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CYCLIC GROUPS WITH THE SAME HODGE SERIES

DARYL R. DEFORD AND PETER G. DOYLE

Abstract. The Hodge series of a finite matrix group is the generating func-
tion for invariant exterior forms of specified order p and degree k. Lauret,
Miatello, and Rossetti gave examples of pairs of non-conjugate cyclic groups
having the same Hodge series; the corresponding space forms are isospectral
for the Laplacian on p-forms for all p, but not for all natural operators. Here
we explain, simplify, and extend their investigations.

1. Terminology and notation

We adopt terminology and notation to avoid some common headaches.
‘Just if’. We follow John Conway in using ‘just if’ in place of the more cum-

bersome ‘if and only if’.
Modular arithmetic. a ≡q b means a is equivalent to b mod q. We write Zq

for Z/qZ, and Z?q for its invertible elements, taking Z?1 = {0}. For a ∈ Zq, b ∈ Z?q
we write a/q b for the quotient mod q.

Angles; roots of unity. We use τ = 2π in representing angles, because as Vi
Hart [5] has so persuasively argued, π is wrong. We write

ωq = exp(iτ/q)
for the standard qth root of unity, so that

ωkq = exp(iτk/q) = eiτ
k
q .

Unitary and orthogonal groups; conjugacy. As usual we write Un ⊂
GLn(C) for the n-by-n unitary matrices, and On = Un∩GLn(R) for the orthogonal
matrices.

When we say that two matrices or groups are ‘conjugate’, we mean that they
are conjugate within GLn(C), so that the conjugating matrix can be any invertible
complex matrix. Allowing this generality for the conjugating matrix is no big
deal, because unitary matrices or groups that are conjugate within GLn(C) are
already conjugate within Un; real matrices or groups that are conjugate within
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242 DARYL R. DEFORD AND PETER G. DOYLE

GLn(R) are already conjugate within GLn(R); orthogonal matrices or groups that
are conjugate within GLn(C) are already conjugate within On.

We will be dealing with finite groups of matrices, which we will be interested
in only up to conjugacy. Any finite group of complex matrices is conjugate to
a subgroup of Un; any finite group of real matrices is conjugate to a subgroup
of On. So we may take our groups to be unitary—and if real, orthogonal—without
sacrificing generality.

2. Hodge series

Let G ⊂ Un be a finite group of n-by-n complex matrices, assumed to be uni-
tary. Any g ∈ G is diagonalizable, with the roots λ1, . . . , λn of its characteristic
polynomial

χg(x) = det(xIn − g) =
∏
i

(x− λi)

being roots of unity.
Define the Hodge series

ΛG(x, y) = 1
|G|

∑
g

det(In + yg)
det(In − xg)

= 1
|G|

∑
g

(−y)nχg(−1/y)
xnχg(1/x) .

This series is a particular kind of Molien series: Crass [1, p. 31] calls it the
‘exterior Molien series’. By a generalization of Molien’s theorem (cf. Molien [10],
Stanley [12]) this is the generating function for G-invariant exterior forms:

ΛG(x, y) =
∑
p,k

P pk x
kyp,

where P pk is the dimension of the space of G-invariant p-forms whose coefficients
are homogeneous polynomials of degree k in x1, . . . , xn.

For example we have

Λ{In} = (1 + y)n

(1− x)n
and

Λ{±In} = 1
2

(
(1 + y)n

(1− x)n + (1− y)n

(1 + x)n

)
=

1
2 ((1 + xn)(1 + yn) + (1− xn)(1− yn))

(1− x2)n .

Aside. Here’s a more interesting example. The group G120 of proper and
improper symmetries of the icosahedron in Euclidean 3-space has Hodge series

ΛG120 = (1 + xy)(1 + x5y)(1 + x9y)
(1− x2)(1− x6)(1− x10) .
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CYCLIC GROUPS WITH THE SAME HODGE SERIES 243

As this might suggest, the algebra of invariant forms is generated by polynomial
invariants of degrees 2, 6, 10 and their exterior derivatives of degrees 1, 5, 9. For the
index-2 subgroup G60 of proper symmetries we have

ΛG60 = (1 + x15)(1 + y3) + (x+ x5 + x6 + x9 + x10 + x14)(y + y2)
(1− x2)(1− x6)(1− x10) .

