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A NOTE ON WEIGHTED INEQUALITIES FOR A ONE-SIDED

MAXIMAL OPERATOR IN Rn

MARÍA LORENTE AND FRANCISCO J. MARTÍN-REYES

Abstract. We introduce a new dyadic one-sided maximal operator M+···+
d

in Rn that allows us to obtain good weights for the Lp-boundedness of a

one-sided maximal operator N+···+ in Rn, which is equivalent to the classical

one-sided Hardy–Littlewood maximal operator in the case n = 1, but not in
the case n > 1. In order to do this, we characterize the good pairs of weights

for the weak and strong type inequalities for M+···+
d and we use a Fefferman–

Stein type inequality which gives that, in a certain sense, M+···+
d controls

N+···+.

1. Introduction

For f locally integrable on R, the one-sided Hardy–Littlewood maximal functions
are

M+f(x) = sup
h>0

1

h

∫ x+h

x

|f(y)| dy and M−f(x) = sup
h>0

1

h

∫ x

x−h
|f(y)| dy.

These operators are interesting because they control some one-sided operators such
as singular integrals with kernels supported in (−∞, 0) or (0,∞). Sawyer charac-
terized the Lp-weighted inequalities for M+ in [10] (see other proofs in [1], [7], [8]
and [5]).

In [5] we introduced an appropriate dyadic one-sided maximal operator M+
d in R,

which allows us to give a new proof of Sawyer’s results, proving a Feffermann–Stein
type inequality in means as in the classical case.

The natural generalization of M+ in Rn is the following: given x = (x1, x2, . . . ,
xn) we define

M+···+f(x) = sup
h>0

1

hn

∫
Qx(h)

|f(y)| dy,

where Qx(h) = [x1, x1 +h)× [x2, x2 +h)×· · ·× [xn, xn+h). In R we have two one-
sided operators. In Rn we obviously have 2n one-sided operators that we do not
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write explicitly. Quite surprisingly, the weighted inequalities for M+···+ in Rn have
not been characterized. The characterization of the weak type (p, p) inequality in
R2 has been obtained in [3]. It is not difficult to prove the following:

Theorem 1.1. Let 1 ≤ p < ∞ and let u, v be nonnegative measurable functions.
If M+···+ is of weak type (p, p) with respect to (u, v), that is, there exists C > 0
such that for any λ > 0 and f ∈ Lp(v)∫

{x∈Rn:M+···+f(x)>λ}
u(x) dx ≤ C

λp

∫
Rn

|f(x)|pv(x) dx, (1)

then the pair of weights (u, v) satisfies A+
p , that is, there exists C > 0 such that for

all h > 0,

1

hn

(∫
Q−x (h)

u

)1/p(∫
Qx(h)

v1−p′
)1/p′

< C, p > 1,

1

hn

∫
Q−x (h)

u ≤ Cv(x), a.e. x = (x1, . . . , xn), p = 1,

where Q−x (h) = [x1 − h, x1)× · · · × [xn − h, xn).

In [3] it was proved that the previous conditions are equivalent in the case n = 2.
But, apparently, the arguments used are valid only for n = 2. Consequently, the
problem of characterizing the weighted Lp inequalities for M+···+ remains open in
dimension greater than one.

We have tried to extend the results of [5] to higher dimensions. We have not
achieved our main goal, that is, characterizing the good weights for M+···+, but
we have got new interesting results for the following one-sided maximal operator
in Rn which has appeared in several previous works (see [9], [4] and [2]): Given
x = (x1, x2, . . . , xn) ∈ Rn, let us define

N+···+f(x) = sup
h>0

1

hn

∫
Q+

x (h)

|f(y)| dy,

where Q+
x (h) = [x1 + h, x1 + 2h)× [x2 + h, x2 + 2h)× · · · × [xn + h, xn + 2h). For

n = 1, M+ and N+ are equivalent. It is clear that N+···+f(x) ≤ 2nM+···+f(x)
but there is no constant C > 0 satisfying M+···+f(x) ≤ CN+···+f(x) for n > 1.
In [9] Ombrosi proved that (u, v) ∈ A+

p implies the weak type inequality (1) for

N+···+ (instead of M+···+). In [4] Lerner and Ombrosi proved that in the case of
equal weights, u = v, and n = 2, the A+

p condition implies that N++ is bounded
from Lp(u) into Lp(u). In [2] Berkovits extends this result for n ≥ 3. In this note
we generalize the result in [4] to any dimension giving a proof completely different
from the one proposed by Berkovits, and we also give a sufficient condition in a
pair of weights (u, v) for the boundedness of N+···+ from Lp(v) into Lp(u).
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2. One-sided dyadic maximal function in Rn

