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CERTAIN CURVES ON SOME CLASSES OF

THREE-DIMENSIONAL ALMOST CONTACT METRIC

MANIFOLDS

AVIJIT SARKAR AND ASHIS MONDAL

Abstract. The object of the present paper is to characterize three-dimen-
sional trans-Sasakian generalized Sasakian space forms admitting biharmonic

almost contact curves with respect to generalized Tanaka Webster Okumura

(gTWO) connections and to give illustrative examples. The mean curva-
ture vector of almost contact curves has been analyzed on trans-Sasakian

manifolds with gTWO connections. Some properties of slant curves on the

same manifolds have been established. Finally curvature and torsion, with re-
spect to gTWO connections, of C-parallel and C-proper slant curves in three-

dimensional almost contact metric manifolds have been deduced.

1. Introduction

A beautiful notion of classical differential geometry of curves is that of curves
of constant slope, also called cylindrical helix. This is a curve in the Euclidean
space E3 for which the tangent vector field has a constant angle with a fixed
direction called the axis. Analogous to the above concept there are notions of
slant curves and in particular Legendre curves in contact structure geometry. In
the study of contact manifolds, Legendre curves play an important role, e.g., a
diffeomorphism of a contact manifold is a contact transformation if and only if it
maps Legendre curves to Legendre curves. Legendre curves on contact manifolds
have been studied by C. Baikoussis and D. E. Blair in [3]. Originally Legendre
curves were defined on three-dimensional contact metric manifolds with the contact
form η. Later the Legendre property has been extended to almost contact metric
manifolds [54]. Legendre curves on almost contact metric manifolds are called
almost contact curves [23]. After the work of Baikoussis and Blair [3], a good
number of works have been done on Legendre curves or almost contact curves:
[12, 24, 32, 41, 42, 43, 44, 50, 51, 52]. For the study of slant curves we refer to
[8, 12, 21, 27]. Slant curves with C-parallel mean curvature vector fields have been
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108 A. SARKAR AND A. MONDAL

studied in [31]. Again in [21] slant curves with C-parallel mean curvature vector
field have been investigated.

An important class of almost contact metric manifolds is trans-Sasakian man-
ifolds. Trans-Sasakian manifolds arose in a natural way from the classification of
almost contact metric structures by D. Chinea and C. Gonzalez [10], and they ap-
pear as a natural generalization of both Sasakian and Kenmotsu manifolds. Again
in the Gray-Hervella classification of almost Hermite manifolds [20], there appears
a class W4 of Hermitian manifolds which are closely related to locally conformally
Kähler manifolds. An almost contact metric structure on a manifold M is called a
trans-Sasakian structure [40] if the product manifold M × R belongs to the class
W4. The class C6 ⊕ C5 [34, 35] coincides with the class of trans-Sasakian struc-
tures of type (α, β). In [35], the local nature of the two subclasses C5 and C6

of trans-Sasakian structures is characterized completely. In [9], some curvature
identities and sectional curvatures for C5, C6 and trans-Sasakian manifolds are ob-
tained. It is known that trans-Sasakian structures of type (0, 0), (0, β) and (α, 0)
are cosymplectic, β-Kenmotsu, and α-Sasakian respectively [29].

The local structure of trans-Sasakian manifolds of dimension n ≥ 5 has been
completely characterized by J. C. Marrero [34]. He proved that a trans-Sasakian
manifold of dimension n ≥ 5 is either cosymplectic or α-Sasakian or β-Kenmotsu
manifold. So proper trans-Sasakian manifolds exist only for dimension three. The
first author of the present paper has studied trans-Sassakian manifolds of dimension
three [14].

The nature of a Riemannian manifold mostly depends on the manifold’s cur-
vature tensor R. It is well known that the sectional curvatures of a manifold
determine curvature tensor completely. A Riemannian manifold with constant sec-
tional curvature c is known as real-space-form and its curvature tensor is given
by

R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y }.

A Sasakian manifold with constant φ-sectional curvature is a Sasakian-space-form
and it has a specific form of its curvature tensor. A similar notion also holds for
Kenmotsu and cosymplectic space-forms. In order to generalize such space-forms in
a common frame, P. Alegre, D. E. Blair, and A. Carriazo introduced in 2004 the no-
tion of generalized Sasakian-space-forms [1]. But it is to be noted that generalized
Sasakian-space-forms are not merely a generalization of such space-forms; it also
contains a large class of almost contact manifolds. For example, it is known that
any three-dimensional (α, β)-trans Sasakian manifold, with α, β depending on the
Reeb vector field ξ, is a generalized Sasakian-space-form [2]. However, we can find
generalized Sasakian-space-forms with non-constant functions and arbitrary dimen-
sions. In [1], the authors cited several examples of generalized Sasakian-space-forms
in terms of warped product spaces. In this regard, it should be mentioned that
in 1989 Z. Olszak [38] studied generalized complex-space-forms and proved their
existence. A generalized Sasakian-space-form is defined as follows [1].

