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GEOMETRIC INEQUALITIES FOR EINSTEIN TOTALLY REAL

SUBMANIFOLDS IN A COMPLEX SPACE FORM

PAN ZHANG, LIANG ZHANG, AND MUKUT MANI TRIPATHI

Abstract. Two geometric inequalities are established for Einstein totally

real submanifolds in a complex space form. As immediate applications of
these inequalities, some non-existence results are obtained.

1. Introduction

According to Chen’s cornerstone work [1], the following problem is fundamen-
tal: to establish simple relationships between the main intrinsic invariants and the
main extrinsic invariants of Riemannian submanifolds. The basic relationships
discovered until now are inequalities and the study of this topic has attracted a lot
of attention during the last two decades. Roughly speaking, there are three main
aspects of the study of this topic, one looking at the new Riemannian invariants
introduced by Chen [2, 3, 4, 6, 10, 11, 17, 18, 20, 21, 23], the other looking at the
DDVV inequalities [7, 9, 14, 15, 16], and the last looking at the Casorati curvatures
[8, 12, 13, 19, 22]. In this paper, we are interested in obtaining characterizations
of the relationships by Chen’s invariants.

Let M be a Riemannian n-manifold and p a point in M . Suppose that K(π) is
the sectional curvature of M with respect to a plane section π ⊂ TpM . For each
unit tangent vector X of M at p, the Ricci curvature Ric(X) is defined by

Ric(X) =

n∑
j=2

K(X ∧ ej),

where {e1, e2, . . . , en} is an orthonormal basis of TpM with e1 = X.
In general, an n-dimensional manifold M whose Ricci tensor has an eigenvalue

of multiplicity at least n− 1 is called quasi-Einstein. For instance, the Robertson–
Walker spacetimes are quasi-Einstein manifolds. Further, we say that M is an
Einstein manifold if Ric(X) is independent of the choice of the unit vector X.
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Then for any unit tangent vector X of M at p, one has

Ric(X) =
2

n
τ(p),

where τ(p) is the scalar curvature at p defined by

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej).

For a given point p in M , let π1, . . . , πq be q mutually orthogonal plane sections
in TpM , where q is a positive integer ≤ n

2 . Following [2], we define

K inf
q (p) = inf

π1⊥···⊥πq

K(π1) + · · ·+K(πq)

q
,

where π1, . . . , πq run over all mutually orthogonal q plane sections in TpM . For
each positive integer q ≤ n

2 , define the invariant δRic
q on M by

δRic
q = sup

X∈T 1
pM

Ric(X)− 2q

n
K inf
q (p),

where X runs over all unit vectors in T 1
pM := {X ∈ TpM : ‖X‖ = 1}.

In [2], Chen established two inequalities in terms of the Riemannian invariant
δRic
q for Einstein submanifolds in a real space form. As a natural prolongation, in

this paper, we obtain two inequalities for Einstein totally real submanifolds in a
complex space form. Unlike [2], we do not need the algebraic lemma from [3]. Our
algebraic techniques also provide new approaches to establish inequalities obtained
in [2].

2. Preliminaries

Let Nm be a complex m-dimensional Kähler manifold, i.e. Nm is endowed with
an almost complex structure J and with a J-Hermitian metric g̃. By a complex
space form Nm(4c) we mean an m-dimensional Kähler manifold with constant holo-
morphic sectional curvature 4c. A complete simply connected complex space form
Nm(4c) is holomorphically isometric to the complex Euclidean m-plane Cm, the
complex projective m-space CPm(4c), or a complex hyperbolic m-space CHm(4c)

according to c = 0, c > 0 or c < 0, respectively. Denote by ∇̃ its Levi-Civita

connection. The Riemannian curvature tensor field R̃ with respect to ∇̃ has the
expression

R̃(X̃, Ỹ , Z̃, W̃ ) = c
(
〈X̃, Z̃〉〈Ỹ , W̃ 〉 − 〈X̃, W̃ 〉〈Ỹ , Z̃〉+ 〈JX̃, Z̃〉〈JỸ , W̃ 〉

− 〈JX̃, W̃ 〉〈JỸ , Z̃〉+ 2〈X̃, JỸ 〉〈Z̃, JW̃ 〉
)
,

for any vector fields X̃, Ỹ , Z̃, W̃ on Nm(4c).
Let M be a totally real submanifold in Nm(4c). According to the behavior of

the tangent spaces under the action of J , a submanifold M in Nm(4c) is called
totally real if the complex structure J of Nm(4c) carries each tangent space TpM
of M into its corresponding normal space T⊥p M [5]. We denote the Levi-Civita
connection of M by ∇ and by R the curvature tensor on M with respect to ∇.
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The formulas of Gauss and Weingarten are given respectively by

∇̃XY = ∇XY + h(X,Y ), ∇̃Xξ = −AξX +∇⊥Xξ,

for tangent vector fields X and Y and normal vector field ξ, where∇⊥ is the normal
connection and A is the shape operator. The second fundamental form h is related
to Aξ by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉.

