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FRIEZES OF TYPE D

KODJO ESSONANA MAGNANI

Abstract. We establish a link between the values of a frieze of type Dn

and some values of a particular frieze of type A2n−1. This link allows us to

compute, independently of each other, all the cluster variables in the cluster
algebra associated with a quiver Q of type Dn.

1. Introduction

Cluster algebras were introduced by S. Fomin and A. Zelevinsky in [15, 16].
They are a class of commutative algebras which was shown to be connected to
various areas of mathematics, like combinatorics, Lie theory, Poisson geometry,
Teichmüller theory, mathematical physics and representation theory of algebras.

A cluster algebra is generated by a set of variables, called cluster variables,
obtained recursively by a combinatorial process known as mutation starting from
a set of initial cluster variables. Explicit non-recursive computation of cluster
variables is difficult and has been extensively studied, see [4, 2, 1, 3, 9, 7].

In order to compute cluster variables, one may use friezes, which were introduced
by Coxeter [13] and studied by Conway and Coxeter [11, 12]. Various relationships
are known between friezes and cluster algebras, see [10, 18, 19, 4, 6, 14, 1, 2, 3].

The present work is motivated by the use of friezes to compute cluster variables
and is inspired by the result in [4] giving an explicit formula as a product of 2× 2
matrices for all cluster variables in coefficient-free cluster algebras of type A, thus
explaining at the same time the Laurent phenomenon and positivity.

Our objective here is to show that the same technique can be used for computing
cluster variables in coefficient-free cluster algebras of type D. The friezes of type D
have already been studied by K. Baur and R. Marsh in [6] but our approach here
is different.

In this paper, we establish a link between the values of a frieze of type D and
some values of a particular frieze of type A. For this we associate with each quiver
of type Dn a particular quiver of type A2n−1. This correspondence allows us to use
the algorithm of [4] for computing cluster variables of a cluster algebra of type Dn.

The article is organized as follows. In Section 2, we recall some basic notions
on friezes of type A, set the preliminaries on friezes of type D and establish a
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228 K. E. MAGNANI

correspondence between a frieze of type D and a particular frieze of type A. In
Section 3, we give an algorithm to compute all the cluster variables in a cluster
algebra associated with a quiver Q of type D.

2. Relation between friezes of types A and D

In this section we establish a link between values of a frieze of type D and some
values of a particular frieze of type A. For this we recall briefly some properties of
the friezes of types A and D.

2.1. Some notions on friezes of type A. Let Θ be a finite acyclic (containing
no oriented cycles) quiver with Θ0 the set of its points and Θ1 the set of its arrows
and K a field. The translation quiver ZΘ associated with Θ (see [5, VIII.1.1])
consists of two sets: the set of points (ZΘ)0 = Z × Θ0 = {(k, i) | k ∈ Z, i ∈ Θ0}
and the set of arrows (ZΘ)1 = {(k, α) : (k, i)→ (k, j) | k ∈ Z, α : i→ j ∈ Θ1} ∪
{(k, α′) : (k, j)→ (k + 1, i) | k ∈ Z, α : i→ j ∈ Θ1}. Let us define a frieze associ-
ated with the quiver Θ.

In the translation quiver ZΘ, let us replace the points (k, i) ∈ (ZΘ)0 by their
images a(k, i) obtained by applying a frieze function a : (ZΘ)0 → K defined for
some initial values a(0, i) ∈ K as follows: a(k, i)a(k+1, i) = 1+

∏
(k,i)→(m,j) a(m, j),

where the product is taken over the arrows (see [4, Section 2]). The resulting
translation quiver with values associated with its vertices is called a frieze.

A frieze is a function from the translation quiver ZΘ to K which satisfies uni-
modularity (see Remark 2.7). One can say that a frieze can be defined by assigning
arbitrary non-zero values to any slice of the frieze, and extending by unimodularity.
(We have to require that the entries in the slice be non-zero, or else we could have
trouble fulfilling unimodularity. Note that if the entries in the slice are non-zero,
all the other entries will also be non-zero by positivity.)

We now recall the definition of seed due to Fomin and Zelevinsky [16, 1.2].

