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ON PARTIAL ORDERS IN PROPER *RINGS

JANKO MAROVT

ABSTRACT. We study orders in proper *-rings that are derived from the core-
nilpotent decomposition. The notion of the C-N-star partial order and the
S-star partial order is extended from My, (C), the set of all n X n complex
matrices, to the set of all Drazin invertible elements in proper *-rings with
identity. Properties of these orders are investigated and their characterizations
are presented. For a proper *-ring A with identity, it is shown that on the
set of all Drazin invertible elements a € A where the core part of a is an EP
element, the C-N-star partial order implies the star partial order.

1. INTRODUCTION

Let S be a semigroup. An involution * on S is called proper if a*a = a*b =

b*a = b*b, where a,b € S, implies a = b. If a semigroup S is equipped with a
proper involution, then S is called a proper x-semigroup. Natural special cases of
proper x-semigroups are all proper #-rings (in particular, M, (C), the ring of all
n X n complex matrices), with “properness” defined via aa* = 0 implying a = 0.
Drazin introduced in [2] a partial order, now known as the star partial order, on
proper *-semigroups. The definition follows. Let S be a proper x-semigroup. For
a,b € S, we write

a<*b if a*a=a"d and aa* =ba”. (1)

Recall that an element a € S is called regular when a € aSa, and *-regular
when there exists an element af € S such that aata = a, afaa’ = af, (aat)* = aal,
and (a'a)* = a'a. The element af, which is unique if it exists, is known as the
Moore-Penrose (generalized) inverse of a. We say that an element a € S has a
Drazin inverse b € S if

ab = ba, b= ab?, a® = aF 1y (2)

for some non-negative integer k (see [I]). If a has a Drazin inverse, then we say
that a is Drazin invertible and the smallest non-negative integer k in is called
the index i(a) of a. It is well known that there is at most one b such that holds.
The unique b, if it exists, will be denoted by a®.

Let A be a ring with the (multiplicative) identity. We say that a € A has
the group inverse a” € A if x = a¥ satisfies the following equations: aza = a,
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zar = z, and ax = za. Mitra introduced in [9] a partial order on the set of all
n X n matrices over a field F which have the group inverse. This order, known as
the sharp partial order, was generalized in [6] and independently in [I3] to rings.
The definition from [6] follows. Denote by G(.A) the set of all elements in A which
have the group inverse. For a € G(A) and b € A, we write

a<b if a¥a=da"b and aa® =ba”. (3)

In [6], the author proved that the sharp order < is indeed a partial order on G(A).

Denote now by N(A) the set of all nilpotent elements in A. Koliha gave in [4]
an equivalent definition of the Drazin inverse for rings with identity. Namely, for
a,be A, (@) is equivalent to

ab = ba, b=ab? a—a*b e N(A). (4)

Moreover, the index i(a) of a is equal to the nilpotency index of a — a?b. Note
that group invertibility is a special case of Drazin invertibility (see [3]). Namely, if
i(a) <1, then the Drazin inverse of a is exactly the group inverse of a.

Suppose a € A has the Drazin inverse. It is known (see for example [I5]) that
then a may be written as

a=c+n (5)
where ¢,n € A, ¢ has the group inverse, cn = nc = 0, and n is nilpotent with index
of nilpotency equal to i(a). Then c is called the core part of a and n the nilpotent
part of a. Note that ¢#n = 0 = nc# and therefore c#ac# = ¢#, ac# = ¢#a, and
a — a’c? =n. It follows (see () that a” = ¢#. Since the Drazin inverse of every
element in A is unique if it exists, we may conclude that ¢ and n from are
unique. In fact,

c=a*a” and n=a—a’a’. (6)
We refer to ¢+ n as the core-nilpotent decomposition of a.

