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ON PARTIAL ORDERS IN PROPER ∗-RINGS

JANKO MAROVT

Abstract. We study orders in proper ∗-rings that are derived from the core-
nilpotent decomposition. The notion of the C-N-star partial order and the
S-star partial order is extended from Mn(C), the set of all n × n complex
matrices, to the set of all Drazin invertible elements in proper ∗-rings with
identity. Properties of these orders are investigated and their characterizations
are presented. For a proper ∗-ring A with identity, it is shown that on the
set of all Drazin invertible elements a ∈ A where the core part of a is an EP
element, the C-N-star partial order implies the star partial order.

1. Introduction

Let S be a semigroup. An involution ∗ on S is called proper if a∗a = a∗b =
b∗a = b∗b, where a, b ∈ S, implies a = b. If a semigroup S is equipped with a
proper involution, then S is called a proper ∗-semigroup. Natural special cases of
proper ∗-semigroups are all proper ∗-rings (in particular, Mn(C), the ring of all
n × n complex matrices), with “properness” defined via aa∗ = 0 implying a = 0.
Drazin introduced in [2] a partial order, now known as the star partial order, on
proper ∗-semigroups. The definition follows. Let S be a proper ∗-semigroup. For
a, b ∈ S, we write

a ≤∗ b if a∗a = a∗b and aa∗ = ba∗. (1)
Recall that an element a ∈ S is called regular when a ∈ aSa, and ∗-regular

when there exists an element a† ∈ S such that aa†a = a, a†aa† = a†, (aa†)∗ = aa†,
and (a†a)∗ = a†a. The element a†, which is unique if it exists, is known as the
Moore-Penrose (generalized) inverse of a. We say that an element a ∈ S has a
Drazin inverse b ∈ S if

ab = ba, b = ab2, ak = ak+1b (2)
for some non-negative integer k (see [1]). If a has a Drazin inverse, then we say
that a is Drazin invertible and the smallest non-negative integer k in (2) is called
the index i(a) of a. It is well known that there is at most one b such that (2) holds.
The unique b, if it exists, will be denoted by aD.

Let A be a ring with the (multiplicative) identity. We say that a ∈ A has
the group inverse a# ∈ A if x = a# satisfies the following equations: axa = a,
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xax = x, and ax = xa. Mitra introduced in [9] a partial order on the set of all
n × n matrices over a field F which have the group inverse. This order, known as
the sharp partial order, was generalized in [6] and independently in [13] to rings.
The definition from [6] follows. Denote by G(A) the set of all elements in A which
have the group inverse. For a ∈ G(A) and b ∈ A, we write

a ≤] b if a#a = a#b and aa# = ba#. (3)
In [6], the author proved that the sharp order ≤] is indeed a partial order on G(A).

Denote now by N (A) the set of all nilpotent elements in A. Koliha gave in [4]
an equivalent definition of the Drazin inverse for rings with identity. Namely, for
a, b ∈ A, (2) is equivalent to

ab = ba, b = ab2, a− a2b ∈ N (A). (4)
Moreover, the index i(a) of a is equal to the nilpotency index of a − a2b. Note
that group invertibility is a special case of Drazin invertibility (see [3]). Namely, if
i(a) ≤ 1, then the Drazin inverse of a is exactly the group inverse of a.

Suppose a ∈ A has the Drazin inverse. It is known (see for example [15]) that
then a may be written as

a = c + n (5)
where c, n ∈ A, c has the group inverse, cn = nc = 0, and n is nilpotent with index
of nilpotency equal to i(a). Then c is called the core part of a and n the nilpotent
part of a. Note that c#n = 0 = nc# and therefore c#ac# = c#, ac# = c#a, and
a− a2c# = n. It follows (see (4)) that aD = c#. Since the Drazin inverse of every
element in A is unique if it exists, we may conclude that c and n from (5) are
unique. In fact,

c = a2aD and n = a− a2aD. (6)
We refer to c + n as the core-nilpotent decomposition of a.

