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COMBINATORIAL AND MODULAR SOLUTIONS OF SOME
SEQUENCES WITH LINKS TO A CERTAIN CONFORMAL MAP

PABLO A. PANZONE

Abstract. If fn is a free parameter, we give a combinatorial closed form
solution of the recursion

(n+ 1)2un+1 − fnun − n2un−1 = 0, n ≥ 1,
and a related generating function. This is used to give a solution to the Apéry
type sequence

rnn
3 + rn−1

{
αn3 −

3α
2
n2 +

{
α

2
+ 2θ

}
n− θ

}
+ rn−2(n−1)3 = 0, n ≥ 2,

for certain parameters α, θ.
We show from another viewpoint two independent solutions of the last

recursion related to certain modular forms associated with a problem of con-
formal mapping: Let f(τ) be a conformal map of a zero-angle hyperbolic
quadrangle to an open half plane with values 0, ρ, 1, ∞ (0 < ρ < 1) at the
cusps and define t = t(τ) := 1

ρ
f(τ) f(τ)−ρ

f(τ)−1 . Then the function

E(τ) =
1

2πi
f ′(τ)
f(τ)

1
1− f(τ)

ρ

is a solution, as a generating function in the variable t, of the above recurrence.
In other words, E(τ) = r0 +r1t+r2t2 + . . . , where r0 = 1, r1 = −θ, α = 2− 4

ρ
.

1. Introduction

Let P (n) be the third degree polynomial in n defined by

P (n) = αn3 + 3α
2 n2 +

{α
2 + 2θ

}
n+ θ, (1)

with α, θ complex or real numbers.
One should notice that

P (n− 1) = −P (−n) = αn3 − 3α
2 n2 +

{α
2 + 2θ

}
n− θ.

This paper is devoted to the study of sequences (r) = (r0, r1, r2, . . .) defined by
rnn

3 + rn−1P (n− 1) + rn−2(n− 1)3 = 0, n ≥ 2. (2)
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Case P (n− 1) (a)
1 −98n3 + 147n2 − 147n+ 49 (1, 49, 2701, 171549, 11951001, . . . )
2 −158n3 + 237n2 − 197n+ 59 (1, 59, 4801, 473859, 52189101, . . . )
3 −222n3 + 333n2 − 253n+ 71 (1, 71, 7801, 1064671, 163373801, . . . )
4 −222n3 + 333n2 − 221n+ 55 (1, 55, 5713, 762775, 115712941, . . . )
5 −222n3 + 333n2 − 333n+ 111 (1, 111, 13861, 1994411, 314768301, . . . )
6 −286n3 + 429n2 − 333n+ 95 (1, 95, 13573, 2395355, 474461701, . . . )
7 −318n3 + 477n2 − 189n+ 15 (1, 15, 1873, 336095, 70689441, . . . )
8 −322n3 + 483n2 − 291n+ 65 (1, 65, 9433, 1800985, 393370541, . . . )
9 −382n3 + 573n2 − 253n+ 31 (1, 31, 4801, 1046431, 265873201, . . . )
10 −482n3 + 723n2 − 603n+ 181 (1, 181, 45001, 13558581, 4557147201, . . . )
11 −898n3 + 1347n2 − 459n+ 5 (1, 5, 1693, 846185, 499129441, . . . )
12 −1890n3 + 2835n2 − 1195n+ 125 (1, 125, 94453, 101362025, . . . )

Table 1.

We will be interested in the solutions (a), (b) of the above recurrence starting
with a0 = 1, a1 = −θ and b0 = 0, b1 = 1. Of course any solution (r) is a linear
combination of (a) and (b).

Example 1. If P (n−1) = −34n3 +51n2−27n+5, that is, α = −34, θ = −5, then
one gets Apéry’s famous sequence an =

∑n
k=0

(
n+k
k

)2(n
k

)2. Here bn is the more
complicated expression

bn = 1
6

n∑
k=0

(
n+ k

k

)2(
n

k

)2
{

n∑
m=1

1
m3 +

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)} ;

see [15]. Apéry used these sequences to prove the irrationality of ζ(3).