It is known (see for example [10, Theorem 2.4.26]) that every matrix A € M, (C)
has the Drazin inverse. Thus, any matrix from M, (C) has the core-nilpotent
decomposition . For a matrix A € M,(C), let Im A denote the column space
of A and Ker A the null space of A. A matrix A € M, (C) is said to be range-
Hermitian (or EP) if Im A = Im A*, or equivalently if Ker A = Ker A*. Note that
all Hermitian matrices and all non-singular matrices in M, (C) are range-Hermitian.

Let € be the subset of all matrices in M,, (C) whose core part is range-Hermitian.
Let A=C4s+ Ngq and B = Cg + Np be the core-nilpotent decompositions of A
and B, respectively, where C4 is the core part of A, Cp is the core part of B, N4 is
the nilpotent part of A, and Np is the nilpotent part of B. Mitra et al. introduced
in [I0] the following relations in M, (C).

Definition 1. Let A, B € M, (C). We write A <* Bif C4 <! Cpand N4 <* Np.
Definition 2. Let A, B € M, (C). We write A <® B if C4 < Cp and A <* B.

If A <%* B, we say that A is below B with respect to the C-N-star partial order,
and if A <® B, we say that A is below B with respect to the the S-star partial
order. Mitra et al. noted in [I0] that both <t* and <® are partial orders, and
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ON PARTTAL ORDERS IN PROPER %-RINGS 195

that on €, the C-N-star partial order <®* implies the star partial order <*, i.e. for
A, Be ¢, A<t Byields A <* B. They also posed the following open question.

Problem. What are necessary and sufficient conditions under which the S-star par-
tial order <® implies the C-N-star partial order <b*7

The aim of this paper to generalize Definitions [I] and [2] to unital proper *-rings,
study the properties of these orders, and solve Problem in a more general setting
of proper *-rings with identity.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let A be a ring with identity. For a Drazin invertible a € A, we will denote by
¢q the core part of a and by n, the nilpotent part of a. Mitra et al. extended in [10]
the notion of the sharp order from the set G(M,,(F)) to the set M, (F) of all n x n
matrices over a field F. Namely, they introduced a relation on M, (F) using only
the core part of matrices and ignoring the nilpotent part altogether. This relation
has been recently generalized in [7] from M, (F) to the set of all Drazin invertible
elements in rings with identity.

Definition 3. Let a,b € A be Drazin invertible. The element « is said to be below
the element b with respect to the the Drazin order if ¢, <* ¢;,. When this happens,
we write a <P b.

The relation <P is a pre-order, i.e. it is reflexive and transitive, and it is not
a partial order. Namely, the failure of anti-symmetry is due to the fact that the
Drazin order ignores the nilpotent parts.

Unless stated otherwise, from now on let A be a proper *-ring with identity 1.
Note that the C-N-star partial order, defined with Definition [I} is in fact a modifi-
cation of the Drazin order on M, (C) so that the nilpotent parts are also involved.
This modification transforms the Drazin pre-order to a partial order. Let us now
generalize the notions of the C-N-star and the S-star partial orders from M, (C) to
the set of Drazin invertible elements in a proper *-ring with identity.

Definition 4. Let a,b € A be Drazin invertible. The element a is said to be below
the element b with respect to the C-N-star partial order if c, <! ¢, and n, <* ny.
When this happens, we write a <** b.

Definition 5. Let a,b € A be Drazin invertible. The element « is said to be below
the element b with respect to the S-star partial order if ¢, <% ¢, and a <* b. When
this happens, we write a <® b.

Recall that the sharp order is a partial order on the set of all group invertible
elements in a general ring with identity. Since the star order is also a partial order
in a general proper x-ring, we obtain the following results.

Theorem 1. The order relation <**, defined with Deﬁnitz’oanL is a partial order
on the set of all Drazin invertible elements in A.

Theorem 2. The order relation <®, defined with Deﬁnitz’on@ is a partial order
on the set of all Drazin invertible elements in A.
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For an element a in a ring A, we will denote by a° the right annihilator of a,
i.e. the set a® = {x € A : ax = 0}. Similarly we denote the left annihilator °a of a,
i.e. the set °a = {z € A: za = 0}. Let us now present some auxiliary results.

