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FAMILIES OF TRANSITIVE MAPS ON R WITH
HORIZONTAL ASYMPTOTES

BLADISMIR LEAL, GUELVIS MATA, AND SERGIO MUÑOZ

Abstract. We will prove the existence of a class of transitive maps on the real
line R, with a discontinuity and horizontal asymptotes, whose set of periodic
orbits is dense in R; that is, a class of chaotic families. In addition, we will
show a rare phenomenon: the existence of periodic orbits of period three
prevents the existence of transitivity.

1. Introduction

The notion of transitivity is a fundamental tool in the study of maps with
chaotic dynamics; see [19, 5, 3]. On boundaryless compact manifolds there is a
well established theory about transitive diffeomorphisms; see [1, 15, 17, 18]. On
compact intervals of R there exists a large class of examples and characterizations
leading to such dynamic property; see [14, 16, 7] and references therein.

In the non-compact cases the situation is very different, since there is no known
notion of hyperbolicity producing persistently chaotic dynamics and, regarding
characterizations of transitivity, there are not many references. For example, in
[9] it is proved that any Anosov diffeomorphism defined in the plane R2 onto
R2 (R2 −→ R2) cannot be transitive; on the other hand, there are transitive
diffeomorphisms of the plane R2 minus a line of discontinuities (see [4, 10]). In the
case of non-bounded intervals the situation is similar to the case of non-compact
manifolds; in this direction, in [12] it is shown that continuous transitive maps
from R to R (R −→ R) must have infinite critical points; also in [13] there is a
large class of examples of transitive maps on R. In any case, a characterization for
transitivity is not shown and, in the context of such articles, small perturbations
of those maps lose the transitive property. Recently, [11] shows the existence of a
class of maps, leading to a geometric model of the well known Boole transformation
T (x) = x − 1

x (see [2]), where a characterization for transitivity is possible; also,
it is shown that, in the space of continuously differentiable maps (from R \ {0} to
R) the maps belonging to such geometric model are persistently transitive, with
respect to the C1 uniform topology. Such geometric model consists of maps with
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domain R \ {0} onto R, increasing on each connected component of R \ {0} and
non-bounded on R \K, where K is a compact interval with 0 /∈ K.

In the attempt to extend the study of this type of maps and expand the space of
transitive maps over unbounded intervals, we ask ourselves: What is the dynamics
of the maps bounded in R \K, where K is a compact interval? Have these maps
a non-empty intersection with the world of chaotic dynamics? The purpose of
this article is to answer such questions positively, in addition to expanding the
geometric model of the Boole maps, treated in [11], to a class with horizontal
asymptotes; also to show a couple of characterizations of transitivity. Specifically,
let f : R \ {0} −→ R be a continuous map; we say that f is transitive if there
is a point x ∈ R \ {0} such that its positive orbit (with respect to f), that is
O+

f (x) = {x, f(x), f2(x), . . . }, is dense in R.

Definition 1. A continuous function f : R\{0} −→ R is an increasing alternating
system with asimptotes relative to its first pre-image if:

(1a) f is strictly increasing in (−∞, 0) and (0,+∞).
(1b) lim

x→0+
f(x) = −∞ and lim

x→0−
f(x) = +∞.

(1c) There exist x0 < 0 and x1 > 0 such that f−1(0) = {x0, x1}, lim
x→+∞

f(x) =
x1 and lim

x→−∞
f(x) = x0.

(1d) f(x) 6= x for all x ∈ R \ {0}.

If f : R\{0} −→ R is as in Definition 1, we say that f is a SACAH.

Theorem 2 (Main Theorem). Let f : R\{0} −→ R be a SACAH. Then f is
transitive if and only if

⋃
n≥0 f

−n(0) is dense in R.

Corollary 3. Let f : R\{0} −→ R be a SACAH. If
⋃

n≥0 f
−n(0) is dense in R,

then the set of periodic orbits of f is dense in R \ {0}.

In contrast to Corollary 3, it is important to mention that in this work we will
show a particularity of this kind of family: The existence of a periodic period 3
orbit prevents the existence of transitivity.

Corollary 4. The map B : R\{0} −→ R defined by B(x) = |x| − 1
x

is a transitive
SACAH. Curiously, ∪n≥0B

−n(0) = Q.

