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T ∗-EXTENSIONS AND ABELIAN EXTENSIONS OF HOM-LIE
COLOR ALGEBRAS

BING SUN, LIANGYUN CHEN, AND YAN LIU

Abstract. We study hom-Nijenhuis operators, T ∗-extensions and abelian
extensions of hom-Lie color algebras. We show that the infinitesimal defor-
mation generated by a hom-Nijenhuis operator is trivial. Many properties
of a hom-Lie color algebra can be lifted to its T ∗-extensions such as nilpo-
tency, solvability and decomposition. It is proved that every finite-dimensional
nilpotent quadratic hom-Lie color algebra over an algebraically closed field of
characteristic not 2 is isometric to a T ∗-extension of a nilpotent Lie color alge-
bra. Moreover, we introduce abelian extensions of hom-Lie color algebras and
show that there is a representation and a 2-cocycle, associated to any abelian
extension.

1. Introduction

In 2012, Yuan [9] introduced the notion of a hom-Lie color algebra which can
be viewed as an extension of Hom-Lie superalgebras to G-graded algebras, where
G is any abelian group. In 2015, Abdaoui, Ammarto and Makhlouf defined rep-
resentations and a cohomology of the Hom-Lie color algebra ([1, Section 3]). We
recover a Lie color algebra when we have α = IdL in Definition 2.2.

In 1979, Scheunert investigated the Lie color algebras from a purely mathemat-
ical point of view and obtained generalizations of the PBW and Ado theorems ([7,
Sections 4 and 7]). Scheunert and Zhang introduced the cohomology theory of Lie
color algebras in [8]. Feldvoss described representations of Lie color algebras in [5].
Ma, Chen and Lin investigated T ∗-extensions of the Lie color algebras by virtue of
a cohomology and the representations in [6].

The first purpose of this paper is to define hom-Nijenhuis operators of the hom-
Lie color algebra, showing that the infinitesimal deformation generated by a hom-
Nijenhuis operator is trivial. Secondly, we study T ∗-extensions of the hom-Lie color
algebra by virtue of the cohomology and the representation, show that every finite-
dimensional nilpotent quadratic Lie color algebra L over an algebraically closed
field of characteristic not 2 is isometric to a T ∗-extension of a nilpotent Lie color
algebra B, and the nilpotent length of B is at most half of that of L. We also give
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the equivalence of T ∗-extensions from the cohomological point of view. Finally,
we introduce abelian extensions of hom-Lie color algebras, show that there is a
representation and a 2-cocycle associated to any abelian extension.

The paper proceeds as follows. In Section 2, we summarize basic concepts and
the cohomology theory of hom-Lie color algebras. We show that the direct sum of
two hom-Lie color algebras is still a hom-Lie color algebra. An even homomorphism
between hom-Lie superalgebras is a morphism if and only if its graph is a hom-
subalgebra. In particular, any α-derivation gives rise to a derivation extension
of the multiplicative hom-Lie color algebra (L, [·, ·]L, α) (see Theorem 2.9). In
Section 3, we define hom-Nijenhuis operators of regular hom-Lie color algebras and
show that the infinitesimal deformation generated by a hom-Nijenhuis operator is
trivial. In Section 4, we show that T ∗-extension preserves many properties such as
nilpotency, solvability and decomposition in some sense. Moreover, we discuss the
equivalence of T ∗-extensions using cohomology. In Section 5, we introduce abelian
extensions of hom-Lie color algebras and show that there is a representation and a
2-cocycle associated to any abelian extension.

2. hom-Lie color algebras

Definition 2.1 ([7]). Let G be an abelian group and K be an arbitrary field. The
map ε : G × G → K\{0} is called a skew-symmetric bicharacter (or commutation
factor) of G if ∀f, g, h ∈ G,

ε(f, g + h) = ε(f, g)ε(f, h),
ε(g + h, f) = ε(g, f)ε(h, f),

ε(g, h)ε(h, g) = 1.

The definition above implies, in particular, the following relations:
ε(a, 0) = ε(0, a) = 1, ε(a, a) = ±1, ∀a ∈ G.

Throughout this paper, if x, y, z are homogeneous elements of a G-graded vector
space and |x|, |y|, |z| ∈ G denote their degrees respectively, then for convenience we
write ε(x, y) instead of ε(|x|, |y|), ε(x, y + z) instead of ε(|x|, |y| + |z|), and so on.
Moreover, when the notation ε(x, y) appears, it means that x, y are homogeneous
elements.

Definition 2.2 ([9]). A hom-Lie color algebra is a quadruple (L, [·, ·]L, α, ε) con-
sisting of a G-graded vector space L, a bicharacter ε, an even bilinear map [·, ·]L :
∧2L→ L (i.e., [La, Lb]L ⊂ La+b) and an even homomorphism α : L→ L such that
for homogeneous elements x, y, z ∈ L we have

[x, y]L = −ε(x, y)[y, x]L (ε-skew symmetry),
	x,y,z ε(z, x)[α(x), [y, z]L]L = 0 (ε-hom-Jacobi identity),

where 	x,y,z denotes summation over the cyclic permutation on x, y, z. In partic-
ular, if α is a morphism of Lie algebras (i.e., α ◦ [·, ·]L = [·, ·]L ◦ α⊗2), then we call
(L, [·, ·]L, α, ε) a multiplicative hom-Lie color algebra. A hom-Lie color algebra is
called regular hom-Lie color algebra if α is an algebraic automorphism.
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Remark 2.3. Lie color algebra is a generalization of Lie algebra and Lie super-
algebra (if G = {0}, we have that L = L0 is a Lie algebra and if G = Z2 = 0̄, 1̄
and ε(1̄, 1̄) = −1, then L is a Lie superalgebra). hom-Lie color algebras also can
be regarded as the extension of hom-Lie algebras and hom-Lie superalgebras.

Definition 2.4. Let L be a hom-Lie color algebra and I be a G-graded subspace
of L. I is called a hom-subalgebra (resp. hom-ideal) of L if [I, I]L ⊆ I (resp.
[I, L]L ⊆ I) and α(I) ⊆ I. Moreover, I is called a hom abelian ideal of L if
[I, I]L = 0.

Proposition 2.5. Given two hom-Lie color algebras (L, [·, ·]L, α, ε) and (Γ, [·, ·]Γ,
β, ε), there is a hom-Lie color algebra (L⊕ Γ, [·, ·]L⊕Γ, α+ β, ε), where the bilinear
map [·, ·]L⊕Γ : ∧2(L⊕ Γ)→ L⊕ Γ is given by

[u1 + v1, u2 + v2]L⊕Γ = [u1, u2]L + [v1, v2]Γ, ∀u1, u2 ∈ L, v1, v2 ∈ Γ,
and the linear map (α+ β) : L⊕ Γ→ L⊕ Γ is given by

(α+ β)(u+ v) = α(u) + β(v), ∀u ∈ L, v ∈ Γ.

Definition 2.6 ([2]). Let (L, [·, ·]L, α, ε) and (Γ, [·, ·]Γ, β, ε) be two hom-Lie color
algebras. An even homomorphism φ : L→ Γ is said to be a morphism of hom-Lie
color algebras if

φ[u, v]L = [φ(u), φ(v)]Γ, ∀u, v ∈ L, (2.1)
φ ◦ α = β ◦ φ. (2.2)

Denote by Gφ = {(x, φ(x)) | x ∈ L} ⊆ L⊕Γ the graph of a linear map φ : L→ Γ.