Given an almost contact metric manifold M(φ, ξ, η, g), we say that M is gener-
alized Sasakian-space-form if there exist three functions f1, f2, f3 on M such that
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the curvature tensor R is given by

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ},

for any vector fields X,Y, Z on M . In such a case we denote the manifold as
M(f1, f2, f3). Here we shall denote this manifold simply by M . If f1 = (c+ 3)/4,
f2 = (c − 1)/4, and f3 = (c − 1)/4, then a generalized Sasakian-space-form with
Sasakian structure becomes a Sasakian-space-form. The first author of the present
paper has also studied generalized Sasakian space forms [15, 16, 22, 45, 46, 47, 48,
49].

In [1] and [2], the authors have shown the existence of trans-Sasakian generalized
Sasakian space forms. By a trans-Sasakian generalized Sasakian space form we
mean an almost contact manifold with trans-Sasakian metric and whose curvature
tensor R is of the above form. In [1], the authors have given examples of trans-
Sasakian generalized Sasakian space forms. For instance, if N(c) is a complex space
form, and if we consider the warped product M = (−π2 ,

π
2 )×f N , with f(t) = cos t,

then M is a generalized Sasakian space form with

f1 =
c− 4 sin2 t

4 cos2 t
, f2 =

c

4 cos2 t
, f3 =

c− 4 sin2 t

4 cos2 t
− 1.

It is proved in [1, Theorem 4.8] that M is a trans-Sasakian manifold of type
(0,− tan t). This proves the existence of trans-Sasakian generalized Sasakian space
forms.

After the work of Jiang [30], there has been a growing interest in the theory of
biharmonic maps which can be divided into three main research directions. On the
one side, the differential geometric aspect has driven attention to the construction
of examples and classification results. The other side is the analytic aspect from the
point of view of PDEs: biharmonic maps are solutions of a fourth order strongly
elliptic semi linear PDE. The theory of biharmonic functions is an old and rich
subject; they have been studied since 1862 by Maxwell and Airy to describe a
mathematical model of elasticity. For more details we refer to [36]. Again for the
study of biharmonic maps we may refer to [4, 5, 17, 33].

Biharmonic curves have been studied extensively in [18, 24, 26, 42]. Further
references can be found there.

The study of pseudo-Hermitian geometry of curves with respect to the Tanaka
Webster connection was initiated by J. T. Cho and collaborators [12, 32]. Pseudo-
Hermitian geometry of curves were further studied in [13, 27, 25, 41]. The pseudo-
Hermitian geometry of curves is studied with the Tanaka Webster connection, which
is meaningful on contact manifolds. In contrast to the contact case, the Levi-form
of almost contact metric manifolds may be degenerate. In addition Tanaka Web-
ster connection is defined under contact condition. So to develop curve theory or
submanifold theory in almost contact manifolds analogous to pseudo Hermitian
connection we need an appropriate affine connection. Inoguchi and Lee introduced
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generalized Tanaka Webster Okumura connections [24] to curves in almost con-
tact manifolds. Here the generalized Tanaka Webster Okumura connections will
be called gTWO connections for short. In this paper we are interested in study-
ing three-dimensional trans-Sasakian generalized Sasakian space forms admitting
almost contact curves with gTWO connections. Attention has been given also to
some slant curves with respect to gTWO connections on three-dimensional trans-
Sasakian manifolds.

The present paper is organized as follows: After the introduction, required pre-
liminaries are given in Section 2. Section 3 contains illustrative examples of almost
contact curves in trans-Sasakian generalized Sasakian space forms. Section 4 is
devoted to characterizing three-dimensional trans-Sasakian generalized Sasakian
space forms admitting biharmonic almost contact curves with respect to gener-
alized Tanaka Webster Okumura connections. In Section 5, we study the mean
curvature vector of an almost contact curve with gTWO connections. Section 6 is
concerned with some properties of slant curves on trans-Sasakian manifolds with
gTWO connections. Curvature and torsion with respect to gTWO connections of
slant curves with C-parallel mean curvature vector field on three-dimensional al-
most contact metric manifolds are calculated in Section 7. The last section gives
curvature and torsion of C-proper slant curves in three-dimensional almost contact
metric manifolds with respect to gTWO connections.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact
metric structure (φ, ξ, η, g), that is, φ is a (1, 1) tensor field, ξ is a vector field, η is
a 1-form and g is a compatible Riemannian metric such that (see [6])

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0,

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X),

for all X,Y ∈ T (M) [3]. The fundamental 2-form Φ of the manifold is defined by

Φ(X,Y ) = g(X,φY ),

for X,Y ∈ T (M).
An almost contact metric manifold is normal if [φ, φ](X,Y ) + 2dη(X,Y )ξ = 0.