It is important to mention that the geometric model of the Boole transformation,
called expansive increasing alternating systems, forms a set of transitive maps
with non-empty interior (see [11]); the alternating systems with asymptotes at the
diagonal line y = x and those with horizontal asymptotes (like the models shown
in this paper) are border elements of the set of transitive maps of R (maps with
a discontinuity). Another important point is that the type of maps shown in this
article and those studied in [11] appear naturally as projections along invariant
foliations (or leaves) in the study of transitive diffeomorphisms of the plane R2

minus a curve of discontinuities, and there is a relation between the plane dynamics
and the projected one (see [10] and recently [8]). These two latest works are inspired
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by the work of Devaney [4], who shows an example of a transitive diffeomorphism
of the plane R2 minus a line of discontinuity. Devaney’s example was introduced
by Hénon in [6] as a system associated with the movement of the three restricted
bodies of classical mechanics.

The article is organized in the following manner: In the first section, of notations
and basic results, we grouped the points of the pre-images from zero to generate
a partition, which will be very useful in proving our Main Theorem. In addition,
we will show some properties with respect to the generated partition. Then, in the
next section we will concentrate on the proof of the Main Theorem, together with
the two corollaries enunciated above.

2. Notations and basic results

In this section f denotes a SACAH. Let x0 < 0 and x1 > 0 as in Definition 1.
On the other hand, R\{0} is the union of two connected components which we will
denote by R0 = (−∞, 0) and R1 = (0,+∞). Denote by f0 = f |R0 and f1 = f |R1 ,
where f0(x) = f(x) for x ∈ R0 and f1(x) = f(x) for x ∈ R1. Since f−1(0) 6= ∅,
consider the following notation:

An =
n⋃

j=1
f−j(0) ∪ {0}, for all n ≥ 1 and Af =

⋃
n≥1

f−n(0) ∪ {0}.

From Definition 1 we obtain:

Remark 1.
(a) f(0, x1) = R0 and f(x0, 0) = R1;
(b) f(R0) = (x0,+∞) and f(R1) = (−∞, x1);
(c) f2(x1,+∞) = R0 and f2(−∞, x0) = R1.

This remark tells us that for every point x ∈ R\Af , the orbit of x with respect to
f visits each connected component R0 and R1 infinitely many times. The following
definition is of great importance in the characterization of transitivity.

Definition 5. Let f : R\{0} −→ R be a SACAH. f is expansive if for each
x, y ∈ R\Af , there exists N > 1 such that fN (x).fN (y) < 0.

Next we show that the existence of a periodic orbit of period 3, for this type of
transformations, prevents the existence of transitivity and expansiveness.

Lemma 6. Let f : R\{0} −→ R be a SACAH. If there exists x a periodic point of
period 3, then f is neither expansive nor transitive.

Proof. Let x be a periodic point of period 3. Denote the orbit of x by x = x0,
f(x) = x1 and f2(x) = x2. From Remark 1 xi ∈ (−∞, x0) or xi ∈ (x1,+∞), for
some i ∈ {0, 1, 2}. If xi ∈ (−∞, x0), then B = (−∞, xi]∪ (x0, f(xi)]∪ (0, f2(xi)] is
f -invariant, that is, f(B) ⊂ B. On the other hand, if xi ∈ (x1,+∞), then we have
that B = [xi,+∞) ∪ [f(xi), x1) ∪ [f2(xi, 0) is f -invariant. In any case f is neither
expansive nor transitive. �

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



378 B. LEAL, G. MATA, AND S. MUÑOZ

In the proof of the Main Theorem we will need to make use of the symbolic
dynamics. For it, consider the following space of sequences:

Σ2 = {a = (a0, a1, . . . ) : aj ∈ {0, 1} and j ≥ 0},

with the usual topology induced by the metric d2(a, b) =
+∞∑
n=0

|an − bn|
2n

, for a, b ∈

Σ2. Let us consider the subset
Σ(2, 2) = {a ∈ Σ2 : (1, 1, 1) 6∈ a and (0, 0, 0) 6∈ a},

where (1, 1, 1) 6∈ a and (0, 0, 0) 6∈ a mean that (1, 1, 1) 6= (aj , aj+1, aj+2) and
(0, 0, 0) 6= (aj , aj+1, aj+2), for all j ≥ 0, respectively. It is well known that Σ2
and Σ(2, 2) are compact and the shift σ : Σ2 → Σ2 defined by σ(a0, a1, a2, . . .) =
(a1, a2, a3, . . .) is continuous and transitive. Also, Σ(2, 2) is invariant with respect
to σ and σ is transitive restricted to Σ(2, 2). Let us denote by Per(σ, 3) the set of
all periodic orbits of period 3 belonging to σ. With this notation in mind consider
the set

