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A NOTE ON WAVELET EXPANSIONS FOR DYADIC BMO
FUNCTIONS IN SPACES OF HOMOGENEOUS TYPE

RAQUEL CRESCIMBENI AND LUIS NOWAK

Abstract. We give a characterization of dyadic BMO spaces in terms of Haar
wavelet coefficients in spaces of homogeneous type.

1. Introduction and statement of the main results

The characterization of functional spaces via wavelet coefficients is one of the
most studied properties in the general setting. In the Euclidean context there
is, besides the well known Haar system, a great variety of wavelet systems with
particular properties. Given the nature of the functional space, different systems of
wavelets characterize such space ([12, 13, 17, 18]). For example, the Haar systems
and others with regularity as the Daubechies’s systems turn out to be unconditional
bases for the classical Lebesgue spaces, and moreover there exist two positive and
finite constants c1 and c2 such that

c1‖f‖Lp ≤

∥∥∥∥∥∥
(∑
i∈Z+

|〈f, ψi〉|2|ψi|2
)1/2

∥∥∥∥∥∥
Lp

≤ c2‖f‖Lp , (1.1)

where (ψi)i∈Z+ is one of such systems of wavelets. Similar characterizations to
those given in (1.1) hold for different systems of wavelets in other functional spaces,
such as the Lorentz spaces Lp,q, the weighted Lebesgue spaces Lpw with w in the
Muckenhoupt class, and the Hardy spaces H1, among others ([7, 12, 13, 17, 18]).
In this note we consider the space of functions of dyadic bounded mean oscillation
in spaces of homogeneous type. In the Euclidean case of the real line this space is
defined by

BMOd(R) =
{
f ∈ L1

loc : sup
I

1
|I|

∫
I

|f(x)− fI | dx <∞
}
,

where the supremum is taken over all the dyadic intervals I of R, with fI the f
average over I, and |I| the Lebesgue measure of the interval I. For this functional
space and the classical Haar system in R we have the following result [8].
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58 R. CRESCIMBENI AND L. NOWAK

Proposition 1.1. The function φ belongs to BMOd if and only if there exists a
positive and finite constant C such that∑

J⊆I, J dyadic
|cJ |2 ≤ C|I|

for all dyadic intervals I, where cJ = 〈φ, hJ〉 =
∫
φ(x)hJ(x) dx and for each dyadic

interval J the Haar function hJ is defined as 1
|J|1/2 on the left half of J , as −1

|J|1/2

on the right half of J , and zero otherwise.

The same result has been obtained in [13] and [17] for the non dyadic BMO
and for wavelet systems with some regularity. In both works the regularity of the
wavelets plays a central role. A generalization of this result in weighted BMO
spaces can be found in [14]. In this paper we consider the problem for the dyadic
case in the setting of spaces of homogeneous type. Our work is inspired in [2], where
the authors give a characterization, via wavelets with regularity, of BMO spaces in
the Euclidean context. This caracterization holds for the Meyer and Daubechies
wavelets. However, in the general setting of spaces of homogeneous type one cannot
expect any more smoothness than Lipschitz regularity. We prove an analogue of
the results given in [2] for generalized dyadic BMOD spaces and Haar wavelets that
we shall introduce later. Also, in our dyadic context in spaces of homogeneous type,
new geometric ingredients appear underlying in the space and they are relevant in
the proof of our results. Notice that since the Haar wavelets are not continuous,
for our proof we use only the properties of the dyadic family that supports the
Haar systems and the regularity arguments in [2] are replaced by that geometric
argument.

In section 2 we shall introduce the dyadic families D and the Haar systems H in
spaces of homogeneous type. Then in section 3 we shall define the spaces we will
work with along the paper: the dyadic spaces BMOD, HD1 , and the Carleson class
C in spaces of homogeneous type, with the respective norms ‖.‖BMOD , ‖.‖HD and
‖.‖C . The main results of this note are the following three theorems that we shall
prove in sections 4 and 5.

Theorem 1.2. Let H be a Haar system associated with a dyadic family D. Let
f ∈ BMOD. Then the sequence C = {〈f, h〉}h∈H belongs to the Carleson class C.
Moreover, there exists a positive constant C such that

‖C‖C ≤ C‖f‖BMOD .

Theorem 1.3. Let H be a Haar system associated with a dyadic family D. If
C = {ch}h∈H is a sequence of real numbers vanishing except for a finite subset of
H then the function f =

∑
h∈H chh belongs to BMOD. Moreover, there exists a

positive constant C such that

‖f‖BMOD ≤ C‖C‖C .

Theorem 1.4. Let H be a Haar system associated with a dyadic family D. Let
C = {ch}h∈H be a sequence of real numbers that belong to the Carleson class C.
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WAVELET EXPANSIONS FOR DYADIC BMO FUNCTIONS 59

Then, the series ∑
h∈H̃

chh

converges in the sense of the weak-∗ topology of BMOD to a function f ∈ BMOD.