It is known (see for example [10, Theorem 2.4.26]) that every matrix A ∈Mn(C)
has the Drazin inverse. Thus, any matrix from Mn(C) has the core-nilpotent
decomposition (5). For a matrix A ∈ Mn(C), let Im A denote the column space
of A and Ker A the null space of A. A matrix A ∈ Mn(C) is said to be range-
Hermitian (or EP) if Im A = Im A∗, or equivalently if Ker A = Ker A∗. Note that
all Hermitian matrices and all non-singular matrices in Mn(C) are range-Hermitian.

Let C be the subset of all matrices in Mn(C) whose core part is range-Hermitian.
Let A = CA + NA and B = CB + NB be the core-nilpotent decompositions of A
and B, respectively, where CA is the core part of A, CB is the core part of B, NA is
the nilpotent part of A, and NB is the nilpotent part of B. Mitra et al. introduced
in [10] the following relations in Mn(C).

Definition 1. Let A, B ∈Mn(C). We write A ≤],∗ B if CA ≤] CB and NA ≤∗ NB .

Definition 2. Let A, B ∈Mn(C). We write A ≤~ B if CA ≤] CB and A ≤∗ B.

If A ≤],∗ B, we say that A is below B with respect to the C-N-star partial order,
and if A ≤~ B, we say that A is below B with respect to the the S-star partial
order. Mitra et al. noted in [10] that both ≤],∗ and ≤~ are partial orders, and

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)
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that on C, the C-N-star partial order ≤],∗ implies the star partial order ≤∗, i.e. for
A, B ∈ C, A ≤],∗ B yields A ≤∗ B. They also posed the following open question.
Problem. What are necessary and sufficient conditions under which the S-star par-
tial order ≤~ implies the C-N-star partial order ≤],∗?

The aim of this paper to generalize Definitions 1 and 2 to unital proper ∗-rings,
study the properties of these orders, and solve Problem in a more general setting
of proper ∗-rings with identity.

2. Definitions and preliminary results

Let A be a ring with identity. For a Drazin invertible a ∈ A, we will denote by
ca the core part of a and by na the nilpotent part of a. Mitra et al. extended in [10]
the notion of the sharp order from the set G(Mn(F)) to the set Mn(F) of all n× n
matrices over a field F. Namely, they introduced a relation on Mn(F) using only
the core part of matrices and ignoring the nilpotent part altogether. This relation
has been recently generalized in [7] from Mn(F) to the set of all Drazin invertible
elements in rings with identity.
Definition 3. Let a, b ∈ A be Drazin invertible. The element a is said to be below
the element b with respect to the the Drazin order if ca ≤] cb. When this happens,
we write a ≤D b.

The relation ≤D is a pre-order, i.e. it is reflexive and transitive, and it is not
a partial order. Namely, the failure of anti-symmetry is due to the fact that the
Drazin order ignores the nilpotent parts.

Unless stated otherwise, from now on let A be a proper ∗-ring with identity 1.
Note that the C-N-star partial order, defined with Definition 1, is in fact a modifi-
cation of the Drazin order on Mn(C) so that the nilpotent parts are also involved.
This modification transforms the Drazin pre-order to a partial order. Let us now
generalize the notions of the C-N-star and the S-star partial orders from Mn(C) to
the set of Drazin invertible elements in a proper ∗-ring with identity.
Definition 4. Let a, b ∈ A be Drazin invertible. The element a is said to be below
the element b with respect to the C-N-star partial order if ca ≤] cb and na ≤∗ nb.
When this happens, we write a ≤],∗ b.
Definition 5. Let a, b ∈ A be Drazin invertible. The element a is said to be below
the element b with respect to the S-star partial order if ca ≤] cb and a ≤∗ b. When
this happens, we write a ≤~ b.