Σ∗(2, 2) = {a ∈ Σ(2, 2) : σj(a) 6∈ Per(σ, 3), for all j ≥ 0}.
Observe that Σ∗(2, 2) is not compact and Σ∗(2, 2) is invariant with respect to σ.
Also, σ restricted to Σ∗(2, 2) is a transitive function; denote this restriction by σ∗.

Definition 7. Let K be a finite set of R. PK shall denote a partition of R generated
by K, if its elements are intervals of R satisfying:

(a) ∂I ⊂ K and I ∩K = ∅ for all I ∈ PK .
(b)

⋃
I∈PK

I = R \K;

(c) If I, J ∈ PK with I 6= J , then I ∩ J = ∅.

PK is the set of all the connected components of R \K. Consider the following
lemma of set theory.

Lemma 8. Let {Kn}, n ≥ 1, be a sequence of finite sets of R such that Kn ⊂ Kn+1

and
⋃

n≥1
Kn is dense in R. If for each sequence In of bounded atoms of PKn

, In ⊂

PKn
, In+1 ⊂ In, then diam(In)→ 0.

Observe that if A ⊂ B, then for each J ∈ PB there is a single I ∈ PA such that
J ⊂ I.

Lemma 9. Let n > 1 and PAn be the partition generated by An. If I is an atom
of PAn , then fn(I) ∈ {R0, (x0, 0), (0, x1),R1}.

Proof. By induction. The case n = 1 is clear from Remark 1 and the fact that
PA1 = {R0, (x0, 0), (0, x1),R1}.

Let us suppose that the lemma is true for n ≥ 1. Let J ∈ PAn+1 ; since An ⊂
An+1, there exists I ∈ PAn

such that J ⊂ I. By the inductive hypothesis we
have four options. The first: If fn(I) = R0, then from Remark 1, fn+1(I) =
(x0,+∞); this means that there exists y ∈ I such that fn+1(y) = 0, that is,
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from Definition 7, there exist J1 and J2 in PAn+1 such that J1 ∪ J2 ∪ {y} = I,
{y} = ∂J1 ∩ ∂J2, fn+1(J1) = (x0, 0) and fn+1(J2) = R1. From this together with
Definition 7 it follows that J = I1 or J = J2; in any case we have that fn+1(J) ∈
{R0, (x0, 0), (0, x1),R1}. The second option: If fn(I) = (x0, 0), then fn+1(I) = R1,
therefore I∩An+1 = ∅, so by Definition 7, I ∈ PAn+1 and consequently J = I. This
shows that fn+1(J) = (x0, 0). The other two options are similar. So fn+1(J) ∈
{R0, (x0, 0), (0, x1),R1}. �

Lemma 10. For each n > 0, we have that f−n(R0) ∪ f−n(R1) =
⋃

I∈PAn

I.

Proof. By induction. For n = 1 the equality is clear from Remark 1. Let us suppose
that the lemma is true for n ≥ 1. First, using the inductive hypothesis, note that

f−n−1(R0) ∪ f−n−1(R1) = f−n−1(R \ {0}) =
⋃

I∈PAn

f−1(I).

Let x ∈ f−n−1(R0) ∪ f−n−1(R1); then x ∈
⋃

I∈PAn
f−1(I), that is, there exists

I ∈ PAn
such that x ∈ f−1(I); since I ∩ An = ∅, it follows that x ∈ R \ An+1;

therefore, x ∈
⋃

I∈PAn+1
I and consequently

f−n−1(R0) ∪ f−n−1(R1) ⊂
⋃

I∈PAn+1

I.

Let y ∈
⋃

I∈PAn+1
I, then there exists J ∈ PAn+1 such that y ∈ J . So, f(y) ∩

An = ∅, and therefore there exists I ∈ PAa
such that f(y) ∈ I. Consequently

y ∈
⋃

I∈PAn
f−1(I), which completes the proof. �

Lemma 11. Let f be a SACAH. f is expansive if and only if Af =
∞⋃

n=1
An ∪ {0}

is dense in R \ {0}.