2. Dyadic families and Haar systems in spaces of homogeneous type

We first briefly recall the basic properties of the general theory of spaces of
homogeneous type. Assume that X is a set; a nonnegative symmetric function d
on X ×X is called a quasi-distance if there exists a constant K such that

d(x, y) ≤ K[d(x, z) + d(z, y)], (2.1)

for every x, y, z ∈ X, and d(x, y) = 0 if and only if x = y.
We shall say that (X, d, µ) is a space of homogeneous type if d is a quasi-distance

on X, µ is a positive Borel measure defined on a σ-algebra of subsets of X which
contains the balls, and there exists a constant A such that

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) <∞

holds for every x ∈ X and every r > 0.
In [16] the authors prove that each quasi-metric space is metrizable and that

d is equivalent to ρβ , where ρ is a distance on X and β ≥ 1. Therefore we shall
assume throughout this paper that d is actually a distance on X, in other words
that K = 1 in (2.1).

The construction of dyadic type families of subsets in metric or quasi-metric
spaces with some inner and outer metric control of the sizes of the dyadic sets is
given in [9]. These families satisfy all the relevant properties of the usual dyadic
cubes in Rn and are the basic tool to build wavelets on a metric space of homoge-
neous type (see [1] or [3]). The notion of dyadic families that we will consider here
is contained in the following definition (see [6]).

Definition 2.1 (The class D(δ) of all dyadic families). Let (X, d, µ) be a
metric space of homogeneous type. We say that D =

⋃
j∈ZDj is a dyadic family

on X with parameter δ ∈ (0, 1) —briefly, that D belongs to D(δ)— if each Dj is a
family of Borel subsets Q of X such that

(d.1) for every j ∈ Z the cubes in Dj are pairwise disjoint;
(d.2) for every j ∈ Z the family Dj almost covers X in the sense that µ(X \⋃

Q∈DjQ) = 0;
(d.3) if Q ∈ Dj and i < j, then there exists a unique Q̃ ∈ Di such that Q ⊆ Q̃;
(d.4) if Q ∈ Dj and Q̃ ∈ Di with i ≤ j, then either Q ⊆ Q̃ or Q ∩ Q̃ = ∅;
(d.5) there exist two constants a1 and a2 such that for each Q ∈ Dj there exists

a point x ∈ Q that satisfies B(x, a1δ
j) ⊆ Q ⊆ B(x, a2δ

j).

The following properties can be deduced from (d.1)–(d.5):
(d.6) there exists a positive integer N depending on ai, i = 1, 2 in (d.5) and on

the doubling constant A such that for every j ∈ Z and all Q ∈ Dj the
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60 R. CRESCIMBENI AND L. NOWAK

inequalities 1 ≤ #(L(Q)) ≤ N hold, where L(Q) = {Q′ ∈ Dj+1 : Q′ ⊆ Q}
and #(B) denotes the cardinal of B;

(d.7) there exists a positive constant c such that µ(Q) ≤ cµ(Q′) for all Q ∈ D̃
and every Q′ ∈ L(Q).

It is easy to give examples of dyadic systems D such that a dyadic cube Q
belongs to different levels j ∈ Z. In fact, the usual dyadic cube in the real line
intersected with the natural set N is a dyadic family in the space of homogeneous
type (N, d, µ) with d the usual metric and µ the counting measure. In this case,
the points turn out to be dyadic cubes belonging to different and infinite resolution
levels of the space’s dyadic decomposition. We are interested in the identification
of those scales and places of partition which shall give rise to the Haar functions.
This induces the definition of a subfamily of D containing all dyadic cubes in D
with non-trivial offspring.

Definition 2.2 (The subfamily D̃ of a D in D(δ)). For each D in D(δ) and for
each j ∈ Z we consider the families

D̃j = {Q ∈ Dj : #({Q′ ∈ Dj+1 : Q′ ⊆ Q}) > 1}.
We define

D̃ =
⋃
j∈Z
D̃j .

Properties (d.1)–(d.6) allow us to obtain the following result.

Proposition 2.3. Let (X, d, µ) be a metric space of homogeneous type and let D
be in D(δ). Then

(a) The families D̃j, j ∈ Z, are pairwise disjoint.
(b) The function J : D̃ −→ Z given by Q 7→ J (Q) if Q ∈ D̃J (Q) is well

defined.

We would like to note that the point x ∈ Q given in (d.5) cannot be unique. It
will be important in the sequel to identify one of them. This induces the following
definition.

Definition 2.4. Let (X, d, µ) be a space of homogeneous type and let D be a
dyadic family in D(δ). For each j ∈ Z we define a function Pj , that we will call
point central function of level j, as Pj : Dj −→ X given by Pj(Q) = xQ ∈ Q such
that a1δ

j ≤ d(xQ, X \Q).

From the condition (d.5) we get that for each integer j the point central function
of level j, Pj , is well defined. The next result contains the main property of this
function. We recall that a set A in a metric space (X, d) is α-dispersed if d(x, y) ≥ α
for all x, y ∈ A.