Proposition 2.7. An even homomorphism φ : (L, [·, ·]L, α, ε) → (Γ, [·, ·]Γ, β, ε) is
a morphism of hom-Lie color algebras if and only if the graph Gφ ⊆ L ⊕ Γ is a
hom-subalgebra of (L⊕ Γ, [·, ·]L⊕Γ, α+ β, ε).

Proof. Let φ : (L, [·, ·]L, α, ε) → (Γ, [·, ·]Γ, β, ε) be a morphism of hom-Lie color
algebras. We have

[u+ φ(u), v + φ(v)]L⊕Γ = [u, v]L + [φ(u), φ(v)]Γ = [u, v]L + φ[u, v]L.
Then the graph Gφ is closed under the bracket operation [·, ·]L⊕Γ. Furthermore,
by (2.2), we have

(α+ β)(u+ φ(u)) = α(u) + β ◦ φ(u) = α(u) + φ ◦ α(u),
which implies that (α + β)(Gφ) ⊆ Gφ. Thus, Gφ is a hom-subalgebra of (L ⊕
Γ, [·, ·]L⊕Γ, α+ β, ε).

Conversely, if the graph Gφ ⊆ L⊕Γ is a hom-subalgebra of (L⊕Γ, [·, ·]L⊕Γ, α+
β, ε), then we have

[u+ φ(u), v + φ(v)]L⊕Γ = [u, v]L + [φ(u), φ(v)]Γ ∈ Gφ,

which implies that
[φ(u), φ(v)]Γ = φ[u, v]L.

Furthermore, (α+ β)(Gφ) ⊆ Gφ yields that
(α+ β)(u+ φ(u)) = α(u) + β ◦ φ(u) ∈ Gφ,
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which is equivalent to the condition β◦φ(u) = φ◦α(u), i.e., β◦φ = φ◦α. Therefore,
φ is a morphism of hom-Lie color algebras. �

Let (L, [·, ·]L, α, ε) be a multiplicative hom-Lie color algebra. For any nonnega-
tive integer k, denote by αk the k-times composition of α, i.e.,

αk = α ◦ · · · ◦ α (k times).
In particular, α0 = Id and α1 = α. If (L, [·, ·]L, α, ε) is a regular hom-Lie color
algebra, we denote by α−k the k-times composition of α−1, the inverse of α.

Definition 2.8 ([2]). Let (L, [·, ·]L, α, ε) be a multiplicative hom-Lie color algebra.
A homogeneous bilinear map D : L→ L of degree θ is said to be an αk-derivation,
where k ∈ N, if it satisfies

D ◦ α = α ◦D, (2.3)
and

D[u, v]L = [D(u), αk(v)]L + ε(θ, u)[αk(u), D(v)]L, ∀u, v ∈ L. (2.4)

For a regular hom-Lie color algebra, α−k-derivations can be defined similarly.

Derαs(L) is the set of αs-derivations of the multiplicative hom-Lie color algebra
(L, [·, ·]L, α, ε). For any u ∈ L satisfying α(u) = u, define adk(u) : L→ L by

adk(u)(v) = [u, αk(v)]L, ∀v ∈ L.
Then adk(u) is an αk-derivation, which we call an inner αk+1-derivation. In fact,
we have

adk(u)(α(v)) = [u, αk+1(v)]L = α([u, αk(v)]L) = α ◦ adk(u)(v),
which implies that (2.3) in Definition 2.8 is satisfied. On the other hand, we have

adku([v, w]L) = [u, αk([v, w]L)]L
= [α(u), [αk(v), αk(w)]L]L
= −ε(u,w)(ε(u, v)[αk+1(v), [αk(w), u]L]L

+ ε(v, w)[αk+1(w), [u, αk(v)]L]L
= −ε(u,w)ε(u, v)[αk+1(v), [αk(w), u]L]L
− ε(u,w)ε(v, w)[αk+1(w), [u, αk(v)]L]L)

= ε(u, v)[αk+1(v), [u, αk(w)]L]L + [[u, αs(v)]L), αk+1(w)]L
= [adku(v), αk+1(w)]L] + ε(u, v)[αk+1(v), adku(w)]L].

Therefore, adk(u) is an αk+1-derivation. Denote by Innαk (L) the set of inner αk-
derivations, i.e.,

Innerαk (L) = {[u, αk−1(·)]L | u ∈ L,α(u) = (u)}.
At the end of this section, we consider the derivation extension of the multiplica-

tive hom-Lie color algebra (L, [·, ·]L, α, ε) and give an application of the α-derivation
Derα(L).
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For any even linear map D : L→ L, consider the vector space L⊕RD. Define
a bilinear bracket operation [·, ·]D on L⊕RD by

[u+mD, v + nD]D = [u, v]L +mD(v)− ε(u, v)nD(u),

[u, v]D = [u, v]L, [D,u]D = −[u,D]D = D(u), ∀u, v ∈ L.
Define a linear map α′ : L⊕RD → L⊕RD by α′(u+D) = α(u) +D.

Theorem 2.9. With the above notations, (L⊕RD, [·, ·]D, α′, ε) is a multiplicative
hom-Lie color algebra if and only if D is an α-derivation of the multiplicative hom-
Lie color algebra (L, [·, ·]L, α, ε).

Proof. First, [·, ·]D satisfies the ε-skew symmetry, for any u, v, w ∈ L, we have
[u+mD, v + nD]D = [u, v]L +mD(v)− ε(u, v)nD(u),

and
−ε(u, v)[v + nD, u+mD]D = −ε(u, v)([v, u]L + nD(u)− ε(u, v)mD(v))

= [u, v]L +mD(v)− ε(u, v)nD(u)
= [u+mD, v + nD]D.

On the other hand, we have
α′([u+mD, v + nD, ]D) = α′([u, v]L +mD(v)− ε(u, v)nD(u))

= α[u, v]L +mα ◦D(v)− ε(u, v)nα ◦D(u),
and

[α′(u+mD), α′(v + nD)]D = [α(u) +mD,α(v) + nD]D
= [α(u), α(v)]L +mD ◦ α(v)− ε(u, v)nD ◦ α(u).

Since α is an algebra morphism, α′ is an algebra morphism if and only if
D ◦ α = α ◦D.

By a direct calculation, we have
[α′(D), [u, v]D]D + [α′(u), [v,D]D]D + ε(u, v)[α′(v), [D,u]D]D

= D[u, v]D − [α(u), D(v)]D + ε(u, v)[α(v), D(u)]D
= D[u, v]D − [α(u), D(v)]D − [D(u), α(v)]D.

