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GEOMETRY OF THE PROJECTIVE UNITARY GROUP
OF A C∗-ALGEBRA

ESTEBAN ANDRUCHOW

Abstract. Let A be a C∗-algebra with a faithful state ϕ. It is proved that
the projective unitary group PUA of A,

PUA = UA/T.1,

(UA denotes the unitary group of A) is a C∞-submanifold of the Banach space
Bs(A) of bounded operators acting in A, which are symmetric for the ϕ-inner
product, and are usually called symmetrizable linear operators in A.

A quotient Finsler metric is introduced in PUA, following the theory of
homogeneous spaces of the unitary group of a C∗-algebra. Curves of minimal
length with any given initial conditions are exhibited. Also it is proved that if
A is a von Neumann algebra (or more generally, an algebra where the unitary
group is exponential) two elements in PUA can be joined by a minimal curve.

In the case when A is a von Neumann algebra with a finite trace, these
minimality results hold for the quotient of the metric induced by the p-norm
of the trace (p ≥ 2), which metrizes the strong operator topology of PUA.

1. Introduction

Let A be a unital C∗-algebra with norm ‖ ‖∞ and with a faithful state ϕ. We
shall study here the projective unitary space of A,

PUA = UA/T.1,
where UA is the unitary group of A. UA is a Banach–Lie group whose Banach–Lie
algebra is Aah = {x ∈ A : x∗ = −x}. We shall consider A represented in the
Hilbert space L2 = L2(A, ϕ), via the GNS representation induced by ϕ. Elements
x ∈ A will also be regarded as elements of L2 with norm ‖x‖2 = ϕ(x∗x)1/2. As is
usual notation, if ξ, η ∈ L2, ξ ⊗ η will denote the rank one operator acting in L2:
ξ ⊗ η(ν) = 〈ν, η〉ξ, and in particular if x, y, a ∈ A, x⊗ y(a) = ϕ(y∗a)x.

Let
Bs(A) = Bs,ϕ(A) = {T ∈ B(A) : ϕ(y∗T (x)) = ϕ(T (y)∗x) for all x, y ∈ A}.

Although this space depends also on ϕ, we keep the notation Bs(A) for the sake
of simplicity. These operators acting in A, are known as symmetrizable operators
in the literature (see the papers by M.G. Krein [9] and P. Lax [10]). They are
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320 ESTEBAN ANDRUCHOW

characterized as operators in A which extend to bounded symmetric operators in
L2. Bs(A) is a closed subspace of B(A), the Banach space of all bounded linear
operators acting in A.

There is a natural one to one map
PUA → {u⊗ u : u ∈ UA} ⊂ Bs(A), [u] 7→ u⊗ u.

In this paper it is shown that this map is a homeomorphism, if PUA is considered
with the quotient topology, and the right hand set with the usual norm of B(A).
The set {u ⊗ u : u ∈ UA} is shown to be a complemented submanifold of Bs(A).
Thus PUA can be regarded as a submanifold of this Banach space. The differen-
tiable structure induced in PUA is the same as the usual quotient differentiable
structure [5], and thus is independent of the choice of ϕ.

A Finsler structure is introduced in PUA, following the theory of homogeneous
unitary spaces UA/UB (B a unital sub-C∗-algebra of A) of Durán, Mata-Lorenzo
and Recht [6, 7]. The tangent spaces are endowed with a UA-invariant quotient
norm. Using general results of this theory, applied to this particular case in which
the subalgebra B = C.1, one obtains existence of minimal curves with given initial
data, and in the case when A is a von Neumann algebra, existence of curves joining
any given pair of points in PUA. The minimal curves are of the form

γ(t) = [ueitx] ' ueitx ⊗ ueitx,
for u ∈ UA and x∗ = x with ‖x‖ ≤ π. They remain minimal for |t| ≤ 1.

The case when A is a von Neumann algebra with a finite trace is considered in
the last section. It is shown that these curves γ are also minimal for the quotient
p-norms in TPUA, for p ≥ 2. These weaker norms metrize the strong operator
topology in PUA

2. Regular structure

Consider the fibration
UA → PUA, u 7→ [u].