Proposition 2.5. Let (X, d, µ) be a space of homogeneous type, let D be a dyadic
family in D(δ) and let {Pj : j ∈ Z} be a family of point central functions. Then

(1) the set Pj(Dj) is a1
2 δ

j-dispersed for each j ∈ Z;
(2) the set P =

⋃
j∈Z Pj(Dj) is dense in X.
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Proof. First we prove (1). Let j ∈ Z and let x, y be two points in Pj(Dj), with
x 6= y. Let Q1 = (Pj)−1(x) and Q2 = (Pj)−1(y). Notice that Q1 and Q2 belong
to Dj and that Pj is one to one. Thus, from (d.1), Q1 ∩ Q2 = ∅. Suppose that
d(x, y) < a1

2 δ
j . Then y ∈ B(x, a1

2 δ
j) and hence y ∈ Q1, which is a contradiction.

Therefore d(x, y) ≥ a1
2 δ

j and Pj(Dj) is a1
2 δ

j-dispersed.
For proving (2), we take x ∈ X and ε > 0. We fix j ∈ Z such that 2a2δ

j < ε/2.
We first suppose that x ∈

⋃
Q∈Dj Q and take Q, the unique dyadic cube in Dj

such that x ∈ Q. Then, from (d.5), we get that x ∈ B(Pj(Q), 2a2δ
j) and hence,

from the selection of the integer j, we have that d(x,Pj(Q)) < ε. On the other
hand, if x ∈ X \

⋃
Q∈Dj Q then x ∈ ∂(Q) for some Q in Dj . Since the balls have

positive measure, by (d.2) we have that Bd(x, ε/2)∩Q′ 6= ∅ for some Q′ ∈ Dj such
that Q ∩Q′ 6= ∅. That is, there exists y ∈ Q′ such that d(x, y) < ε/2. Thus, from
(d.5) and the selection of j we obtain that d(x,Pj(Q′)) ≤ d(x, y) + d(y,Pj(Q′)) ≤
ε/2 + ε/2. �

In the sequel we shall need the following geometric characterization of atoms in
spaces of homogeneous type via the subfamily D̃. We recall that a point x ∈ X,
where (X, d, µ) is a space of homogeneous type, is an atom in X if µ({x}) > 0.
A well know result of Maćıas and Segovia ([16]) gives a characterization of atoms
through the metric in (X, d, µ). More precisely, the authors prove that the point x
is an atom in X if and only if there exists a positive and finite constant r such that
B(x, r) ∩X = {x}. We shall use this characterization to prove that the subfamily
of non trivial offspring D̃ of the dyadic family D identifies atoms. In fact, we have
the following result.

Proposition 2.6. Let (X, d, µ) be a space of homogeneous type and let D be a
dyadic family in D(δ). Let D̃ be the subfamily of non trivial offspring of D. Then

D = D̃ ∪ {{x} : µ(x) > 0} ,
where the union is disjoint.

Proof. We shall prove first that D ⊆ D̃ ∪ {{x} : µ(x) > 0}. Notice that we only
need to consider the case where Q does not belong to D̃. Let j be an integer such
that Q ∈ Dj . From the definition of D̃ and since Q /∈ D̃ we have that Q ∈ Dj+n
for every natural number n. Then, for all positive integers n and each dyadic cube
Q′ ∈ Dj+n with Q′ ⊆ Q we get that Q′ = Q. Now, we fix for every positive integer
n the following function Pj+n : Dj+n −→ X with Pj+n(Q) = x for some x ∈ Q.
We write xn = Pj+n(Q) and consider the ball Bn = Bd(xn, 2a2δ

j+n), where a2 is
the constant in (d.5) for the cube Q. Thus we get that Q ⊆ Bn for each n. Then
since the radii of the balls Bn go to zero, by a standard argument we have that
xn = xn+1 and Q = {xn}. From the result of Maćıas and Segovia we have that xn
is an atom in X.

Now we prove that D̃∪{{x} : µ(x) > 0} ⊆ D. Notice that we only need to prove
that if x is an atom then {x} ∈ D. We recall that from (d.2), µ(

⋃
Q∈D(∂Q)) = 0;

then for each integer j there exists a dyadic cube Qj ∈ Dj such that x ∈ Qj . For
each integer j we fix a point central function Pj : Dj −→ X. From Maćıas and
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62 R. CRESCIMBENI AND L. NOWAK

Segovia we get that x is an isolated point and therefore there exists an ε > 0 such
that

Bd(x, ε) ∩X = {x}.
On the other hand, from Proposition 2.5 item (2), we have that the set

⋃
j∈Z Pj(Dj)

is dense in X. Thus we can take j0 ∈ Z and Q ∈ Dj0 such that d(x,Pj0(Q)) < ε/2
and 2a2δ

j0 < ε/2, where a2 is the constant in (d.5) for the cube Q. Therefore
Q = Qj0 = {x}. �

Having introduced the dyadic cubes, we now define the other basic objects with
which we will work along the present article: the systems of Haar type associated
with a dyadic family (see [6]).

Definition 2.7. Let D be a dyadic family on (X, d, µ) such that D ∈ D(δ). A
system H of simple Borel measurable real functions h on X is a Haar system
associated with D if it satisfies:

(h.1) For each h ∈ H there exists a unique j ∈ Z and a cube Q = Qh ∈ D̃j such
that {x ∈ X : h(x) 6= 0} ⊆ Q, and this property does not hold for any cube
in Dj+1.