Lemma 2.1. Let A be a proper x-ring and a,b € A. If a <* b, then °b C °a and
b° C al.

Proof. For a,b € A, let a <* b. Let zb =0, z € A. From aa* = ba*, we have
0 = zba* = zaa*. So, zaa*z* = 0 and therefore za(za)* = 0. Since A is a proper
*-ring, it follows that za = 0, i.e. °b C °a. The equation a*a = a*b similarly implies
b° C a®. O

Lemma 2.2. Let A € M, (C). Then A is range-Hermitian (or EP) if and only if
°A = °(A*), which is equivalent to A° = (A*)°.

Proof. Let A,B € M,(C). By Lemma 2.1 in [§], we have °A = °B if and only
if ImnA = ImB, and A° = B° if and only if Ker A = Ker B. It follows that
°A =°(A*) if and only if Im A = Im A* if and only if Ker A = Ker A* if and only
if A° = (A*)°. d

We will use the following definition of EP elements in rings (see [5]). An element
a of a ring A with involution * is said to be EP if a has the group inverse a and
the Moore-Penrose inverse af, and a# = af.

Let a € Abe a x-regular element. Observe (see, e.g. [T4]) that then °(a*) = °(al)
and (a*)° = (a')°. For b € A, it follows that a*a = a*b if and only if a'a = a'b, and
similarly aa* = ba* if and only if aa’ = ba’. Since for an EP element a, a¥ = af,
we arrive at the following result.

Lemma 2.3. Let a € A be an EP element. For b € A, we have a <* b if and only
if a <tp.

It turns out (see [II], 12]) that a € A is an EP element if and only if aA = a*A
and a has the group inverse. For a,b € A, where a and b are regular, the following
statement holds by [I4, Lemmas 2.5 and 2.6]: °a = °b if and only if a A = bA.
Note that for a group invertible a € A, a* has the group inverse (a™)*. So, since a
group invertible element is also regular, we may conclude that a € A is EP if and
only if a has the group inverse and °a = °(a*).

Let now a € A be Drazin invertible. Since the core part ¢, of a is group
invertible and since all matrices in M, (C) are Drazin invertible, we may generalize
the notion of the set €, of all matrices whose core part is range-Hermitian (or EP),
from M, (C) to a ring A with involution * (see Lemma : Let €4 be the subset
of all Drazin invertible elements a € A where °c, = °(c}).

Mitra et al. observed that on € = €M»(©) the C-N-star partial order <** implies
the star partial order <*. In the next section, we will prove that a similar result
holds also on €4 where A is a general proper #-ring with identity. First, let us
present some useful tools.

The equality 1 = e; + e3 + - - - + e, where 1 is the identity of A, ej,ea,..., e,
are idempotent elements in A, and e;e; = 0 for ¢ # j, is called a decomposition of
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the identity of 4. Let 1 =e;+---4e¢, and 1 = f; +-- -+ f,, be two decompositions
of the identity of A. We have
n
r=la-1=(ea+et o te)e(fitfototfa)= ) el
i,j=1
Then any x € A can be uniquely represented in the following matrix form:

11 Tin

Tpl 0 Tnn exf

where z;; = exf; € e;Af;. I © = (T45)exs and y = (Yij)exs, then z +y =
(Tij + Yij)exs. Moreover, if 1 = g1 + --- + g5, is a decomposition of the identity
of A and z = (2;5)fxg, then, by the orthogonality of the idempotents involved,
vz = (Y, TikZkj) g Lhus, if we have decompositions of the identity of A, then
the usual algebraic operations in A can be interpreted as simple operations between
appropriate n X n matrices over A. When n = 2 and p,q € A are idempotent
elements, we may write

x=prq+pr(l—q)+ (1 —plzg+ (1 —p)z(l —q) = [ ilal 1,2 } _
2,1 T22 pXq
Here 211 = prq, 115 = pr(1 = q), 221 = (1 = p)rg; T35 = (1 —p)(l —q).
If A is a ring with involution *, then we may by @ write

S IR (8)

* *
xln .. :L’

nn frxex
where this matrix representation of xz* is given relative to the decompositions of
the identity 1 = f{ +---+ fr and 1 =e] +--- + ..