Proof. (⇒) Suppose that f is expansive, and that Af =
⋃∞

n=1An ∪ {0} is not
dense in R \ {0}. Then, there is an interval J such that J ∪ f−n(0) = ∅ for all
n ≥ 0; thus, fn(J) ⊂ R0 or fn(J) ⊂ R1 for all n ≥ 0. Let x 6= y be in J , then
since f is expansive there exists N > 0 such that fN (x) · fN (y) < 0; from this,
fN (J) ∩ R0 6= ∅ and fN (J) ∩ R1 6= ∅. This is a contradiction.

(⇐) Suppose that Af =
⋃∞

n=1An ∪ {0} is dense in R \ {0}. Let a 6= b be
in Rf and consider, without loss of generality, that a < b. Since Af is dense
there exists x ∈ Af such that x ∈ (a, b). Let N ≤ 1 be the minimum such that
f−N (0) ∩ (a, b) 6= ∅. Then, fN (a) · fN (b) < 0. �

3. Proof of the main results

Main Theorem. (⇒) Suppose that f is expansive. Then, from Lemma 11, Rf

is totally disconnected and f(Rf ) = Rf . Consider the function h : Rf −→ Σ∗(2, 2)
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defined by h(x) = a, where

an =
{

0 if fn(x) < 0,
1 if fn(x) > 0.

Note that from Remark 1, h is well defined. Our objective is to show that h is a
homeomorphism and that σ∗ ◦ h = h ◦ f , that is, h is a topological conjugation
between f and σ∗. That means f is transitive since σ∗ is, so the proof follows.
h is one to one. Indeed, let x 6= y in Rf and let us denote a = h(x) and b = h(y).

Since f is expansive, there exists N > 1 such that fN (x) · fN (y) < 0, therefore
aN 6= bN and so a 6= b.
h is continuous. Indeed, let x ∈ Rf and let us denote a = h(x). Let ε > 0, then

there exists M > 1 such that, if b ∈ Σ∗(2, 2) with aj = bj for all 0 ≤ j ≤ M , then
d2(a, b) < ε. On the other hand, there exists I ∈ PAM+1 such that x ∈ I. From this
follows that f j(I)∩{0} = ∅ for all 0 ≤ j ≤M+1, then from definition of h, f j(I) ⊂
Raj

for all 0 ≤ j ≤M . Now, let δ = d(x, ∂I); then for y ∈ (x− δ, x+ δ) ∩ Rf ⊂ I

it follows that f j(y) ∈ Raj
for all 0 ≤ j ≤ M . Then, calling b = h(y) we conclude

that d2(h(x), h(y)) < ε.
h is onto. Indeed, let a = (a0, a1, a2, . . . ) ∈ Σ∗(2, 2) and remember that R0 =

(−∞, 0), R1 = (0,+∞). Consider the sets
H0 = Ra0 ;
H1 = Ra0 ∩ f−1(Ra1);

...
Hn = Ra0 ∩ f−1(Ra1) ∩ · · · ∩ f−n(Ran

), for all n ≥ 1.

Observe that if x ∈ Hn, then f j(x) ∈ Raj
for all 0 ≤ j ≤ n. To continue with the

proof, we need to prove the following claims.
Claim 1: Hn 6= ∅ and Hn ∈ PAn

, for all n ≥ 1.

Proof. By induction. Let us show that for n = 1 the result is true. Note that
H0 = R0 or R1 and f−1(0) = {x0, x1}. Also, f−1(R0) = (−∞, x0) ∪ (0, x1) and
f−1(R1) = (x0, 0) ∪ (x1,+∞). Then, intersecting it follows that H1 6= ∅ and
H1 ∈ PA1 .

Suppose that Hn 6= ∅ and Hn ∈ PAn for n ≥ 1. Suppose that Hn+1 = ∅, that
is, Hn ∩ f−n−1(R0) = ∅, and suppose also that an+1 = 0. From the inductive
hypothesis and Lemma 9 it follows that fn(Hn) ∈ {R0, (x0, 0), (0, x1),R1} and
since Hn+1 = ∅ then fn(Hn) = (x0, 0). So, an = 0. Now, since Hn−1 6= ∅ and from
Lemma 9, fn−1(Hn−1) ∈ {R0, (x0, 0), (0, x1),R1}. From Remark 1 it follows that
fn−1(Hn−1) = R0 or fn−1(Hn−1) = (x0, 0). This proves that an−1 = 0. Thus,
(an−1, an, an+1) = (0, 0, 0) but this is a contradiction with the fact a ∈ Σ∗(2, 2). In
the case an+1 = 1 the proof is similar obtaining (an−1, an, an+1) = (1, 1, 1), which
is a contradiction for the same reason as before. Consequently, Hn+1 6= ∅.