More generally, the smooth left action of UA on PUA, w · [u] = [wu] induces the
submersions

π[u] : UA → PUA, π[u](w) = [wu].
Let us denote by δ[u] = d(π[u])1. The isotropy groups of the action are

π−1
[u] ([u]) = {v ∈ UA : [vu] = [u]} = T · 1,

and therefore the isotropy Banach–Lie algebras are iR · 1 at every [u] ∈ PUA. In
particular, since the tangent space (TUA)1 of UA at 1 is Aas, the epimorphism δ[u]
induces a natural isomorphism

(TPUA)[u] = Aas/iR.
Let us prove that PUA has a submanifold structure. To this effect, we shall use

the bijection
PUA = UA/T←→ {u⊗ u : u ∈ UA} ⊂ Bs(A), [u]←→ u⊗ u.
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By means of this map, we can regard PUA as a subset of a Banach space.

Lemma 2.1. The map

PUA → {u⊗ u : u ∈ UA}, [u] 7→ u⊗ u

is a homeomorphism, when the right hand set is considered with the norm topology
of Bs(A).

Proof. The map UA → {u⊗ u : u ∈ UA}, u 7→ u⊗ u is continuous, and induces the
above bijection from the quotient PUA = UA/T, which is therefore continuous.

Let us see that the inverse is continuous. The map is equivariant for the transi-
tive actions of UA on both spaces:

w · [u] = [wu] 7→ wu⊗ wu = Lw(u⊗ u)Lw∗ .

Thus it suffices to prove that the inverse map is continuous at 1⊗ 1. Suppose that
the un ∈ UA satisfy

un ⊗ un → 1⊗ 1 as n→∞.
Then evaluating at 1, ϕ(un)un → 1. Thus

ϕ(ϕ(un)un) = |ϕ(un)|2 → 1.

Then
ϕ(un)
|ϕ(un)|un → 1,

i.e., there exist λn = ϕ(un)
|ϕ(un)| with |λn| = 1 such that λnun → 1, i.e., [un]→ [1]. �

In particular, this implies that the topological structure of the set {u⊗ u : u ∈
UA} does not depend on the state ϕ:

Corollary 2.2. Let ϕ,ψ be faithful states in A, and denote by L2
ϕ,L2

ψ their GNS
Hilbert spaces. Then the sets

{u⊗ϕ u : u ∈ UA} ⊂ B(L2
ϕ) and {u⊗ψ u : u ∈ UA} ⊂ B(L2

ψ)

are homeomorphic (with the corresponding norm topologies). Specifically, the map

u⊗ϕ u 7→ u⊗ψ u

is a homeomorphism.

Remark 2.3. Note that the set {u⊗ u : u ∈ UA} is a set of rank one projections
in B(A) (or in B(L2) as well): indeed,

〈u, u〉 = ϕ(u∗u) = 1.

To prove that PUA is a submanifold of Bs(A), we shall use the following lemma,
which was proved in [11].

Lemma 2.4. Let G be a Banach–Lie group acting smoothly on a Banach space X.
For a fixed x0 ∈ X, denote by πx0 : G → X the smooth map πx0(g) = g · x0.
Suppose that
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(1) πx0 is an open mapping, regarded as a map from G onto the orbit {g · x0 :
g ∈ G} of x0 (with the relative topology of X).

(2) The differential d(πx0)1 : (TG)1 → X splits: its nullspace and range are
closed complemented subspaces.

Then the orbit {g · x0 : g ∈ G} is a smooth submanifold of X, and the map

πx0 : G→ {g · x0 : g ∈ G}

is a smooth submersion.

Theorem 2.5. PUA is a closed complemented C∞-submanifold of Bs(A) and the
map

π : U 7→ PUA, π(u) = u⊗ u
is a C∞-submersion.

Proof. Let us prove first that {u ⊗ u : u ∈ UA} is a closed subset of Bs(A).
Suppose that un ⊗ un → T in Bs(A). Evaluating at 1 one obtains that ϕ(u∗n)un =

¯ϕ(un)un is convergent in A. Since |ϕ(un)| ≤ ϕ(u∗nun)1/2 = 1, there is a convergent
subsequence ϕ(unk). Then unk converges to a unitary u ∈ A. Therefore un ⊗ un
converges to u⊗ u.