Recall that the sharp order is a partial order on the set of all group invertible
elements in a general ring with identity. Since the star order is also a partial order
in a general proper ∗-ring, we obtain the following results.
Theorem 1. The order relation ≤],∗, defined with Definition 4, is a partial order
on the set of all Drazin invertible elements in A.
Theorem 2. The order relation ≤~, defined with Definition 5, is a partial order
on the set of all Drazin invertible elements in A.
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For an element a in a ring A, we will denote by a◦ the right annihilator of a,
i.e. the set a◦ = {x ∈ A : ax = 0}. Similarly we denote the left annihilator ◦a of a,
i.e. the set ◦a = {x ∈ A : xa = 0}. Let us now present some auxiliary results.

Lemma 2.1. Let A be a proper ∗-ring and a, b ∈ A. If a ≤∗ b, then ◦b ⊆ ◦a and
b◦ ⊆ a◦.

Proof. For a, b ∈ A, let a ≤∗ b. Let zb = 0, z ∈ A. From aa∗ = ba∗, we have
0 = zba∗ = zaa∗. So, zaa∗z∗ = 0 and therefore za(za)∗ = 0. Since A is a proper
∗-ring, it follows that za = 0, i.e. ◦b ⊆ ◦a. The equation a∗a = a∗b similarly implies
b◦ ⊆ a◦. �

Lemma 2.2. Let A ∈Mn(C). Then A is range-Hermitian (or EP) if and only if
◦A = ◦(A∗), which is equivalent to A◦ = (A∗)◦.

Proof. Let A, B ∈ Mn(C). By Lemma 2.1 in [8], we have ◦A = ◦B if and only
if Im A = Im B, and A◦ = B◦ if and only if Ker A = Ker B. It follows that
◦A = ◦(A∗) if and only if Im A = Im A∗ if and only if Ker A = Ker A∗ if and only
if A◦ = (A∗)◦. �

We will use the following definition of EP elements in rings (see [5]). An element
a of a ring A with involution ∗ is said to be EP if a has the group inverse a# and
the Moore-Penrose inverse a†, and a# = a†.

Let a ∈ A be a ∗-regular element. Observe (see, e.g. [14]) that then ◦(a∗) = ◦(a†)
and (a∗)◦ = (a†)◦. For b ∈ A, it follows that a∗a = a∗b if and only if a†a = a†b, and
similarly aa∗ = ba∗ if and only if aa† = ba†. Since for an EP element a, a# = a†,
we arrive at the following result.

Lemma 2.3. Let a ∈ A be an EP element. For b ∈ A, we have a ≤∗ b if and only
if a ≤] b.

It turns out (see [11, 12]) that a ∈ A is an EP element if and only if aA = a∗A
and a has the group inverse. For a, b ∈ A, where a and b are regular, the following
statement holds by [14, Lemmas 2.5 and 2.6]: ◦a = ◦b if and only if aA = bA.
Note that for a group invertible a ∈ A, a∗ has the group inverse (a#)∗. So, since a
group invertible element is also regular, we may conclude that a ∈ A is EP if and
only if a has the group inverse and ◦a = ◦(a∗).

Let now a ∈ A be Drazin invertible. Since the core part ca of a is group
invertible and since all matrices in Mn(C) are Drazin invertible, we may generalize
the notion of the set C, of all matrices whose core part is range-Hermitian (or EP),
from Mn(C) to a ring A with involution ∗ (see Lemma 2.2): Let CA be the subset
of all Drazin invertible elements a ∈ A where ◦ca = ◦(c∗a).

Mitra et al. observed that on C = CMn(C), the C-N-star partial order ≤],∗ implies
the star partial order ≤∗. In the next section, we will prove that a similar result
holds also on CA where A is a general proper ∗-ring with identity. First, let us
present some useful tools.