Definition 2.1. Let Γ be a quiver with n points and χ = {u1, u2, . . . , un} a set
of variables called cluster variables, such that a variable ui is associated with the
point i (with 1 ≤ i ≤ n) of Γ. The set χ is called a cluster and the pair (Γ, χ) is
called a seed.

We can obtain other seeds by mutation (see [16, 1.2]) starting from the seed
(Γ, χ). The set of all cluster variables obtained by successive mutation generates
an algebra over Z called cluster algebra which is denoted by A(Γ, χ).

Remark 2.2. We say that the type of a seed (Γ, χ) and cluster algebra A(Γ, χ)
coincides with the type of quiver Γ.

Note that if we associate with each vertex i of Θ a variable ui and take initial
values a(0, i) = ui then all the values of the frieze associated to Θ are cluster
variables of the cluster algebra A(Θ, χ) (see [1]).

Our aim in this paper is to compute cluster variables of a cluster algebra of type
Dn. We start by recalling some properties of friezes of type An which will be used
in our construction.
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FRIEZES OF TYPE D 229

Remark 2.3. In what follows, we assume that in the case of quiver Θ of type An

all arrows of ZΘ are directed either south-east or north-east (if all arrows of Θ
are drawn horizontally, the arrows oriented from left to right in Θ become directed
north-east in ZΘ and the arrows oriented from right to left in Θ are directed south-
east in ZΘ). To write down (part of) a frieze, we fill the value a(k, i) in the position
(k, i).

Now we define the notion of a diagonal in a frieze of type An.

Definition 2.4. Let k0 ∈ Z and Θ be a finite acyclic quiver of type An. A descending
(or ascending) diagonal in the frieze associated with Θ is the concatenation of n−1
arrows with south-east (or north-east) orientation starting at (k0, n) (or (k0, 1),
respectively).

Let us introduce the notion of a fundamental quiver in a frieze of type An. Fix
an integer k0. Let dk0

1 be the descending diagonal starting at (k0, n) ∈ (ZΘ)0 and

dk0
2 the ascending diagonal ending at (k0 + n, n) ∈ (ZΘ)0.

Definition 2.5. Let Θ be a finite acyclic quiver of type An. The fundamental
quiver Θk0

f in the frieze associated with Θ is the portion of the translation quiver

ZΘ bounded by diagonals dk0
1 and dk0

2 inclusively.

Independently of the chosen integer k0, the values of the frieze function associ-
ated with vertices of the fundamental quiver Θk0

f form the set of all cluster variables

of the associated cluster algebra A(Θ, χ) ([16]). In what follows, we omit the index
k0 and specify, where necessary, the position of diagonals d1, d2 in the translation
quiver in an alternative way.

We give an example of a fundamental quiver in the frieze associated with Θ of
type A3.

Example 2.6. Consider the following quiver Θ of type A3: 1 → 2 → 3. The
translation quiver ZΘ associated with Θ is:

. . . (0, 3)

$$

(1, 3)

$$

(2, 3)

$$

(3, 3) . . .

. . . (0, 2)

$$

::

(1, 2)

::

$$

(2, 2)

$$

::

(3, 2)

::

. . .

(0, 1)

::

(1, 1)

::

(2, 1)

::

(3, 1)

::

. . .

Associating a value a(k, i) of the frieze function with every vertex we obtain an
example of a frieze.

A fundamental quiver is (with k0 = 0):

(0, 3)

$$

(1, 3)

$$

(2, 3)

$$

(3, 3)

(1, 2)

::

$$

(2, 2)

$$

::

(3, 2)

::

(2, 1)

::

(3, 1)

::
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230 K. E. MAGNANI

Remark 2.7. As a consequence of the definition of the frieze function, all the squares
of the form

b

��
a

@@

��

d

c

@@

in the frieze of type A satisfy the relation ad − bc = 1, with a, b, c, d ∈ K. This
relation is called the uni-modular rule.

2.2. Preliminaries on friezes of type D. Consider a quiver Q whose underlying
graph is of type Dn. We agree to label the points of Q as follows:

1

3 . . . (n− 1) n,

2

where a solid segment represents an arrow without its orientation.
The fork is the full sub-quiver of Q generated by the points {1, 2, 3}.

We agree to call:

• fork arrows: the arrows of the fork,
• joint of the fork: the point 3,
• and fork vertices: the points 1 and 2.