Let a € A be Drazin invertible. It turns out (for details see [7]) that we may
present the core nilpotent decomposition ¢, 4+ n, of a in the following matrix form:

=% ] ©

where p = aa®.

Remark. For a ring A with involution *, a € A is EP if and only if @ has the group
inverse a” and aa” is self-adjoined (see [5, Theorem 7.3] or [I1, Theorem 1.2]).
Suppose °c, = °(c!). It follows that ¢, is then EP, which implies (c,c#)* = cqci.
Recall (see the first section) that a” = ¢#. Therefore,

p= aaD = (Ca —+ ’I’La)c# = CaC#

a a’

which implies that p is a self-adjoined idempotent.

Let us conclude this section with a characterization [7, Theorem 1] of the Drazin
order <P which we will use in the continuation.
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Proposition. Let a,b € A be Drazin invertible. The following statements are then
equivalent.

(i) a <P b.

(ii) aaP = baP = aPb = aPla.

(iii) There exists a decomposition of the identity 1 = eq + e3 + e3 such that

cc 0 0 cc 0 O
a = O C3 C4 5 b = 0 Co 0
0 ¢ ¢ exe 0 0 m exe

where ng = c3 + ¢4 + ¢5 + cg is the nilpotent part of a, co has the group
inverse, and no s nilpotent.

3. MAIN RESULTS

3.1. The C-N-star partial order. Recall that ¢4 is the set of all Drazin invert-
ible elements a € A where °c, = °(c}), i.e. the core part ¢, of a is an EP element.
We shall now present a new characterization of the C-N-star partial order on ¢4
where A is a proper *-ring with identity.

Theorem 3. Let a,b € €A. Then a <¥* b if and only if there exists a decompo-
sition of the identity 1 = e + es + ez, where e1,ez,e3 € A are self-adjoined, such
that

cc 0 0 cc 0 0
a = 0 0 O R b= 0 co O (10)
0 0 n1 exe 0 0 No exe

where c1 and co have the group inverse, and ni and ns are nilpotent with ny <* na.

Proof. Suppose a,b € €A, Let a = ¢, + nq and b = ¢, + np be the core-nilpotent
decompositions of @ and b, respectively. By @ and Remark we may present element
a in the following matrix form:

a [ cq O }
0 ng oxp
where p = aa® is self-adjoined.

Suppose a <* b. Tt follows that a <P b and therefore by Proposition there
exists a decomposition of the identity 1 = e; + es 4 e3 such that

D

C1 0 0 C1 0 0
a=| 0 c3 ¢4 , b=1] 0 ¢ 0 (11)
0 Cs Cg exe 0 0 no exe

where n, = ¢3 + ¢4 + ¢5 + ¢g is the nilpotent part of a, co has the group inverse,
and ny is nilpotent. Since ¢; = a — n,, we may observe that ¢; = ¢, is the core

part of a. Note that for d € G(A), we have °(d#) = °d and (d#)° = d°. It follows
that 0 = cfca = cac;‘ié = caclt = cffcy and thus (¢, + c2)* = ¢ + c;#, ie. cq +co
is group invertible. So, since (¢, + ¢2)na = na(cq + ¢2) = 0, it follows that the core
and the nilpotent parts of b are ¢, + co = ¢ and ny = ny, respectively. Observe

that by the proof of Theorem 1 ((ii) implies (iii)) in [7] we may without loss of
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generality assume that e; = p = p*, ea = 0203&, and e3 = 1 —e; —ey. Since b € €A,