The equality 1 = e1 + e2 + · · · + en, where 1 is the identity of A, e1, e2, . . . , en

are idempotent elements in A, and eiej = 0 for i 6= j, is called a decomposition of
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the identity of A. Let 1 = e1 + · · ·+en and 1 = f1 + · · ·+fn be two decompositions
of the identity of A. We have

x = 1 · x · 1 = (e1 + e2 + · · ·+ en)x(f1 + f2 + · · ·+ fn) =
n∑

i,j=1
eixfj .

Then any x ∈ A can be uniquely represented in the following matrix form:

x =

 x11 · · · x1n

...
. . .

...
xn1 · · · xnn


e×f

, (7)

where xij = eixfj ∈ eiAfj . If x = (xij)e×f and y = (yij)e×f , then x + y =
(xij + yij)e×f . Moreover, if 1 = g1 + · · · + gn is a decomposition of the identity
of A and z = (zij)f×g, then, by the orthogonality of the idempotents involved,
xz = (

∑n
k=1 xikzkj)

e×g
. Thus, if we have decompositions of the identity of A, then

the usual algebraic operations in A can be interpreted as simple operations between
appropriate n × n matrices over A. When n = 2 and p, q ∈ A are idempotent
elements, we may write

x = pxq + px(1− q) + (1− p)xq + (1− p)x(1− q) =
[

x1,1 x1,2
x2,1 x2,2

]
p×q

.

Here x1,1 = pxq, x1,2 = px(1− q), x2,1 = (1− p)xq, x2,2 = (1− p)x(1− q).
If A is a ring with involution ∗, then we may by (7) write

x∗ =

 x∗11 · · · x∗n1
...

. . .
...

x∗1n · · · x∗nn


f∗×e∗

(8)

where this matrix representation of x∗ is given relative to the decompositions of
the identity 1 = f∗1 + · · ·+ f∗n and 1 = e∗1 + · · ·+ e∗n.

Let a ∈ A be Drazin invertible. It turns out (for details see [7]) that we may
present the core nilpotent decomposition ca + na of a in the following matrix form:

a =
[

ca 0
0 na

]
p×p

(9)

where p = aaD.

Remark. For a ring A with involution ∗, a ∈ A is EP if and only if a has the group
inverse a# and aa# is self-adjoined (see [5, Theorem 7.3] or [11, Theorem 1.2]).
Suppose ◦ca = ◦(c∗a). It follows that ca is then EP, which implies (cac#

a )∗ = cac#
a .

Recall (see the first section) that aD = c#
a . Therefore,

p = aaD = (ca + na)c#
a = cac#

a ,

which implies that p is a self-adjoined idempotent.

Let us conclude this section with a characterization [7, Theorem 1] of the Drazin
order ≤D which we will use in the continuation.

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



198 JANKO MAROVT

Proposition. Let a, b ∈ A be Drazin invertible. The following statements are then
equivalent.

(i) a ≤D b.
(ii) aaD = baD = aDb = aDa.
(iii) There exists a decomposition of the identity 1 = e1 + e2 + e3 such that

a =

 c1 0 0
0 c3 c4
0 c5 c6


e×e

, b =

 c1 0 0
0 c2 0
0 0 n2


e×e

where na = c3 + c4 + c5 + c6 is the nilpotent part of a, c2 has the group
inverse, and n2 is nilpotent.

3. Main results

3.1. The C-N-star partial order. Recall that CA is the set of all Drazin invert-
ible elements a ∈ A where ◦ca = ◦(c∗a), i.e. the core part ca of a is an EP element.
We shall now present a new characterization of the C-N-star partial order on CA

where A is a proper ∗-ring with identity.

Theorem 3. Let a, b ∈ CA. Then a ≤],∗ b if and only if there exists a decompo-
sition of the identity 1 = e1 + e2 + e3, where e1, e2, e3 ∈ A are self-adjoined, such
that

a =

 c1 0 0
0 0 0
0 0 n1


e×e

, b =

 c1 0 0
0 c2 0
0 0 n2


e×e

(10)

where c1 and c2 have the group inverse, and n1 and n2 are nilpotent with n1 ≤∗ n2.