If we associate with each vertex i of Q a variable ui then we get the seed
G = (Q,χ) whose underlying graph can be represented by the diagram

u1

u3 . . . un−1 un.

u2

Let us define a frieze on ZDn by the function a : (ZDn)0 → Q(u1, u2, . . . , un)
such that for (k, i) ∈ (ZDn)0 we have a(k, i)a(k + 1, i) = 1 +

∏
(k,i)→(m,j) a(m, j),

with initial variables a(0, i) = ui. Then, all the values of the frieze are cluster
variables and all cluster variables are represented in the frieze (see Assem and
Dupont’s paper [1]).

Consider a seed G of type Dn. Let F be the part of the frieze associated with G,
which is given by the set of vertices {(k, i) ∈ (ZDn)0 | k = 0, 1, . . . , n; i = 1, . . . , n}
and their incident arrows. F contains all cluster variables of cluster algebra A(G)
of type Dn ([16]) and a second copy of initial variables {ui}ni=1.

We give in the following example the part F corresponding to various seeds of
type D5.
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Example 2.8.

(1) For the following seed of type D5:

u1

""
u3

// u4
// u5

u2

<<

F has the form:

u5

��

.

��

.

��

.

��

.

""

u5

u4

%%

99

.

��

AA

.

��

AA

.

AA

��

.

""

<<

u4

<<

u3

##

��

99

.

��

??

��

.

��

��

AA

.

��

��

AA

.

��

��

??

u3

<<

u1

??

(1+u3)
u1

;;

.

DD

.

DD

.

DD

u2

??

u2

HH

(1+u3)
u2

EE

.

JJ

.

JJ

.

JJ

u1

HH

(2) For the following seed of type D5:

u1

u3
//

bb

u4
// u5

u2

<<

F has the form:

u5

��

.

��

.

��

.

$$

.

""

u5

u4

%%

99

.

��

AA

.

��

AA

.

AA

��

.

%%

99

u4

<<

u3

##

//

99

u1
// . //

??

��

. // .

��

//

AA

. // .

��

//

AA

. // .
""

//

::

u2
// u3

<<

��
u2

??

(1+u3)
u2

;;

.

DD

.

DD

.

DD

(1+u3)
u1

;;

u1

The study of a seed of type Dn can be subdivided into three cases depending on
the orientation of fork arrows:

• the fork is composed by two arrows leaving the joint;
• the fork is composed by two arrows entering the joint;
• the fork is composed by one arrow leaving the joint and another arrow

entering the joint.

The following lemma, which is a reformulation of Lemma 5.2 in [5, VII] of Assem,
Simson and Skowroński, allows us to reduce the study to one of the three cases.
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232 K. E. MAGNANI

We refer to [16, 1.2] and [16, 8] for notions of mutation and mutation equivalent,
respectively.

Lemma 2.9. Let Q1 and Q2 be two quivers having the same underlying graph G.
If G is a tree then Q1 and Q2 are mutation equivalent. �

Consider two seeds G1 and G2 of type Dn which are transformed into one another
by a mutation on a fork vertex corresponding to the variable υ of G1 and υ̃ of G2.

Suppose that the quiver Q1 associated with G1 has a fork consisting of two
arrows leaving (or entering) the joint and the quiver Q2 associated with G2 has a
fork consisting of one arrow leaving and another entering.

The seeds G1 and G2 generate the same cluster algebra A. Therefore each seed
generates by mutations the set of all cluster variables of A. It is known that ZQ is
periodic if Q is of Dynkin type and the corresponding part F contains all the cluster
variables of A. According to Proposition 2.1 in [20] of Schiffler, also in [17, I.5.6]
of Happel, we deduce that the parts F1 corresponding to G1 and F2 corresponding
to G2 contain the same and all cluster variables of the cluster algebra A.

Since our aim is to compute these cluster variables independently of each other,
it suffices to study only the case where the fork consists of two arrows entering (or
leaving) the joint.

In the following, G denotes a seed of type Dn with a quiver whose fork is com-
posed by two arrows entering (or leaving) the joint.