Therefore, it is obvious that the ε-hom-Jacobi identity is satisfied if and only if the
following condition holds:

D[u, v]D − [α(u), D(v)]D − [D(u), α(v)]D = 0.
Thus, (L⊕RD, [·, ·]D, α′, ε) is a multiplicative hom-Lie color algebra if and only if
D is an α-derivation of (L, [·, ·]L, α, ε). �

Definition 2.10 ([1]). Let (L, [·, ·], ε, α) be a Hom-Lie color algebra. Let (V, β) be
a pair of G-graded vector space V and an even homomorphism of vectors spaces
β : V → V , and

Lg · Vh ⊆ Vg+h, ∀g, h ∈ G.
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(V, β) is said to be L-module if

β(x ·m) = α(x) · β(m),
[x, y] · β(m) = α(x) · (y ·m)− ε(x, y)α(y) · (x ·m), ∀x, y ∈ L.

Now we introduce the cohomology theory of hom-Lie color algebras, which can
be found in [1].

Let V = ⊕g∈GVg be a graded L-module. Denote by Cn(L, V ) (n ≥ 0, C0(L, V ) =
V ) the G-graded vector space spanned by all n-linear homogeneous maps f :
L× · · · × L→ V such that

f(x1, . . . , xi, xi+1, . . . , xn) = −ε(xi, xi+1)f(x1, . . . , xi+1, xi, . . . , xn).

The map f is called even (resp. of degree γ) when f(x1, . . . , xi, . . . , xn) ∈ V0 for
all elements (x1, . . . , xn) ∈ L⊗n (resp. f(x1, . . . , xi, . . . , xn) ∈ Vγ for all elements
(x1, . . . , xn) ∈ L⊗n of degree γ). An n-cochain on L with values in V is defined to
be an n-cochain f ∈ Cn(L, V ) such that it is compatible with α and β in the sense
that f ◦ α = β ◦ f . Denote by Cnα,β(L, V ) the set of n-cochains:

Cnα,β(L, V ) = {f ∈ Cn(L, V ) | f ◦ α = β ◦ f}.

Next, for a given integer r, we define the cobounday operator δnr : Cnα,β(L, V ) →
Cn+1
α,β (L, V ) by

δnr (f)(x0, . . . , xn)

=
n∑
i=0

(−1)iε(f + x0 + · · ·+ xi−1, xi)αn+r−1(xi) · f(x0, · · · , x̂i, . . . , xn)

+
∑

0≤i<j≤n
(−1)jε(ui+1 + · · ·+ uj−1, uj)

· f(α(x0), · · · , [xi, xj ], · · · , α̂(xj), · · · , α(xn)).

(2.5)

Lemma 2.11 ([1]). Let (L, [·, ·], ε, α) be a hom-Lie color algebra and (V, β) be an
L-module. Then the pair (⊕n≥0C

n
α,β , δ

n
r ) is a cohomology complex. That is, the

maps δnr satisfy δnr ◦ δn−1
r = 0, ∀n ≥ 2, ∀r ≥ 1.

Let Znr (L, V ) (resp. Bnr (L, V )) denote the kernel of δnr (resp. the image of δn−1
r ).

The spaces Znr (L, V ) and Bnr (L, V ) are graded submodules of Cnα,β(L, V ), and we
have

Bnr (L, V ) ⊆ Znr (L, V ).

The elements of Znr (L, V ) are called n-cocycles, and the elements of Bnr (L, V ) are
called the n-coboundaries. Thus, we define a so-called cohomology group

Hn
r (L, V ) = Znr (L, V )

Bnr (L, V ) .
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3. Hom-Nijenhuis operator of hom-Lie color algebras

Definition 3.1 ([2]). Let (L, [·, ·], ε, α) be a hom-Lie color algebra. A representa-
tion of L is a triple (V, ρ, β), where V is a G-graded vector space, β ∈ End(V )0
and ρ : L→ End(V ) is an even linear map satisfying

ρ([x, y]) ◦ β = ρ(α(x)) ◦ ρ(y)− ε(x, y)ρ(α(y)) ◦ ρ(x), ∀x, y ∈ L. (3.1)

Definition 3.2 ([2]). A representation ρ of a multiplicative hom-Lie color algebra
(L, [·, ·], ε, α) on a G-graded vector space (V, β) is a representation of a hom-Lie
color algebra such that

β(ρ(x)(v)) = ρ(α(x))(β(v)), ∀x ∈ L, v ∈ V. (3.2)

Now, we introduce the adjoint representations of a hom-Lie color algebra.

Lemma 3.3 ([1]). Let (L, [·, ·], ε, α) be a hom-Lie color algebra and ad : L →
End(L) an operator defined for x ∈ L by ad(x)(y) = [x, y]. Then (L, ad, α) is a
representation of L.

Definition 3.4 ([1]). For any integer s, the αs-adjoint representation of the regular
hom-Lie color algebra (L, [·, ·]L, α, ε), which we denote by ads, is defined by

ads(u)(v) = [αs(u), v]L, ∀u, v ∈ L.

In particular, we use ad to represent ad0.

Lemma 3.5 ([1]). With the above notations, we have

ads(α(u)) ◦ α = α ◦ ads(u);
ads([u, v]L) ◦ α = ads(α(u)) ◦ ads(v)− ε(u, v)ads(α(v)) ◦ ads(u).

Thus, the αs-adjoint representation is well defined.

For the αs-adjoint representation ads, we obtain the αs-adjoint complex (C•α(L;L),
ds) and the corresponding cohomology

Hk(L; ads) = Zk(L; ads)/Bk(L; ads).

Let ψ ∈ C2
α(L;L) be a bilinear operator commuting with α. Consider a t-parame-

trized family of bilinear operations

[u, v]t = [u, v]L + tψ(u, v).

Since ψ commutes with α, α is a morphism with respect to the bracket [·, ·]t for
every t. If all the brackets [·, ·]t endow (L, [·, ·]t, α, ε) with regular hom-Lie color
algebra structures, we say that ψ generates an infinitesimal deformation of the reg-
ular hom-Lie color algebra (L, [·, ·]L, α, ε). By computing the ε-hom-Jacobi identity
of [·, ·]t, this is equivalent to the conditions

ε(w, u)ψ(α(u), ψ[v, w]) + c.p.(u, v, w) = 0;
ε(w, u)(ψ(α(u), [v, w]L) + [α(u), ψ[v, w]L]L) + c.p.(u, v, w) = 0.
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An infinitesimal deformation is said to be trivial if there is a linear operator
N ∈ C1

α(L;L) satisfying Tt = Id + tN and

Tt[u, v]t = [Tt(u), Tt(v)]L.

Definition 3.6. A linear operatorN ∈ C1
α(L,L) is called a hom-Nijenhuis operator

if we have

[Nu,Nv]L = N [u, v]N , (3.3)

where the bracket [·, ·]N is defined by

[u, v]N = [Nu, v]L + [u,Nv]L −N [u, v]L. (3.4)

Theorem 3.7. Let N ∈ C1
α(L,L) be a hom-Nijenhuis operator. Then an infinites-

imal deformation of the regular hom-Lie color algebra (L, [·, ·]L, α) can be obtained
by putting

ψ(u, v) = δ0N(u, v) = [u, v]N . (3.5)

Furthermore, this infinitesimal deformation is trivial.