Proof. Suppose a, b ∈ CA. Let a = ca + na and b = cb + nb be the core-nilpotent
decompositions of a and b, respectively. By (9) and Remark we may present element
a in the following matrix form:

a =
[

ca 0
0 na

]
p×p

where p = aaD is self-adjoined.
Suppose a ≤],∗ b. It follows that a ≤D b and therefore by Proposition there

exists a decomposition of the identity 1 = e1 + e2 + e3 such that

a =

 c1 0 0
0 c3 c4
0 c5 c6


e×e

, b =

 c1 0 0
0 c2 0
0 0 n2


e×e

(11)

where na = c3 + c4 + c5 + c6 is the nilpotent part of a, c2 has the group inverse,
and n2 is nilpotent. Since c1 = a − na, we may observe that c1 = ca is the core
part of a. Note that for d ∈ G(A), we have ◦(d#) = ◦d and (d#)◦ = d◦. It follows
that 0 = c#

2 ca = cac#
2 = c2c#

a = c#
a c2 and thus (ca + c2)# = c#

a + c#
2 , i.e. ca + c2

is group invertible. So, since (ca + c2)n2 = n2(ca + c2) = 0, it follows that the core
and the nilpotent parts of b are ca + c2 = cb and n2 = nb, respectively. Observe
that by the proof of Theorem 1 ((ii) implies (iii)) in [7] we may without loss of
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generality assume that e1 = p = p∗, e2 = c2c#
2 , and e3 = 1− e1− e2. Since b ∈ CA,

Remark implies cbc#
b is self-adjoined. So,
((ca + c2)(ca + c2)#)∗ = (ca + c2)(ca + c2)#

and therefore
(cac#

a )∗ + (c2c#
2 )∗ = cac#

a + c2c#
2 .

Recall that a ∈ CA. So, (cac#
a )∗ = cac#

a which yields that (c2c#
2 )∗ = c2c#

2 . We
may conclude that the idempotents e1, e2, and e3 are all self-adjoined.

Let us now show that in (11), c3 = c4 = c5 = 0. From a ≤],∗ b, we have
na ≤∗ nb. Since na = c3 + c4 + c5 + c6 and nb = n2, it follows by Lemma 2.1 that

◦n2 ⊆ ◦(c3 + c4 + c5 + c6) and n◦2 ⊆ (c3 + c4 + c5 + c6)◦. (12)
We have c3 + c4 + c5 + c6 = e2ae2 + e2ae3 + e3ae2 + e3ae3 and n2 = e3be3. Since
e2e3 = 0 = e3e2, we obtain e2n2 = 0 = n2e2, i.e. e2 ∈ ◦n2 ∩ n◦2. So, by (12),

e2 ∈ ◦(c3 + c4 + c5 + c6) ∩ (c3 + c4 + c5 + c6)◦

and therefore
0 = e2(c3 + c4 + c5 + c6) = e2ae2 + e2ae3 = c3 + c4

and
0 = (c3 + c4 + c5 + c6)e2 = e2ae2 + e3ae2 = c3 + c5.

So, c4 = c5 = −c3. Note that c4 ∈ e2Ae3 and c5 ∈ e3Ae2. Since e2Ae3 ∩ e3Ae2 =
{0}, we may conclude that 0 = c3 = c4 = c5. If we denote c6 = n1, we obtain the
matrix form (10) of a and b.