Definition 2.10. We call merged quiver F̄ associated with G, the part of a transla-
tion quiver obtained from F as follows:

(1) by gluing in F the arrows of each shifted copy of the fork,
(2) by multiplying the values of vertices of the fork corresponding to the arrows

that were glued in step (1); namely the arrows obtained by gluing in step
(1) have a(k, 1)a(k, 2) as the corresponding variables.

We give an example of a merged quiver associated with a seed of type D5.

Example 2.11. Consider the item (1) of Example 2.8. The merged quiver F̄ ob-
tained from F has the form:

u5

��

.

��

.

��

.

""

.

""

u5

u4

&&

88

.

��

AA

.

��

AA

.

AA

��

.

$$

::

u4

<<

u3

##

88

.

??

��

.

��

AA

.

��

AA

.

  

<<

u3

<<

u1u2

==

(1+u3)2

u1u2

;;

.

DD

.

DD

.

DD

u1u2

==

2.3. Correspondence between a frieze of type D and a particular frieze
of type A. We let ω̄ be the full sub-quiver of Q generated by all points except
the point 2, and drawn from left to right in such a way that the vertices appear
in increasing order. Note that ω̄ is a quiver of type An−1. This leads to a way to
associate a quiver of type D with a quiver of type A, which, in turn, will allow us
to associate a frieze of type D with a particular frieze of type A.
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For a quiver Θ of type An (drawn from left to right), let us denote by tΘ the
transpose of Θ, that is, the same quiver obtained by redrawing Θ from right to left
(see Example 2.12 below).

With a quiver Q of type Dn we associate the quiver Q′ of the form tω̄ → 0→ ω̄.
Note that the underlying graph of Q′ is of type A2n−1 labelled as follows:

n (n− 1) . . . 4 3 1 0 1 3 4 . . . (n− 1) n.

The following example shows how to construct the quiver Q′ from a given quiver
Q of type D4.

Example 2.12. For the quiver Q of type D4

1

��
3 // 4

2

@@

we have

ω̄ : 1 // 3 // 4,

tω̄ : 4 3oo 1oo

and Q′ : 4 3oo 1oo // 0 // 1 // 3 // 4.

Now we associate variables with the points of Q′ as follows:

(1) with the vertex labelled by i = 1 we associate the product u1u2,
(2) with a vertex labelled by i 6= 1 we associate the variable ui.

(Note that by doing so we introduce a new variable u0 which is not a cluster variable
of G. This variable will be later replaced by 1.)

The result of this association is a seed which will be denoted by Λ′. Its underlying
graph with variables is:

un un−1 . . . u4 u3 u1u2 u0 u1u2 u3 u4 . . . un−1 un.

(1)
The seed Λ′ can be represented as follows: tω̄∗ → u0 → ω̄∗, where ω̄∗ is ω̄ with

variables.
The graph underlying the seed Λ′ contains 2n− 1 vertices. We enumerate them

from left to right in (1) so that the variable u1u2 is associated to the (n− 1)th and
(n+ 1)th vertices.

Since u0 is not a cluster variable of G, in the rest of this paper we evaluate
u0 = 1.

The following theorem establishes a link between the merged quiver F̄ associated
with a seed G of type Dn and a fundamental quiver in the frieze associated with Λ′.

Theorem 2.13. Let n ≥ 4 be an integer, G a seed of type Dn and F̄ the merged
quiver associated with G. Then F̄ is a full sub-quiver of a fundamental quiver in the
frieze of type A2n−1 associated with Λ′. The descending diagonal d1 which bounds
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234 K. E. MAGNANI

this fundamental quiver passes through the (n+ 1)th vertex of Λ′ (whose associated
variable is u1u2).

Proof. We give the proof for a seed G whose associated quiver has two arrows
entering the fork. The case of a quiver whose fork arrows leave the joint is absolutely
analogous. Let F̄ be the merged quiver associated with G. All the squares of the
form

b

��
a

@@

��

d

c

@@

in F̄ satisfy the relation ad − bc = 1 called the uni-modular rule, with a, b, c, d in
Q(u1, u2, . . . , un), as a consequence of the definition of a frieze.