Proof. Since ψ = δ0N , δ0ψ = 0 is valid. To see that ψ generates an infinitesimal
deformation, we need to check the ε-hom-Jacobi identity for ψ. By (3.3), (3.4) and
(3.5), we have

ε(w, u)ψ(α(u), ψ(v, w)) + c.p.(u, v, w)
= ε(w, u)[α(u), [v, w]N ]N + c.p.(u, v, w)
= ε(w, u)([Nα(u), [Nv,w]L]L + [Nα(u), [v,Nw]L]L − [Nα(u), N [v, w]L]L
−N [α(u), [Nv,w]L]L −N [α(u), [v,Nw]L]L +N [α(u), N [v, w]L]L
+ [α(u), N [v, w]N ]L) + c.p.(u, v, w)

= ε(w, u)
(
[Nα(u), [Nv,w]L]L + [Nα(u), [v,Nw]L]L − [N(u), N [v, w]L]L

−N [α(u), [Nv,w]L]L −N [α(u), [v,Nw]L]L +N [α(u), N [v, w]L]L
+ [α(u), [Nv,Nw]L]L

)
+ c.p.(u, v, w)

= ε(w, u)
(

[Nα(u), [Nv,w]L]L︸ ︷︷ ︸
(1)

+ [Nα(u), [v,Nw]L]L︸ ︷︷ ︸
(2)

−[Nα(u), N [v, w]L]L

−N [α(u), [Nv,w]L]L︸ ︷︷ ︸
(3)

−N [α(u), [v,Nw]L]L︸ ︷︷ ︸
(4)

+N [α(u), N [v, w]L]L

+ [α(u), [Nv,Nw]L]L︸ ︷︷ ︸
(5)

)
+ ε(u, v)

(
[Nα(v), [Nw, u]L]L︸ ︷︷ ︸

(5′)

+ [Nα(v), [w,Nu]L]L︸ ︷︷ ︸
(1′)

−[Nα(v), N [w, u]L]L

−N [α(v), [Nw, u]L]L︸ ︷︷ ︸
(4′)

−N [α(v), [w,Nu]L]L︸ ︷︷ ︸
(6′)

+N [α(v), N [w, u]L]L
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+ [α(v), [Nw,Nu]L]L︸ ︷︷ ︸
(2′)

)
+ ε(v, w)

(
[Nα(w), [Nu, v]L]L︸ ︷︷ ︸

(2′′)

+ [Nα(w), [u,Nv]L]L︸ ︷︷ ︸
(5′′)

− [Nα(w), N [u, v]L]L

−N [α(w), [Nu, v]L]L︸ ︷︷ ︸
(6′′)

−N [α(w), [u,Nv]L]L︸ ︷︷ ︸
(3′′)

+N [α(w), N [u, v]L]L

+ [α(w), [Nu,Nv]L]L︸ ︷︷ ︸
(1′′)

)
,

where c.p.(u, v, w) denotes summation over the cyclic permutation on u, v, w. Since
N is a Hom-Nijenhuis operator, we get

−[Nα(u), N [v, w]L]L +N [α(u), N [v, w]L]L = N2[α(u), [v, w]L]L︸ ︷︷ ︸
(7)

−N [Nα(u), [v, w]L]L︸ ︷︷ ︸
(6)

,

−[Nα(v), N [w, u]L]L +N [α(v), N [w, u]L]L = N2[α(v), [w, u]L]L︸ ︷︷ ︸
(7′)

−N [Nα(v), [w, u]L]L︸ ︷︷ ︸
(3′)

and
−[Nα(w), N [u, v]L]L +N [α(w), N [u, v]L]L = N2[α(w), [u, v]L]L︸ ︷︷ ︸

(7′′)

−N [Nα(w), [u, v]L]L︸ ︷︷ ︸
(4′′)

.

Thus (i) + (i)′ + (i)′′ = 0, for i = 1, . . . , 7 by the ε-hom-Jacobi identity. This
proves that ψ generates a deformation of the regular Hom-Lie conformal algebra
(L, [·, ·]L, α).

Let Tt = Id + tN . Then
Tt[u, v]t = (Id + tN)([u, v]L + tψ(u, v))

= (Id + tN)([u, v]L + t[u, v]N )
= [u, v]L + t([u, v]N +N [u, v]L) + t2N [u, v]N .

On the other hand, we have
[Tt(u), Tt(v)]L = [u+ tNu, v + tNv]L

= [u, v]L + t([Nu, v]L + [u,Nv]L) + t2[Nu,Nv]L.

By (3.4) and (3.5), we have

Tt[u, v]t = [Tt(u), Tt(v)]L,

which implies that the infinitesimal deformation is trivial. �

4. T ∗-extensions of hom-Lie color algebras

The method of T ∗-extension was introduced in [4] and the T ∗-extension of an
algebra is quadratic. For the theory of quadratic (color) hom-Lie algebras the
reader is referred to [2, 3].
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Definition 4.1 ([2]). Let (L, [·, ·]L, α, ε) be a hom-Lie color algebra. A bilinear
form f on L is said to be invariant if

f([x, y], z) = f(x, [y, z]), ∀x, y, z ∈ L,

and ε-symmetric if
f(x, y) = ε(x, y)f(y, x).

A subspace I of L is called isotropic if I ⊆ I⊥.

Definition 4.2. A bilinear form f on a hom-Lie color algebra (L, [·, ·]L, α, ε) is
said to be nondegenerate if

L⊥ = {x ∈ L | f(x, y) = 0, ∀y ∈ L} = 0,

and colorconsistent if f satisfies

f(x, y) = 0, ∀x ∈ L|x|, y ∈ L|y|, |x|+ |y| 6= 0.

Throughout this section, we only consider colorconsistent bilinear forms.

Definition 4.3 ([2]). A hom-Lie color algebra (L, [·, ·]L, α, ε) is called quadratic
hom-Lie color algebra if there exists a nondegenerate, ε-symmetric and invariant
bilinear form f on L such that α is f -symmetric (i.e., f(α(x), y) = f(x, α(y))). It
is denoted by (L,α, f, ε) and f is called invariant scalar product.

Let (L′, [·, ·]′L, β, ε) be another hom-Lie color algebra. Two quadratic hom-Lie
superalgebras (L, f, α, ε) and (L′, f ′, β, ε) are said to be isometric if there exists a
hom-Lie color algebra isomorphism φ : L → L′ such that f(x, y) = f ′(φ(x), φ(y)),
∀x, y ∈ L.

We consider the dual space L∗ of L. Then L∗ is a G-graded space, where
L∗g = {β ∈ L∗ | β(x) = 0, ∀|x| 6= −g}. Moreover, L∗ is a graded L-module.

The base field K itself can be considered as a G-graded space, if one sets K0 = K,
Kg = {0}, for g 6= 0. Then as a trivial graded L-module, Cn(L,K) (n ≥ 0,
C0(L,K) = K) is the G-graded vector space spanned by all n-linear homogenous
maps f of L× · · · × L into K satisfying

f(x1, . . . , xi, xi+1, . . . , xn) = −ε(xi, xi+1)f(x1, . . . , xi+1, xi, . . . , xn),

where Cn(L,K)g = {f ∈ Cn(L,K) | f(x1, . . . , xn) = 0, if |x1|+ · · ·+ |xn|+ g 6= 0}.
Let (L = ⊕g∈GLg, α, ε) be a Lie color algebra over a field K, L∗ = ⊕g∈GL∗g

be its dual space, and w be a homogeneous bilinear map: L × L → L∗ satisfying
|w| = 0.

