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LARGE IMAGES OF REDUCIBLE GALOIS REPRESENTATIONS

AFTAB PANDE

Abstract. Given a reducible Galois representation ρ : GQ → GL2(Fq) we
show that there exists an irreducible deformation ρ : GQ → GL2(W[[T1, T2, . . . ,
Tr, . . . ]]) of ρ ramified at infinitely many primes, where W denotes the ring
of Witt vectors of Fq . This is a modification of Ramakrishna’s result for the
irreducible case.

1. Introduction

In [5] it was shown that one could lift a mod p representation ρ to a power se-
ries ring in infinitely many variables which was generalized for totally real fields
by [4]. In this paper, we extend these results for a reducible representation ρ :
GQ → GL2(Fq), where Fq is a finite field of residue characteristic p and cardinality
q = pt. We use cohomology classes which work for all lifts ρn, unlike [2] where their
cohomology classes cannot be used to lift from mod p to mod p2. This allows us to
get an irreducible deformation of a reducible representation in infinitely many vari-
ables. The case of a reducible deformation of a residually reducible representation
was addressed in [6]. The author hopes to use these methods to generalize other
lifting results of Ramakrishna for arbitrary number fields in an ongoing project.

Our main theorem is the following:

Theorem 1.1. Let ρ : GQ → GL2(Fq) where ρ =
(
φ ∗
0 1

)
, and let S be the set

of primes containing p and ∞ and all those at which ρ is ramified. Suppose:
• p ≥ 3,
• ρ is indecomposable,
• the Fp span of the elements in the image of φ is all of Fq,
• φ2 6= 1,
• φ 6= χ, χ−1, where χ is the mod p reduction of the cyclotomic character,
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• for ρ odd that ρ|Gp
is not unramified of the form

(
1 ∗
0 1

)
, and for ρ even

that ρ|Gp
is not

(
χ 0
0 1

)
or

(
χ−1 ∗

0 1

)
, where the ∗ may be trivial.

Then there exists an irreducible deformation ρ : GQ → GL2(W[[T1, T2, . . . , Tr, . . . ]])
of ρ ramified at infinitely many primes, where W denotes the ring of Witt vectors
of Fq.

We start with ρ : GQ → GL2(Fq) and by adding primes to the ramification
we lift it successively to ρn : GQ,Sn

→ GL2(W[[T1, . . . , Tn]]/(p, T1, . . . , Tn)n), and
define ρ = lim←−n

ρn. If Rn is the deformation ring of ρn with mRn its maximal
ideal, then we see that Rn/mn

Rn
= W[[T1, . . . , Tn]]/(p, T1, . . . , Tn)n. We will add

more primes of ramification to Sn and get a new set of primes Sn+1, such that the
deformation ring associated to Sn+1 has Rn+1/m

n+1
Rn+1

as a quotient. This gives
us a surjection from Rn+1/m

n+1
Rn+1

� Rn/m
n
Rn

, which allows us to get the inverse
limit R = lim←−n

Rn/m
n
Rn

.

2. Notation

We refer the reader to the notation used in [2] but briefly outline some definitions
and notations here.

• GZ is the Galois group over Q of its maximal extension unramified outside
a finite set of primes Z.

• For w ∈ Z, Gw = Gal(Qw/Qw), where Qw is the completion of Q at w.
• For a GQ = Gal(Q/Q) module M , Q(M) is the field fixed by the subgroup
of GQ that acts trivially on M .

• The Gm-dual of M is denoted by M∗.
• For f ∈ H1(GQ,M), we denote by Lf the field fixed by the kernel of the
homomorphism f |Gal(Q/Q(M)).

• X = Ad0(ρ) is the set of trace zero 2 × 2 matrices over Fq with Galois
action through ρ by conjugation.

• Let K = Q(X∗) which is equivalent to Q(X,µp).
• For w unramified in a Galois extension L/Q we denote Frobenius at w by
σw.

• S is the set of primes containing p, ∞ and all those at which ρ is ramified.
• For a character κ : GQ → F∗q , we denote by Fq(κ) the module Fq with

Galois action via κ.

3. Trivial primes and the modification of Nv

We modify the lemmas in [5] for a residually reducible representation ρ : GQ →
GL2(Fq) using the language of [2] and some ideas from [1]. The following lemmas
are used in the next section to find sets of primes that we add to the ramification to
remove global obstructions, and cohomology classes associated to these new primes
which we use to overcome local obstructions to lifting at each level n. The lemmas
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are adaptions of lemmas of Ramakrishna, so we show the modification and outline
the rest of the argument.

Definition. Let ρ be as in the hypothesis of Theorem 1.1. For v unramified in ρ we
say v is a trivial prime if:

• v is unramified in Q(ρ) and ρ(σv) is trivial, and
• v ≡ 1 mod p.