We shall construct a frieze Υ of type A containing F̄ . Our aim is to construct
a fundamental quiver of a frieze of type A2n−1 containing F̄ . According to [11, 12,
problem 24], three consecutive entries fs−1, fs, fs+1 (downward) on a diagonal in
F̄ are related by fs−1 + fs+1 = asfs, where as is a value on the next-to-top line
(i.e., the line below the line of all 1’s). Then, we construct n − 2 entries on the
next-to-top line using three consecutive entries relation. The value as and fs+1 are
on the same diagonal which cross (at fs+1) the diagonal containing fs−1, fs and
fs+1. We get in total 2n− 1 entries of the top row of a fundamental quiver of the
frieze Υ of type A2n−1 containing F̄ . Note that ui, i = 1, . . . , n is non-zero and
the positivity of cluster variables implies that the entries constructed are non-zero.
Therefore, by [11, 12, problem 18] we construct downward all the entries of the
fundamental quiver of a frieze of type A2n−1. (We will see below that there is a
slice in the frieze Υ containing only positive and non-zero values. This implies the
possibility of extension downward the next-to-top line using the uni-modular rule.)

Thus we have constructed n new lines and we have 2n− 1 lines in total.
If we consider these 2n − 1 lines as part of a frieze Υ of type A2n−1, we can

construct the entire frieze Υ by extending the existing pattern horizontally using the
uni-modular rule. In particular we construct completely the descending diagonal
d1 and the ascending diagonal d2 bounding the fundamental quiver of the frieze Υ
of type A2n−1.

Then we have constructed the fundamental quiver of the frieze Υ of type A2n−1

which contains F̄ as a full sub-quiver.
The next step is to prove that Λ′ generates the constructed frieze Υ.
Taking into account that F̄ is contained in the fundamental quiver of the frieze

Υ of type A2n−1, we deduce that there exists an acyclic quiver (as a slice) Q̃ of

type A2n−1 which generates the frieze Υ such that Q̃ contains ω̄ (recall that ω̄∗
bounds F̄ on the right and on the left). Therefore Q̃ is of the form Q̃ = Q̃′ − ω̄,
where the solid segment represents an arrow without its orientation, ω̄ the quiver
of type An−1 underlying ω̄∗ which bounds F̄ on the left, and Q̃′ is an acyclic quiver

of type An. We have tQ̃ = tω̄ − tQ̃′. The property of periodicity of the frieze of
type An (see [11, 12, problem 21]) implies that two slices contain the same entries.
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Then the quivers Q̃ and tQ̃ generate the same frieze. The periodicity of the frieze
Υ and the presence of the second copy of ω̄∗ in F̄ (which bounds F̄ on the right)

implies that the quiver tQ̃ contains ω̄ and is of the form tQ̃ = Q̃′′ − ω̄ where Q̃′′ is
an acyclic quiver of type An.

Because tQ̃ can be written either as tω̄ − tQ̃′ or as Q̃′′ − ω̄, and counting the
number of points in Q̃ (which is 2n − 1 points), we deduce that tQ̃ = tω̄ − q − ω̄
where q is a point. Therefore Q̃ is of the form tω̄ − q − ω̄ and the quiver Q̃ with
associated variables is of the form tω̄∗ − uq − ω̄∗.

Thus the quiver Q̃ is tω̄ → q → ω̄.
Due to the fact that an arrow in ω̄ oriented from left to right becomes in tω̄ an

arrow oriented from right to left, we have that u1u2 → u3 in ω̄∗ becomes u3 ← u1u2

in tω̄∗. Then the frieze Υ contains the diagram

u3

%%

u1u2

::

##

(1+u3)2

u1u2

uq

>>

##

2 + u3

99

u1u2

;;

$$

v

99

u3

::

Using the uni-modular rule for the bottom square in this diagram, we have the

equation vu1u2 = uqu3 + 1. Knowing that v =
uq(2 + u3)− 1

u1u2
(using the middle

square in the diagram), we get 2uq = 2, thus uq = 1.

Thus we have proved that the quiver Q̃ with variables is equal to Λ′. This proves
that the constructed frieze Υ is associated with Λ′. �

Remark 2.14. We proved Theorem 2.13 for a seed G whose associated quiver has
two arrows entering the joint (the case of two fork arrows leaving the joint is
entirely similar). For a seed G2 whose associated quiver Q2 has a fork consisting of
one arrow entering and one arrow leaving the joint there are two possibilities.