(h.2) For every Q ∈ D̃ there exist exactly MQ = #(L(Q)) − 1 ≥ 1 functions
h ∈ H such that (h.1) holds. We shall write HQ to denote the set of all
these functions h.

(h.3) For each h ∈ H we have that
∫
X
h dµ = 0.

(h.4) For each Q ∈ D̃ let VQ denote the vector space of all functions on Q which
are constant on each Q′ ∈ L(Q). Then the system

{
χ

Q

(µ(Q))1/2

}
∪HQ is an

orthonormal basis for VQ.

It is easy to show, following the proof in [1] (see also [3]), that given D in D(δ)
it is always possible to construct Haar systems supported on the elements Q of D̃.
This means that there exist systems H of functions h on X satisfying (h.1) to (h.4)
for all D in D(δ). Observe also that from (d.7) we get that there exists a positive
constant C such that

‖h‖∞ ≤ Cµ(Qh)−1/2,

for all h ∈ H. Here, as usual, ‖f‖∞ is the L∞-norm of the function f which is
defined as the µ-essential least upper bound of f . Also, the Haar system H is an
orthonormal basis of L2(X,µ).

3. The dyadic spaces BMOD and HD1 and sequential spaces of
Carleson type

In this section we define three spaces that we will relate later via Haar wavelets:
the Carleson class, the dyadic BMO space, and the dyadic Hardy spaces.

We first introduce a Carleson type condition generalizing to our dyadic context
in spaces of homogeneous type those given by Lemarié and Meyer in [15] and Aimar
and Bernardis in [2]. We shall say that the sequence C = {ch}h∈H over the Haar
system H belongs to the sequential space of Carleson type C, or simply that it
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WAVELET EXPANSIONS FOR DYADIC BMO FUNCTIONS 63

belongs to the Carleson class C, if there exists a positive constant A such that the
inequality ∑

h∈H : supp(h)⊆R

|ch|2 ≤ Aµ(R)

holds for every dyadic cube R ∈ D. We will denote with ‖C‖C the infimum of the
squares of those constants A, so that

C = {C = {ch}h∈H : ‖C‖C <∞}.
Notice that our definition is apparently different from that given in [2] because

their sum is over dyadic cubes. But in the real line for each dyadic interval I there
exists a unique wavelet function supported in I. In [15] the authors consider the
Rn case; in such a context for each cube they have a uniform number of wavelets
supported on it. Our general context is a little different. In fact, we do not have
a uniform number of wavelets supported in each dyadic cube Q; however by (d.6)
this number is uniformly bounded. If we consider as spaces of homogeneous type
the Rn spaces, our definition is the same as that given in [15].

For introducing dyadic p-bounded mean oscillation functions adequate in our
setting of measure metric spaces, it will be necessary the following definition that
generalizes to our dyadic families in D(δ) the notion of quadrant given in [3] for
Christ’s dyadic cubes, where the authors give a detailed presentation.
Definition 3.1. Let D be a dyadic family in the class D(δ). We define, for each
dyadic cube Q in D, the quadrant of X that contains the cube Q, C(Q), by

C(Q) =
⋃

{Q′∈D :Q⊆Q′}

Q′.

Following the lines in [3] for the case of Christ’s dyadic cube, from (d.6) and
since all the dyadic cubes Q in D are spaces of homogeneous type with doubling
uniform constant, we can prove the next result that will be important in section 5.
Proposition 3.2. Let (X, d, µ) be a space of homogeneous type and let D be a
dyadic family in the class D(δ). Then there exists a positive integer N (that depends
on the geometric constants of (X, d, µ)) and disjoint dyadic cubes Qα, α = 1, . . . , N ,
such that

X \ ∂
⋃
Q∈D

Q =
⋃

α=1,...,N
Cα,

where Cα = C(Qα) and ∂A denotes the border of the set A. That is, there exists
a finite number of quadrants that are a partition of X.

With the above notation we shall write C(X,D) to denote the family of quad-
rants {Cα : α = 1, . . . , N} associated with a dyadic family D given by Proposi-
tion 3.2.

The string of spaces BMODp of all functions of p-bounded mean oscillation, 1 ≤
p <∞, is defined by BMODp = {f : ‖f‖∗,p <∞}, where

‖f‖∗,p = sup
Q∈D

(
1

µ(Q)

∫
Q

|f(x)− fQ|p dµ(x)
)1/p
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64 R. CRESCIMBENI AND L. NOWAK

and fQ = 1
µ(Q)

∫
Q
f dµ. In the case p = 1 we shall write BMOD instead of BMOD1 .