It remains to prove that Hn+1 ∈ PAn+1 , indeed if f−n−1(0) ∩ Hn = ∅, then
Hn ∈ PAn+1 . From Lemma 10 and the fact that Hn+1 6= ∅ there exists I ∈ PAn+1
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such that Hn+1 = Hn ∩ I 6= ∅. Then, from Definition 7, Hn = I, from where it
follows that Hn+1 ∈ PAn+1 . Now, if f−n−1(0) ∩Hn 6= ∅ from Lemma 9 there is a
single y ∈ Hn such that fn+1(y) = 0. Then, from Definition 7 and the fact that
An ⊂ An+1, there exist I1 and I2 in PAn+1 disjoint with I1 ∪ I2 = Hn \ {y}. From
this and Lemma 9, if fn+1(I1) ⊂ R1 then fn+1(I2) ⊂ R0 or conversely. It means
that I1 or I2 is contained in f−n−1(Ran+1). So from Lemma 10 Hn+1 = Hn ∩ I1
or Hn+1 = Hn ∩ I2; in any case, Hn+1 ∈ PAn+1 . This completes the proof of
Claim 1. �

Claim 2: There exists N ≥ 1 such that HN is a bounded atom of PAN
.

Proof. Suppose that HN is not bounded for all N ≥ 1.
Case 1. If a0 = 0, then a3k = 0, a3k+1 = 0 and a3k+2 = 1, for all k ≥ 0.
By induction. Since H0 = R0 and H1 is not bounded it follows that H1 =

(−∞, x0). From Remark 1 f(H1) = (x0, 0) and f2(H1) = R1, then a1 = 0 and
a2 = 1. So, this proves the case k = 0.

Suppose that a3k = 0, a3k+1 = 0 and a3k+2 = 1. Then, from this and
Lemma 9, it follows that f3k(H3k) = R0 and f3k+1(H3k+1) = (x0, 0); therefore,
f3k+2(H3k+2) = R1. Since f3k+3(H3k+2) = (−∞, x1), there exists y ∈ H3k+2 such
that f3k+3(y) = 0. Since H3k+3 is not bounded, we have that H3k+3 = (−∞, y)
and f3k+3(H3k+3) = R0, and consequently a3k+3 = 0. Then, f3(k+1)+1(H3k+3) =
(x0,+∞). So there exists y1 ∈ H3k+3 such that f3(k+1)+1(y1) = 0. From Lemma 9
and the fact that H3(k+1)+1 ⊂ H3k+3 is not bounded, H3(k+1)+1 = (−∞, y1).
Therefore f3(k+1)+1(H3(k+1)+1) = (x0, 0) and f3(k+1)+2(H3(k+1)+1 = R1, so this
shows that a3(k+1)+1 = 0 and a3(k+1)+2 = 1.

Case 2. If a0 = 1, then a3k = 1, a3k+1 = 1 and a3k+2 = 0, for all k ≥ 0.
The proof follows similarly.
Note that in both cases 1 and 2 it is shown that a ∈ Σ∗(2, 2) is a periodic orbit of

period 3 with respect to the shift σ, but this is a contradiction from the supposition
that HN is not bounded for all N ≥ 1. �

Claim 3: If x ∈
⋂

n≥1
Hn, then x ∈ Rf .

Proof. Suppose that x ∈ Af . From Claim 2, there exists N > 1 such that Hn is
bounded for n ≥ N and from Claim 1 there exists y ∈ AN such that H = (x, y) or
H = (y, x). We have the following possible cases.

(A1) Suppose that HN = (x, y) and aN = 1. Then
aN+3k = 1, aN+3k+1 = 0, and aN+3k+2 = 0, for all k ≥ 0.