One possibility is to perform a mutation on one of the fork vertices and to
reduce this case to the one considered in the proof (see the discussion following
Lemma 2.9).

Another possibility is to work directly with the seed G2 = (Q2, χ). In this case
the given proof can be easily modified, namely one has to associate with the vertex

labelled by i = 1 in Q′2 the variable

(
u1(1 + u3)

u2

)
and consider the following

underlying graph for Λ′2 with variables:

un . . . u4 u3

(
u1(1 + u3)

u2

)
u0

(
u1(1 + u3)

u2

)
u3 u4 . . . un.
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236 K. E. MAGNANI

The next step is to establish a formula which allows us to compute directly
cluster variables of a cluster algebra of type Dn independently of each other.

3. Computation of cluster variables: case Dn

Let G = (Q, {u1, . . . , un}) be a seed with Q of type Dn with two fork arrows
entering or leaving the joint.

In this section, given the initial values a(0, i) = ui, i = 1, . . . , n we compute
the values in F̄ by an explicit formula using matrix product (Theorem 3.6). It is
well known (see [4] and also [1] of Assem and Dupont) that if a(0, i) = ui with
i ∈ (Dn)0 then all the cluster variables of cluster algebra with the initial seed G
are contained in the part F . Therefore the values of the frieze at the points of
the merged quiver F̄ associated with the seed G are either cluster variables of the
cluster algebra A(G) or products of two such cluster variables.

According to Theorem 2.13, the merged quiver F̄ associated with G is contained
in the frieze Υ of type A2n−1 associated with Λ′. Therefore the computation of
values lying in F̄ can be done by considering these values as those in the frieze
Υ of type A2n−1 associated with Λ′. The frieze Υ corresponds to a triangulation
without internal triangles, thus we use the result of [4] where the values of a frieze
of type An were computed.

Definition 3.1. We call boundary a sequence c1x1c2x2 . . . cm−1xm−1cm with xi ∈
{x, y} and ci ∈ Q(u1, u2, . . . , un), i ∈ Z.

For the variables α, β in Q(u1, u2, . . . , un), replacing the arrows of the form
α → β by αxβ and those of the form α ← β by αyβ, we can regard Λ′ as a
boundary (by abuse of notation we denote the resulting boundary by Λ′ as well):

Λ′ = unx1un−1x2 . . . u3xn−2(u1u2)xn−11xn(u1u2)xn+1u3xn+2u4

. . . x2n−3un−1x2n−2un,

with xk ∈ {x, y}.
We give an example showing the boundary Λ′ for a given seed G.

Example 3.2. For the quiver D4

1

��
3 // 4

2

@@

we have

ω̄ : 1 // 3 // 4,

tω̄ : 4 3oo 1,oo

Q′ : tω̄ → 0→ ω̄ which is Q′ : 4 3oo 1oo // 0 // 1 // 3 // 4,

and Λ′ = u4yu3y(u1u2)x1x(u1u2)xu3xu4.
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Before giving a formula which allows us to compute each variable lying at the
point (u, v) in F̄ , we will embed our frieze Υ into the Euclidean plane by rotating it
by 45◦ clockwise. More precisely, the arrows directed north-east will become hori-
zontal segments and the arrows directed south-east will become vertical segments.

Each boundary may be embedded into the Euclidean plane in the following way:
before embedding, a boundary is extended on its end points by y on the left and
x on the right. Then x (or y) determine the horizontal (or vertical, respectively)
segments of a discrete path, that is x (or y) corresponds to a segment of the form
[(u, v) , (u+ 1, v)] (or [(u, v) , (u, v + 1)], respectively) in the plane. The variables
ci become thus labels of the vertices of the discrete path.

In Example 3.5 below we give an example of an embedded boundary.

Let us define the notions of the position boundary F and the word associated
with a point in a frieze.

Definition 3.3. Let Λ′ be the boundary defined above. We call position boundary
F a boundary associated with Λ′, embedded in the discrete plane. The position
boundary is of the form F = yΛ′x.

As ω̄∗ bounds the merged quiver F̄ on the left and on the right, the part of
the frieze Υ containing F̄ is bordered on the left by Λ′ and on the right by tΛ′.
Considered in the Euclidean plane, F̄ is contained in the part of the frieze Υ
bordered by the position boundary F = yΛ′x on one side and tF = x tΛ′y on the
other side, where tF is the transpose of F . Note that there is a correspondence
induced by the transposition between the points of the boundaries F and tF .