Notice that our dyadic setting is reflected in the fact that the functions in BMODp
are equivalence classes: f is equivalent to g if and only if f−g is constant over each
quadrant of X. Thus, from Proposition 3.2 we have that there exist two positive
and finite constants c1 and c2 such that

c1‖f‖∗,p ≤
∑

α=1,...,N
‖fα‖∗,p ≤ c2‖f‖∗,p,

where the function fα is f on each Cα ∈ C(X,D) and zero otherwise.
On the other hand, our definition of a dyadic family allows us to have a Calderón–

Zygmund type decomposition associated with such a family. Moreover, considering
each cube as a space of homogeneous type, such a decomposition can be done in
each dyadic cube. In such case the doubling constant is uniform over all dyadic
cubes and therefore following the proof of Theorem 6.16 in [18] we obtain the
following dyadic version of the John–Nirenberg inequality.
Theorem 3.3. Let D be a dyadic family in the class D(δ). Then there exist two
positive constants C1 and C2 such that for every function f ∈ BMOD1 , every dyadic
cube Q ∈ D and every t ≥ 0 we have the following inequality:

µ ({x ∈ Q : |f(x)− fQ| > t}) ≤ C1µ(Q)e−
C2t

‖f‖∗,1 .

One of the main consequences of this important result is the equivalence between
the norms of all dyadic p-bounded mean oscillation spaces.
Corollary 3.4. Let D be a dyadic family in the class D(δ) and 1 ≤ p <∞. Then
there exists a positive constant C such that for each function f ∈ BMODp we have

‖f‖∗,1 ≤ ‖f‖∗,p ≤ C‖f‖∗,1.
Any of the equivalent norms ‖.‖∗,p will be denoted by ‖.‖BMOD .
We introduce, as in [5], the dyadic Hardy space HD1 on a space of homogeneous

type. First of all we give the definition of dyadic atom associated with a dyadic
family D in the class D(δ).
Definition 3.5. Let D be a dyadic family in the class D(δ). For 1 < q ≤ ∞
we shall say that a function a defined on X is a dyadic q-atom associated with D
—briefly, that a ∈ Aq,D— if there exists a dyadic cube Q in D such that

(a1) supp(a(x)) ⊆ Q.
(a2)

∫
X
a(x) dµ(x) = 0.

(a3) ‖a‖Lq(X,µ) ≤ (µ(Q))
1
q−1 if q <∞, and ‖a‖L∞(X,µ) ≤ µ(Q))−1 if q =∞.

For 1 < q ≤ ∞, the spaces Hq,D
1 are defined as follows.

Definition 3.6. Let D be a dyadic family in the class D(δ). For 1 < q ≤ ∞ we
define the space Hq,D

1 as the linear space of all functions f on X —identifying those
that are equal almost everywhere with respect to µ— that can be written as

f =
∑
n∈Z+

λn an, with
∑
n∈Z+

|λn| <∞,
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where an ∈ Aq,D for each n and the convergence is in the L1(X,µ) norm.

For each function f in Hq,D
1 we define the number

|||f |||1,q,D = inf
{∑
n∈Z+

|λn| <∞ : f =
∑
n∈Z+

λnan, an ∈ Aq,D

}
.

The following result is a consequence of Definition 3.5.

Proposition 3.7. Let D be a dyadic family in the class D(δ).
(1) If 1 < q1 < q2 ≤ ∞, then Aq2,D ⊆ Aq1,D. Moreover, if 1 < q ≤ ∞ and

a = a(x) is a q-dyadic atom, then ‖a‖L1(X,µ) ≤ 1.
(2) For each 1 < q1 < q2 ≤ ∞ we have that Hq2,D

1 (X, d, µ) ⊆ Hq1,D
1 (X, d, µ)

and ‖f‖L1(X,µ) ≤ |||f |||1,q1,D ≤ |||f |||1,q2,D.
(3) |||·|||1,q,D is a norm and

(
Hq,D

1 , |||·|||1,q,D
)

is a Banach space, for each 1 <
q ≤ ∞.

(4) If f ∈ Hq,D
1 then

∫
X
f(x) dµ(x) = 0.

(5) If Q is a dyadic cube in D such that f ∈ Lq(Q,µ), f(x) = 0 for each x in
X \Q and

∫
Q
f(x) dµ(x) = 0, then f ∈ Hq,D

1 .

One of the tools that we will use for the proof of our main results is the following
duality result for the dyadic spaces HD1 and BMOD in spaces of homogeneous type.
As a consequence of this duality and by a classical functional analysis result we
obtain that BMOD is a Banach space.

Theorem 3.8. Let D be a dyadic family in the class D(δ). For 1 < q ≤ ∞ the
spaces Hq,D

1 coincide and the norms |||·|||1,q,D are equivalent. This unique space
will be denoted by HD1 and any of the norms |||·|||1,q,D will be denoted by |||·|||1,D.
We have also that (HD1 )∗, the dual of HD1 , is BMOD in the sense that for each
continuous linear functional ϕ on HD1 there exists a unique (up to functions which
are constant on each quadrant) function b ∈ BMOD such that if f is any finite
sum of atoms we have that ϕ(f) =

∫
X
bf dµ and that the BMOD norm of b and

the functional norm of ϕ are equivalent.

As far as we know the proof of this result has not been detailed in other works.
Moreover, it is not a consequence of the Coifman–Weiss duality result in spaces of
homogeneous type. However, following [18] adapted to this setting it is possible to
prove it.