Normal almost contact manifolds of dimension three have been studied in [39].
An almost contact metric structure (φ, ξ, η, g) on a manifold M is called trans-

Sasakian structure [40] if (M × R, J,G) belongs to the class W4 [20], where J is
the almost complex structure on M ×R defined by

J(X, fd/dt) = (φX − fξ, η(X)d/dt),

for all vector fields X on M , a smooth function f on M × R, and the product
metric G on M ×R. This may be expressed by the condition (see [7])

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX), (2.1)
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for smooth functions α and β on M . Here ∇ is the Levi-Civita connection on M .
We call M a trans-Sasakian manifold of type (α, β). From (2.1) it follows that

∇Xξ = −αφX + β(X − η(X)ξ). (2.2)

A trans-Sasakian manifold is said to be

• a cosymplectic or co Kähler manifold if α = β = 0,
• a quasi-Sasakian manifold if β = 0 and ξ(α) = 0,
• an α-Sasakian manifold if α is a non-zero constant and β = 0,
• a β-Kenmotsu manifold if α = 0 and β is a non-zero constant.

Therefore, a trans-Sasakian manifold generalizes a large class of almost contact
manifolds.

For a generalized Sasakian space form, the Riemannian curvature tensor is given
by

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ},

(2.3)

for any vector fields X,Y, Z on M .

The generalized Tanaka Webster Okumura connections [24] ∇̃ and the Levi-
Civita connection ∇ are related by

∇̃XY = ∇XY +A(X,Y ), (2.4)

for all vector fields X,Y on M . Here

A(X,Y ) = α(g(X,φY )ξ + η(Y )φX) + β(g(X,Y )ξ − η(Y )X)− lη(X)φY, (2.5)

where l is a real constant.
The torsion T̃ of the gTWO connections ∇̃ is given by

T̃ (X,Y ) = α(2g(X,φY )ξ − η(X)φY + η(Y )φX)

+ η(X)(βY − lφY )− η(Y )(βX − lφX).
(2.6)

For l = 0, the connections become the connection introduced by Sasaki and
Hatakeyama. When l = 1, it is the connection introduced by Cho [11]. For
the Sasakian case and l = 1, the connection is the Okumura connection [37].
The connections become the generalized Tanaka Webster connection introduced
by Tanno [53], when l = −1.

Let M be a 3-dimensional Riemannian manifold. Let γ : I → M , with I an
interval, be a curve in M which is parametrized by arc length, and let ∇γ̇ denote
the covariant differentiation along γ with respect to the Levi-Civita connection on
M . It is said that γ is a Frenet curve if one of the following three cases holds:

(a) γ is of osculating order 1, i.e., ∇tt = 0 (geodesic), t = γ̇. Here, the dot
denotes differentiation with respect to arc parameter.

(b) γ is of osculating order 2, i.e., there exist two orthonormal vector fields
t(= γ̇), n and a non-negative function k (curvature) along γ such that
∇tt = kn, ∇tn = −kt.
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(c) γ is of osculating order 3, i.e., there exist three orthonormal vectors t(= γ̇),
n, b and two non-negative functions k (curvature) and τ (torsion) along γ
such that

∇tt = kn,

∇tn = −kt+ τb,

∇tb = −τn.

With respect to the Levi-Civita connection, a Frenet curve of osculating order 3
for which k is a positive constant and τ = 0 is called a circle in M ; a Frenet curve
of osculating order 3 is called a helix in M if k and τ both are positive constants,
and the curve is called a generalized helix if k/τ is a constant.

Let ∇̃γ̇ denote the covariant differentiation along γ with respect to gTWO con-
nections on M . We shall say that γ is a Frenet curve with respect to gTWO
connections if one of the following three cases holds:

(a) γ is of osculating order 1, i.e., ∇̃tt = 0 (geodesic).
(b) γ is of osculating order 2, i.e., there exist two orthonormal vector fields

t(= γ̇), n and a non-negative function k̃ (curvature) along γ such that

∇̃tt = k̃n, ∇̃tn = −k̃t.
(c) γ is of osculating order 3, i.e., there exist three orthonormal vectors t(= γ̇),

n, b and two non-negative functions k̃ (curvature) and τ̃ (torsion) along γ
such that

∇̃tt = k̃n, (2.7)

∇̃tn = −k̃t+ τ̃ b, (2.8)

∇̃tb = −τ̃n. (2.9)

With respect to the gTWO connection, a Frenet curve of osculating order 3 for
which k̃ is a positive constant and τ̃ = 0 is called a circle in M ; a Frenet curve of
osculating order 3 is called a helix in M if k̃ and τ̃ both are positive constants, and
the curve is called a generalized helix with respect to gTWO connections if k̃/τ̃ is
a constant.