From now on, F̄ and Υ stand for the merged quiver and the frieze Υ considered
in the Euclidean plane, that is, after replacing north-east and south-east arrows by
horizontal and vertical segments respectively.

Consider a point (u, v) in F̄ and its horizontal and vertical projections on the
boundaries F and tF . Considering the following three situations suffices to define
the word associated with the point (u, v):

• the two projections lie on the boundary F ,
• the two projections lie on the boundary tF ,
• the horizontal projection lies on F and the vertical projection lies on tF .

Recall that in the proof of Theorem 2.13 the frieze Υ was constructed by com-
pleting F̄ downward using the uni-modular rule. In the Euclidean plane, after
the clockwise rotation by 45◦, this implies that F̄ coincides with the upper right
part of the frieze Υ lying above the oblique line joining the variables u1u2 (see
Example 3.5). Then, the three situations are sufficient because they represent the
three regions of F̄ illustrated in Example 3.5 (recall that our aim is to compute
the values lying at the points in F̄).

In each situation, we define the word associated with the point (u, v) which we
will use to compute the variable lying at the point (u, v) in F̄ .

Definition 3.4. Let (u, v) be a point in F̄ and let F be the position boundary.
The word associated with the point (u, v) is the portion of the boundaries F or tF
determined as follows:
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• If the horizontal and vertical projections of the point (u, v) lie on the bound-
ary F then the word associated with the point (u, v) is a portion of F
delimited by these projections.

• If the horizontal and vertical projections of the point (u, v) lie on the bound-
ary tF then the word associated with the point (u, v) is a portion of tF
delimited by these projections with x and y interchanged.

• If the horizontal projection of the point (u, v) lies on the boundary F and
its vertical projection lies on tF , the word associated with the point (u, v)
is the portion of the boundary F delimited by the horizontal projection
and the vertex of F corresponding to the vertical projection under the
transposition.

The following example shows how to associate a word with a point in each
situation.

Example 3.5. Consider the boundaries

F = yu6yu5yu4xu3x(u1u2)x1x(u1u2)yu3yu4xu5xu6x

and its transpose

tF = xu6yu5yu4xu3x(u1u2)y1y(u1u2)yu3yu4xu5xu6y

corresponding to the quiver D6

u1

u3

bb

||

u4
//oo u5

// u6 .

u2

The frieze of type A2n−1 associated with Λ′, embedded in the discrete plane, is
as shown in Figure 1.

We illustrate the three situations from Definition 3.4 by:

(1) The projections of the point M = (u, v) lie on the boundary F , the word as-
sociated with this pointM = (u, v) is u5yu4xu3x(u1u2)xx(u1u2)yu3yu4xu5.

(2) The projections of the point L = (z, t) lie on the boundary tF , thus we are
looking at the portion u3x(u1u2)y1y(u1u2)yu3yu4 of the boundary and the
word associated with this point L = (z, t) is u3y(u1u2)x1x(u1u2)xu3xu4.

(3) The horizontal and vertical projections of the point N = (r, s) lie respec-
tively on the boundaries F and tF , the word associated with this point
N = (r, s) is a portion of the boundary F delimited by the variable u6 cor-
responding to the horizontal projection and the variable u4 corresponding
to the vertical projection by transposition. Therefore the word associated
with the point N = (r, s) is u6yu5yu4xu3x(u1u2)x1x(u1u2)yu3yu4.

For a, b ∈ Q(u1, u2, . . . , un) we define the matrices

M(a, x, b) =

(
a 1
0 b

)
; M(a, y, b) =

(
b 0
1 a

)
.

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)



FRIEZES OF TYPE D 239

u4 u5 u6 1

u3 1

u4 u3 u1u2 1 u1u2 1

u5 (u, v) 1

u6 (r, s) 1

1 1

(z, t) u4 u5 u6

u3

u1u2

1

u4 u3 u1u2

u5

1 u6

Figure 1.

The next theorem allows us to compute the variables in F̄ independently of each
other.