4. Proof of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. Let be R a dyadic cube in D and let f be a function in
BMOD. Then we rewrite the function f in the following way: f = f1 + f2 + fR,
where fR = 1

µ(R)
∫
R
f dµ, f1 = (f − fR)χ

R
and f2 = (f − fR)χ

X\R
. So, from (h.3)

we have that 〈h, fR〉 = 0 for every Haar function h ∈ H. On the other hand, since
supp(h) ∩ supp(f2) = ∅ for every Haar function h ∈ H with supp(h) ⊆ R, we have
also that 〈h, f2〉 = 0 for all such functions h.

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



66 R. CRESCIMBENI AND L. NOWAK

So, we get that ∑
h∈H : supp(h)⊆R

|〈f, h〉|2
 1

2

=

 ∑
h∈H : supp(h)⊆R

|〈f1, h〉|2
 1

2

.

Then, from Parseval’s inequality and the fact that f belongs to BMOD considering
the norm in BMOD2 , we obtain that ∑

h∈H : supp(h)⊆R

|〈f, h〉|2
 1

2

≤ ‖f1‖2

=
(∫

R

|f − fR|2 dµ
) 1

2

≤ C‖f‖BMOD . �

Proof of Theorem 1.3. We first notice that, since every Haar function h ∈ H be-
longs to L∞(X,µ), then h belongs to BMOD for all h ∈ H. So, since f is a finite
sum of multiples of Haar functions, we have that f ∈ BMOD.

Now, to prove the inequality in norm, we fix a dyadic cube R ∈ D and a point
x0 ∈ R. Notice that if R ∈ D \ D̃ by Proposition 2.6 we get that R = {x0} with x0
an atom in X. Thus, though µ({x0}) > 0, we have that∫

R

|f(x)− f(x0)| dµ(x) = 0.

Hence, it only remains to consider the case in which R ∈ D̃. Set Hf = {h ∈ H :
ch 6= 0}. Then

f =
∑
h∈Hf

chh.

Let J be the function given in (b), Proposition 2.3. For each h ∈ H, we consider
Qh ∈ D̃, the dyadic cube given in (h.1), and we separate the function f according
to the different levels of resolution. More precisely, we write f = f1 + f2 + f3 with
fi =

∑
h∈Hfi

chh, i = 1, 2, 3, and

Hf1 = {h ∈ Hf : J (Qh) < J (R)},
Hf2 = {h ∈ Hf : J (Qh) ≥ J (R) and Qh ∩R 6= ∅},
Hf3 = {h ∈ Hf : J (Qh) ≥ J (R) and Qh ∩R = ∅}.

It is clear that if x ∈ R then f3(x) = 0. Also, since all but a a finite number of
terms of the sequence C = (ch)h∈H are zero, we get that this sequence belongs to
the dyadic Carleson class C. So, since H is an orthonormal basis of L2(X,µ), from
Bessel’s inequality we have that

‖f2‖2 ≤

 ∑
h∈Hf2

|ch|2
1/2

≤ C‖C‖C µ(R)1/2.
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Hence, by Hölder’s inequality and the above estimation of the L2-norm of f2 we
obtain∫

R

|f(x)− f1(x0)| dµ(x) ≤
∫
R

|f1(x)− f1(x0)| dµ(x) +
∫
R

|f2(x)| dµ(x)

≤
∫
R

|f1(x)− f1(x0)| dµ(x) +
(∫

R

|f2|2 dµ
)1/2

µ(R)1/2

≤
∫
R

|f1(x)− f1(x0)| dµ(x) + C‖C‖C µ(R).

(4.1)
On the other hand, we notice that if h ∈ Hf1 then we have the following two

possibilities: Qh ∩ R = ∅ or R ⊂ Qh. In the former case we get that h(x) =
h(x0) = 0 for each x ∈ R. In the latter, J (R) > J (Qh) and therefore the cube R
is a descendant of the cube Qh. Hence, from (h.4) we get that h(x)− h(x0) = 0 if
x ∈ R. So

I1 =
∫
R

∑
h∈Hf1

Qh∩R=∅

|ch||h(x)− h(x0)| dµ(x) = 0

and

I2 =
∫
R

∑
h∈Hf1
R⊂Qh

|ch||h(x)− h(x0)| dµ(x) = 0.

Thus ∫
R

|f1(x)− f1(x0)| dµ(x) =
∫
R

∣∣∣∣∣ ∑
h∈Hf1

ch (h(x)− h(x0)) dµ(x)

∣∣∣∣∣
≤ I1 + I2 = 0. �

5. Proof of Theorem 1.4

To prove that the series
∑
h∈H chh converges, in the sense of the weak-∗ topology,

to a function in BMOD, we first notice that given an integer j and x ∈ X, from
(d.6), (h.1) and (h.2), we get that ∑

h∈H
Qh∈Dj

chh(x)

is a finite sum, where Qh is the dyadic cube given in (h.1) for each Haar function h.
So the function

fN =
N∑

j=−N

∑
h∈H

Qh∈Dj

chh,

with N belonging to the positive integers Z+, is well defined.
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Now, we shall prove that fN belongs to BMOD for each positive integer N . Let
Q0 be a dyadic cube in D and let x0 ∈ Q0. As in the proof of Theorem 1.3 we
only need to consider the case in which Q0 ∈ D̃. Using the same notation as in the
previous section, we consider the set HfN = {h ∈ H : J (Qh) = −N, . . . , N} and
rewrite fN as fN = fN1 + fN2 + fN3 , with fNi =

