x−→ Hi
I(M) is an isomorphism, for

each i ≥ 2. Therefore, for each j ≥ 0, the R-homomorphism

ExtjR(R/m, Hi
I(M))

.x−→ ExtjR(R/m, Hi
I(M))

is an isomorphism. Since x ∈ m, it follows that ExtjR(R/m, Hi
I(M)) = 0, for

each j ≥ 0. Consequently, we have µj(m, Hi
I(M)) = 0, for j = 0, 1, 2, . . . and

i = 2, 3, . . . , as required. �
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Lemma 2.6. Let (R,m) be a unique factorization domain of dimension d ≤ 3, I
an ideal of R, and M a finitely generated R-module. Then the Bass numbers of
Hi

I(M) are finite, for all i ≥ 0.

Proof. Let p ∈ Spec(R). Then the case dim(R/p) ≤ 2 follows from Lemma 2.4, by
localization. So we may assume that p = m. If dim(R/I) = 1 the assertion follows
from [6, Corollary 2]. The cases dim(R/I) = 0 and dim(R/I) = 3 are clear. Let
dim(R/I) = 2. Then we have height(I) = 1 and so in view of Theorem 2.5 the
Bass numbers of Hi

I(M) are finite, for all i ≥ 0. �

The following result is a partial generalization of a result given in [9].

Theorem 2.7. Let R be a unique factorization domain of dimension d ≤ 3, I
an ideal of R, and M a finitely generated R-module. Then the Bass numbers of
Hi

I(M) are finite, for all i ≥ 0.

Proof. The assertion follows immediately from Lemma 2.6, by localization. �

Theorem 2.8. Let (R,m) be a unique factorization domain of dimension d ≤ 3,
I an ideal of R, and M a finitely generated R-module. Then the R-module Hi

I(M)
is I-cominimax, for all i ≥ 0.

Proof. By Lemma 2.6 we may assume that dimM = 3. Now by Grothendieck’s
vanishing theorem Hi

I(M) = 0, for all i ≥ 4. On the other hand H0
I (M) is finitely

generated and so is I-cominimax. Moreover, in view of [12, Proposition 5.1], H3
I (M)

is I-cofinite and so is I-cominimax. Therefore in view of [4, Proposition 2.14], it
is enough to prove that the R-module H2

I (M) is I-cominimax. To do this, if
dim(R/I) ≤ 1, it follows from [4, Corollary 2.7] that H2

I (M) is I-cofinite and hence
is I-cominimax. Also if dim(R/I) = 3, then I = 0, and hence H2

I (M) = 0. Finally,
let dim(R/I) = 2. Then we have height(I) = 1. Let

X := {p ∈ mAssR R/I | height p = 1},
Y := {p ∈ mAssR R/I | height p ≥ 2}.

Then X 6= ∅. Let J =
⋂

p∈X p. Since R is a UFD, it follows from [11, Exercise

20.3] that J is a principal ideal, so there is an element x ∈ R such that J = Rx.

Hence if Y = ∅ then
√
I = J , and so it follows from [5, Theorem 3.3.1] that

H2
I (M) = 0. Therefore we may assume that Y 6= ∅. Then

√
I = Rx ∩K, where

K =
⋂

p∈Y p. Then heightK = 2, and so dim(R/K) = 1. Consequently in view of

[4, Corollary 2.7], the R-module H2
K(M) is K-cofinite, and hence is K-cominimax.

We claim that height(J + K) = 3. To see this, suppose there exists a prime ideal
q of R such that J +K ⊆ q and height q = 2. Then there exist p1 ∈ X and p2 ∈ Y
such that p1 + p2 ⊆ q. As height p2 ≥ 2, it follows that q = p2, and so p1 ⊂ p2,
a contradiction. Since height(J + K) = 3 it follows from [5, Theorem 7.1.3] that
the R-modules H2

J+K(M) ∼= H2
m(M) and H3

J+K(M) ∼= H3
m(M) are Artinian. Now,

since
√
I = J ∩K, the Mayer–Vietoris sequence (see e.g. [5, Theorem 3.2.3]) yields

the exact sequence

H2
J+K(M) −→ H2

K(M) −→ H2
I (M) −→ H3

J+K(M),
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that implies that the R-module H2
I (M) is K-cominimax. In view of Lemma 2.3,

there exists an exact sequence

0 −→ H2
I (M)

x−→ H2
I (M) −→ 0,

that implies ExtiR(R/J,H2
I (M)) = 0, for each i ≥ 0. On the other hand, it follows

from [2, Theorem 2.7] that the R-module ExtiR(R/J +K,H2
I (M)) is minimax for

all i ≥ 0. Consequently, the exact sequence

0 −→ R/
√
I −→ R/J ⊕R/K −→ R/J +K −→ 0

induces a long exact sequence

0 −→ HomR(R/J +K,H2
I (M)) −→ HomR(R/K,H2

I (M))

−→ HomR(R/
√
I,H2

I (M)) −→ Ext1
R(R/J +K,H2

I (M))

−→ Ext1
R(R/K,H2

I (M)) −→ Ext1
R(R/

√
I,H2

I (M)) −→ · · ·

that implies that the R-module H2
I (M) is

√
I-cominimax. Now, as Supp(R/I) =

Supp(R/
√
I), it follows from [2, Theorem 2.7] that the R-module H2

I (M) is I-
cominimax. This completes the proof. �
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