The mean curvature vector
−→
H of M is defined by

−→
H =

1

n
traceh,

and we set H = ‖
−→
H‖ for convenience.

A submanifold M is called pseudo-umbilical if
−→
H is nonzero and the shape

operator A−→
H

at
−→
H is proportional to the identity map. If

−→
H = 0, we say M is

minimal. Besides, M is called totally geodesic if h = 0.
For totally real submanifolds, we have [5]

∇⊥XJY = J∇XY, AJXY = −Jh(X,Y ) = AJYX.

The above formulas immediately imply that 〈h(X,Y ), JZ〉 is totally symmetric.
Moreover, the Gauss equation is given by [5]

R(X,Y, Z,W ) = c
(
〈X,Z〉〈Y,W 〉 − 〈X,W 〉〈Y,Z〉

)
+ 〈h(X,Z), h(Y,W )〉 − 〈h(X,W ), h(Y, Z)〉

for all vector fields X, Y , Z, W on M .
Choosing a local frame

e1, . . . , en, en+1, . . . , em,

em+1 = J(e1), . . . , em+n = J(en), em+n+1 = J(en+1), . . . , e2m = J(em)

in Nm(4c) in such a way that, restricted to M , e1, e2, . . . , en are tangent to M .
With respect to the local frame of Nm(4c) chosen above, we denote the coefficients
of the second fundamental form h by {hrij}, 1 ≤ i < j ≤ n; n+ 1 ≤ r ≤ 2m.

3. The first inequality

Theorem 3.1. For any integer k ≥ 2, let M be a 2k-dimensional Einstein totally
real submanifold of an m-dimensional complex space form Nm(4c) of constant holo-
morphic sectional curvature 4c. Then we have

δRic
k ≤ 2(k − 1)(c+H2). (3.1)

The equality case of (3.1) holds if and only if one of the following two cases occurs:
(i) M is a minimal and Einstein totally real submanifold, such that, with respect

to suitable orthonormal frames {e1, . . . , e2k, e2k+1, . . . , e2m}, the shape operators of
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M take the following form:

Ar =

 Ar1 . . . 0
...

. . .
...

0 . . . Ark

 , r = 2k + 1, . . . , 2m,

where Ari , i = 1, . . . , k, are symmetric 2 × 2 submatrices satisfying trace(Ar1) =
· · · = trace(Ark) = 0.

(ii) M is a pseudo-umbilical and Einstein totally real submanifold, such that,
with respect to suitable orthonormal frames {e1, . . . , e2k, e2k+1, . . . , e2m}, the shape
operators of M take the following form:

Ar =

 Ar1 . . . 0
...

. . .
...

0 . . . Ark

 , r = 2k + 2, . . . , 2m,

where Ari , i = 1, . . . , k, are symmetric 2 × 2 submatrices satisfying trace(Ar1) =
· · · = trace(Ark) = 0.

Proof. For a given point p in M , let π1, . . . , πk be k mutually orthogonal plane
sections at p. We choose an orthonormal basis {e1, . . . , e2k} of TpM such that

π1 = Span{e1, e2}, . . . , πk = Span{e2k−1, e2k}.

Since M is a 2k-dimensional Einstein manifold, we have τ = kRic(X). From the
definition of δRic

k and the Gauss equation, we have

kδRic
k = τ − [K(π1) +K(π2) + · · ·+K(πk)]

= k(2k − 1)c+
∑
r

∑
1≤i<j≤2k

[hriih
r
jj − (hrij)

2]−
{
c+

∑
r

[hr11h
r
22 − (hr12)2]

+ · · ·+ c+
∑
r

[hr2k−1,2k−1h
r
2k,2k − (hr2k−1,2k)2]

}
≤ 2k(k − 1)c+

∑
r

[ ∑
1≤i<j≤2k

hriih
r
jj − (hr11h

r
22 + · · ·+ hr2k−1,2k−1h

r
2k,2k)

]
= 2k(k − 1)c+

1

2

∑
r

{
(

2k∑
i=1

hrii)
2 − [(hr11 + hr22)2 + . . .