∑
h∈H

fN
i

chh, i = 1, 2, 3, and

HfN
1

= {h ∈ HfN : J (Qh) < J (Q0)},
HfN

2
= {h ∈ HfN : J (Qh) ≥ J (Q0) and Qh ∩Q0 6= ∅},

HfN
3

= {h ∈ HfN : J (Qh) ≥ J (Q0) and Qh ∩Q0 = ∅}.

Because fN3 (x) = 0 for each x ∈ Q0 we have that
1

µ(Q0)

∫
Q0

|fN (x)− fN1 (x0)| dµ(x) = 1
µ(Q0)

∫
Q0

|fN1 (x) + fN2 (x)− fN1 (x0)| dµ(x)

≤ I1 + I2,

with

I1 = 1
µ(Q0)

∫
Q0

|fN1 (x)− fN1 (x0)| dµ(x) and I2 = 1
µ(Q0)

∫
Q0

|fN2 (x)| dµ(x).

But, as in the proof of Theorem 1.3, we have that fN1 (x) − fN1 (x0) = 0 for each
x ∈ Q0. Hence I1 = 0. Also, from Hölder’s inequality, Bessel’s inequality for the
orthonormal basis H, and the fact that the sequence C belongs to the Carleson
class C, we have that

I2 ≤
1

µ(Q0)

(∫
Q0

|fN2 (x)| dµ(x)
)1/2

µ(Q0)1/2

= 1
µ(Q0)1/2 ‖f

N
2 ‖2

≤ 1
µ(Q0)1/2

 ∑
h∈Hf2

|ch|2
1/2

≤ C‖C‖C µ(Q0).

Hence, fN belongs to BMOD. In the sequel for N ∈ Z+ we shall write, as usual,
(u, fN ) to denote the action of the functional ΦfN over the function u ∈ HD1 , where
ΦfN is the functional given by Proposition 3.8 associated with the function fN .
That is,

(u, fN ) = ΦfN (u).
Now we shall prove that the sequence (fN : N ∈ Z+) converges in the sense of the
weak-∗ topology. For this, we prove that it is a Cauchy sequence in this topology.
More precisely, we shall see that given ε > 0 we have that

|(u, fN )− (u, fN
′
)| < ε

for N and N ′ large enough and for each function u ∈ HD1 .
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Let u ∈ HD1 . That is,

u =
∑
n∈Z+

λnan, with
∑
n∈Z+

|λn| <∞,

where each an belongs to A∞,D and the convergence of the series is in the L1(X,µ)
norm. For each positive integer n we shall write Qn to denote the dyadic cube that
supports the atom an given in Definition 3.5 with q = ∞. Let us take N ′ < N .
For each couple of integers (J1, J2) with J1 < J2 we shall write

fJ1,J2 =
J2∑
j=J1

∑
h∈H

Qh∈Dj

chh.

So, fN − fN ′ = fN
′,N + f−N,−N

′ and then from Proposition 3.8 we can pass to
integral form in the following way:

|(u, fN )− (u, fN
′
)| =

∣∣∣∣∣ ∑
n∈Z+

λn(an, fN
′,N + f−N,−N

′
)

∣∣∣∣∣
≤
∑
n∈Z+

|λn|
∣∣∣∣∫
Qn

an(x)(fN
′,N (x) + f−N,−N

′
(x)) dµ(x)

∣∣∣∣
≤ I1 + I2,

where

I1 =
∑
n∈Z+

|λn|

∣∣∣∣∣∣∣∣
∫
Qn

an(x)
−N ′∑
j=−N

∑
h∈H

Qh∈Dj

chh(x) dµ(x)

∣∣∣∣∣∣∣∣
and

I2 =
∑
n∈Z+

|λn|

∣∣∣∣∣∣∣∣
∫
Qn

an(x)
N∑

j=N ′

∑
h∈H

Qh∈Dj

chh(x) dµ(x)

∣∣∣∣∣∣∣∣ .
Since the same argument is used to prove that both I1 and I2 are less than ε,
we shall only present with some detail the case I2. Notice that for each positive
integer n we get that∫

Qn

an(x)fN
′,N (x) dµ(x) =

∫
Qn

an(x)
3∑
i=1

fn,i(x) dµ(x),

where fn,i(x) =
∑
h∈Hn,i

chh(x) and

Hn,1 = {h ∈ HfN′,N : J (Qh) < J (Qn)},
Hn,2 = {h ∈ HfN′,N : J (Qh) ≥ J (Qn) and Qh ∩Qn 6= ∅},
Hn,3 = {h ∈ HfN′,N : J (Qh) ≥ J (Qn) and Qh ∩Qn = ∅},

with
HfN′,N = {h ∈ H : J (Qh) = N ′, . . . , N}.
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Thus, for each positive integer n we have that fn,3(x) = 0 if x ∈ Qn, and we obtain

I2 ≤
∑
n∈Z+

|λn||An +Bn|,

where

An =
∫
Qn

an(x)fn,1(x) dµ(x)

and

Bn =
∫
Qn

an(x)fn,2(x) dµ(x).