A Frenet curve γ in an almost contact metric manifold is said to be almost
contact curve if it is an integral curve of the distribution D = ker η. Formally, it is
also said that a Frenet curve γ in an almost contact metric manifold is an almost
contact curve if and only if η(γ̇) = 0 and g(γ̇, γ̇) = 1. For more details we refer to
[3, 24, 54].

It is to be mentioned that in [24], curves satisfying the above properties on almost
contact manifolds have been termed almost contact curves, while Welyczko [54] has
termed such curves on almost contact manifolds Legendre curves. Henceforth by
Legendre curves on almost contact manifolds we shall mean almost contact curves.

If we consider the binormal vector field b along ξ, then by (2.2) and (2.4) ∇̃tb = 0
holds for an almost contact curve with respect to gTWO connections. Hence in
that case we can say that the torsion τ̃ of an almost contact curve on a three-
dimensional almost contact metric manifold with respect to gTWO connections is
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given by

τ̃ = 0. (2.10)

A Frenet curve is called a slant curve if it makes a constant angle with the Reeb
vector field ξ [12]. If a curve γ on an almost contact metric manifold is a slant
curve then η(γ̇) = cos θ and g(γ̇, γ̇) = 1, where θ is a constant and is called slant
angle. In particular if the angle is π

2 , the curve becomes an almost contact curve.
The example of slant curves in an almost contact metric manifold is given in

[21, Example 4, p. 98].

3. Examples of almost contact curves on three-dimensional
trans-Sasakian generalized Sasakian space forms

Example 3.1. Let us consider R2 with the metric G = dx2 + dy2. We can
consider (R2, G) as a Kählerian manifold C1 with G = (dx + idy) � (dx − idy).
Then, according to [1], M = R×f C1 is a generalized Sasakian space form with

f1 = − (f ′)2

f2
, f2 = 0, f3 = − (f ′)2

f2
+
f ′′

f
,

where f(z) = e2z, the warped product metric g = e2z(dx2 + dy2) + dz2. Obviously
M is a subset of R3.

We can consider M = {(x, y, z) ∈ R3, z 6= 0}, where (x, y, z) are the standard
coordinates in R3. The vector fields

e1 = e−z
∂

∂x
, e2 = e−z

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M . The metric g defined above can also
be written in the following format as an inner product, instead of a quadratic form:

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be the
(1,1) tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then using the
linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M . Now, by direct computations we obtain

[e1, e2] = 0, [e2, e3] = e2, [e1, e3] = e1.

By Koszul’s formula,

∇e1e3 = e1, ∇e1e2 = 0, ∇e1e1 = −e3,
∇e2e3 = e2, ∇e2e2 = −e3, ∇e2e1 = 0,
∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.
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From above it can be observed that M is a trans-Sasakian manifold of type
(0, 1). Hence, according to [1], M is a trans-Sasakian generalized Sasakian space
form with

f1 = − (f ′)2

f2
, f2 = 0, f3 = − (f ′)2

f2
+
f ′′

f
,

where f(z) = e2z.
Using (2.4) and (2.5), it can be easily calculated that

∇̃e3e1 = −le2, ∇̃e3e2 = le1.

The other ∇̃eiej are 0. Consider a curve γ : I →M defined by γ(s) = (γ1(s), γ2(s),

γ3(s)) =
(√

2
3s,
√

1
3s, 1

)
. Hence γ̇1 =

√
2
3 , γ̇2 =

√
1
3 , and γ̇3 = 0. Now

η(γ̇) = g(γ̇, e3) = g(γ̇1e1 + γ̇2e2 + γ̇3e3, e3) = 0,

g(γ̇, γ̇) = g(γ̇1e1 + γ̇2e2 + γ̇3e3, γ̇1e1 + γ̇2e2 + γ̇3e3)

= γ̇2
1 + γ̇2

2 + γ̇2
3

= γ̇2
1 + γ̇2

2

=
2

3
+

1

3
= 1.

Hence the curve is an almost contact curve. For this curve, ∇̃γ̇ γ̇ = 0. So the curve
is a geodesic with respect to gTWO connections.

Example 3.2. Explicit formulas for proper biharmonic curves γ satisfying η(γ̇) =
0 with respect to the Levi-Civita connection are given in [19]. The example of
non-geodesic biharmonic almost contact curve with respect to generalized Tanaka
Webster Okumura connections can be found in [24]. In the following we restate it
just for illustration.

Let us consider the unit three sphere S3 ⊂ R4(x1, x2, x3, x4) in Euclidean 4-
space, centered at the origin. A model helix in S3 is given by

γ(s) = (cosφ cos(as), sinφ sin(as), sinφ cos(bs), sinφ sin(bs)), (3.1)

where a, b and φ are constants satisfying a2 cosφ+ b2 sin2 φ = 1. Here s is the arc
length parameter. The helix has curvature k and torsion τ as follows:

k =
√

(a2 − 1)(1− b2), τ = ab.