This is a little harder to decipher, though the generating function for invariant
polynomials, obtained by setting y = 0, is clear enough:

ΛG60(x, 0) = 1 + x15

(1− x2)(1− x6)(1− x10) .

Here we see the G120-invariants of degrees 2,6,10, together with a new invariant of
degree 15 (the product of the linear forms determining the 15 planes of symmetry
of the icosahedron) whose square is G120-invariant, though it itself is only G60-
invariant.

Exercise 1. Compute these two Hodge series.

Hint. Resist the temptation to consult Klein [8] or Doyle and McMullen [2]:
You do not need to know the matrix groups explicitly, because the contribution of
a matrix to the Hodge series depends only on its conjugacy class. This fact is the
basis of the notion of ‘almost-conjugacy’ of groups, which we’ll get to in a jiffy.

3. Hodge equivalence

We are interested in pairs of groups G,H ⊂ Un (and in particular, pairs of real
groups G,H ⊂ On) having the same Hodge series, meaning that they have the
same dimensions of spaces of invariant forms. We call such pairs Hodge-equivalent,
and write G ≡Λ H.

Of course if the groups G and H are conjugate then they are Hodge-equivalent.
More generally, say that G and H are almost conjugate if there is a bijection
σ : G→ H such that g and σ(g) are conjugate. This is the same as requiring that
g and σ(g) have the same eigenvalues, so that they make the same contribution to
the Hodge series. Thus almost conjugate groups are Hodge-equivalent.

It has long been known how to find non-conjugate pairs (G,H) that are almost
conjugate, and hence Hodge-equivalent: The 1-isospectral pairs found by Ikeda in
[6] fit this bill (cf. Gilkey [4] and Ikeda [7, p. 395]). Here we are interested in
pairs (and specifically, real pairs) that are Hodge-equivalent without being almost
conjugate. The first such examples were given in [9] by Lauret, Miatello, and Ros-
setti (henceforth ‘LMR’). They exhibited a multitude of examples arising already
among cyclic groups. For cyclic groups, conjugacy is the same as almost-conjugacy,
so their examples can be briefly described as being Hodge-equivalent without being
conjugate. Our goal here is to explain, simplify, and extend their findings.

4. Isospectrality

We discuss here the connection to spectral theory, which is what motivated LMR
to construct their examples. This is meant for background only: In the approach

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



244 DARYL R. DEFORD AND PETER G. DOYLE

taken here, spectral theory plays no role. In this section we restrict to real groups,
which we may assume to be orthogonal.

A finite real group G ⊂ On is classified up to conjugacy by the isometry type
of the quotient orbifold QG = G\Sn−1, where Sn−1 is the (n − 1)-dimensional
sphere realized as the unit sphere in Rn. According to Ikeda [7], G and H are
Hodge-equivalent just if the quotients QG and QH are isospectral for the Hodge
Laplacian on p-forms for p = 0, . . . , n−1. According to Pesce [11], QG and QH are
strongly isospectral (isospectral for all natural operators of a certain kind) just if G
and H are almost conjugate. Using this dictionary, looking for Hodge-equivalent
groups that are not almost conjugate is the same as looking for Hodge-isospectral
orbifolds that are not strongly isospectral. This is why LMR were interested in
this question.

Ikeda, Pesce, and LMR restricted their investigations to the case of groups whose
action on Sn−1 is fixed-point free (no g 6= 1 has 1 as an eigenvalue). In this case
QG is a manifold, called a spherical space form. For n odd (i.e. n−1 even) we have
only the sphere {In}\Sn−1 and projective space {±In}\Sn−1. So the restriction
to fixed-point free actions effectively limits us to the case of even n.

When G is cyclic, as in the LMR examples, QG is a lens space. As observed
above, for cyclic groups almost-conjugacy is the same as conjugacy, which is the
same as isometry of the corresponding lens space. So we can briefly describe the
LMR examples as Hodge-isospectral lens spaces that are not isometric, hence not
almost conjugate, hence not strongly isospectral.