Fix 1⊗ 1 ∈ PUA. We shall construct a continuous local cross section for

π = π1⊗1 : UA → PUA, π(u) = u⊗ u = Lu(1⊗ 1)Lu∗ ,

near 1 ⊗ 1. Cross sections near other points are obtained by translation with the
group action. Consider the open set

V = {u⊗ u : (u⊗ u)(1⊗ 1) 6= 0}.

It is clear that V is an open neighbourhood of 1⊗ 1 in PUA. Note that (u⊗u)(1⊗
1) 6= 0 means that ϕ(u∗)u⊗ 1 6= 0, i.e., ϕ(u) 6= 0. Put

µ : V → UA, µ(u⊗ u) = ϕ(u∗)
|ϕ(u)|u.

The map µ is well defined: if u⊗ u = w ⊗ w then w = λu with λ ∈ T. Thus

ϕ(w∗)
|ϕ(w)|w = λϕ(u∗)

|ϕ(u)| λu = ϕ(u∗)
|ϕ(u)|u.

Also µ(1⊗ 1) = 1. It is clear that µ is a cross section for π. Let us prove that µ is
the restriction of a map µ̃ defined on a neighbourhood of 1⊗ 1 in Bs(A). Namely

µ̃ : Ṽ = {T ∈ Bs(A) : T (1) 6= 0} → A, µ̃(T ) = |ϕ(T (1))|−1/2T (1).

Indeed, if T = u ⊗ u, then T (1) = ϕ(u∗)u and ϕ(T (1)) = |ϕ(u)|2. It is clear that
µ̃ is continuous. Therefore µ is continuous. Thus π is open. A straightforward
computation shows that the differential of π at 1 is (to differentiate π we regard it
as a map valued in Bs(A))

δ = dπ1 : Aas → Bs(A), δ(a) = a⊗ 1 + 1⊗ a.
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GEOMETRY OF THE PROJECTIVE UNITARY GROUP OF A C∗-ALGEBRA 323

The nullspace of this map is iR ·1. Indeed, it is clear that iR ·1 ⊂ N(δ). If δ(a) = 0,
then in particular 0 = (a⊗1 + 1⊗a)(1) = 1 +ϕ(a∗)1, i.e., a = −ϕ(a)1. Thus N(δ)
is complemented.

To prove that R(δ) = {a⊗ 1 + 1⊗ a : a ∈ Aas} is complemented in Bs(A), note
that the map µ̃ is C∞ in Ṽ. Denote by ρ = dµ̃1⊗1,

ρ : Bs(A)→ A.
For u close to 1 (in order that ϕ(u) 6= 0),

π ◦ µ̃ ◦ π(u) = π ◦ µ̃(u⊗ u) = π(u),
i.e., π ◦ µ̃ ◦ π = π near 1. Differentiating this identity at 1, we get

δρδ = δ.

In particular, δρ is an idempotent operator acting in the (real) Banach space Bs(A),
whose range is the range of δ. Then R(δ) is complemented, and the proof is
complete. �

It is clear that PUA is a group. Let us check that the group operations are
smooth.

Proposition 2.6. PUA is a C∞ Banach–Lie group.

Proof. Consider first the product map
Π : UA × UA → UA, Π(u,w) = uw.

This map induces the product map on the quotient
Π̃ : PUA × PUA → PUA, Π̃([u], [w]) = [u][w].

The fact that the product is defined in the quotient, i.e. that [uw] = [u][w], means
that

π ◦Π = Π̃ ◦ (π × π).
By the above theorem π is a submersion, and therefore has local C∞ cross sections.
Let µ[u0] and µ[w0] be cross sections for π defined on neighbourhoods V[u0], V[w0]
of [u0], [w0], respectively. Then µ[u0] × µ[w0] is a cross section for π × π defined on
V[u0] × V[w0], which is a neighbourhood for ([u0], [w0]) in PUA × PUA. Then, in
this neighbourhood, one has

Π̃ = π ◦Π ◦ (µ[u0] × µ[w0]),
which is C∞. The proof for the inversion map is similar. �

With a similar argument, we can prove that the differentiable structure of PUA,
defined in terms of ϕ, does not depend on the choice of the state ϕ. We use the
notation of Corollary 2.2.