The helix lies in the flat torus is S3 defined by

x2
1 + x2

2 = cos2 φ, x2
3 + x2

4 = sin2 φ.

This flat torus has constant mean curvature cot 2φ. Every proper helix, i.e., a
curve with constant curvature κ 6= 0 and constant torsion τ 6= 0, is congruent
to one of the helices. Thus choosing the parameters a and b so that ab = 1 and
2(1− t) = (a2− 1)(1− b2) in (3.1) we get the parametrization of an almost contact
curve in S3. The curve is biharmonic with respect to gTWO connections [24].
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Now S3 is a trans-Sasakian generalized Sasakian space form with f1 = 1, f2 =
f3 = 0 and α = 1, β = 0.

These examples will be used for the purpose of illustration in the next section.

4. Characterization of three-dimensional trans-Sasakian
generalized Sasakian space forms admitting biharmonic almost

contact curves with respect to gTWO connections

Definition 4.1. An almost contact curve γ on a three-dimensional trans-Sasakian

manifold is called biharmonic with respect to gTWO connections ∇̃ if it satisfies
the equation

∇̃3
t t+ ∇̃tT̃ (∇̃tt, t) + R̃(∇̃tt, t)t = 0, (4.1)

where γ̇ = t , T̃ is the torsion of the connections, and R̃ is the curvature of the
gTWO connections (see [24]).

Let us consider a biharmonic almost contact curve with respect to gTWO con-
nections on a three-dimensional trans-Sasakian manifold. We take {T,N,B} as a
Frenet frame on a tubular neighborhood of the image of γ, where N := −φT and
B := ξ is considered to fix an orientation. In view of (2.4), we get

R̃(X,Y )Z = R(X,Y )Z +∇XA(Y,Z)−∇YA(X,Z)

+A(X,∇Y Z) +A(X,A(Y,Z))−A(Y,∇XZ)

−A(Y,A(X,Z))−A([X,Y ], Z),

for any vector fields X,Y, Z on M . Here R̃ is the curvature of the gTWO connec-
tions and R is that of the Levi-Civita connection ∇. From the above equation we
get, by putting X = N , Y = Z = T ,

R̃(N,T )T = R(N,T )T +∇XA(T, T )−∇TA(N,T )

+A(N,∇TT ) +A(N,A(T, T ))−A(T,∇NT )

−A(T,A(N,T ))−A([N,T ], T ),

(4.2)

In view of (2.5), we have

A(T, T ) = βξ

∇NA(T, T ) = β′ξ

A(N,T ) = −αξ
∇TA(N,T ) = −α′ξ
A(N,∇TT ) = κβξ

A(N,A(T, T )) = αβT + β2φT

A(T,∇NT ) = −βη(∇TT ) + αη(∇NT )φT + g(αN + βT,∇TT )ξ

A(T,A(N,T )) = −α2φN + αβT

(4.3)

Again g(T, T ) = 1 implies, by covariant differentiation with respect to N , that

g(∇NT, T ) = 0. (4.4)
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Similarly g(T, ξ) = 0 gives η(∇NT ) = α and g(N, ξ) = 0 produces η(∇TN) =
−α. Using equalities (4.3) in (4.2) we obtain

R̃(N,T )T = R(N,T )T + (α2 + β2)φT + (dα(T ) + dβ(N) + κ̃β)ξ. (4.5)

By (2.3), we have

R(N,T )T = −(f1 + 3f2)φT. (4.6)

In view of (4.5) and (4.6) it follows that

R̃(N,T )T = −(f1 + 3f2)φT + (α2 + β2)φT + (dα(T ) + dβ(N) + κ̃β)ξ.

Now by definition N = −φT and B = ξ. So

R̃(N,T )T = (f1 + 3f2 − α2 − β2)N − (dα(T ) + dβ(N) + κ̃β)B. (4.7)

Now

R̃(∇̃TT, T )T = R̃(κ̃N, T )T

= κ̃R̃(N,T )T

= κ̃((f1 + 3f2 − α2 − β2)N − (dα(T ) + dβ(N) + κ̃β)B).

(4.8)

By the use of (2.7)–(2.9) and (2.10),

∇̃3
TT = (κ̃′′ − κ̃3)N − 3κ̃κ̃′T. (4.9)

In view of (2.6),

∇̃T T̃ (∇̃TT, T ) = 2α′κ̃′ξ. (4.10)

By virtue of (4.8), (4.9) and (4.10) it follows that

∇̃3
TT + ∇̃T T̃ (∇̃TT, T ) + R̃(∇̃TT, T )T

= −3κ̃κ̃′T + (κ̃′′ − κ̃3 + κ̃(f1 + 3f2 − α2 − β2))N

+ (2α′κ̃′ − dα(T )− dβ(N)− κ̃β)B.