But, since a is a dyadic ∞-atom and fn,1(x)− fn,1(xn) = 0 if x, xn belong to Qn,
we have that

An =
∫
Qn

an(x)(fn,1(x)− fn,1(xn)) dµ(x) = 0.

Hence we only need to show that
∑
n∈Z+ |λn||Bn| < ε for N ′ large enough. Notice

that for K ∈ Z+, from Hölder’s inequality and from Bessel’s inequality we get that∑
n∈Z+

|λn||Bn| ≤
∑
n∈Z+

|λn|‖an‖L2(Qn)‖fn,2‖L2(Qn)

=
∑
n∈Z+

|λn|‖an‖L2(Qn)

∑
Hn,2

|ch|2
1/2

≤
K∑
n=1
|λn|‖an‖L2(Qn)

∑
Hn,2

|ch|2
1/2

+
∞∑

n=K+1
|λn|‖an‖L2(Qn)

∑
Hn,2

|ch|2
1/2

.

But as the sequence (ch : h ∈ H) belongs to the Carleson class we have that∑
Hn,2

|ch|2
1/2

< Cµ(Qn)1/2 (5.1)

and hence ∑
Hn,2

|ch|2
1/2

< ε (5.2)
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for N ′ large enough. So, from (5.1) and the fact that a is a dyadic ∞-atom we get
that

∞∑
n=K+1

|λn|‖an‖L2(Qn)

∑
Hn,2

|ch|2
1/2

≤
∞∑

n=K+1
|λn|‖an‖L2(Qn)(µ(Qn))1/2

≤
∞∑

n=K+1
|λn|‖an‖∞µ(Qn)

≤
∞∑

n=K+1
|λn|

≤ ε

for K large enough since the series
∑∞
n=1 |λn| converges. On the other hand, from

(5.2) we get

K∑
n=1
|λn|‖an‖L2(Qn)

∑
Hn,2

|ch|2
1/2

< ε

K∑
n=1
|λn|‖an‖L2(Qn).

Hence, the sequence (fN : N ∈ Z+) is a Cauchy sequence in the weak-∗ topology.
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[3] H. Aimar, A. Bernardis and B. Iaffei, Multiresolution approximations and unconditional
bases on weighted Lebesgue spaces on spaces of homogeneous type, J. Approx. Theory 148
(2007) 12–34. MR 2356573.

[4] H. Aimar, A. Bernardis and B. Iaffei, Comparison of Hardy-Littlewood and dyadic maxi-
mal functions on spaces of homogeneous type, J. Math. Anal. Appl. 312 (2005) 105–120.
MR 2175208.

[5] H. Aimar, A. Bernardis and L. Nowak, On Haar bases for generalized dyadic Hardy spaces,
Rocky Mountain J. Math. 43 (2013), 697–712. MR 3093261.

[6] H. Aimar, A. Bernardis and L. Nowak, Equivalence of Haar bases associated with different
dyadic systems, J. Geom. Anal. 21 (2011), 288–304. MR 2772074.

[7] L. Carleson, An explicit unconditional basis in H1, Bull. Sci. Math. (2) 104 (1980), 405–416.
MR 0602408.

[8] S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and Hp-
theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 1–43. MR 0766959.

[9] M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq.
Math. 60/61 (1990), 601–628. MR 1096400.

[10] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer.
Math. Soc. 83 (1977), 569–645. MR 0447954.

[11] J. Conway, A course in functional analysis, Second edition. Graduate Texts in Mathematics,
96, Springer, 1990. MR 1070713.

[12] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied
Mathematics, 61, SIAM, 1992. MR 1162107.

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)

http://www.ams.org/mathscinet-getitem?mr=1463237
http://www.ams.org/mathscinet-getitem?mr=2356573
http://www.ams.org/mathscinet-getitem?mr=2175208
http://www.ams.org/mathscinet-getitem?mr=3093261
http://www.ams.org/mathscinet-getitem?mr=2772074
http://www.ams.org/mathscinet-getitem?mr=0602408
http://www.ams.org/mathscinet-getitem?mr=0766959
http://www.ams.org/mathscinet-getitem?mr=1096400
http://www.ams.org/mathscinet-getitem?mr=0447954
http://www.ams.org/mathscinet-getitem?mr=1070713
http://www.ams.org/mathscinet-getitem?mr=1162107


72 R. CRESCIMBENI AND L. NOWAK

[13] E. Hernández and G. Weiss, A first course on wavelets, Studies in Advanced Mathematics,
CRC Press, 1996. MR 1408902.

[14] E. Harboure, O. Salinas and B. Viviani, Wavelet expansions for BMOρ(w)-functions. Math.
Nachr. 281 (2008), 1747–1763. MR 2473326.
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