Proposition 2.7. Let ϕ,ψ be faithful states in A. Then the map
{u⊗ϕ u : u ∈ UA} → {u⊗ψ u : u ∈ UA}, u⊗ϕ u 7→ u⊗ψ u

is a diffeomorphism.
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Proof. Let πϕ : UA → {u ⊗ϕ u : u ∈ UA} and πψ : UA → {u ⊗ψ u : u ∈ UA}, and
denote by θ : {u⊗ϕ u : u ∈ UA} → {u⊗ψ u : u ∈ UA}. Then it is clear that

θπϕ = πψ.

Since πϕ is a submersion, it has local C∞-cross sections µϕ near every point. Thus
locally,

θ = πψµϕ,

and therefore θ is C∞. �

Example 2.8. Suppose that B is a C∗-algebra with no unit, and let B̃ = A be
its smallest unitization (i.e., B is a maximal bilateral ideal and a hyperplane of
A). Then it is clear that the projective unitary group PUA is isomorphic (as a
Banach–Lie group) to the group

GB = {u ∈ UA : u− 1 ∈ B}.
The C∞ group isomorphism is induced by the inclusion GB ⊂ UA. Indeed, since B
has no unit, elements in UA are of the form λ1 + b, λ ∈ C, |λ| = 1 and b ∈ B. The
map A → C, λ1 + b 7→ λ is a multiplicative functional, thus C∞. Then the map

UA → GB, λ1 + b 7→ 1 + 1
λ
b

is C∞ and a group homomorphism, which induces the inverse of the map induced by
the inclusion. In the case B = K(H) the algebra of compact operators, the group
GK(H) is one of the classical Banach–Lie groups, sometimes called the unitary
Fredholm group.

3. Metric properties

The following facts are well known.

Remark 3.1. If one endows the unitary group UA with the Finsler metric which
consists of the usual norm of A at every tangent space, the metric geodesics (short
curves) of UA which start at a given u are of the form

µ(t) = ueitx,

for any x∗ = x (which we suppose normalized ‖x‖∞ = 1) and remain of minimal
length for |t| ≤ π.

If A is a von Neumann algebra, any pair of unitaries u1, u2 in UA can be joined
by such a (minimal) curve, which is unique if ‖u1 − u2‖∞ < 2.

The following result is a simple case in the problem of finding minimal elements
in C∗-algebra inclusions (see for instance [3] and references therein).

Remark 3.2. Given x = x∗ ∈ A, there exists r = r(x) ≥ 0, such that
‖x− r‖ = min{‖x+ t‖ : t ∈ R}.

The existence of r follows from a compactness argument. Also note that

r(x) = 1
2

{
max

ξ∈L2, ‖ξ‖=1
〈xξ, ξ〉+ min

ξ∈L2, ‖ξ‖=1
〈xξ, ξ〉

}
,
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GEOMETRY OF THE PROJECTIVE UNITARY GROUP OF A C∗-ALGEBRA 325

which is the midpoint in the spectrum σ(x) of x.

Definition 3.3. We shall call the element x− r(x) the minimal lifting of x.

The tangent space (TPUA)[u] at [u] ∈ PUA is given by

(TPUA)[u] = {u⊗ z + z ⊗ u : z ∈ uAas = Aasu}.

Indeed, let u(t) be a smooth curve in UA with u(0) = u and u̇(0) = z (note that
differentiating u∗(t)u(t) = 1 at t = 0, one gets z∗u+ u∗z = 0, i.e., u∗z, zu∗ ∈ Aas).
Then differentiating u(t) ⊗ u(t) at t = 0 one obtains that tangent vectors at [u]
(identified with u⊗ u) are of the form z ⊗ u+ u⊗ z.

We endow PUA with the quotient metric of the usual norm of A.

Definition 3.4. If z ⊗ u+ u⊗ z ∈ (TPUA)[u], put

|z ⊗ u+ u⊗ z|[u] = inf{‖u∗z − it‖ : t ∈ R}.

The nullspace of
dπu : (TUA)u → (TPUA)[u]

is N(dπu) = iRu, i.e., the norm defined here coincides with the quotient norm of
Aas/iR.

Remark 3.5. This metric coincides with the metric defined by Durán et al. in [6]
and [7] for homogeneous spaces UA/UB of an inclusion B ⊂ A of C∗-algebras (we
treat here the particular case B = C1). In these papers the metric is induced by
the action of UA on the quotient: if [u] ∈ UA/UB, put

L[u] : Ua → UA/UB, L[u](w) = [uw].