Remark implies cbc?f is self-adjoined. So,

((ca + e2)(ca +€2)*)" = (ca + c2)(ca + c2)*

and therefore
(ca€®)* + (cac)* = cact + cact.
Recall that a € €4, So, (cac#)* = coc? which yields that (coc?)* = coc. We
may conclude that the idempotents e, e, and ez are all self-adjoined.
Let us now show that in , c3 = ¢4 = c5 = 0. From a <"* b, we have

ne <* np. Since ng = ¢3 + ¢4 + ¢5 + ¢ and ny, = no, it follows by Lemma [2.T] that
°ng C°%(c3+ca+ces+cg) and ng C (c3+cq+cs+c6)° (12)
We have c3 + ¢4 + ¢5 + cg = esaes + esaes + esaeq + esaes and ng = esbes. Since
ezes = 0 = ezeq, we obtain eang = 0 = ngeq, ie. ex € °ng Nng. So, by ,
eg € 0(63+C4+C5+Ce)ﬁ(63+04+05+66)0

and therefore

0 =ea(cs 4 ca + 5 + cg) = eqaes + esaes = c3 + ¢4
and

0= (c3+cq+c5+ c)ea = eqaes + ezaes = 3 + cs.
So, ¢4 = ¢5 = —c3. Note that ¢4 € eaAes and c¢5 € ez Aes. Since es Aes Nes ey =

{0}, we may conclude that 0 = ¢35 = ¢4 = ¢5. If we denote cg = ny, we obtain the
matrix form of a and b.

Conversely, let a,b € €4 be of the matrix form . Since ¢; is group invertible
and n; is nilpotent with ¢;n; = nic; = 0, the uniqueness of the core-nilpotent
decomposition implies ¢, = ¢; and n, = ny. Similarly, ¢, = ¢; + ¢ and 1, = no.
By Proposition it follows that a <P b, i.e. ¢, <* ¢;,. Therefore, since by assumption
ng <* ny, we may conclude that a <t*p, O

The nilpotent part of a Drazin invertible element a € A is by @, Ng = a —
a’a®? = a — aaPa. Thus, directly by Definitions |3 and we obtain another
characterization of the C-N-star partial order on a proper *-ring A with identity.

Theorem 4. Let a,b € A be Drazin invertible. Then a <%* b if and only if a <P b
and a — aaPa <* b — bbPb.

With the next result we will show that on ¢4, the C-N-star partial order <f*
implies the star partial order <*.

Theorem 5. Let a,b e €A, If a <b* b, then a <* b.

Proof. Suppose a,b € €4 and a <#* b, i.e. ¢ <! ¢ and n, <* ny. The star partial
order and the sharp partial order are by Lemma equivalent on the set of
EP elements in A. Since the core part ¢, of a is an EP element, we may conclude
that ¢, <* ¢p. It follows that cc, = cicp and c.c) = cpcl. Also, ning = n'n, and
nen, = npn. Since a = ¢, + N, and b = ¢, + ny, we obtain

a*a = Cicq + Cing +nhce +nong and  a*b=chep +ciny +nncy +ning. (13)
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Observe that for any d € A, °d = °(d*) if and only if d° = (d*)°. So, since a € €A
and therefore °c, = °(c}), we have ¢in, = 0 = n’c,. By Theorem [3| elements
a and b have the matrix representation , where ¢; = ¢, is the core part of a,
n1 = ng is the nilpotent part of a, ¢; + co = ¢ is the core part of b, and ny = ny
is the nilpotent part of b. Clearly, by we have cing = 0, i.e. ¢,np = 0, which
yields 0 = cinp. Similarly, (c; + ca)ny = 0, ie. ¢png, = 0. Since b € €A and
therefore °c, = °(c}), we obtain 0 = ¢jn, and thus 0 = n%c,. By (13), we may
conclude that

a*a = a*b.