(4.11)

If the almost contact curve is biharmonic the above equation yields

(i) κ̃κ̃′ = 0,

(ii) κ̃′′ − k̃3 + κ̃(f1 + 3f2 − α2 − β2) = 0,
(iii) 2α′κ̃′ − dα(T )− dβ(N)− κ̃β = 0.

Consider the curve is not a geodesic. Then, by virtue of (i) and (iii), β = 0 if
α, β are constants. Hence we are in a position to state the following theorem.

Theorem 4.2. If a three-dimensional trans-Sasakian generalized Sasakian space
form with constant structure function α, β admits a non-geodesic biharmonic almost
contact curve with respect to gTWO connections, then it is an α-Sasakian manifold.

Remark 4.3. In Example 3.2, the manifold is α-Sasakian with α = 1. The curve
is proper biharmonic. So the example agrees with the above theorem.

Theorem 4.2 can alternatively be stated as follows.
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Theorem 4.4. A three-dimensional non α-Sasakian trans-Sasakian generalized
Sasakian space form does not admit non-geodesic biharmonic almost contact curves
with respect to gTWO connections, i.e., an almost contact curve on a non-α-
Sasakian trans-Sasakian generalized Sasakian space form is biharmonic if and only
if it is a geodesic.

Remark 4.5. Example 3.1 agrees with Theorem 4.4.

Again, from (i) and (ii),

f1 + 3f2 = κ̃2 + α2 + β2. (4.12)

From [1], it is known that f1 + 3f2 is the φ-sectional curvature of a generalized
Sasakian space form. Thus the above equation leads us to state the following
corollary.

Corollary 4.6. If a three-dimensional cosymplectic generalized Sasakian space
form admits a non-geodesic biharmonic almost contact curve with respect to gTWO
connections, then the curvature of the curve is equal to the positive square root of
the φ-sectional curvature of the space form.

Since by definition κ̃ > 0, in view of (4.12) we also have the following corollary.

Corollary 4.7. A three-dimensional cosymplectic generalized Sasakian space form
with negative φ-sectional curvature does not admit a non-geodesic biharmonic al-
most contact curve with respect to gTWO connections.

5. Mean curvature vector of almost contact curves in
three-dimensional trans-Sasakian manifolds with

gTWO connections

Definition 5.1. A curve γ in an almost contact metric manifold is said to have

• parallel mean curvature vector H̃ with respect to gTWO connections if

∇̃TT = 0, where T = γ̇;

• proper mean curvature vector H̃ with respect to gTWO connections if

4̃H̃ = λH̃, for a real number λ. Here we shall consider 4̃H̃ = −∇̃T ∇̃T ∇̃T
as a convention.

Let H̃ be the mean curvature vector of an almost contact curve with respect to

gTWO connections. Now H̃ = ∇̃TT . In view of (2.7) and (2.8), it follows that

H̃ = ∇̃TT = k̃N = ∇TT + βξ = H + βξ, (5.1)

where H is the mean curvature vector with respect to the Levi-Civita connection.
From above we have the following proposition.

Proposition 5.2. An almost contact curve on a three-dimensional trans-Sasakian
manifold is minimal with respect to gTWO connections if and only if it is geodesic
with respect to gTWO connections.
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Corollary 5.3. For a non-β-Kenmotsu trans-Sasakian manifold an almost contact
curve is minimal with respect to gTWO connections if and only if it is so with
respect to the Levi-Civita connection.

In view of (2.7)–(2.9) and (2.10) it follows that

∇̃T H̃ = −κ̃2T + κ̃′N.

By observing the components from the above equation we can state the following
proposition.

Proposition 5.4. An almost contact curve on a three-dimensional trans-Sasakian
manifold has parallel mean curvature vector if and only if it is a geodesic with
respect to gTWO connections.

Consider

4̃H̃ = λH̃,

for a real number λ. Hence using (2.7)–(2.9) and (2.10), we have

3κ̃κ̃′T + (κ̃− κ̃′′ − λ)N = 0.

From above we have, by observing the components, that

κ̃ = 0.

Thus we have the following proposition.

Proposition 5.5. The mean curvature vector of an almost contact curve in a
three-dimensional trans Sasakian manifold is proper if and only if the curve is a
geodesic with respect to gTWO connections.

In view of Propositions 5.2, 5.4, and 5.5, we obtain the following theorem.

Theorem 5.6. In a three-dimensional trans-Sasakian manifold the following con-
ditions are equivalent:

• An almost contact curve in a three-dimensional trans-Sasakian manifold is
minimal with respect to gTWO connections.

• The mean curvature vector with respect to gTWO connections of an almost
contact curve in a trans-Sasakian manifold is parallel.

• The mean curvature vector of an almost contact curve in a three-dimensional
trans-Sasakian manifold is proper with respect to gTWO connections.