We will prove the claim (A1) by induction on k. For k = 0 the claim is valid. Indeed,
from our hypothesis and Lemma 9, fN+1(HN+1) = R0; consequently, aN+1 = 0.
Then, fN+2(HN+1) = (x0,+∞). From this there exists y1 ∈ HN+1 such that
fN+2(y1) = 0. So, from Claim 1 and the fact that x ∈ HN+2 and HN+2 ⊂ (x, y),
it follows that fN+2(HN+2) = (x0, 0). Therefore aN+2 = 0.
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Suppose that the claim is valid for some k ≥ 0. Since
x ∈ HN+3k+2 ⊂ [x, y] and HN+3k+2 ⊂ HN+3k+1 ⊂ (x, y),

it follows that fN+3k+2(HN+3k+2) = R1. Denote by m = N + 3k + 2. Then,
applying f , fm+1(Hm) = (−∞, x1) and we obtain that there exists y1 ∈ Hm such
that fm+1(y1) = 0. Then, from Claim 1 and the fact that x ∈ Hm+1, it follows
that Hm+1 = (x, y1) and fm+1(Hm+1) = R0; consequently, am+1 = 0. Applying
f we have that fm+2(Hm+1) = (x0,+∞). Since x ∈ Hm+2 and using the same
last argument, fm+2(Hm+2) = (x0, 0) and fm+3(Hm+2) = R1. So am+2 = 0 and
am+3 = 1. Replacing m we have that

aN+3(k+1) = 0, aN+3(k+1)+1 = 0, and aN+3(k+1)+2 = 1,
and that is what we wanted to prove.

The demonstrations of the following claims follow similarly as in the case (A1).
In each case we indicate the components of the sequence a.

(A2) Suppose that HN = (x, y) and aN = 0. Then,
2.1) if fN (HN ) = (x0, 0), then aN+3k = 0, aN+3k+1 = 1 and aN+3k+2 = 0 for

all k ≥ 0;
2.2) if fN (HN ) = R0, then aN+3k = 0, aN+3k+1 = 0 and aN+3k+2 = 1 for all

k ≥ 0.
(A3) Suppose that HN = (y, x) and aN = 0. Then

aN+3k = 0, aN+3k+1 = 1, and aN+3k+2 = 1 for all k ≥ 0.

(A4) Suppose that HN = (y, x) and aN = 1. Then,
4.1) if fN (HN ) = (0, x1), then aN+3k = 1, aN+3k+1 = 0, and aN+3k+2 = 1 for

all k ≥ 0;
4.2) if fN (HN ) = R1, then aN+3k = 1, aN+3k+1 = 1, and aN+3k+2 = 0 for all

k ≥ 0.
In all cases we proved that the point (σ∗)N (a) is periodic of period 3 and this

is a contradiction. Consequently, x ∈ Rf . �

Let a ∈ Σ∗(2, 2). From Claim 2,
⋂

n≥1Hn 6= ∅; from the injectivity of h and
Claim 2, there exists a single x ∈

⋂
n≥1Hn, and from Claim 3, x ∈ Rf . So, from

definitions of h and the sets Hn it follows that h(x) = a. This proves that h is onto
Σ∗(2, 2).
h−1 is continuous. Let a ∈ Σ∗(2, 2) and ε > 0. Let us denote x = h−1(a). In

the same way of constructing the Hn’s in the proof that h is onto, we have that x ∈
Hn for all n ≥ 1. Then, from Lemma 8, diam(Hn)→ 0 when n→ +∞. Therefore,
there exists N > 1 such that HN ⊂ (x− ε, x+ ε). On the other hand, there exists
δ > 0 such that if b ∈ Σ∗(2, 2) with d2(a, b) < δ then aj = bj for all 0 ≤ j ≤ N .
Then, y = h−1(b) ∈ Hj for 0 ≤ j ≤ N , that is, y = h−1(b) ∈ HN ⊂ (x− ε, x + ε).
This proves the continuity of h−1.

Finally, it remains to prove that h◦f = σ∗◦h. Indeed, given x ∈ Rf and denoting
a = h(f(x)) we have that an = 0 if fn+1(x) < 0, or an = 1 if fn+1(x) > 0 for
all n ≥ 0. On the other hand, if b = h(x) we have that σ∗(h(x)) = (b1, b2, b3, . . .).
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Note that (b1, b2, b3, . . . , ) = (a0, a1, a2, . . .). This shows that h ◦ f(x) = σ∗ ◦ h(x),
for all x ∈ Rf .