Example 2. One can find many sequences (a0, a1, a2, . . . ) solutions of the above
recurrence having the notorious property of being integers for a long string before
becoming rational numbers. A few examples are given in Table 1; in all cases α, θ
are real and negative. Cases 1 and 11 (expanded) in that table are respectively

1, 49, 2701, 171549, 11951001, 885337929, 68479711021, 5468036535229,

447382621294021, 335828273871136861
9 ,

28448771913258275929
9 , . . .

and

1, 5, 1693, 846185, 499129441, 322896384725, 221579880716125,
158412615229470425, 116716224422246465125, 88003121433329789819225,

67576191815704841837662513, 6372396171486374598564392472485
121 , . . . .
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This paper is, in some sense, an attempt to find the solutions (a), (b) of the
recurrence (2) in closed form.

Our main results are Theorems 1–4, which we briefly discuss. We exhibit
the solutions of (2) from two different viewpoints. Our first point of view is
combinatorial and is developed in sections 2, 3 and 5. Firstly, in Theorem 1,
which we believe is interesting in its own right, we solve the easier recursion
(n + 1)2un+1 − fnun − n2un−1 = 0, where fn is a free parameter. This result
can be seen as a variant of a certain recursion given in an interesting paper of
A. Schmidt [13] and should be compared to it. To solve the recursion we need to
introduce certain combinatorial numbers linked to the Stirling numbers of first and
second kind. In section 3, namely Theorem 2, we show how a particular case of
Theorem 1 can be used to solve in closed form the recursion (2) and is, in some
sense, a combinatorial solution of it. This solves also a particular case of Heun’s
equation. In Theorem 4 of section 5 we present a generating function related to
the combinatorial numbers appearing in Theorem 1.

Our second point of view is a modular one: F. Beukers showed the connection
of Apéry’s sequences, that is those of Example 1, with modular forms. Section 4 is
inspired by his remarkable paper [3] and this section can be read almost indepen-
dently from sections 2 and 3. Here we begin with a problem of a certain conformal
mapping: describe the function f(τ) mapping a hyperbolic quadrangle, having an-
gles all equal to zero at all four cusps, to a half plane. As shown in Theorem 3,
we construct the solutions of the recursion (2) as a generating function of certain
modular forms attached to f(τ) with certain parameters α, θ depending on this
last function.

2. A second order recursion

The aim of this section is to prove Theorem 1, which solves, in a combinatorial
way, a second order recursion. It is inspired by Asmus Schmidt’s paper [13] and
it could be seen as a generalization of Example 2 in [14]. We need first some
definitions.

We write s(i, k) for the Stirling numbers of first kind, which may be defined by
the binomial (

x

i

)
= x(x− 1) · · · (x− (i− 1))

i! =
i∑

k=0
s(i, k)x

k

i! .

Recall that s(j, j) = 1 if j ≥ 0, s(i, 0) = 0 if 1 ≤ i, that is,
(
x
0
)

= 1.

Definition. We will write for short, if 0 ≤ k ≤ n,

dn,k :=
n∑
i=k

s(i, k)
i!

(
n

i

)(
n+ i

i

)
. (3)

By definition we put dn,k = 0 if 0 ≤ n < k and dn,−1 = 0 if 0 ≤ n.
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Observe that dn,0 = 1 for all n ≥ 0. One has

d0,0 = 1,
d1,0 = 1, d1,1 = 2,
d2,0 = 1, d2,1 = 3, d2,2 = 3,
d3,0 = 1, d3,1 = 11/3, d3,2 = 5, d3,3 = 10/3,
d4,0 = 1, d4,1 = 25/6, d4,2 = 85/12, d4,3 = 35/6, d4,4 = 35/12.