Conversely, let a, b ∈ CA be of the matrix form (10). Since c1 is group invertible
and n1 is nilpotent with c1n1 = n1c1 = 0, the uniqueness of the core-nilpotent
decomposition implies ca = c1 and na = n1. Similarly, cb = c1 + c2 and nb = n2.
By Proposition it follows that a ≤D b, i.e. ca ≤] cb. Therefore, since by assumption
na ≤∗ nb, we may conclude that a ≤],∗ b. �

The nilpotent part of a Drazin invertible element a ∈ A is by (6), na = a −
a2aD = a − aaDa. Thus, directly by Definitions 3 and 4, we obtain another
characterization of the C-N-star partial order on a proper ∗-ring A with identity.
Theorem 4. Let a, b ∈ A be Drazin invertible. Then a ≤],∗ b if and only if a ≤D b
and a− aaDa ≤∗ b− bbDb.

With the next result we will show that on CA, the C-N-star partial order ≤],∗

implies the star partial order ≤∗.
Theorem 5. Let a, b ∈ CA. If a ≤],∗ b, then a ≤∗ b.
Proof. Suppose a, b ∈ CA and a ≤],∗ b, i.e. ca ≤] cb and na ≤∗ nb. The star partial
order (1) and the sharp partial order (3) are by Lemma 2.3 equivalent on the set of
EP elements in A. Since the core part ca of a is an EP element, we may conclude
that ca ≤∗ cb. It follows that c∗aca = c∗acb and cac∗a = cbc∗a. Also, n∗ana = n∗anb and
nan∗a = nbn∗a. Since a = ca + na and b = cb + nb, we obtain

a∗a = c∗aca + c∗ana + n∗aca + n∗ana and a∗b = c∗acb + c∗anb + n∗acb + n∗anb. (13)
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Observe that for any d ∈ A, ◦d = ◦(d∗) if and only if d◦ = (d∗)◦. So, since a ∈ CA

and therefore ◦ca = ◦(c∗a), we have c∗ana = 0 = n∗aca. By Theorem 3, elements
a and b have the matrix representation (10), where c1 = ca is the core part of a,
n1 = na is the nilpotent part of a, c1 + c2 = cb is the core part of b, and n2 = nb

is the nilpotent part of b. Clearly, by (10) we have c1n2 = 0, i.e. canb = 0, which
yields 0 = c∗anb. Similarly, (c1 + c2)n1 = 0, i.e. cbna = 0. Since b ∈ CA and
therefore ◦cb = ◦(c∗b), we obtain 0 = c∗bna and thus 0 = n∗acb. By (13), we may
conclude that

a∗a = a∗b.

We may similarly prove that aa∗ = ba∗. Therefore, a ≤∗ b. �

3.2. The S-star partial order. With Theorem 5 we showed that on CA, where
A is a proper ∗-ring with identity, the C-N-star partial order ≤],∗ implies the star
partial order ≤∗. It follows (compare Definitions 4 and 5) that the C-N-star partial
order implies also the S-star partial order ≤~. With the next theorem, we will
present some new characterizations of the C-N-star partial order and thus find
some conditions under which the S-star partial order implies the C-N-star partial
order.

Theorem 6. Let a, b ∈ CA, let k = max{i(a), i(b)}, and suppose a ≤~ b. The
following statements are then equivalent.

(i) a ≤],∗ b
(ii) bkabbD = bka, bbDabk = abk, and bbDa = aaDa
(iii) ◦(bk) ⊆ ◦(abk) and bka = ak+1

(iv) ◦((bk)∗) ⊆ ◦((bka)∗) and abk = ak+1

(v) abk = bka = ak+1

Proof. Some steps of the proof will be similar to the corresponding steps in the
proof of Theorem 8 in [7]. For the sake of completeness, we will not skip these
details. Let a ≤],∗ b. By Theorem 3, there exists a decomposition of the identity
1 = e1 + e2 + e3, where e1, e2, e3 ∈ A are self-adjoined, such that

a =

 c1 0 0
0 0 0
0 0 n1


e×e

, b =

 c1 0 0
0 c2 0
0 0 n2


e×e

(14)

where c1 and c2 have the group inverse, and n1 and n2 are nilpotent with n1 ≤∗ n2.
Note that ca = c1, na = n1, cb = c1 + c2, and nb = n2. Since k = max{i(a), i(b)},
we have nk