(⇐) Suppose that f is transitive and suppose (by contradiction) that f is not
expansive. Then, there exists x 6= y such that f j(x).f j(y) > 0, for all j ≥ 0.
Suppose, without loss of generality, that x < y. That means f j([x, y]) ∩ Af = ∅
for all j ≥ 0; from this we conclude that f j([x, y]) does not have points of the set⋃

n≥0 f
−n(0). Denote by I = [x, y]. Since f is transitive there exists k ≥ 1 such

that fk(I)∩ I 6= ∅. Since f is continuous, increasing in each connected component
of R\{0} and f j(I) ⊂ Raj

, ∀ j ≥ 0, it follows that fk(I)∪I is an interval. Note that
f2k(I) ∩ (fk(I) ∪ I) 6= ∅, so f2k(I) ∪ fk(I) or I is an interval and also contained
in R0 or R1. Given J =

⋃
n≥1 f

nk(I), then J is invariant by fk, but this is a
contradiction since f is transitive. �

Proof of Corollary 3. In the proof of the Main Theorem, it is shown that f is
topologically conjugated with σ∗ : Σ∗(2, 2) −→ Σ∗(2, 2) and the set of periodic
points of σ∗ is dense in Σ∗(2, 2); from this the result follows. �

Corollary 12. All maps f : R\{0} −→ R which are SACAH and transitive are
topologically conjugated with each other.
Proof. Let f and g be SACAH maps. Then, from the Main Theorem there exist
homeomorphisms h1 : Rf → Σ∗(2, 2) and h2 : Rg → Σ∗(2, 2) such that h1 ◦ f =
σ∗ ◦ h1 and h2 ◦ g = σ∗ ◦ h2. Taking h = h−1

2 ◦ h1 : Rf → Rg we have that
h ◦ f = g ◦ h. �

Let us now consider an interesting example of this kind of maps. Let B :
R\{0} −→ R be defined by

B(x) = |x| − 1
x

=


1− 1

x
, x > 0,

−1− 1
x
, x < 0.

Lemma 13.
⋃

n≥0
B−n(0) = Q.

Proof of Corollary 4. The proof follows from Lemma 13 and the Main Theorem.
�

Proof of Lemma 13. Observe that if a ∈ Q, then B−1(a) ∈ Q. From this we
conclude that

⋃
n≥0B

−n(0) ⊂ Q. Now, we will show the other inclusion, that is,
Q ⊂

⋃
n≥0B

−n(0). First observe that:
for all |x| > 1, it follows that |B(x)| < 1. (1)

Also, note that
if Bk(x) ∈ AB , then Bj(x) ∈ AB , for 0 ≤ j ≤ k. (2)

Also note that B(−x) = −B(x), for all x 6= 0. In general,
for all n ≥ 1 and x ∈ RB it follows that Bn(−x) = −Bn(x), (3)
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where RB = R \AB and AB = ∪n≥1B
−n(0) ∪ {0}.

Case 1. For all n ∈ Z, we have that n ∈ AB .
From (2) it is sufficient to show that n ∈ AB for all n ≥ 1. The proof is by

induction. For n = 1 it is clear since B−1(0) = {−1, 1}. Suppose that j ∈ AB

for 1 ≤ j ≤ n. Then, B(n + 1) = n−1
n and applying B we have B2(n + 1) = − 1

n .
Applying B again we obtain B3(n + 1) = n − 1. Therefore, by our inductive
hypothesis n− 1 ∈ AB ; from this and (2) it follows that (n+ 1) ∈ AB . This proves
Case 1.

From the proof of Case 1, from (1) and (2), we have
1
n
∈ AB for all n ∈ Z \ {0}. (4)

Case 2. Consider k > 0, n > k such that n = q ·k+r, where r ∈ {0, 1, . . . , k−1}
with q ≥ 3. Then, for t ≥ 1 and 2t+ 1 ≤ q we have

B3t−1
(
−k
n

)
= n− 2tk
n− (2t− 1)k

B3t

(
−k
n

)
= −k
n− 2tk

B3t+1
(
−k
n

)
= n− (2t+ 1)k

k
.