+ (hr2k−1,2k−1 + hr2k,2k)2]
}

(3.2)

Using the Cauchy inequality, we obtain that

(hr11 + hr22)2 + · · ·+ (hr2k−1,2k−1 + hr2k,2k)2 ≥ 1

k
(

2k∑
i=1

hrii)
2, (3.3)

with the equality case of (3.3) holds if and only if

hr11 + hr22 = · · · = hr2k−1,2k−1 + hr2k,2k.
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Plunging (3.3) into (3.2), we have

kδRic
k ≤ 2k(k − 1)c+

1

2

∑
r

{
(

2k∑
i=1

hrii)
2 − 1

k
(

2k∑
i=1

hrii)
2
}

= 2k(k − 1)c+
k − 1

2k
(

2k∑
i=1

hrii)
2

= 2k(k − 1)c+
k − 1

2k
4k2H2

= 2k(k − 1)(c+H2),

which implies

δRic
k ≤ 2(k − 1)(c+H2).

Next, we will discuss the equality case. The equality case of (3.1) at a point
p ∈M holds if and only if we have the equality in (3.2) and (3.3), i.e. with respect
to suitable orthonormal frames, the shape operators take the following form:

Ar =

 Ar1 . . . 0
...

. . .
...

0 . . . Ark

 , r = 2k + 1, . . . , 2m,

where Ari , i = 1, . . . , k, are symmetric 2× 2 submatrices satisfying

trace(Ar1) = · · · = trace(Ark).

The rest of the discussion is similar to that of the proof of Theorem 1 in [2]. �

4. The second inequality

Theorem 4.1. Let M be an n-dimensional Einstein totally real submanifold of an
m-dimensional complex space form Nm(4c). Then for every positive integer q < n

2 ,
we have

δRic
q ≤

(
n− 1− 2q

n

)
c+

n(n− q − 1)

n− q
H2. (4.1)

The equality case of (4.1) holds if and only if M is a totally geodesic submanifold.

Proof. Given a point p in M and a positive integer q < n
2 , let π1, . . . , πq be q

mutually orthogonal plane sections of M at p. We choose an orthonormal basis of
TpM such that

π1 = Span{e1, e2}, . . . , πq = Span{e2q−1, e2q}.

Then from the definition of δRic
q we have

nδRic
q (p) = nRic(X)− 2[K(π1) + · · ·+K(πq)]

= 2qRic(X)− 2[K(π1) + · · ·+K(πq)] + (n− 2q) Ric(X).
(4.2)

For convenience, we set

I = 2qRic(X)− 2[K(π1) + · · ·+K(πq)], II = (n− 2q) Ric(X).
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Now we compute I and II separately. First, we rewrite I as

I =

q∑
l=1

[Ric(e2l−1, e2l−1) + Ric(e2l, e2l)− 2K(πl)],

which together with the Gauss equation gives

I ≤ 2q(n− 2)c+
∑
r

[
(
∑
j 6=1

hr11h
r
jj +

∑
j 6=2

hr22h
r
jj + · · ·+

∑
j 6=2q

hr2q,2qh
r
jj)

− 2(hr11h
r
22 + hr33h

r
44 + · · ·+ hr2q−1,2q−1h

r
2q,2q)

]
= 2q(n− 2)c+

∑
r

[ ∑
1≤i≤2q, 2q+1≤j≤n

hriih
r
jj + 2

∑
1≤i<j≤2q

hriih
r
jj

− 2(hr11h
r
22 + hr33h

r
44 + · · ·+ hr2q−1,2q−1h

r
2q,2q)

]
= 2q(n− 2)c+

∑
r

{ ∑
1≤i≤2q, 2q+1≤j≤n

hriih
r
jj + (hr11 + · · ·+ hr2q,2q)

2

− [(hr11 + hr22)2 + · · ·+ (hr2q−1,2q−1 + hr2q,2q)
2]
}
.