• The almost contact curve on a three-dimensional trans-Sasakian manifold
is a geodesic with respect to gTWO connections.

Next, we consider mean curvature vector fields of an almost contact curve in a
trans-Sasakian manifold with gTWO connections in the normal bundle. Consider

4̃⊥H̃ = λH̃.

By the use of (2.7)–(2.9) and (2.10), it follows from above that

κ̃′′ + λκ̃ = 0.
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For λ a non-zero constant, the above equation yields

κ̃(s) = cos(±
√
λs+ c),

where c is a constant.

Theorem 5.7. If the mean curvature vector with respect to gTWO connections of
an almost contact curve in a three-dimensional trans-Sasakian manifold is proper
in the normal bundle, then κ̃(s) = cos(±

√
λs+ c). The converse is also true.

6. slant curves in trans-Sasakian manifolds with gTWO connections

Let us consider a slant curve γ on a trans-Sasakian manifold with gTWO con-
nections. Here γ′(s) = T (s) is given by

cos θ(s) = g(T (s), ξ), (6.1)

where θ is the constant slant angle. By covariant differentiation with respect to ∇̃
we get from (6.1)

− sin θθ′ = g(∇̃TT, ξ)− g(T, ∇̃T ξ).
Considering θ a constant and using (2.7), (2.4), and (2.5) we get from above

κ̃η(N) = 0. (6.2)

In [28, p. 155] the following notion has been introduced: A non-geodesic curve is
called slant helix if the principal normal lines of γ makes a constant angle with a
fixed direction. So by virtue of (6.2) we state the following theorem.

Theorem 6.1. A slant curve on a three-dimensional trans-Sasakian manifold is ei-
ther a geodesic with respect to gTWO connections or a slant helix with the direction
of ξ as fixed direction.

Again from (2.4) and (2.5)

∇̃TT = ∇TT + (α− l) cos θφT − β cos θT + βξ. (6.3)

So
κ̃N = κN + (α− l) cos θφT − β cos θT + βξ. (6.4)

Taking inner product with ξ we get from (6.4) that β sin2 θ = 0. Now we are in a
position to state the following theorem.

Theorem 6.2. If a three-dimensional trans-Sasakian manifold admits slant curves
with respect to gTWO connections, then it becomes an α-Sasakian manifold.

7. Curvature and torsion of C-parallel slant curves in
three-dimensional almost contact metric manifolds with

gTWO connections

Definition 7.1. A curve γ in an almost contact metric manifold is defined to be
C-parallel with respect to gTWO connections [31] if

∇̃T H̃ = λξ, (7.1)

where λ is a differentiable function along γ.
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If {E1, E2, E3} is a Frenet frame then (7.1) implies

− κ̃E1 + κ̃′E2 + κ̃τ̃E3 = λξ, (7.2)

from which it follows that

η(E1) = − 1

λ
κ̃2, (7.3)

η(E2) =
1

λ
κ̃′, (7.4)

η(E3) =
1

λ
κ̃τ̃ . (7.5)

But for slant curves with slant angle θ,

η(E1) = cos θ. (7.6)

Hence from (7.3)

κ̃2 = −λ cos θ. (7.7)

By virtue of (2.4), (2.5), (7.6), and (∇̃E1
g)(E1, ξ) = 0, it follows after simplification

that

η(E2) = 0. (7.8)

From (7.4) and (7.8) we obtain κ̃′ = 0. So we have the following theorem.

Theorem 7.2. The curvature κ̃ with respect to the gTWO connection of a C-
parallel slant curve in a three-dimensional almost contact metric manifold is a
constant.

By virtue of (7.2) it follows that ξ ∈ span{E1, E2, E3}. So we can write

ξ = cos θE1 + sin θ(cosψE2 + sinψE3), (7.9)

where ψ is the angle function between E2 and the orthogonal projection of ξ onto
span{E2, E3}. Taking inner product with E2 and E3 respectively, and using (7.9),
(7.7) and (7.8) we find

cosψ = 0, sinψ = − τ̃ cot θ

κ̃
. (7.10)

Hence from (7.10)

τ̃2 = κ̃2 tan2 θ. (7.11)

For the Reeb flow θ = 0 and for an almost contact curve θ = π
2 . So by virtue of

(7.11) and Theorem 7.2 we state the following theorems.

Theorem 7.3. The Reeb flow on a three-dimensional almost contact metric man-
ifold with gTWO connections is a circle.

Theorem 7.4. A three-dimensional almost contact metric manifold with gTWO
connections does not admit a C-parallel almost contact curve with finite torsion.
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8. Curvature and torsion of C-proper slant curves in
three-dimensional trans-Sasakian manifolds with

gTWO connections

Definition 8.1. A curve γ in an almost contact metric manifold M is defined to
be C-proper if

4̃H = λξ, (8.1)

where H̃ is the mean curvature vector field, 4̃ is the Laplacian with respect to
gTWO connections, and λ is a non-zero differentiable function along γ (see [31]).