We are going to consider a one-sided dyadic maximal function in Rn that gen-
eralizes the one defined in [5]. In order to do this, let us establish the follow-
ing notation: if Q = [x1, x1 + h) × · · · × [xn, xn + h) is a cube, denote Q− =
[x1, x1+h/2)×· · ·×[xn, xn+h/2) andQ+ = [x1+h/2, x1+h)×· · ·×[xn+h/2, xn+h).
Let A+

x = {Q dyadic : x ∈ Q−}. The one-sided dyadic maximal function is defined
by

M+···+
d f(x) = sup

Q∈A+
x

1

|Q+|

∫
Q+

|f(y)| dy.

Observe the difference between this operator and the corresponding one in [9]. Our
operator satisfies that M+···+

d f ≤ CMdf , where Md is the classical dyadic max-

imal operator Mdf(x) = sup
Q dyadic : x∈Q

1

|Q|

∫
Q

|f(y)| dy, while the one-sided dyadic

operator in [9] does not satisfy this condition.
It is interesting to note the following properties. Let Q and R be dyadic cubes.

(i) If Q+ ⊂ R+ then Q− ⊂ R− ∪R+.
(ii) If Q− ∩R− 6= ∅ and Q+ ∩R+ 6= ∅ then R = Q.
(iii) If Q+ ∩R+ 6= ∅ and Q+ ∩R− 6= ∅ then R ⊂ Q+.

These properties allow us to get a Fefferman–Stein type inequality as in [5]. Let
h = (h1, . . . , hn) ∈ Rn. Denote τhf(x) = τhf(x1, . . . , xn) = f(x1−h1, . . . , xn−hn).

Proposition 2.1. There exists a constant C > 0 such that

N+···+
k f(x) ≤ C

(2k+4)n

∫
(0,2k+4]×···×(0,2k+4]

(τ−t ◦M+
d ◦ τt)f(x) dt,

for all x ∈ Rn, k ∈ Z and f bounded with compact support, where N+···+
k is the

truncated operator of N+···+ taking supremum on 0 < h < 2k.

The proof of this result follows the same pattern as in the case n = 1 and it is
left to the interested reader.

As we said before, Proposition 2.1 will allow us to get some results for N+···+

by studying the good weights for the dyadic operator M+···+
d .

Definition 2.2. We shall say that a pair of weights (u, v) belongs to the class A+
p,d

if there exists a constant C > 0 such that for all dyadic cubes Q,

1

|Q|

(∫
Q−

u

)1/p(∫
Q+

v1−p′
)1/p′

≤ C, p > 1, (A+
p,d)

1

|Q−|

∫
Q−

u ≤ Cv(x), a.e. x ∈ Q+, p = 1. (A+
1,d)

In the case u = v we simply write u ∈ A+
p,d instead of (u, u) ∈ A+

p,d.
In the same way that for n = 1 we have the following characterization.

Theorem 2.3. Let 1 < p <∞. Then the following assertions are equivalent.

(1) M+···+
d is bounded from Lp(u) into Lp(u).
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(2) u ∈ A+
p,d.

Theorem 2.3 and Proposition 2.1 provide us with a sufficient condition in a
weight u for the boundedness of N+···+ in Lp(u), 1 < p < ∞. This extends
Ombrosi’s result to dimension n ≥ 3 with a proof different from the one proposed by
Berkovits. In [3] it was proved that this condition is necessary for the boundedness
of M+···+ in Lp(u).

Theorem 2.4. Let 1 < p <∞. If u is a weight satisfying

sup
x∈Rn

sup
h>0

1

hn

(∫
Q−x (h)

u

)1/p(∫
Qx(h)

u1−p′
)1/p′

<∞, (A+
p )

then N+···+ is bounded from Lp(u) into Lp(u).