The metric defined on T (UA/UB)[u] is the quotient norm (defined by d(L[u])1) in
Aas/Bas. It is easy to see that in the case B = C1, this is precisely the metric
defined above. Therefore one obtains in our case the general results and properties
proved in [6] and [7]. For instance, that the metric is invariant by the left action
of UA on PUA. Also the main results on existence of minimal geodesics with given
initial data [6] or given endpoints [7] apply here. However, the fact that B = C.1
allows one to prove these facts in a direct way.

Since the map
π : UA → PUA

is a submersion, smooth curves in PUA lift to continuous piecewise smooth curves
in UA, joining the fibres of the endpoints of the curve in PUA.

The following result was proved in [2]. Let us denote by dg the metric obtained
in PUA from the Finsler metric defined in Definition 3.4.

Lemma 3.6. If [u], [v] ∈ PUA,

dg([u], [v]) = inf{`(Γ) : Γ(t) ∈ UA smooth, [Γ] joins [u] and [v]},

where ` denotes the length of the curve measured with the usual norm of A.
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Theorem 3.7. Let [u] ∈ PUA and z ⊗ u + u ⊗ z ∈ (TPUA)[u], w∗z ∈ Aas, with
|z ⊗ w + w ⊗ z|[u] ≤ π. Then the curve [δ]

[δ](t) = ueitx0 ⊗ ueitx0

for x0 = −iz − r(−iz) (i.e., the minimal lifting of z ⊗ w + w ⊗ z), has minimal
length for the metric from Definition 3.4, for |t| ≤ π.

Proof. In [6], the general case of a quotient UA/UB was considered, for an inclusion
B ⊂ A of arbitrary C∗-algebras. In our particular case B = C, one has existence
and uniqueness of minimal liftings (in general, minimal liftings may not exist or
may not be unique).

Since the action of UA is isometric, it suffices to consider the case [u] = [1]. The
curve [δ] has an obvious lifting δ(t) = eitx0 . Let ω be another curve of unitaries
joining the fibers of 1 and v. Since exponentials are short in the unitary group,
and the action of UA is isometric, we can suppose ω to be of the form ω(t) = eity.
Furthermore, since [eix0 ] = [eiy], we have that y = x0 + s0. Since x0 is a minimal
lifting,

`(δ) = ‖x0‖ ≤ ‖x0 + s0‖ = `(ω),

because ‖x0‖ ≤ π. On the other hand, ‖x0‖ = L([δ]), and the proof follows. �

Let us return to Example 2.8, of a non unital C∗-algebra B and A = B̃ its
minimal unitization.

Example 3.8. The isomorphism

PUB̃ → GB = {u ∈ UB̃ : u− 1 ∈ B}

induces a metric in GB. Namely, the Banach–Lie algebra of GB is Bah. If b ∈ Bah,
then the metric induced by the norm of A is

|b|0 = inf{‖b− λ1‖ : λ ∈ C} = inf{‖b− ir1‖ : r ∈ R},

which is, as we have seen, the midpoint of the spectrum of b. Let us characterize
the minimal curves of GB. If z = λ1 + b ∈ B̃ah, then

ez = eλeb = eλ(1 + b+ 1
2b

2 + . . . ) = eλ1 + b′,

where b′ = b+ 1
2b

2 + · · · ∈ B. Thus the isomorphism PUA sends [ez] to 1
eλ
ez = eb.

It follows that for this (midpoint-spectrum) metric, curves

δ(t) = getb

for g ∈ GB and b ∈ Bah are minimal for |t| ≤ π
|b|0 . This norm | |0 defined in Bah

is equivalent to the usual norm ‖ ‖. Indeed, it is clear that |b|0 ≤ ‖b‖. Putting
b = ib′ with b′ selfadjoint,

2|b|0 = supσ(b′)− inf σ(b′).
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Since b′ is non invertible (B is non unital), it must be supσ(b′) ≥ 0 (otherwise the
spectrum of b′ would be strictly negative and b′ invertible). Then inf σ(b′) ≤ 0,
and thus

supσ(b′)− inf σ(b′) ≥ max{supσ(b′),− inf σ(b′)} = sup
λ∈σ(b′)

|λ| = ‖b′‖.

Then
1
2‖b‖ ≤ |b|0 ≤ ‖b‖.