Since ρ is reducible, the Galois module X = Ad0(ρ) has a filtration of Ga-

lois stable Fq-subspaces of the form U1 =
(

0 b
0 0

)
, U2 =

(
a b
0 −a

)
, U3 =(

a b
c −a

)
, while the Galois module X∗ has a filtration of the Fq-subspaces

V1 = (X/U2)∗, V2 = (X/U1)∗, V3 = X∗. For a subquotient M of X or X∗,
the φ, trivial, φ−1, χφ, φ, χφ−1 eigenspaces are the eigenspaces under the prime
to p action of Gal(Q(φ, µp)/Q) under a splitting of the long exact sequence

1→ Gal(K/Q(φ, µp))→ Gal(K/Q)→ Gal(Q(φ, µp)/Q)→ 1.

Definition. For any M ∈ {U1, U2, U3, V1, V2, V3} and Z a finite set of primes con-
taining S we define Xi

Z(M) to be the kernel of the map

Hi(GZ ,M)→ ⊕v∈ZHi(Gv,M).

Definition. Let Nw be a subgroup of H1(Gw,M) and let N∗w be its annihilator in
H1(Gw,M∗) under local Tate duality. Let N = {Nw}w∈Zp . The Selmer group
H1
N (GZ ,M) is the kernel of the restriction map

H1(GZ ,M)→ ⊕w∈ZH1(Gw,M)/Nw.
Let N∗ = {N∗w}w∈Zp . We define the dual Selmer group H1

N∗(GZ ,M∗) as the
kernel of the other restriction map:

H1(GZ ,M∗)→ ⊕w∈ZH1(Gw,M∗)/N∗w.

Definition. We say an element f ∈ H1(GZ , X) (resp. ψ ∈ H1(GZ , X∗)) has rank
d if d is the smallest number such that f (resp. ψ) is in the image of the map
H1(GZ , Ud)→ H1(GZ , X) (resp. H1(GZ , Vd)→ H1(GZ , X∗)).

Lemma 3.1. Let M be any of the subspaces {U1, U2, U3, V1, V2, V3}, then there
exists a finite set Q1 of trivial primes such that X1

S∪Q1
(M) = 0.

Proof. We mimic the proof of [2, Proposition 13] and outline the argument.
Let ψ ∈ H1(GQ, X) and Lψ be the field fixed by the kernel of ψ. Let P be the

subgroup of GQ that acts trivially on M and H = Gal(Lψ/Q). By [2, Proposi-
tion 8], we can assume that H1(Gal(Q(M)/Q),M) is trivial. We have the inflation-
restriction sequence

0→ H1(H/P,XP )→ H1(H,M)→ H1(P,M)H/P .
Now, H/P = Gal(Q(M)/Q) and P acts trivially on X, so H1(H/P,MP ) =

H1(Gal(Q(M)/Q),M), which was assumed to be trivial. So a non-trivial ψ ∈
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H1(H,M) gives rise to a non-trivial element of H1(P,M)H/P which is
Hom(P,M)H/P as P acts trivially on M . This shows that Lψ is a non-trivial
extension of Q(M). If ψ ∈X1

S(M), then we choose a trivial prime q such that it
splits completely from Q to Q(M) but not from Q(M) to Lψ, which means that
ψ|Gq

6= 0, so ψ /∈X1
S∪{q}(M). As H1(GS ,M) is finite, we repeat this procedure

and get a finite set of trivial primes Q1 such that X1
S∪Q1

(M) = 0. �

Let (zv)v∈S∪Q1 /∈ ⊕v∈S∪Q1Nv ⊕ ψS∪Q1(H1(GS∪Q1 , X)) be a set of cohomology
classes which we will use eventually to overcome obstructions to lifting in the next
section.

Lemma 3.2. Let Q1 be as in Lemma 3.1. There exists a Cebotarev class L of
trivial primes such that

• β|Gv = 0 for all β ∈ H1(GS∪Q1 , U
∗
i ) for i = 1, 2 and for all

β ∈ H1(GS∪Q1 , X).
• There exists an Fp-basis {ψ,ψ1, . . . , ψr} of H1(GS∪Q1 , X

∗) such that
{ψ1, . . . , ψr} is a basis of ψ∗−1

S∪Q1
(Ann(zw)w∈S∪Q1), ψ|Gv 6= 0 and

ψi|Gv
= 0 for all i ≥ 1.

Furthermore, there is for each v ∈ L, a rank 3 element hv ∈ H1(GS∪Q1∪{v}, X)
and a decomposition group above v such that hv|Gw

= (zw)w∈S∪Q1 and hv(τv) =(
0 0
s 0

)
with s 6= 0.