Since L = ⊕g∈GLg and L∗ = ⊕g∈GL∗g are G-graded spaces, the direct sum

L⊕ L∗ = ⊕g∈G(L⊕ L∗)g = ⊕g∈G(Lg ⊕ L∗g)

is G-graded. In the sequel, we always consider a + α ∈ L ⊕ L∗ as a homogeneous
element such that a ∈ L, α ∈ L∗ and |a + α| = |a| = |α|; then ε(a + α, a′ + α′) =
ε(a, a′).
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Lemma 4.4 ([2]). Let ad be the adjoint representation of a hom-Lie color algebra
(L, [·, ·]L, α, ε), and let us consider the even linear map π : L → End(L∗) defined
by π(x)(f)(y) = −ε(x, f)(f ◦ ad(x)(y)), ∀x, y ∈ L. Then π is a representation of
L on (L∗, α̃) if and only if

ad(x) ◦ ad(α(y))− ε(x, y)ad(y) ◦ ad(α(x)) = α ◦ ad([x, y]L).

We call the representation π the coadjoint representation of L.

Lemma 4.5 ([2, Theorem 4.11]). Under the above notations, let (L, [·, ·]L, α, ε) be
a hom-Lie color algebra, and ω : L × L → L∗ be an even bilinear map. Assume
that the coadjoint representation exists. The G-graded space L⊕L∗, provided with
the following bracket and a linear map defined respectively by

[x+ f, y + g]L⊕L∗ = [x, y]L + ω(x, y) + π(x)g − ε(x, y)π(y)f, (4.1)
α′(x+ f) = α(x) + f ◦ α. (4.2)

Then (L ⊕ L∗, [·, ·]L⊕L∗ , α′, ε) is a hom-Lie color algebra if and only if ω is a 2-
color-cocycle: L× L→ L∗, i.e., ω ∈ Z2(L,L∗)0̄.

Clearly, L∗ is an abelian hom-ideal of (L⊕ L∗, [·, ·]α′ , α′, ε) and L is isomorphic
to the factor hom-Lie color algebra (L⊕L∗)/L∗. Moreover, consider the following
ε-symmetric bilinear form qL on L⊕ L∗ for all x+ f, y + g ∈ L⊕ L∗:

qL(x+ f, y + g) = f(y) + ε(x, y)g(x).

Then we have the following lemma:

Lemma 4.6. Let L, L∗, ω and qL be as above. Then the tuple (L ⊕ L∗, qL, α′, ε)
is a quadratic hom-Lie color algebra if and only if ω is colorcyclic in the following
sense:

w(x, y)(z) = ε(x, y + z)w(y, z)(x) for all x, y, z ∈ L.

Proof. If x + f is orthogonal to all elements of L ⊕ L∗, then f(y) = 0 and
ε(x, y)g(x) = 0, which implies that x = 0 and f = 0. So the ε-symmetric bi-
linear form qL is nondegenerate.

Now suppose that x+ f , y + g, z + h ∈ L⊕ L∗; then

qL([x+ f, y + g]L⊕L∗ , z + h)
= ω(x, y)(z)− ε(x, y)g([x, z]L) + f([y, z]L) + ε(z, x+ y)h([x, y]L).

On the other hand,

qL(x+ f, [y + g, z + h]L⊕L∗)
= f([y, z]L) + ε(x, y + z))ω(y, z)(x) + ε(z, x+ y)h([x, y]L)− ε(x, y)g([x, z]L).

Hence the lemma follows. �

Now, for colorcyclic 2-cocycle ω we shall call the quadratic hom-Lie color algebra
(L⊕L∗, qL, α′, ε) the T ∗-extension of L (by ω) and denote the hom-Lie color algebra
(L⊕ L∗, [·, ·]L⊕L∗ , α′, ε) by T ∗ωL.
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Definition 4.7. Let L be a hom-Lie color algebra over a field K. We inductively
define a derived series

(L(n))n≥0 : L(0) = L, L(n+1) = [L(n), L(n)],

a central descending series

(Ln)n≥0 : L0 = L, Ln+1 = [Ln, L],

and a central ascending series

(Cn(L))n≥0 : C0(L) = 0, Cn+1(L) = C(Cn(L)),

where C(I) = {a ∈ L | [a, L] ⊆ I} for a subspace I of L.
L is called solvable and nilpotent (of length k) if and only if there is a (smallest)

integer k such that L(k) = 0 and Lk = 0, respectively.

In the following theorem we discuss some properties of T ∗ωL.

Theorem 4.8. Let (L, [·, ·]L, α, ε) be a hom-Lie color algebra over a field K.

(1) If L is solvable (nilpotent) of length k, then the T ∗-extension T ∗ωL is solvable
(nilpotent) of length r, where k ≤ r ≤ k + 1 (k ≤ r ≤ 2k − 1).

(2) If L is nilpotent of length k, so is the trivial T ∗-extension T ∗0L.
(3) If L is decomposed into a direct sum of two hom-ideals of L, so is the trivial

T ∗-extension T ∗0L.

Proof. (1) Firstly we suppose that L is solvable of length k. Since (T ∗ωL)(n)/L∗ ∼=
L(n) and L(k) = 0, we have (T ∗ωL)(k) ⊆ L∗, which implies (T ∗ωL)(k+1) = 0 because
L∗ is abelian, and it follows that T ∗ωL is solvable of length k or k + 1.

Suppose now that L is nilpotent of length k. Since (T ∗ωL)n/L∗ ∼= Ln and Lk = 0,
we have (T ∗ωL)k ⊆ L∗. Let β ∈ (T ∗ωL)k ⊆ L∗, b ∈ L, x1+f1, . . . , xk−1+fk−1 ∈ T ∗ωL,
1 ≤ i ≤ k − 1; we have

[[· · · [β, x1 + f1]L⊕L∗ , · · · ]L⊕L∗ , xk−1 + fk−1]L⊕L∗(b)
= βadx1 · · · adxk−1(b) = β([x1, [· · · , [xk−1, b]L · · · ]L]L) ∈ β(Lk) = 0.

This proves that (T ∗ωL)2k−1 = 0. Hence T ∗wL is nilpotent of length at least k and
at most 2k − 1.
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(2) Suppose that L is nilpotent of length k. Adopting the notations of the proof
of part (1), for xk + fk ∈ T ∗0L, we have

[x1 + f1, [· · · , [xk−1 + fk−1, xk + fk]L⊕L∗ · · · ]L⊕L∗ ]L⊕L∗
= [x1, [· · · , [xk−1, xk]L · · · ]L]L

+
k∑
i=1

[x1, [· · · , [xi−1, [fi, [xi+1, [· · · , [xk−1, xk] · · · ]]]] · · · ]]

= adx1 · · · adxk−1(xk) + f1[adx2, [· · · , [adxk−1, adxk] · · · ]]

+ εk − 1
k−1∏
i=1

ε(xi, xi+1 + · · ·+ xk)fkadxk−1 · · · adx1

+ εk − 2
k−2∏
i=1

ε(xi, xi+1 + · · ·+ xk)fk−1adxkadxk−2 · · · adx1

+
k−2∑
i=2

i−1∏
j=1

(−1)i−1ε(xj , xj+1 + · · ·+ xk)

· fi[adxi+1, [· · · , [adxk−1, adxk] · · · ]]adxi−1 · · · adx1,

where we use the fact that ad[x, y] = [adx, ady], ∀x, y ∈ L. Note that

adx1 · · · adxk−1(xk) ∈ Lk = 0,
f1[adx2, [· · · , [adxk−1, adxk] · · · ](L) ⊆ f1(Lk) = 0,
fkadxk−1 · · · adx1(L) ⊆ αk(Lk) = 0,
fk−1adxkadxk−2 · · · adx1(L) ⊆ fk−1(Lk) = 0,
fi[adxi+1, [· · · , [adxk−1, adxk] · · · ]]adxi−1 · · · adx1(L) ⊆ fi(fk) = 0.