Proof. Observe first that for t = (t1, . . . , tn), t1, . . . , tn > 0, the weights τtu satisfy
(A+

p,d) uniformly on t. Then, by Jensen’s and Fubini’s theorems∫
Rn

(N+···+
k f(x))pu(x) dx

≤ C
∫
Rn

(
1

(2k+4)n

∫
(0,2k+4]×···×(0,2k+4]

(τ−t ◦M+···+
d ◦ τt)f(x) dt

)p
u(x) dx

≤ C 1

(2k+4)n

∫
(0,2k+4]×···×(0,2k+4]

(∫
Rn

(M+···+
d (τtf)(x+ t))pu(x) dx

)
dt

= C
1

(2k+4)n

∫
(0,2k+4]×···×(0,2k+4]

(∫
Rn

(M+···+
d (τtf)(x))pτtu(x) dx

)
dt

≤ C 1

(2k+4)n

∫
(0,2k+4]×···×(0,2k+4]

(∫
Rn

|τtf(x)|pτtu(x) dx

)
dt

= C

∫
Rn

|f(x)|pu(x) dx.

Letting k tend to infinity we get the desired result. �

For different weights we have the next results.

Theorem 2.5. Let 1 ≤ p <∞. Then the following conditions are equivalent:

(1) M+···+
d is of weak type (p, p) with respect to (u, v).

(2) (u, v) ∈ A+
p,d.

Theorem 2.6. Let 1 < p <∞. Let u and v be nonnegative measurable functions
and σ = v1−p′ . The following assertions are equivalent.

(1) M+···+
d is bounded from Lp(v) into Lp(u).

(2) There exists C > 0 such that∫
Q−∪Q+

(M+···+
d (σχQ+)(x))pu(x) dx ≤ C

∫
Q+

σ(x) dx <∞, (S+
p,d)

for all dyadic cubes Q with
∫
Q−

u > 0.

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)



WEIGHTED INEQUALITIES FOR ONE-SIDED MAXIMAL OPERATOR 257

We also omit the proof of these results because it follows again the steps of the
corresponding results in [5]. We only want to point out that the n dimensional
version of Lemma 2.1 in [9] holds, with the dyadic cubes Q.

Using again Proposition 2.1 and Theorem 2.6 we obtain the following.

Theorem 2.7. Let 1 < p <∞. If u, v are two weights satisfying that there exists
C > 0 such that for all x ∈ Rn and all h > 0,∫

Q−x,h∪Qx,h

(M+···+(σχQx,h
))pu ≤ C

∫
Qx,h

σ <∞ (S+
p )

whenever
∫
Q−x,h

u > 0, where σ = v1−p′ , then N+···+ is bounded from Lp(v) into

Lp(u).

Proof. The proof follows the same steps that the proof of Theorem 2.4, once we
prove that (τtu, τtv) satisfies S+

p,d uniformly on t. Then, we have to prove that
there exists C > 0 such that for all dyadic cubes and all t,∫

Q−∪Q+

(M+···+
d (τtσχQ+)(x))pτtu(x) dx ≤ C

∫
Q+

τtσ(x) dx <∞,

for all dyadic cubes Q with
∫
Q−

τtu > 0.

By a change of variable,∫
Q−∪Q+

(M+···+
d (τtσχQ+)(x))pτtu(x) dx

=

∫
(Q−−t)∪(Q+−t)

(M+···+
d (τtσχQ+)(x+ t))pu(x) dx.

Using again a change of variable we get

M+···+
d (τtσχQ+)(x+ t) = sup

A+
x+t

1

|R+|

∫
R+

τtσχQ+(s) ds

= sup
A+

x+t

1

|R+|

∫
(R+−t)∩(Q+−t)

σ(z) dz

= sup
{R dyadic:x∈R−−t}

1

|R+ − t|

∫
(R+−t)

σ(z)χQ+−t dz

≤ CM+···+(σχQ+−t)(x).

Then, using (S+
p ),∫

Q−∪Q+

(M+···+
d (τtσχQ+))pτtu ≤ C

∫
(Q−−t)∪(Q+−t)

M+···+(σχQ+−t)

≤ C
∫

(Q+−t)
σ = C

∫
Q+

τtσ <∞. �
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Remark 2.8. In [6] we studied another one-sided dyadic maximal operator,

M̃+···+
d f(x) = sup

Q∈A+
x

1

|Q \Q−|

∫
Q\Q−

|f(y)| dy,

that allowed us to obtain a sufficient condition for the boundedness of M+···+

(Th. 4.3). Unluckily, we have to say that the condition (A)+
p appearing in [6] is,

actually, equivalent to the classical Ap Muckenhoupt condition.
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