If A is a von Neumann algebra, one can prove that given two points [u], [v] ∈
PUA, there exists a minimal curve joining them. The existence of minimal curves
joining given endpoints which are close was proved in [7], for arbitrary B ⊂ A.

Theorem 3.9. Let A be a von Neumann algebra. Let [u], [v] ∈ PUA. Then there
exists a minimal geodesic [δ] for the metric from Definition 3.4 (δ(t) = ueitx0 , with
x0 a minimal lifting for ‖ ‖) such that [δ(0)] = [u] and [δ(1)] = [v].

Proof. There exists x = x∗ ∈ A such that v = ueix with ‖x‖ ≤ π. Let x0 = x−r(x).
Then, since x0 is a minimal lifting,

‖x0‖ ≤ ‖x‖ ≤ π.
Thus [δ(y)] = [eitx0 ] has minimal length between its endpoints for t ∈ [0, 1] by the
preceeding theorem. Its endpoints are

[δ(0)] = [u] and [δ(1)] = [ueitx−r(x)] = [veitr(x)] = [v]. �

Remark 3.10. The result holds with the same proof for C∗-algebras A such that
the unitary group UA is exponential (i.e., UA = exp(Aah)). For instance, as in
Examples 2.8 and 3.8, put B = K(H). Then it is well known that

GK(H) = exp(Kah(H)).

4. Finite von Neumann algebras

For the case when A is a finite von Neumann algebra with a finite (normal,
faithful) trace τ , one can endow the tangent spaces of UA with the p-norm ‖x‖p =
τ(x∗x)p/2, and one obtains a metric which is equivalent to the p-norm restricted to
UA, which is complete (and metrizes both the weak and strong operator topologies
of UA). For this metric, the same curves µ of Remark 3.1 are minimal, and remain
so for |t| ≤ π if ‖x‖∞ ≤ π. Note that the normalization of the exponent x is done
in the usual norm of A. A geodesic joining u1 and u2 is unique if ‖u1 − u2‖∞ < 2
(again, usual norm of A). These facts were proved in [1] for p ≥ 2, though the
author believes it holds for p ≥ 1 (see [4], where the analogous result was proved
for p ≥ 1, for the usual (infinite) trace of B(H)).

Let p ≥ 2 and x∗ = x ∈ A. Then there exists a unique r = r(x, p) ∈ R such that
‖x− r‖p = min{‖x+ t‖p : t ∈ R}.

If p = 2, r = τ(x). In general, the map
f(t) = ‖x+ t‖pp, t ∈ R,
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328 ESTEBAN ANDRUCHOW

is strictly convex (this follows, for instance, from the uniform convexity of the
p-norm [8]), and tends to +∞ if |t| → ∞. Thus it has a (unique) global minimum.

The minimality results of the previous section hold for the p-norms. Let us
define

Definition 4.1. For x = x∗ ∈ M, we call the element x − r(x, p) the p-minimal
lifting of x.

Definition 4.2. If z ⊗ u+ u⊗ z ∈ (TPUA)[u], put
|z ⊗ u+ u⊗ z|[u],p = inf{‖u∗z − it‖p : t ∈ R},

the p-quotient metric on PUA.

Lemma 3.6 was proved in [2] for the p-norms, for 2 ≤ p < ∞. Therefore the
analogue of Theorem 3.7 can be proved in a similar fashion:

Theorem 4.3. Let A be a finite von Neumann algebra, [u] ∈ PUA and z⊗u+u⊗z ∈
(TPUA)[u], w∗z ∈ Aas, with |z ⊗ w + w ⊗ z|[u] ≤ π. Then the curve [δ],

[δ](t) = ueitx0 ⊗ ueitx0

for x0 = −iz − r(−iz, p) (i.e., the minimal lifting of z ⊗ w + w ⊗ z), has minimal
length for the p-quotient metric in Definition 4.2, for |t| ≤ π.

And therefore one has also the analogue of Theorem 3.9:

Theorem 4.4. Let A be a finite von Neumann algebra. Let [u], [v] ∈ PUA. Then
there exists a minimal geodesic [δ] for the metric from Definition 4.2 for any even
p, (δ(t) = ueitx0 , with x0 a minimal lifting for ‖ ‖p) such that [δ(0)] = [u] and
[δ(1)] = [v].
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