We write for short

βi,j,k :=
∞∑
u=i

∞∑
`=j

(
u+ `

k

)(
k

u

)(
k

`

)
s(u, i)
u!

s(`, j)
`! .

Observe that this is a finite sum because
(
k
u

)
= 0 if k < u. Note that βi,j,k = 0 if

k < i or k < j.

Definition. We define αi,j,k by

k∑
r=0

s(k, r)αi,j,r = k!βi,j,k.

Recall the well known fact that Stirling matrices are inverse to each other. This
yields that the last equation can be inverted to give

k∑
r=0

S(k, r)r!βi,j,r = αi,j,k

where S(i, j) are the Stirling numbers of second kind. Recall that these numbers
may be defined by xn =

∑n
k=0 S(n, k)(x)k, where (x)n = x(x − 1) · · · (x − n + 1)

(here (x)0 = 1) is the falling factorial.
Thus the last equation is

αi,j,0...
αi,j,k

 = M

0!βi,j,0
...

k!βi,j,k

 ,
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where M is the square matrix with k + 1 rows defined by
S(0, 0) 0 0 · · · 0
S(1, 0) S(1, 1) 0 · · · 0
S(2, 0) S(2, 1) S(2, 2) · · · 0

...
...

...
. . .

...
S(k, 0) S(k, 1) S(k, 2) · · · S(k, k)



=



1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 1 1 0 0 · · · 0
0 1 1 0 0 · · · 0
0 1 3 1 0 · · · 0
0 1 7 6 1 · · · 0
...

...
...

...
...

. . .
...

0 S(k, 1) S(k, 2) S(k, 3) S(k, 4) · · · 1


.

Definition. We define the real numbers δk by the equation
n∑
k=0

dn,kδk = 0,

for n ≥ 1, and by definition δ0 = 1.

From (3) one sees that dn,n = 1
n!
(2n
n

)
, thus δk is well defined. One computes

δ0 = 1, δ1 = −1/2, δ2 = 1/6, δ3 = 0, δ4 = −1/30, δ5 = 0,
δ6 = 1/42, δ7 = 0, δ8 = −1/30, δ9 = 0, δ10 = 5/66,

δ11 = 0, δ12 = −691/2730, δ13 = 0, δ14 = 7/6.

Our objective is to prove the following result.

Theorem 1. Let (x0, x1, . . . , xj , . . .) be any sequence of complex numbers. Let

fn := (2n+ 1)
(

1 + 2
n∑
j=0

xjdn,j

)
,

and consider sequences (u) = (u0, u1, . . .) satisfying the recursion formula

(n+ 1)2un+1 − fnun − n2un−1 = 0.

Then the recursion has two independent solutions (p), (q) as follows:
The element pn is represented as

pn =
n∑
k=0

ckdn,k,
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where

c0 = 1,

ck+1 =
k∑
i=0

k∑
j=0

αi,j,kxjci.

The element qn is represented as

qn =
n∑
k=0

ekdn,k,

where

e0 = 0,

ek+1 =
k∑
i=0

k∑
j=0

αi,j,kxjei + δk.

Our proof will follow from some lemmas. Firstly we have the following result of
A. Schmidt as given in [14, Example 2, p. 366].

Lemma 1. Set gn = gn(x) :=
∑n
i=0
(
x
i

)(
n
i

)(
n+i
i

)
=
∑n
k=0 dn,k x

k. If n ≥ 0 then

(n+ 1)2gn+1 − (2n+ 1)(1 + 2x)gn − n2gn−1 = 0.

We will need the following lemma.

Lemma 2. For 0 ≤ k ≤ n+ 1,

(n+ 1)2dn+1,k − (2n+ 1)dn,k − n2dn−1,k = (4n+ 2)dn,k−1.

Proof. The identity of the last lemma can be written as

(n+ 1)2gn+1(x)− (2n+ 1)gn(x)− n2gn−1(x) = (4n+ 2)xgn(x).