Here we take 4̃H̃ = −∇̃T ∇̃T ∇̃TT as a convention. Consider a Frenet curve
γ : I →M and {E1, E2, E3} as a Frenet frame. Then by the use of (2.7)–(2.9) we
have

4̃H = −3κ̃κ̃E1 + (κ̃′′ − κ̃3 − κ̃τ̃2)E2 − (2κ̃′τ̃ + κ̃τ̃ ′)E3.

Hence (8.1) implies

− 3κ̃κ̃′E1 + (κ̃′′ − κ̃3 − κ̃τ̃2)E2 + (2κ̃′τ̃ + κ̃τ̃ ′)E3 + λξ = 0. (8.2)

Taking inner product with E1 we get from above

η(E1) =
1

λ
3κ̃κ̃′. (8.3)

Similarly

η(E2) = − 1

λ
(κ̃′′ − κ̃3 − κ̃τ̃2). (8.4)

η(E3) = − 1

λ
(2κ̃′τ̃ + κ̃τ̃ ′).

But for a slant curve with slant angle θ,

η(E1) = cos θ. (8.5)

Hence from (8.3)

κ̃κ̃′ =
1

3
λ cos θ.

By virtue of (2.4), (2.5), (8.5), and (∇̃E1
g)(E1, ξ) = 0 it follows after simplification

that

η(E2) = 0. (8.6)

In view of (8.4) and (8.6) we obtain

κ̃′′ = κ̃(κ̃2 + τ̃2). (8.7)

Again by (8.3) and (8.6), the equation (∇̃E1g)(E2, ξ) = 0 gives

τ̃ η(E3) = κ̃ cos θ. (8.8)

As in the previous section,

ξ = cos θE1 + sin θ(cosψE2 + sinψE3), (8.9)

where ψ is the angle function between E2 and the orthogonal projection of ξ onto
span{E2, E3}.
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Taking inner product with E2 and E3 and using (8.8) in the above equation, we
get

cosψ = 0 (8.10)

sinψ =
κ̃

τ̃
cot θ. (8.11)

Thus (8.10) and (8.11) yield

τ̃2 = κ̃2 cot2 θ. (8.12)

From (8.7) and (8.12) we have

κ̃′′ = µk̃3, (8.13)

where µ = cosec2 θ is a constant. Multiplying both sides of the equation (8.13) by
2dκ̃ds and integrating we get (

dk̃

ds

)2

=
1

2
µκ̃4 +

c

2
, (8.14)

where c is a constant of integration. The above equation implies√
2c

µ

∫
dκ̃√
κ̃4 + c

µ

= s+ d, (8.15)

where d is a constant. Let

I =

∫
dκ̃√
κ̃4 + c

µ

. (8.16)

Put

κ̃ =

(
c

µ

) 1
4 √

tanx. (8.17)

Then

I =

(
c

µ

)− 1
2
∫ √

tanx dx (8.18)

After integrating, we have from above

I =

(
c

µ

)− 1
2 1√

2

{
sin−1(sinx− cosx)− log

∣∣∣sinx+ cosx+
√

sin 2x
∣∣∣} . (8.19)

Using the substitution (8.17),

I =

(
c

µ

)− 1
2 1√

2

{
sin−1(sin(tan−1

√
µ

c
κ̃2)− cos(tan−1

√
µ

c
κ̃2))

− log

∣∣∣∣∣ sin(tan−1

√
µ

c
κ̃2) + cos(tan−1

√
µ

c
κ̃2) +

√
sin 2(tan−1

√
µ

c
κ̃2)

∣∣∣∣∣
}
.

(8.20)
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By (8.15) and (8.20), we get that the solution of (8.13) is

s+ d = sin−1(sin(tan−1

√
µ

c
κ̃2)− cos(tan−1

√
µ

c
κ̃2))

− log
∣∣∣ sin(tan−1

√
µ

c
κ̃2) + cos(tan−1

√
µ

c
κ̃2) +

√
sin 2(tan−1

√
µ

c
κ̃2)
∣∣∣,

(8.21)

where d is a constant of integration. The above discussion helps us to state the
following theorem.

Theorem 8.2. The curvature with respect to gTWO connections of a C-proper
slant curve of a three-dimensional almost contact metric manifold is given by

s+ d = sin−1(sin(tan−1

√
µ

c
κ̃2)− cos(tan−1

√
µ

c
κ̃2))

− log
∣∣∣ sin(tan−1

√
µ

c
κ̃2) + cos(tan−1

√
µ

c
κ̃2) +

√
sin 2(tan−1

√
µ

c
κ̃2)
∣∣∣,

and the torsion is given by τ̃2 = κ̃2 cot θ.
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