Proof. The difference between the above lemma and [2, Proposition 34] is that
we have added the additional condition of β|Gv

= 0 for all β ∈ H1(GS∪Q1 , X),
where X corresponds to U3 in the notation above. This means that we need
the prime v to split completely in the φ, φ−1 and identity eigenspaces which are
disjoint from the χ/φ eigenspace of U∗1 and the χ/φ and χ eigenspaces of U∗2 .
The modified definition of trivial primes imposes only splitting conditions and the
only non-splitting condition in the hypothesis above is in the χφ eigenspace of
Gal(Kψ/K), none of which are in U∗1 , U∗2 and X. Now, following the argument of
[2, Proposition 34] we see that v comes from a Cebotarev condition. �

As hv(τv) =
(

0 0
s 0

)
with s 6= 0, we define the sets Cv and Nv of [1] to be the

conjugates by the matrix
(

0 1
1 0

)
for the primes v that we add.

We cannot control the behavior of hv at σv, so we add a pair of primes v1, v2
such that h = −hv1 + 2hv2 has the appropriate image of Frobenius and h|Gw = zw
for w ∈ S ∪ Q1. Altering the definition of trivial primes still allows us to use the
same techniques of [2] so we can use the following result ([2, Theorem 41]).

Theorem 3.3. There is a set of two primes {v1, v2} coming from the Cebotarev
class L in the previous lemma such that for h = −hv1 + 2hv2 we can choose the
values of h(σvi

) arbitrarily for i = 1, 2.
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4. Main theorem and its proof

Let Cl be the set of deformation classes of ρ to W satisfying ρ(σl) =
(

l 0
0 1

)
and ρ(τl) =

(
1 ∗
0 1

)
.

We define u1, u2 ∈ H1(Gl, X) by:

u1(σl) =
(

0 1
0 0

)
and u1(τl) =

(
0 0
0 0

)
,

u2(σl) =
(

0 0
0 0

)
and u2(τl) =

(
0 1
0 0

)
.

Note that these two cohomology classes are the same as in [2]. We refer the
reader to the calculations of [1, Lemma 4.1] to produce the third cohomology class
u3 to get a three dimensional subspace Nl which preserves Cl.

Recall that Rn is the deformation ring of ρn with mRn
its maximal ideal.

We assume that there exists ρn : GSn
→ GL2(Rn/mn

Rn
), X2

Sn
(X) = 0 and

dimH1
N (GSn

, X) = n. By Theorem 3.3 we can find a set of primes B such that
dimH1

N (GSn∪B , X) = n+ 1 (we simply choose the αi ∈ Cvi
in the proof of Theo-

rem 3.3). Let U be the deformation ring and ρU be the deformation associated to
the augmented set Sn ∪B, with the deformation conditions (Nv, Cv). If B consists
of primes such that ρn|Gv

∈ Cv for v ∈ B, we have a surjection φ : U � Rn/m
n
Rn

and we follow the argument as in [5] or [4].
If ρn|Gv /∈ Cv for v ∈ B, then we choose a set of cohomology classes (zv)v∈Sn∪B

such that the action of zv on ρn|Gv
overcomes the local obstructions at v ∈ Sn∪B.

By Theorem 3.3 we can find a set A of two primes and a cohomology class h such
that:

• ρ̃n = (I + pnh)ρn|Gq
∈ Cq for q ∈ A (no new obstructions at A),

• h|Gv = zv, for v ∈ Sn ∪B (h overcomes local obstructions at Sn ∪B).
We now show that adding this set of primes A does not alter the dimension of

the Selmer groups, hence does not add more variables to the ring of power series.

Lemma 4.1. For a set A = {v1, v2} of two primes chosen as in Theorem 3.3 and
(zv)v∈Sn∪B /∈ ⊕v∈Sn∪BNv ⊕ ψSn∪B(H1(GSn∪B , X)) we have H1

N (GSn∪B , X) =
H1
N (GSn∪B∪A, X).

Proof. We adapt the argument of [5, Proposition 4.1].
Recall that in Lemma 3.2 the trivial primes v were chosen so that

β ∈ H1(GT , X) ⇒ β|Gv = 0. As Nv is a three dimensional subspace including
the zero cocyle u2, we see that β|Gv

= 0 ⇒ β ∈ Nv. Thus, H1
N (GSn∪B , X) ⊂

H1
N (GSn∪B∪A, X).
Any element of H1

N (GSn∪B∪A, X) \ H1
N (GSn∪B , X) necessarily looks like f +

α1h
v1 + α2h

v2 , where f ∈ H1(GSn∪B , X) and hvi are as in Theorem 3.3. Since
α1h

v1 +α2h
v2 |Gv = (α1+α2)zv ∈ f+Nv for v ∈ Sn∪B∪A, we see that α1+α2 = 0.