This ends our discussion of isospectrality. The rest is algebra.

5. Cyclic groups

For any q and s = (s1, . . . , sn), write
ωsq = (ωs1

q , . . . , ω
sn
q ).

Consider the finite cyclic group
L(q, s) = 〈diag(ωsq)〉 = {diag(ωksq ) : k ∈ Zq}.

This group has order q if gcd(q, s1, . . . , sn) = 1. Up to conjugacy, any finite cyclic
subgroup of Un can be written in this way.

The cyclic group L(q, s) doesn’t change (up to conjugacy) when you rearrange
the entries of s, or multiply them all by an element of the multiplicative group Z?q .
Conversely, the groups L(q, s) and L(q, s′) are conjugate just if, when viewed as
multisets mod q, s′ can be obtained from s by multiplying by an invertible element.

Now take n = 2m, and let ρ : GLm(C) 7→ GL2m(R) be the standard embedding,
so that ρ(ωsq) is the diagonal sum of the 2-by-2 matrices

ρ(((ωsi
q ))) = exp(τ si

q
((0,−1), (1, 0)))

= ((cos(τsi/q),− sin(τsi/q)), (sin(τsi/q), cos(τsi/q))).
Up to conjugacy in Un,

ρ(L(q, s)) ≡ L(q, s±)
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CYCLIC GROUPS WITH THE SAME HODGE SERIES 245

where
s± = (s1,−s1, . . . , sm,−sm).

Let us write
L±(q, s) = L(q, s±) ≡ ρ(L(q, s)).

For the Hodge series we have

ΛL±(q,s) = 1
q

∑
k

∏
i

(1 + yωksi
q )(1 + yω−ksi

q )
(1− xωksi

q )(1− xω−ksi
q )

= 1
q

∑
k

∏
i

1 + 2 cos(τksi/q)y + y2

1− 2 cos(τksi/q)x+ x2 .

6. The LMR construction

The LMR examples involve cyclic subgroups of O2m of the form
ρ(L(r2t, rta+ 1)) ≡ L±(r2t, rta+ 1),

where r > 2, t ≥ 1, a = (a1, . . . , am) ∈ Zm. Since we prefer to keep our matrices
diagonal we’ll define

LMR(r, t, a) = L±(r2t, rta+ 1)
= L(r2t, (rta1 + 1,−rta1 − 1, . . . , rtam + 1,−rtam − 1)).

Note. You may wish to mentally set t = 1: All evidence indicates that what
works for t = 1 works in general, and in particular the criterion in Theorem 1 below
does not involve t.

As we will be seeing, what’s special about the LMR construction is the following
fact:

(rtc+ 1)(rtd+ 1) ≡r2t rt(c+ d) + 1.
Thus the multiplicative subgroup {rtc + 1 : c ∈ Zr} ⊂ Z?r2t is cyclic of order r,
generated by rt+ 1; the map rtc+ 1 7→ c takes the logarithm of rtc+ 1 base rt+ 1,
and gives an isomorphism to the additive group Zr.

As a first consequence of this, notice that we can add a constant c to the entries
of a without changing the conjugacy class:

LMR(r, t, a) ≡ LMR(r, t, a+ c).
(We use the convention that the sum of a vector and a constant is obtained by
adding the constant to each entry of the vector, so that a+c = (a1 +c, . . . , am+c).)
In fact, in this way we account for all such coincidences: Let us write

a ≡Sm×Zr
a′

if for some c, a + c and a′ are the same as multisets mod r. Then LMR(r, t, a) ≡
LMR(r, t, a′) just if a ≡Sm×Zr

a′.
All the LMR pairs are (conjugate to) pairs of the special form

(LMR(r, t, a),LMR(r, t,−a)).
Not all such pairs are Hodge-equivalent, however.
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246 DARYL R. DEFORD AND PETER G. DOYLE

7. Theorem

In this section we formulate a criterion for Hodge-equivalence of the LMR pair
(LMR(r, t, a),LMR(r, t,−a)). While this criterion has not been shown to be nec-
essary, it holds in all the cases (thousands and thousands!) where the LMR con-
struction has been found to succeed.