Then the right hand side of the equation vanishes and hence (T ∗0L)k = 0.
(3) Suppose that 0 6= L = I ⊕ J , where I and J are two nonzero hom-ideals

of (L[·, ·]L, α). Let I∗ (resp. J∗) denote the subspace of all linear forms in L∗

vanishing on J (resp. I). Clearly, I∗ (resp. J∗) can be canonically identified with
the dual space of I (resp. J) and L∗ ∼= I∗ ⊕ J∗.

Since [I∗, L]L⊕L∗(J) = I∗([L, J ]L) ⊆ I∗(J) = 0 and [I, L∗]L⊕L∗(J) = L∗([I, J ]L)
⊆ L∗(I ∩ J) = 0, we have [I∗, L]L⊕L∗ ⊆ I∗ and [I, L∗]L⊕L∗ ⊆ I∗. Then

[T ∗0 I, T ∗0L]L⊕L∗ = [I ⊕ I∗, L⊕ L∗]L⊕L∗
= [I, L]L + [I, L∗]L⊕L∗ + [I∗, L]L⊕L∗ + [I∗, L∗]L⊕L∗
⊆ I ⊕ I∗ = T ∗0 I.

It is clear that T ∗0 I is a G-graded space, then T ∗0 I is a hom-ideal of L and so is T ∗0 J
in the same way. Hence T ∗0L can be decomposed into the direct sum T ∗0 I ⊕T ∗0 J of
two nonzero hom-ideals of T ∗0L. �
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Lemma 4.9. Let (L, qL, α, ε) be a quadratic hom-Lie color algebra of even dimen-
sion n over a field K and I be an isotropic n/2-dimensional subspace of L. Then
I is a hom-ideal of (L, [·, ·]L, α, ε) if and only if I is abelian.

Proof. Since dim I + dim I⊥ = n/2 + dim I⊥ = n and I ⊆ I⊥, we have I = I⊥.
If I is a hom-ideal of (L, [·, ·]L, α, ε), then qL(L, [I, I⊥]) = qL([L, I], I⊥) ⊆

qL(I, I⊥) = 0, which implies [I, I] = [I, I⊥] ⊆ L⊥ = 0.
Conversely, if [I, I] = 0, then f(I, [I, L]) = f([I, I], L) = 0. Hence [I, L] ⊆ I⊥ =

I. This implies that I is an ideal of (L, [·, ·]L, α, ε). �

Theorem 4.10. Let (L, qL, α, ε) be a quadratic hom-Lie color algebra of even di-
mension n over a field K of characteristic not equal to two. Then (L, qL, α, ε) is iso-
metric to a T ∗-extension (T ∗ωB, qB , β′, ε) if and only if n is even and (L, [·, ·]L, α, ε)
contains an isotropic hom-ideal I of dimension n/2. In particular, B ∼= L/I.

Proof. (=⇒) Since dimB = dimB∗, dimT ∗ωB is even. Moreover, it is clear that
B∗ is a hom-ideal of half the dimension of T ∗ωB and by the definition of qB , we
have qB(B∗, B∗) = 0, i.e., B∗ ⊆ (B∗)⊥ and so B∗ is isotropic.

(⇐=) Suppose that I is an n/2-dimensional isotropic hom-ideal of L. By
Lemma 4.9, I is abelian. Let B = L/I and p : L → B be the canonical pro-
jection. Clearly, |p(x)| = |x|, ∀x ∈ L|x|. Since chK 6= 2, we can choose an isotropic
complement subspace B0 to I in L, i.e., L = B0u I and B0 ⊆ B⊥0 . Then B⊥0 = B0
since dimB0 = n/2.

Denote by p0 (resp. p1) the projection L→ B0 (resp. L→ I) and let q∗L denote
the homogeneous linear map I → B∗ : i 7→ q∗L(i), where q∗L(i)(p(x)) := qL(i, x); it
is clear that |q∗L(x)| = |x|, ∀x ∈ L|x|. We claim that q∗L is a linear isomorphism. In
fact, if p(x) = p(y), then x−y ∈ I, hence qL(i, x−y) ∈ qL(I, I) = 0 and so qL(i, x) =
qL(i, y), which implies q∗L is well-defined and it is easily seen that q∗L is linear. If
q∗L(i) = q∗L(j), then q∗L(i)(p(x)) = q∗L(j)(p(x)), ∀x ∈ L, i.e., qL(i, x) = qL(j, x),
which implies i − j ∈ L⊥ = 0, hence q∗L is injective. Note that dim I = dimB∗,
then q∗L is surjective.

In addition, q∗L has the following property:
q∗L([x, i])(p(y)) = qL([x, i]L, y) = −ε(x, i)qL([i, x]L, y) = −ε(x, i)qL(i, [x, y]L)

= −ε(x, i)q∗L(i)p([x, y]L) = −ε(x, i)q∗L(i)[p(x), p(y)]L
= −ε(x, i)q∗L(i)(adp(x)(p(y))) = (π(p(x))q∗L(i))(p(y))
= [p(x), q∗L(i)]L⊕L∗(p(y)),

where x, y ∈ L, i ∈ I. A similar computation shows that
q∗L([x, i]) = [p(x), q∗L(i)]L⊕L∗ , q∗L([i, x]) = [q∗L(i), p(x)]L⊕L∗ .

Define a homogeneous bilinear map
ω : B ×B −→ B∗

(p(b0), p(b′0)) 7−→ q∗L(p1([b0, b′0])),
where b0, b′0 ∈ B0. Then |w| = 0 and w is well-defined since the restriction of the
projection p to B0 is a linear isomorphism.
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Now, define the bracket on B ⊕ B∗ by (4.1) and (4.2); we have that B ⊕ B∗ is
a G-graded algebra. Let ϕ be the linear map L→ B ⊕ B∗ defined by ϕ(b0 + i) =
p(b0) + q∗L(i), ∀ b0 + i ∈ B0 u I = L. Since the restriction of p to B0 and q∗L are
linear isomorphisms, ϕ is also a linear isomorphism. Note that

ϕ([b0 + i, b′0 + i′]L) = ϕ([b0, b′0]L + [b0, i′]L + [i, b′0]L)
= ϕ(p0([b0, b′0]L) + p1([b0, b′0]L) + [b0, i′]L + [i, b′0]L)
= p(p0([b0, b′0]L)) + q∗L(p1([b0, b′0]L) + [b0, i′]L + [i, b′0]L)
= [p(b0), p(b′0)]L + ω(p(b0), p(b′0)) + [p(b0), q∗L(i′)]L + [q∗L(i), p(b′0)]L
= [p(b0), p(b′0)]L + ω(p(b0), p(b′0)) + π(p(b0)(q∗L(i′))− ε|b0||b′0|π(p(b′0)(q∗L(i))
= [p(b0) + q∗L(i), p(b′0) + q∗L(i′)]B⊕B∗
= [ϕ(b0 + i), ϕ(b′0 + i′)]L⊕L∗ .