(4.3)

On the other hand, we can rewrite II as

II = Ric(e2q+1, e2q+1) + Ric(e2q+2, e2q+2) + · · ·+ Ric(en, en),

which together with the Gauss equation gives

II = (n− 2q)(n− 1)c+
∑
r

∑
j 6=2q+1

[hr2q+1,2q+1h
r
jj − (hr2q+1,j)

2]

+ · · ·+
∑
r

∑
j 6=n

[hrnnh
r
jj − (hrnj)

2]

≤ (n− 2q)(n− 1)c+
∑
r

(
∑

j 6=2q+1

hr2q+1,2q+1h
r
jj + · · ·+

∑
j 6=n

hrnnh
r
jj)

= (n− 2q)(n− 1)c+
∑
r

(2
∑

2q+1≤i<j≤n

hriih
r
jj +

∑
1≤i≤2q, 2q+1≤j≤n

hriih
r
jj).

(4.4)

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)



INEQUALITIES FOR EINSTEIN TOTALLY REAL SUBMANIFOLDS 195

Plunging (4.3) and (4.4) into (4.2), we obtain that

nδRic
q (p) ≤ (n2 − n− 2q)c+

∑
r

(hr11 + · · ·+ hr2q,2q)
2 −

∑
r

[(hr11 + hr22)2

+ · · ·+ (hr2q−1,2q−1 + hr2q,2q)
2] + 2

∑
r

∑
2q+1≤i<j≤n

hriih
r
jj

+ 2
∑
r

∑
1≤i≤2q, 2q+1≤j≤n

hriih
r
jj

= (n2 − n− 2q)c+
∑
r

(hr11 + · · ·+ hr2q,2q)
2 −

∑
r

[(hr11 + hr22)2

+ · · ·+ (hr2q−1,2q−1 + hr2q,2q)
2] + 2

∑
r

∑
2q+1≤i<j≤n

hriih
r
jj

+ [n2H2 −
∑
r

(hr11 + · · ·+ hr2q,2q)
2 −

∑
r

(hr2q+1,2q+1 + · · ·+ hrnn)2]

= (n2 − n− 2q)c+ n2H2 −
∑
r

[
(hr11 + hr22)2 + (hr33 + hr44)2

+ · · ·+ (hr2q−1,2q−1 + hr2q,2q)
2 + (hr2q+1,2q+1)2 + · · ·+ (hrnn)2

]
.

(4.5)

From the Cauchy inequality, we know that

(hr11 + hr22)2 + · · ·+ (hr2q−1,2q−1 + hr2q,2q)
2 + (hr2q+1,2q+1)2 + · · ·+ (hrnn)2

≥ 1

n− q
(hr11 + hr22 + · · ·+ hrnn)2, (4.6)

with the equality case of (4.6) holds if and only if

hr11 + hr22 = · · · = hr2q−1,2q−1 + hr2q,2q = hr2q+1,2q+1 = · · · = hrnn.

Then we plunge (4.6) into (4.5), namely,

nδRic
q (p) ≤ (n2 − n− 2q)c+ n2H2 − 1

n− q
∑
r

(hr11 + hr22 + · · ·+ hrnn)2

= (n2 − n− 2q)c+
n2(n− q − 1)

n− q
H2,

which means

δRic
q ≤ (n− 1− 2q

n
)c+

n(n− q − 1)

n− q
H2.

Next, we will discuss the equality case. The equality case of (4.1) at a point p ∈M
holds if and only if we have the equality in (4.3), (4.4) and (4.6), i.e. with respect
to suitable orthonormal frames, the shape operators take the following form:
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Ar =


Ar1 . . . 0 0
...

. . .
...

...
0 . . . Ark 0
0 . . . 0 µrE

 , r = n+ 1, . . . , 2m,

where E is the (n−2q)×(n−2q) identity matrix and Ari , i = 1, . . . , k, are symmetric
2× 2 submatrices satisfying

trace(Ar1) = · · · = trace(Ark) = µr.

The rest of the discussion is similar to that of the proof of Theorem 2 in [2]. �

5. Immediate applications

From Theorems 3.1 and 4.1 we obtain immediately the following.

Corollary 5.1. If a Riemannian n-manifold M admits a totally real isometric
immersion into a complex Euclidean space which satisfies

δRic
q >

n(n− q − 1)

n− q
H2,

for some positive integer q ≤ n
2 at some point, then M is not an Einstein manifold.

Theorems 3.1 and 4.1 also imply the following.

Corollary 5.2. If an Einstein n-manifold satisfies

δRic
q > (n− 1− 2q

n
)c,

for some positive integer q ≤ n
2 at some point, then it admits no totally real minimal

isometric immersion into a complex space form of constant holomorphic sectional
curvature 4c regardless of codimension.

Besides, from Theorems 3.1 and 4.1, we can also get Corollary 3 in [2].
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