Definition 1. Say that a = (a1, . . . , am) is:
• univalent mod r if its entries are distinct mod r;
• reversible mod r if a ≡Sm×Zr

−a;
• good mod r if it is univalent or reversible mod r;
• hereditarily good mod r if it is good mod d for all d dividing r;
• useful mod r if it is hereditarily good and irreversible mod r.

Any a is reversible (hence good) mod 1 or 2. So in checking hereditary goodness
we need only check divisors d > 2.

In section 9 below we will prove the following:

Theorem 1. If a is hereditarily good mod r then for any t,

LMR(r, t, a) ≡Λ LMR(r, t,−a).

If a is reversible mod r then a is hereditarily good mod r, but in this case
LMR(r, t, a) and LMR(r, t,−a) are conjugate. So this result tells us something
useful only if a is hereditarily good without being reversible, which is our definition
of ‘useful’.

8. Examples

(0, 1, 3) is:
• univalent mod 4, 5, 6, . . .;
• reversible mod 1, 2, 4, 5;
• good mod any r 6= 3;
• hereditarily good mod any r not divisible by 3;
• useful mod any r ≥ 7 not divisible by 3.

Putting r = 7, 8, 10, t = 1, we get Hodge-equivalent but non-conjugate pairs of
orders 49, 64, 100; putting r = 7, t = 2 we get a pair of order 98.

(0, 1, 4) is:
• univalent mod 5, 6, 7, . . .;
• reversible mod 1, 2, 5, 7;
• good mod any r 6= 3, 4;
• hereditarily good mod any r not divisible by 3 or 4;
• useful mod any r ≥ 10 not divisible by 3 or 4.

Putting r = 10, t = 1 gives a pair of order 100. Together with the four pairs coming
from (0, 1, 3) above, this gives us all five inequivalent pairs with m = 3, q ≤ 100
(see Table 1 of LMR [9]).
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CYCLIC GROUPS WITH THE SAME HODGE SERIES 247

We’ll call the simplest of these pairs the 49-pair :
(LMR(7, 1, (0, 1, 3)),LMR(7, 1, (0,−1,−3)))

= (L±(49, (1, 8, 22)), L±(49, (1,−6,−20))
= (L(49, (1,−1, 8,−8, 22,−22)), L(49, (1,−1,−6, 6,−20, 20)))
≡ (L(49, (−6, 6, 1,−1, 15,−15)), L(49, (1,−1,−6, 6,−20, 20)))
≡ (L±(49, (1, 6, 15)), L±(49, (1, 6, 20))).

Here at the next-to-last step we’ve multiplied the list (1,−1, 8,−8, 22,−22) by −6
mod 49 so as to get the lexicographically least representation that the computer
spits out in its search for Hodge-equivalent pairs.

9. Proof

It is easy enough to verify that the members of the 49-pair are Hodge-equivalent
by explicit computation of their Hodge series. The same goes for as many other
pairs as you like, but this only gets you a finite number of examples.

Using a very explicit representation theory argument, LMR proved Hodge-
equivalence of the 49-pair in a way that extends to cover all pairs of the form

(LMR(r, t, (0, 1, 3)),LMR(r, t, (0,−1,−3)))
with r not divisible by 3. As we have seen, this infinite family is just what we get
out of Theorem 1 if we take a = (0, 1, 3). It includes 19 of the 62 examples in the
list given by LMR of all pairs with m = 3 and q ≤ 300.

To prove Theorem 1 in its full generality, we’re going to show that the two Hodge
series involved are identical as rational functions of x and y. This comes down to
a bunch of manipulations with partial fraction expansions. It all starts with the
following familiar identity.

Lemma 1.
n∏
i=1

1
x− λi

=
n∑
i=1

1
x− λi

∏
j 6=i

1
λi − λj

.

Proof. This follows from the theory of partial fractions.
Alternatively, combine terms on the right over the common denominator

∏
i(x−

λi). The numerator is ∑
i

∏
j 6=i

x− λj
λi − λj

.