We will do the proof of Case 2 by finite induction. Let us see that the equations
are valid for t = 1:

B2
(
−k
n

)
= 1− k

n− k
= n− 2k

n− k

since q ≥ 2, n− 2k > 0, it follows that n− 2k
n− k

> 0. Therefore,

B3
(
−k
n

)
= −k
n− 2k < 0 and B4

(
−k
n

)
= n− 3k

k
.

Suppose that the equations are valid for t and suppose that 2(t+ 1) + 1 ≤ q. Let
us see that the equations are valid for t + 1. Note that 3t + 2 = 3(t + 1) − 1 and

3t+3 = 3(t+1). On the other hand, since 2(t+1)+1 ≤ q, then n− (2t+ 1)k
k

> 0.

So applying B to B3t+1
(
−k
n

)
we obtain

B3t+2
(
−k
n

)
= 1− k

n− (2t+ 1)k = n− (2t+ 2)k
n− (2t+ 1)k ,

where n− (2t+ 2)k > 0 because 2(t+ 1) + 1 ≤ q. Applying B again,

B3t+3
(
−k
n

)
= −k
n− (2t+ 2)k < 0 and

B3(t+1)+1
(
n− k
k

)
= n− (2(t+ 1) + 1)k

k
,
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which is what we wanted to prove.
Case 3. For each n ≥ 1, n

m
∈ AB , ∀m ≥ n.

Let us show this by induction on n. For n = 1 it is valid from (4). Suppose
that it is valid for n, that is, j

m
∈ AB , for all m ≥ j and for 1 ≤ j ≤ n. Denote

k = n + 1. If m = k, then the proof follows since 1 ∈ AB . Suppose that m > k,
then there exists q ≥ 1 such that m = q.k + r, where r ∈ {0, 1, . . . , n}. Observe
that

B

(
− k
m

)
= −1 + m

k
= m− k

k
.

If q = 1, we have that m = k + r. Then,

B

(
− k
m

)
= k + r − k

k
= r

k
.

Since 0 ≤ r ≤ k− 1, by the inductive hypothesis we have r

k
∈ AB . Then, from (2)

and (3) it follows that k

m
∈ AB , ∀m ∈ {k, . . . , 2k − 1}. Now, suppose that q = 2,

then m = 2k + r. Therefore m− k
k

> 0 and

B2
(
− k
m

)
= m− 2k

m− k
= r

k + r
.

By the inductive hypothesis, r

k + r
∈ AB . Then, from (2) and (3), k

m
∈ AB for all

m ∈ {2k, 2k + 1, . . . , 3k − 1}. Finally, suppose that q ≥ 3, then from Case 2, for
t ≥ 1, 2t+ 1 ≤ q and m = q.k + r,

B3t−1
(
− k
m

)
= m− 2tk
m− (2t− 1)k

B3t

(
− k
m

)
= − k

m− 2tk

B3t+1
(
− k
m

)
= −m− (2t+ 1)k

k
.

Take t0 ≥ 1 such that 2t0 + 1 = q − 1 or 2t0 + 1 = q. If 2t0 + 1 = q − 1, then
m− (2t+ 1)k = q.k + r − (q − 1)k = k + r.

B3t0+1
(
− k
m

)
= k + r

k
and remember that k = n+ 1,

B3t0+2
(
−n+ 1

m

)
= B3t0+2

(
− k
m

)
= 1− k

k + r
= r

k
= r

n+ 1 ∈ AB ,

by our inductive hypothesis since r ∈ {0, 1, . . . , n}. From (2) and (3) it follows that
n+ 1
m
∈ AB , for all m ≥ 3(n+ 1). Now, if 2t0 + 1 = q,

B3t0+1
(
−n+ 1

m

)
= q.k + r − q.k

n+ 1 = r

n+ 1 ∈ AB
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by the inductive hypothesis since r ∈ {0, 1, . . . , n}. Therefore, from (2) and (3) it
follows that n+ 1

m
∈ AB , for all m ≥ 3(n+ 1). The proof of Case 3 is complete.

To finish the proof of Lemma 13, let p ∈ Q \ {0}. If 0 < p ≤ 1, from Case 3 we
have p ∈ AB . If p > 1, then from (1) B(p) ∈ (0, 1) and B(p) ∈ Q; consequently,
there exist integers n ≥ 1 and m > n such that B(p) = n

m . From Case 3 and (2),
p ∈ AB . Finally, if p < 0, by (1) and (2) we have that p ∈ AB . This completes the
proof of Lemma 13. �
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