Theorem 3.6. Let F̄ be a merged quiver associated with a seed G of type Dn

with arrows of the fork both entering or both leaving the joint. Consider a point
(u, v) in F̄ with the associated word b0x1b1x2 . . . bnxn+1bn+1, n ≥ 1, xi ∈ {x, y},
bi ∈ Q(u1, u2, . . . , un). The value at this point (u, v) is given by the function
T : Z2 → Q(u1, u2, . . . , un) defined as follows:

a. For each point (u, v) in F̄ lying on the boundary F or tF , T(u, v) coincides
with the value of the frieze Υ at this point.

b. If (u, v) is a point such that its two projections lie on one of the boundaries
F or tF , then

T(u, v) =
1

b1b2 . . . bn
(1, b0)

n∏
i=2

M(bi−1, xi, bi)

(
1

bn+1

)
.

c. If (u, v) is a point such that its horizontal projection lies on F and its
vertical projection lies on tF , then

T(u, v) =
1

b1b2 . . . bn
(1, b0)

n∏
i=2

M(bi−1, xi, bi)

(
bn+1

1

)
.
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The proof of Theorem 3.6 will rely on the identification of the values in F̄ with
the values in the frieze Υ of type A2n−1 of Theorem 2.13. To prove Theorem 3.6,
we use a technique drawn from [4], but we apply it to the quite different context
of the friezes of type Dn (see [4] for a proof).

Remark 3.7. The values in F̄ are the cluster variables of cluster algebra of type
Dn except those lying on the diagonal line passing through the variable u1u2. On
this line, the values are products of two cluster variables (products created by
the passage from F to F̄). Note that the pairs of cluster variables forming these
products (in the case of both arrows entering or leaving the joint) are given by
fractions whose numerators are equal and denominators coincide up to exchanging
u1 and u2, which appear in denominators with exponent one (see [8, Section 1]).
Therefore, a product of these two variables is a perfect square divided by u1u2.
Thus each value T(u, v) = U × V on the diagonal in question gives rise to two
cluster variables U and V as follows: T(u, v) = U × V , where

U =
1

u1

[
u1u2

b1b2 . . . bn
(1, b0)

n∏
i=2

M(bi−1, xi, bi)

(
1

bn+1

)] 1
2

and

V =
1

u2

[
u1u2

b1b2 . . . bn
(1, b0)

n∏
i=2

M(bi−1, xi, bi)

(
1

bn+1

)] 1
2

.

We give now an example to illustrate the above results.

Example 3.8. For the quiver D4

1

��
3 // 4

2

@@

we have

ω̄ : 1 // 3 // 4

Q′ : 4 3oo 1oo // 0 // 1 // 3 // 4

and Λ′ = u4yu3y(u1u2)x1x(u1u2)xu3xu4.

The boundary associated with Λ′ is F = yu4yu3y(u1u2)x1x(u1u2)xu3xu4x and
the merged quiver F̄ bordered by F and tF embedded in the plane gives the
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following diagram:

u1u2 1 u1u2 u3 u4 1

u3 V1 1

u4 V2 1

1 V3 1

u1u2 u3 u4

1

u1u2

u3

1 u4

where V1 represents a product of two cluster variables on the bottom line in F̄ , V2

and V3 represent some cluster variables on a line in F̄ except the bottom line.
We are going to compute the cluster variables in these three positions. The

words associated with V1, V2 and V3 are respectively u3y(u1u2)x1x(u1u2)xu3,
u4yu3y(u1u2) and (u1u2)yu3yu4x1. Then we have, by applying Theorem 3.6, the
following results:

V1 =
1

u2
1u

2
2

(1, u3)

(
u1u2 1

0 1

)(
1 1
0 u1u2

)(
1
u3

)
=

(1 + u3)2

u1u2
=

1 + u3

u1
× 1 + u3

u2
.

V1 being placed on the bottom line in F̄ , we write this value in the form of a product
of two cluster variables as in Remark 3.7. The other two positions correspond to
the following cluster variables of cluster algebra of type D4:

V2 =
1

u3
(1, u4)

(
u1u2

1

)
=
u4 + u1u2

u3

and

V3 =
1

u3u4
(1, u1u2)

(
u4 0
1 u3

)(
1
1

)
=
u4 + u1u2(1 + u3)

u3u4
.
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