1 = 0 = nk
2 and therefore

ak+1 =

 ck+1
1 0 0
0 0 0
0 0 0


e×e

and bk =

 ck
1 0 0
0 ck

2 0
0 0 0


e×e

. (15)
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(i)⇒(ii): Observe that aD = c#
1 =

[
c#

1 0 0
0 0 0
0 0 0

]
e×e

and bD = (c1 +c2)# = c#
1 +c#

2 =[
c#

1 0 0
0 c#

2 0
0 0 0

]
e×e

. We obtain

bkabbD =

 ck
1c1c1c#

1 0 0
0 0 0
0 0 0


e×e

=

 ck+1
1 0 0
0 0 0
0 0 0


e×e

= bka,

and similarly bbDabk = ck+1
1 = abk, and bbDa = c1 = aaDa.

(i)⇒(iii): Clearly, by (14) and (15), bka = ck+1
1 = ak+1. Let z ∈ ◦(bk), i.e.

zbk = 0. Since bk = ck
1 + ck

2 , we obtain zck
1 + zck

2 = 0 and thus, zck+1
1 + zck

2c1 = 0.
Note that c1c2 = c2c1 = 0. So, zck+1

1 = 0. Observe that abk = ck+1
1 . Therefore,

z ∈ ◦(abk), i.e. ◦(bk) ⊆ ◦(abk).
(i)⇒(iv): Again, clearly, abk = ak+1 = ck+1

1 = bka. Let z ∈ ◦((bk)∗). Thus
z(ck

1)∗+ z(ck
2)∗ = 0 and therefore z(ck+1

1 )∗+ z(ck
2)∗c∗1 = 0. Since c1c2 = 0, we have

c∗2c∗1 = 0 and hence z ∈ ◦((ck+1
1 )∗) = ◦((bka)∗).

(i)⇒(v): It follows directly by (14) and (15).
(ii)⇒(i): Let a ≤~ b, i.e. ca ≤] cb and a ≤∗ b, and let bkabbD = bka, bbDabk =

abk, and bbDa = aaDa. We will show that then na ≤∗ nb. By (9),

b =
[

cb 0
0 nb

]
q×q

where q = bbD = cbc#
b . Note (see Remark) that q = q∗. Also, since nb is the

nilpotent part of b, we have nk
b = 0 and therefore

bk =
[

ck
b 0
0 0

]
q×q

.

Let a =
[

a1 a2
a3 a4

]
q×q

. From bkabbD = bka, we obtain 0 = bka(1 − bbD) =

bka(1− q) and thus

0 =
[

ck
b 0
0 0

]
q×q

[
a1 a2
a3 a4

]
q×q

[
0 0
0 1− q

]
q×q

=
[

0 ck
b a2(1− q)

0 0

]
q×q

.

So, ck
b a2(1− q) = 0. This yields ck

b a2 = 0 since a2 ∈ qA(1− q). It follows that

0 = (c#
b )kck

b a2 = qka2 = a2.

Similarly, from bbDabk = abk we obtain 0 = (1−q)abk and therefore 0 = (1−q)a3qk.
So, a3 = 0 since a3 ∈ (1− q)Aq. Thus,

a =
[

a1 0
0 a4

]
q×q

.

Since a1 ∈ qAq and a4 ∈ (1− q)A(1− q), we have

a4 = (1− q)a1 + (1− q)a4 = (1− q)(a1 + a4) = (1− q)a = a− bbDa.
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The assumption bbDa = aaDa yields a4 = a − a2aD, which is by (6) exactly the
nilpotent part of a. So, a1 = a − a4 = a2aD is the core part of a and thus a may
be presented in the following matrix form:

a =
[

ca 0
0 na

]
q×q

.