We know that α1(hv1−hv2)|Gq
= 0 for all q ∈ Sn∪B, which means that f |Gq

∈ Nq
for all q ∈ Sn ∪ B ⇒ f ∈ H1

N (GSn∪B , X). We also know that f |Gvi
= 0 for
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i = 1, 2, so f ∈ H1
N (GSn∪B∪A, X). Thus, α1(hv1 − hv2) ∈ H1

N (GSn∪B∪A, X) ⇒
α1(hv1 − hv2)|Gvi

∈ Nvi
, for i = 1, 2. We now look at the construction of the hvi

in the proof of the previous lemma to get a contradiction.
If ρn|Gvi

/∈ Cvi
, we choose h|Gvi

= −hv1 + 2hv2 /∈ Nvi
for i = 1, 2. This implies

that −A + 2E /∈ Nv1 , while we have that hv1 − hv2 |Gvi
∈ Nv1 ⇒ A − E ∈ Nv1 .

Combining these two conditions we get that A,E /∈ Nv1 so α1 = 0 and f ∈
H1
N (GSn∪B∪A, X), which is a contradiction. A similar argument works for Nv2 .
If ρn|Gvi

∈ Cvi and hvi(σvi) /∈ Nvi i.e., A /∈ Nv1 , then using the fact that
A− E ∈ Nv1 and −A+ 2E ∈ Nv1 , we get that A ∈ Nv1 , which is a contradiction.

(Note that if A consists of only one prime, then the proof is exactly the same as
in the first part of [5, Proposition 4.1].) �

Let W̃ be the deformation ring and ρW̃ associated to the augmented prob-
lem with deformation conditions (Nv, Cv). As ρ̃n|Gq ∈ Cq for q ∈ A we have a
surjection φ : W̃ � Rn/m

n
Rn

, which means that for some I1, we have W̃/I1 =
Rn/m

n
Rn

. As dimH1
N (GSn∪B , X) = dimH1

N (GSn∪B∪A, X) = n + 1, we see that
as a ring W̃ consists of power series of (n + 1) variables. Thus, for some I2,
W̃/I2 = Fq[[T1, . . . , Tn+1]]/(T1, . . . , Tn+1)2. Let I = I1∩I2, and defineW0 = W̃/I.

Our goal is to get a deformation ring which has Rn+1/m
n+1
Rn+1

as a quotient. If
W0 is such a deformation ring, we are done. If not, we get a sequence

Rn+1/m
n+1
Rn+1

� · · ·�W1 �W0

where the kernel at each stage has order p. We add more primes of ramification to
Sn ∪B ∪A so that the augmented deformation ring has W1 as a quotient and keep
iterating to get our required deformation ring.

As W0 is a quotient of W̃ , we let ρW0 be the deformation induced by ρW̃ . As
ρW0 |Gv

∈ Cv for v ∈ Sn∪B∪A we can lift ρW0 to W1. Let us call this deformation
ρW1 . Iterating the same argument as for ρn we can lift ρW1 to W2 by adding a
suitable set of primes A1 to the set of ramification allowing us to eventually find a
deformation that has Rn+1/m

n+1
Rn+1

= W[[T1, . . . , Tn+1]]/(p, T1, . . . , Tn+1)n+1 as a
quotient. Now we are in a position to state the final theorem.

Theorem 4.2. There exists an irreducible deformation of ρ, ramified at infinitely
many primes, ρ : GQ → GL2(W[[T1, T2, . . . , Tr, . . . ]]).

Proof. We let ρ = lim←−n
ρn and see that at each stage n,

Im ρn ⊇ GL2(W[[T1, . . . , Tn]]/(p, T1, . . . , Tn)n).
Hence, we get our desired deformation. By [2, Corollary 43], the deformation is
irreducible. �

5. Concluding remarks

• In [4], one could not generalize the results of [5] for all number fields. One
of the problems in using our definition of trivial primes is that when one
adds them to the ramification set to solve the local condition property
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(finding an hv such that hv|Gw = (zw)w∈Z), the behavior at inertia is hard
to control. In the reducible case one can use the subspaces Ui to find a
suitable hv, but in the irreducible case it is hard to guarantee the behavior
of hv at inertia.
• In [5], the image of the deformation is full, i.e., ρ contains SL2(Zp[[T1, T2,
. . . , Tr, . . . ]]) but requires that the image of the residual representation ρ
contains SL2(Z/pZ), which is not true in our case. Hence, we do not get
that the image of our deformation is full.
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