Then ϕ is an isomorphism of G-graded algebras, and so (B ⊕B∗, [·, ·]B⊕B∗,ε, β) is
a hom-Lie color algebra. Furthermore, we have

qB(ϕ(b0 + i), ϕ(b′0 + i′)) = qB(p(b0) + q∗L(i), p(b′0) + q∗L(i′))
= q∗L(i)(p(b′0)) + ε(b0, b′0)q∗L(i′)(p(b0))
= qL(i, b′0) + ε(b0, b′0)qL(i′, b0)
= qL(b0 + i, b′0 + i′),

then ϕ is isometric. The relation

qB([ϕ(x), ϕ(y)], ϕ(z)) = qB(ϕ([x, y]), ϕ(z))
= qL([x, y], z) = qL(x, [y, z]) = qB(ϕ(x), [ϕ(y), ϕ(z)])

implies that qB is a nondegenerate invariant ε-symmetric bilinear form, and so
(B ⊕ B∗, qB , β′, ε) is a quadratic hom-Lie color algebra. In this way, we get a T ∗-
extension T ∗ωB of B and consequently, (L, qL, α, ε) and (T ∗ωB, qB , β′, ε) are isometric
as required. �

The proof of Theorem 4.10 shows that the homogeneous bilinear map ω depends
on the choice of the isotropic G-graded subspace B0 of L complement to the hom-
ideal I. Therefore there may be different T ∗-extensions describing the “same”
quadratic hom-Lie color algebras.

Let (L, [·, ·]L, α, ε) be a hom-Lie color algebra over a field K, and let ω1 : L×L→
L∗ and ω2 : L × L → L∗ be two different colorcyclic 2-color-cocycles satisfying
|ω1| = |ω2| = 0. The T ∗-extensions T ∗ω1

L and T ∗w2
L of L are said to be equivalent

if there exists an isomorphism of hom-Lie color algebras φ : T ∗ω1
L → T ∗ω2

L which
is the identity on the hom-ideal L∗ and which induces the identity on the factor
hom-Lie color algebra algebra T ∗ω1

L/L∗ ∼= L ∼= T ∗ω2
L/L∗. The two T ∗-extensions

T ∗ω1
L and T ∗ω2

L are said to be isometrically equivalent if they are equivalent and φ
is an isometry.
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Proposition 4.11. Let L be a hom-Lie color algebra over a field K of characteristic
not equal to 2, and ω1, ω2 be two colorcyclic 2-color-cocycles L×L→ L∗ satisfying
|ωi| = 0. Then we have:

(i) T ∗ω1
L is equivalent to T ∗ω2

L if and only if there is z ∈ C1(L,L∗)0 such that

ω1(x, y)− ω2(x, y) = π(x)z(y)− ε(x, y)π(y)z(x)− z([x, y]L), ∀x, y ∈ L, (4.3)

where C1(L,L∗)0 denotes z ∈ C1(L,L∗) and |z| = 0. If this is the case,
then the colorsymmetric part zs of z, defined by zs(x)(y) := 1

2 (z(x)(y) +
ε(x, y)z(y)(x)), for all x, y ∈ L, induces a colorsymmetric invariant bilinear
form on L.

(ii) T ∗ω1
L is isometrically equivalent to T ∗ω2

L if and only if there is z ∈ C1(L,L∗)0
such that (4.3) holds, for all x, y ∈ L and the colorsymmetric part zs of z
vanishes.

Proof. (i) T ∗ω1
L is equivalent to T ∗ω2

L if and only if there is an isomorphism of hom-
Lie color algebras Φ : T ∗ω1

L → T ∗ω2
L satisfying Φ|L∗ = IdL∗ and x − Φ(x) ∈ L∗,

∀x ∈ L.
Suppose that Φ : T ∗ω1

L→ T ∗ω2
L is an isomorphism of hom-Lie color algebras and

define a linear map z : L → L∗ by z(x) := Φ(x) − x; then z ∈ C1(L,L∗)0 and for
all x+ f, y + g ∈ T ∗ω1

L, we have

Φ([x+ f, y + g]Ω) = Φ([x, y]L + ω1(x, y) + π(x)g − ε(x, y)π(y)f)
= [x, y]L + z([x, y]L) + ω1(x, y) + π(x)g − ε(x, y)π(y)f.

On the other hand,

[Φ(x+ f),Φ(y + g)] = [x+ z(x) + f, y + z(y) + g]
= [x, y]L + ω2(x, y) + π(x)g + π(x)z(y)
− ε(x, y)π(y)z(x)− ε(x, y)π(y)f.

Since Φ is an isomorphism, (4.3) holds.
Conversely, if there exists z ∈ C1(L,L∗)0 satisfying (4.3), then we can define

Φ : T ∗ω1
L → T ∗ω2

L by Φ(x + f) := x + z(x) + f . It is easy to prove that Φ is an
isomorphism of hom-Lie color algebras such that Φ|L∗ = IdL∗ and x− Φ(L) ∈ L∗,
∀x ∈ L, i.e., T ∗ω1

L is equivalent to T ∗ω2
L.

Consider the colorsymmetric bilinear form qL : L × L → K, (x, y) 7→ zs(x)(y)
induced by zs. Note that

ω1(x, y)(m)− ω2(x, y)(m) = π(x)z(y)(m)− ε(x, y)π(y)z(x)(m)− z([x, y]L)(m)
= −ε(x, y)z(y)([x,m]L) + z(x)([y,m]L)− z([x, y]L)(m)

and
ε(x, y +m)(ω1(y,m)(x)− ω2(y,m)(x))

= ε(x, y +m)(π(y)z(m)(x)− ε(y,m)π(m)z(y)(x)− z([y,m]L)(x))
= ε(x+ y,m)z(m)([x, y]L)− ε(x, y)z(y)([x,m]L)− ε(x, y +m)z([y,m]L)(x).
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Since both ω1 and ω2 are colorcyclic, the right hand sides of the above two equations
are equal. Hence

− ε(x, y)z(y)([x,m]L) + z(x)([y,m]L)− z([x, y]L)(m)
= ε(x+ y,m)z(m)([x, y]L)− ε(x, y)z(y)([x,m]L)− ε(x, y +m)z([y,m]L)(x).

That is,
z(x)([y,m]L) + ε(x, y+m)z([y,m]L)(x) = z([x, y]L)(m) + ε(x+ y,m)z(m)([x, y]L).
Since chK 6= 2, qL(x, [y,m]) = qL([x, y],m), which proves the invariance of the
ε-symmetric bilinear form qL induced by zs.