We may similarly prove that aa® = ba*. Therefore, a <* b. O

3.2. The S-star partial order. With Theorem [5| we showed that on ¢4, where
A is a proper *ring with identity, the C-N-star partial order <#* implies the star
partial order <*. It follows (compare Deﬁnitionsand that the C-N-star partial
order implies also the S-star partial order <®. With the next theorem, we will
present some new characterizations of the C-N-star partial order and thus find
some conditions under which the S-star partial order implies the C-N-star partial
order.

Theorem 6. Let a,b € €4, let k = max{i(a),i(b)}, and suppose a <® b. The
following statements are then equivalent.

(i) a<t*b

(ii) bkabbD = bFa, bbPab® = ab®, and bbPa = aaPa
(iii) °(b* (abk) and bra = b+l

(iv) °((b ) )Q (( )*) and ab® = a"*!

(v) ab® = bFa = a*

Proof. Some steps of the proof will be similar to the corresponding steps in the
proof of Theorem 8 in [7]. For the sake of completeness, we will not skip these
details. Let a <®* b. By Theorem |3} there exists a decomposition of the identity
1 =e; + es + e3, where eq, eo,e3 € A are self-adjoined, such that

C1 0 0 C1 0 0
a = 0 0 O , b= 0 ¢ O (14)
0 0 ng 0 0 no

exe exe

where ¢; and c¢o have the group inverse, and ny and ns are nilpotent with ny <* ns.
Note that ¢, = ¢1, ng = n1, ¢ = ¢1 + ¢2, and np = ny. Since k = max{i(a),i(d)},
we have nf = 0 = n§ and therefore

AT 000 00
=1 0 00 and =] 0 & 0 . (15)
0 00/ . 0 0 0],
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#
(i)=(ii): Observe that aP = ¢ = [ 0 88] and b = (c; +e2)* = 071‘#—1—037E =
0 00]exe

F oo
{ 0 ot 0] . We obtain
0 0 odexe
c’fclclci‘7£ 0 0 clf‘H 0 0
bFabb”? = 0 0 0 =| 0 00 = bka,
0 0 0 exe 0 0 0 exe

+ D

and similarly bbPab® = ™! = ab*, and bbPa = ¢; = aaPa.

(i)=(iii): Clearly, by and (15), t*a = 4T = aF*1. Let z € °(b%), i
2b% = 0. Since b* = c¥ + &, we obtain zck + 25 = 0 and thus, zc]lH'1 + zcke; = 0.
Note that cico = coc; = 0. So, zc’fJrl = 0. Observe that ab® = c’f“. Therefore,
z € °(ab), i.e. °(bF) C °(ab¥).

(1)=(iv): Again, clearly, ab® = a**' = &' = bFa. Let z € °((b¥)*). Thus
2(cF)* 4 z(ck)* = 0 and therefore z(cF)* + 2(ck)*ct = 0. Since ¢1¢2 = 0, we have
¢t =0 and hence z € °((<FT1)*) = °((bFa)*).

(i)=(v): It follows directly by and (15)).

(ii)=(i): Let a <® b, i.e. ¢, <* ¢ and a <* b, and let b*abb? = b¥a, bbPab® =
abk, and bbPa = aa”a. We will show that then n, <* ny. By @7

=[]
" lgxq
where ¢ = bbP = cbc?&. Note (see Remark) that ¢ = ¢*. Also, since n; is the
nilpotent part of b, we have n} = 0 and therefore

k
k Cb 0
b_[o 0} |
qxq

@ az ] . From bFabb? = b*a, we obtain 0 = bFa(l — bb") =
axq

as a4
b*a(1 — ¢) and thus

0= c’bC 0 a1 ag 0 0 _ 0 cl’fag(l —q)
0 O as a4 0 1—gq 0 0
gxq gxq axq

So, cfas(1 — q) = 0. This yields cfas = 0 since as € ¢A(1 — q). Tt follows that

Leta:[

axq

0= (c#)kc’gag =¢"as = as.