Recall that a ≤∗ b, i.e. a∗a = a∗b and aa∗ = ba∗. Since q = q∗, the first equation
yields [

c∗a 0
0 n∗a

]
q×q

[
ca 0
0 na

]
q×q

=
[

c∗a 0
0 n∗a

]
q×q

[
cb 0
0 nb

]
q×q

.

Thus, n∗ana = n∗anb. Similarly, the second equation implies nan∗a = nbn∗a. So,
na ≤∗ nb and therefore a ≤],∗ b.

(iii)⇒(i) Suppose ◦(bk) ⊆ ◦(abk) and bka = ak+1. Since a ≤~ b, we have ca ≤] cb

and a ≤∗ b. So, a ≤D b and thus by Proposition, there exists a decomposition of
the identity 1 = e1 + e2 + e3 such that

a =

 c1 0 0
0 c3 c4
0 c5 c6


e×e

, b =

 c1 0 0
0 c2 0
0 0 n2


e×e

where na = c3+c4+c5+c6 is the nilpotent part of a and n2 = nb is the nilpotent part
of b. Here we may without loss of generality assume (see the proof of Theorem 1
((ii) implies (iii)) in [7]) that e1 = cac#

a and e2 = c2c#
2 . Since a, b ∈ CA, we may (see

Remark) as in the proof of Theorem 3 conclude that e1, e2, and e3 = 1−e1−e2 are
self-adjoined idempotents. Let us prove that c3 = c4 = c5 = 0. Since nk

b = 0 = nk
a,

we obtain

bka =

 ck+1
1 0 0
0 ck

2c3 ck
2c4

0 0 0


e×e

and ak+1 =

 ck+1
1 0 0
0 0 0
0 0 0


e×e

.

The equation bka = ak+1 yields ck
2c3 = 0 = ck

2c4. It follows that (c#
2 )kck

2c3 = 0 =
(c#

2 )kck
2c4 and thus ek

2c3 = 0 = ek
2c4. Since c3 ∈ e2Ae2 and c4 ∈ e2Ae3, we may

conclude that c3 = c4 = 0. From

e3bk =

 0 0 0
0 0 0
0 0 e3


e×e

 ck
1 0 0
0 ck

2 0
0 0 0


e×e

,

we obtain e3 ∈ ◦(bk) ⊆ ◦(abk). So,

0 =

 0 0 0
0 0 0
0 0 e3


e×e

 ck+1
1 0 0
0 0 0
0 c5ck

2 0


e×e

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



ON PARTIAL ORDERS IN PROPER ∗-RINGS 203

and hence 0 = e3c5ck
2 . Note that c5 ∈ e3Ae2. Thus, c5ck

2 = 0 and therefore
0 = c5ck

2(c#
2 )k = c5e2 = c5. It follows that

a =

 c1 0 0
0 0 0
0 0 c6


e×e

where c6 = na is the nilpotent part of a and c1 = ca is the core part of a. Finally,
let us show that na ≤∗ nb. Since a ≤∗ b, we have a∗a = a∗b and aa∗ = ba∗, and
thus by (8), c∗a 0 0

0 0 0
0 0 n∗a


e×e

 ca 0 0
0 0 0
0 0 na


e×e

=

 c∗a 0 0
0 0 0
0 0 n∗a


e×e

 ca 0 0
0 c2 0
0 0 nb


e×e

.

It follows that n∗ana = n∗anb. Similarly, we obtain nan∗a = nbn∗b . So, na ≤∗ nb and
therefore a ≤],∗ b.

(iv)⇒(i) We will omit the proof since (by using the matrix formulation (8)) the
proof may be very similar to the proof that (iii) implies (i).

(v)⇒(iii) Let abk = bka = ak+1 and suppose z ∈ ◦(bk). Then 0 = zbka = zabk

and therefore ◦(bk) ⊆ ◦(abk). �
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[11] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings, Linear Algebra Appl. 431

(2009), no. 5-7, 527–535. MR 2535530.
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