This is a polynomial of degree n − 1 which takes the value 1 for x = λ1, . . . , λn.
These n values of x are distinct (thinking of the λi’s as indeterminates), so the
numerator is identically 1. �

Proof of Theorem 1. For general q, s ∈ (Zq)m put

Hq,s(x, y) =
∑
k∈Zq

∏
i

y − ωksi
q

x− ωksi
q
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248 DARYL R. DEFORD AND PETER G. DOYLE

so that
ΛL(q,s)(x, y) = 1

q

(−y)n

xn
Hq,s(1/x,−1/y).

Separate the sum for Hq,s into pieces according to gcd(k, q) by putting

H?
d,s =

∑
k∈Z?

d

∏
i

y − ωksi

d

x− ωksi

d

so that
Hq,s =

∑
d | q

H?
d,s.

To prove the theorem, we must show that if a is hereditarily good mod r then

Hr2t,(rta+1)± = Hr2t,(−rta+1)± .

Our strategy will be to show that for all d | r2t we have

H?
d,(rta+1)± = H?

d,(−rta+1)± .

We dispose first of the case where (rta+ 1)± is not univalent mod d. This is
taken care of by the assumption that a is hereditarily good, but things are not
quite as straight-forward as you might be expecting, because that condition deals
with divisors of r, and here d is any divisor of r2t.

We pass over the trivial cases d = 1, 2. Mod any d > 2, there is no overlap
between rta + 1 and −(rta + 1), so if (rta+ 1)± is not univalent mod d then
neither is rta.

We pause for a lemma.

Lemma 2. For d, α, β ∈ Z, suppose d |αβ. Let d′ = d/ gcd(d, β). Then d′ |α and

∀γ ∈ Z (d |βγ ⇐⇒ d′ | γ).

Proof. Let e = gcd(d, β), so that d′ = d/e.

d |αβ =⇒ d′ = d/e |αβ/e

and gcd(d′, β/e) = 1 so d′ |α, and for any γ

d |βγ ⇐⇒ d′ |β/eγ ⇐⇒ d′ | γ.

(Pretty standard stuff, admittedly.) �

So suppose d | r2t and d | rt(ai−aj) for i 6= j. Putting α = r, β = rt, γ = ai−aj
in the lemma we get

d′ = d/ gcd(d, rt) |α = r

and
d′ | γ = ai − aj .

This tells us that a is not univalent mod d′, but since by assumption it is good
mod any divisor of r, it must be reversible mod d′:

a ≡Sm×Zd′ −a.
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By the lemma, this is equivalent to
rta ≡Sm×Zd

−rta,
hence

rta+ 1 ≡Sm×Zd
−rta+ 1.

From this we get
H?
d,(rta+1)± = H?

d,(−rta+1)± .

So from here on we may assume that (rta+ 1)± (and hence also (−rta+ 1)±)
is univalent mod d, with d | r2t.

Returning for a moment to the case of H?
d,s for general d, s, suppose s ∈ (Z?d)m

with all the si’s distinct mod d, so that the mod-d quotient sj/d si is defined for
all i, j, and different from 1 for i 6= j. With this restriction, for k ∈ Z?d we have∏

i

y − ωksi

d

x− ωksi

d

=
∑
i

y − ωksi

d

x− ωksi

d

∏
j 6=i

y − ωksj

d

ωksi

d − ωksj

d

.

So

H?
d,s =

∑
k∈Z?

d

∑
i

y − ωksi

d

x− ωksi

d

∏
j 6=i

y − ωksj

d

ωksi

d − ωksj

d

=
∑
l∈Z?

d

y − ωld
x− ωld

∑
i

∏
j 6=i

y − ωlsj/d si

d

ωld − ω
lsj/d si

d

=
∑
l∈Z?

d

Yd,s(x, y, ωld),

where

Yd,s(x, y, w) = y − w
x− w

∑
i

∏
j 6=i

y − wsj/d si

w − wsj/d si
.

Now recall our notation
s± = (s1,−s1, . . . , sm,−sm).

Assuming the entries of s± are all invertible and distinct mod d,

Yd,s± = (y − w)(y − w−1)
(x− w)(w − w−1)

∑
i

∏
j 6=i

(y − wsj/d si)(y − w−sj/d si)
(w − wsj/d si)(w − w−sj/d si)

.