Similarly, from bb” ab® = ab* we obtain 0 = (1—q)ab* and therefore 0 = (1—q)azq”.
So, az = 0 since a3 € (1 — ¢).Aq. Thus,

{al 0 }
a: 0 a .
4 Jgxq

Since a; € ¢Aq and a4 € (1 — ¢)A(1 — q), we have
ay=(1—-q)ay+ (1 —q)ag = (1 — ¢)(a1 + as) = (1 — q)a = a — bba.
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The assumption bbPa = aaPa yields ay = a — a’a”, which is by @ exactly the
nilpotent part of a. So, a; = a — a4 = a?a®” is the core part of a and thus a may

be presented in the following matrix form:

e O
a=| g - .
gxq

Recall that a <* b, i.e. a*a = a*b and aa™ = ba™. Since g = ¢*, the first equation

yields
c 0 ca O e 0 g O
0 ni 0 ng T 0 nE 0 nyp )
gxq qxq qxq qxq

Thus, nin, = niny. Similarly, the second equation implies n,n; = nyn’. So,
nae <* np and therefore a <t* b.

(iii)=-(i) Suppose °(b*¥) C °(ab*) and b*a = a**+1. Since a <® b, we have ¢, <* ¢
and a <* b. So, a <P b and thus by Proposition, there exists a decomposition of
the identity 1 = e + e2 4 e3 such that

C1 0 0 C1 0 0
a=1| 0 c3 ca ) b= 0 ¢c2 O
0 ¢35 cg exe 0 0 no exce

where n, = c3+c4+c5+cg is the nilpotent part of a and no = ny is the nilpotent part
of b. Here we may without loss of generality assume (see the proof of Theorem 1
((ii) implies (iii)) in [7]) that e; = coc# and ey = coc¥. Since a,b € €A, we may (see
Remark) as in the proof of Theoremconclude that e1, ea, and e3 = 1—e1 — ey are
self-adjoined idempotents. Let us prove that c3 = ¢4 = ¢5 = 0. Since nf = 0= n?,
we obtain

A0 0 A0 o0
Va = 0 ches chey and a" ! = 0 0 0
0 0 U 0 0 0],

The equation b¥a = a**! yields ckes = 0 = chey. It follows that (¢ )rches = 0 =

(c#)kcgczl and thus e5cz = 0 = efcy. Since c3 € eadesy and ¢y € ez Aes, we may

conclude that ¢c3 = ¢4 = 0. From

00 0 A& 0 0
esbP =10 0 0 0 ¢ 0 ,
0 0 €3 exe 0 0 0 exe

we obtain ez € °(b*) C °(ab*). So,

00 0 A0 0
0=|0 0 0 0 0 0
0 0 e3 exe 0 c5c§ 0 oxe

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



ON PARTTAL ORDERS IN PROPER %-RINGS 203

and hence 0 = ezcsch. Note that c; € ezAey. Thus, cscs = 0 and therefore

0 = csck(c)* = csea = 5. It follows that
C1 0 0
a=| 0 0 0
0 0 Cg

exe

where ¢g = n, is the nilpotent part of a and ¢; = ¢, is the core part of a. Finally,
let us show that n, <* n;. Since a <* b, we have a*a = a*b and aa™ = ba*, and

thus by ,

i 0 0 ce, 0 O e 0 0 ce 0 0
0 0 O 0 0 O = 0 0 O 0 ¢ O
0 0 n} exe L O 0 ng | . 0 0 n} exe L OO0y |

It follows that n)n, = n’n,. Similarly, we obtain non} = nyn;. So, n, <* n, and
therefore a <!* b.

(iv)=-(i) We will omit the proof since (by using the matrix formulation (8))) the
proof may be very similar to the proof that (iii) implies (i).

(v)=(iii) Let ab* = b¥a = a**1 and suppose z € °(b*). Then 0 = zb*a = zab*
and therefore °(b*) C °(ab"). O
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