(ii) Let the isomorphism Φ be defined as in (i). Then for all x+f , y+g ∈ L⊕L∗,
we have

qB(Φ(x+ f),Φ(y + g)) = qB(x+ z(x) + f, y + z(y) + g)
= z(x)(y) + f(y) + ε(x, y)(z(y)(x) + g(x))
= z(x)(y) + ε(x, y)z(y)(x) + f(y) + ε(x, y)g(x)
= 2zs(x)(y) + qB(x+ f, y + g).

Thus, Φ is an isometry if and only if zs = 0. �

5. Abelian extensions of hom-Lie color algebras

In this section, we show that associated to any abelian extension, there is a
representation and a 2-cocycle. We assume that the hom-Lie color algebra is mul-
tiplicative.
Definition 5.1. Let (L, [·, ·], α), (V, [·, ·]V , αV ), and (L̂, [·, ·]L̂, αL̂) be hom-Lie color
algebras and i : V → L̂, p : L̂ → L be morphisms of hom-Lie color algebras. The
following sequence of hom-Lie color algebras is a short exact sequence if Im(i) =
Ker(p), Ker(i) = 0 and Im(p) = L:

0 −→ V
i−→ L̂

p−→ L −→ 0,
where αV (V ) = αL̂(V ).

In this case, we call L̂ an extension of L by V , and denote it by EL̂. It is called
an abelian extension if V is an abelian ideal of L̂, i.e., [u, v]L̂ = 0 for all u, v ∈ V .

A section σ of p : L̂→ L consists of linear maps σ : L→ L̂ such that p◦σ = idL
and σ ◦ α = αL̂ ◦ σ.

Definition 5.2. Two extensions of hom-Lie color algebras EL̂ : 0 −→ V
i−→

L̂
p−→ L −→ 0 and EL̃ : 0 −→ V

j−→ L̃
q−→ L −→ 0 are equivalent if there exists

a morphism of hom-Lie color algebras F : L̂→ L̃ such that the following diagram
commutes:

0 // V
i //

id
��

L̂
p //

F
��

L //

id
��

0

0 // V
j // L̃

q // L // 0.
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Let L̂ be an abelian extension of L by V , and σ : L → L̂ be a section. Define
maps θ : L→ End(V ) by

θ(x)(v) = [σ(x), v]L̂,

for all x ∈ L, v ∈ V .

Theorem 5.3. Let (V, αV ) and (L,α) be multiplicative hom-Lie color algebras.
With the above notations, (V, αV , θ) is a representation of (L,α) and does not
depend on the choice of the section σ. Moreover, equivalent abelian extensions give
the same representation.

Proof. First, if we choose another section σ′ : L→ L̂, then

p(σ(x)− σ′(x)) = x− x = 0⇒ σ(x)− σ′(x) ∈ V ⇒ σ′(x) = σ(x) + u,

for some ui ∈ V .
Note that [u, v]L̂ = 0 for all u, v ∈ V ; this yields that

[σ′(x), v] = [σ(x) + u, v]L̂ = [σ(x), v]L̂.

This shows that θ is independent of the choice of σ.
Second, we prove that (V, αV , θ) is a representation of (L,α). For x, y ∈ L,

v ∈ V , we have
αV (θ(x)(v)) = αV [σ(x), v] = [αV (σ(x)), αV (v)]

= [σ(α(x)), αV (v)] = θ(α(x))αV (v).

Thus, we obtain that equation (3.2) holds
Since [σ(x), σ(y)]L̂ − σ([x, y]L) ∈ V and V is an abelian ideal of L̂, we have

θ([x, y]) ◦ αV (v) = [σ[x, y], αV (v)]L̂ = [[σ(x), σ(y)], αV (v)]L̂.

On the other hand,

θ(α(x))θ(y)(v)− ε(x, y)θ(α(y))θ(x)(v)
= [σ(α(x)), [σ(y), v]]− ε(x, y)[σ(α(y)), [σ(x), v]]
= [αL̂(σ(x)), [σ(y), v]]− ε(x, y)[αL̂(σ(y)), [σ(x), v]]
= −ε(y, v)ε(x, v)[αV (v), [σ(x), σ(y)]]
= [[σ(x), σ(y)], αV (v)].

Thus, we obtain that equation (3.1) holds.
Third, we will show that equivalent abelian extensions give the same θ.
Suppose that EL̂ and EL̃ are equivalent abelian extensions, and F : L̂ → L̃ is

the hom-Lie color algebras morphism satisfying F ◦ i = j, q ◦ F = p. Choosing
linear sections σ and σ′ of p and q, we have qFσ(x) = pσ(x) = x = qσ′(x), then
Fσ(x)− σ′(x) ∈ Ker(q) ∼= V . Moreover,

[σ(x), u]L̂ = [Fσ(x), u]L̂ = [σ′(x), u]L̂.

The proof is complete. �
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Let σ : L→ L̂ be a section of the abelian extension. Define the following map:
ω(x1, x2) = [σ(x1), σ(x2)]L̂ − σ([x1, x2]L), (5.1)

for all x1, x2, x3 ∈ L.

Theorem 5.4. Let 0 −→ V −→ L̂ −→ L −→ 0 be an abelian extension of L
by V . Then ω defined by (5.1) is a 2-cocycle of L with coefficients in V , where the
representation θ is given by (3.1).

Proof. Putting n = 2, r = 0 in (2.5), we have
δ2
0(f)(x, y, z) = ε(γ, x)ρ(α(x))f(y, z)− ε(γ + x, y)ρ(α(y))f(x, z)

+ ε(γ + x+ y, z)ρ(α(z))f(x, y)− f([[x, y], α(z)])
+ ε(y, z)f([[x, z], α(y)]) + f([α(x), [y, z]]).

Setting f = ω, ρ = θ and noting that θ(x)(u) = [σ(x), u], we obtain
δ2
0(ω)(x, y, z) = ε(γ, x)θ(α(x))ω(y, z)− ε(γ + x, y)θ(α(y))ω(x, z)

+ ε(γ + x+ y, z)θ(α(z))ω(x, y)− ω([[x, y], α(z)])
+ ε(y, z)ω([[x, z], α(y)]) + ω([α(x), [y, z]])

= ε(γ, x)[σ(α(x)), ω(y, z)]− ε(γ + x, y)[σ(α(y)), ω(x, z)]
+ ε(γ + x+ y, z)[σ(α(z)), ω(x, y)]− ω([[x, y], α(z)])
+ ε(y, z)ω([[x, z], α(y)]) + ω([α(x), [y, z]])

= [αL̂(σ(x)), [σ(y), σ(z)]]− [αL̂(σ(x)), σ[y, z]]
− ε(x, y)[αL̂(σ(y)), [σ(x), σ(z)]] + ε(x, y)[αL̂(σ(y)), σ[x, z]]
+ ε(x+ y, z)[αL̂(σ(z)), [σ(x), σ(y)]]− ε(x+ y, z)[αL̂(σ(z)), σ[x, y]]
− [σ([x, y]), αL̂(σ(z))] + σ([[x, y], α(z)])
+ ε(y, z)[σ([x, z]), αL̂(σ(y))]− ε(y, z)σ([[x, z], α(y)])
+ [αL̂(σ(x)), σ([y, z])]− σ([α(x), [y, z]])

= 0,
where the last equality follows from the ε-hom-Jacobi identity. Therefore, ω is a
2-cocycle. �
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