Specializing finally to the case at hand, take
s = rta+ 1 = (rta1 + 1, . . . , rtam + 1)

so that
s± = (rta1 + 1,−rta1 − 1, . . . , rtam + 1,−rtam − 1),

and assume that these entries are all distinct mod d.
Here comes the magic: For any d | r2t we have

sj/d si ≡d rt(aj − ai) + 1.
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As the entries of s± are distinct mod d, putting

xi = wrtai

we have
wsj/d si = xj

xi
w

and
w−sj/d si = xi

xj
w−1

so

Yd,(rta+1)± = (y − w)(y − w−1)
(x− w)(w − w−1)

∑
i

∏
j 6=i

(y − xj

xi
w)(y − xi

xj
w−1)

(w − xj

xi
w)(w − xi

xj
w−1)

.

Setting u = y/w, v = w−2, we get

Yr2t,(rta+1)± = (y − w)(y − w−1)
(x− w)(w − w−1)F ((x1, . . . , xm), u, v),

where

F ((x1, . . . , xm), u, v) =
m∑
i=1

∏
j 6=i

(u− xj

xi
)(u− xi

xj
v)

(1− xj

xi
)(1− xi

xj
v)
.

Simultaneously we have

Yr2t,(−rta+1)± = (y − w)(y − w−1)
(x− w)(w − w−1)F ((1/x1, . . . , 1/xm), u, v).

In the next section we will prove the identity

F ((x1, . . . , xm), u, v) = F ((1/x1, . . . , 1/xm), u, v),

from which we conclude

H?
d,(rta+1)± = H?

d,(−rta+1)± .

We have now established this last equality for every d | r2t, so

Hd,(rta+1)± = Hd,(−rta+1)± . �

10. The main identity

Define the rational function

F ((x1, . . . , xm), u, v) =
m∑
i=1

∏
j 6=i

(u− xj

xi
)(u− xi

xj
v)

(1− xj

xi
)(1− xi

xj
v)

=
m∑
i=1

∏
j 6=i

(xiu− xj)(xju− xiv)
(xi − xj)(xj − xiv) .
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Now look at what you get by replacing the variables x1, . . . , xm by their reciprocals:
G((x1, . . . , xm), u, v) = F ((1/x1, . . . , 1/xm), u, v)

=
m∑
i=1

∏
j 6=i

(u− xi

xj
)(u− xj

xi
v)

(1− xi

xj
)(1− xj

xi
v)

=
m∑
i=1

∏
j 6=i

(xju− xi)(xiu− xjv)
(xj − xi)(xi − xjv) .

Proposition 1. F = G.

Proof. The right way to prove this identity is presumably via invariant theory. (Or
maybe it’s just somehow obvious?) But here we are going to prove it by considering
the two sides as rational functions of v, expanding their individual terms in partial
fractions, and seeing that the parts on the two sides agree.

The tricky case turns out to be the polynomial term, corresponding to the pole
at v =∞. We’ll deal with that later, after we address the finite poles.

Let’s look at the case m = 3, which is sufficient to show what is going on. Each
side of the identity has three terms. On the left the first term is

(x1u− x2)(x2u− x1v)(x1u− x3)(x3u− x1v)
(x1 − x2)(x2 − x1v)(x1 − x3)(x3 − x1v) .

This term is the only one on the left with non-zero residue at v = x2/x1, and its
residue there is

(x1u− x2)(x2u− x1x2/x1)(x1u− x3)(x3u− x1x2/x1)
(x1 − x2)(−x1)(x1 − x3)(x3 − x1x2/x1)

= (x1u− x2)x2(u− 1)(x1u− x3)(x3u− x2)
(x1 − x2)(−x1)(x1 − x3)(x3 − x2) .

On the right the only term with a non-zero residue at v = x2/x1 is the second
term, namely

(x1u− x2)(x2u− x1v)(x3u− x2)(x2u− x3v)
(x1 − x2)(x2 − x1v)(x3 − x2)(x2 − x3v) ,

and the residue there is
(x1u− x2)(x2u− x1x2/x1)(x3u− x2)(x2u− x3x2/x1)

(x1 − x2)(−x1)(x3 − x2)(x2 − x3x2/x1)

= (x1u− x2)x2(u− 1)(x3u− x2)(x1u− x3)
(x1 − x2)(−x1)(x3 − x2)(x1 − x3) ,

which is the same as we found for the left side.
In this way we see that the residues of v at the finite poles all match between

left and right. That leaves the pole at v =∞. Taking the limit v →∞ of

F ((x1, . . . , xm), u, v) =
m∑
i=1

∏
j 6=i

(xiu− xj)(xju− xiv)
(xi − xj)(xj − xiv)
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yields
m∑
i=1

∏
j 6=i

(xiu− xj)
(xi − xj)

.

In the next section, we will prove that this limit is 1 + u+ · · ·+ um−1, which as it
is independent of (x1, x2, x3) must agree with the limit of

G((x1, . . . , xm), u, v) = F ((1/x1, . . . , 1/xm), u, v),

so the residues at v = ∞ of the two sides of your identity match, and the proof
is complete. Well, it’s not a proof, exactly, since it doesn’t really explain what
is going on there. Call it a ‘verification’, which persuades us that the identity is
true, at least when coupled with a symbolic computation checking the identity up
through m = 4. �

11. The subsidiary identity

Define the rational function

f((x1, . . . , xm), u) =
m∑
i=1

∏
j 6=i

u− xj

xi

1− xj

xi

=
m∑
i=1

∏
j 6=i

xiu− xj
xi − xj

.

Proposition 2.

f((x1, . . . , xm), u) = 1 + u+ · · ·+ um−1.

Proof. We use induction on m. The cases m = 0, 1 are trivial, and m = 2 is so
easy as not to illustrate the method. So we will look at the case m = 3, and take
that as representative. We want to show that

(x1u− x2)(x1u− x3)
(x1 − x2)(x1 − x3) + (x2u− x1)(x2u− x3)

(x2 − x1)(x2 − x3) + (x3u− x1)(x3u− x2)
(x3 − x1)(x3 − x2) = 1+u+u2.

Expand the terms on the left in partial fractions with respect to the variable x3.
The possible poles are at x3 = x1, x3 = x2, and x3 = ∞. For the coefficient of

1
x3−x1

we get

− (x1u− x2)(x1u− x1)
x1 − x2

+ 0 + (x1u− x1)(x1u− x2)
x1 − x2

.

So this coefficient vanishes (as it would have to, if our identity is to hold). Similarly
for the coefficient of 1

x3−x2
. This leaves the pole at x3 = ∞. Taking the limit of

the terms on the left as x3 →∞, we get
x1u− x2

x1 − x2
+ x2u− x1

x2 − x1
+ u2 = f((x1, x2), u) + u2 = 1 + u+ u2,

where in the last step we are using the induction hypothesis. �
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12. Open questions

(1) What is the right way to prove these two identities?
(2) LMR showed that in their construction, the full Hodge series agree just if

they agree after setting w = 0. Surely we can prove this algebraically.
(3) Is the condition in Theorem 1 for Hodge-equivalence of LMR groups nec-

essary as well as sufficient? If true, this might not be so hard to prove. To
start with, we could prove that what works for t = 1 works for any t.

(4) It seems that the representation-theoretic proof of LMR might give an
explicit matchup between spaces of invariant forms. Can we extract such
a matchup from the algebra in the proof of Theorem 1?

(5) Not all Hodge-isospectral pairs emerge directly from the LMR construction.
For example, you append a 0 to the list rta + 1 on both sides, or put in
everything congruent to 2 mod rt. It’s tempting to figure out just what
variations are possible. And then we could ask whether all possible pairs
arise as variations of this kind.

(6) Doyle and Rossetti [3] conjectured that in spherical geometry or hyper-
bolic geometry, spaces that are p-isospectral for all p are almost conjugate,
and hence isospectral for all natural operators. The LMR examples show
that this is false in spherical geometry, but the hyperbolic case remains
open, and the intuition for this conjecture, born in the hyperbolic case and
incautiously extended to the spherical case, remains more or less intact.
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