Taking out the coefficient of xk in this recurrence one gets the desired identity. �

Lemma 3. The following identity holds:(
n+ `

`

)(
n

`

)(
n+ u

u

)(
n

u

)
=

n∑
k=0

(
n+ k

k

)(
n

k

)(
u+ `

k

)(
k

u

)(
k

`

)
.

Proof. This is basically Lemma 1 of [13] which uses the Pfaff-Saalschütz identity.
See page 196 of that paper. �

Lemma 4. Let αi,j,k be the real numbers defined at the beginning of this section.
Then αi,j,k = 0 if k < i or k < j and αi,j,k = αj,i,k. Also

dn,idn,j =
n∑
k=0

αi,j,kdn,k.
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Proof. Recall that

βi,j,k =
∞∑
u=i

∞∑
`=j

(
u+ `

k

)(
k

u

)(
k

`

)
s(u, i)
u!

s(`, j)
`! .

Thus βi,j,k = βj,i,k and this implies αi,j,k = αj,i,k. Also βi,j,k = 0 if i > k or j > k
which implies αi,j,k = 0 if i > k or j > k.

Next we prove the stated identity. Firstly observe that if k ≤ n one may write
βi,j,k =

∑n
u=i

∑n
`=j
(
u+`
k

)(
k
u

)(
k
`

) s(u,i)
u!

s(`,j)
`! .

Now multiply the identity of Lemma 3 by s(u,i)
u!

s(`,j)
`! and add from u = i up to

n and ` = j up to n. The left-hand side gives
n∑
u=i

n∑
`=j

s(u, i)
u!

s(`, j)
`!

(
n+ `

`

)(
n

`

)(
n+ u

u

)(
n

u

)
= dn,idn,j

using the definition of dn,k, while the right-hand side is equal to
n∑
k=0

(
n+ k

k

)(
n

k

) n∑
u=i

n∑
`=j

(
u+ `

k

)(
k

u

)(
k

`

)
s(u, i)
u!

s(`, j)
`!

=
n∑
k=0

(
n+ k

k

)(
n

k

)
βi,j,k,

due to the definition of βi,j,k and because k ≤ n. That is, we have proved that

dn,idn,j =
n∑
k=0

(
n+ k

k

)(
n

k

)
βi,j,k.

By definition of αi,j,k one has that
∑k
r=0

s(k,r)
k! αi,j,r = βi,j,k. Therefore

n∑
k=0

(
n+ k

k

)(
n

k

)
βi,j,k =

n∑
k=0

(
n+ k

k

)(
n

k

) k∑
r=0

s(k, r)
k! αi,j,r

=
n∑
r=0

αi,j,r

n∑
u=r

s(u, r)
u!

(
n+ u

u

)(
n

u

)
=

n∑
r=0

αi,j,rdn,r,

which proves the lemma. �

Finally we prove Theorem 1.

Proof of Theorem 1. Set

r̃n := (n+ 1)2pn+1 − fnpn − n2pn−1.

Our aim is to prove that r̃n = 0 for all n ≥ 1.
Writing the definition of pn without any explicit ck one has that r̃n is equal to

(n+ 1)2
n+1∑
k=0

ckdn+1,k − (2n+ 1)
(

1 + 2
n∑
j=0

xjdn,j

) n∑
k=0

ckdn,k − n2
n−1∑
k=0

ckdn−1,k.
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We collect the terms with ck alone. Remembering that dn,n+1 = dn−1,n+1 =
dn−1,n = 0, this can be rearranged to give that r̃n is equal to
n+1∑
k=0

ck
{

(n+ 1)2dn+1,k − (2n+ 1)dn,k − n2dn−1,k
}
− (4n+ 2)

( n∑
j=0

xjdn,j

) n∑
k=0

ckdn,k

= (4n+ 2)
{ n+1∑
k=0

ckdn,k−1 −
( n∑
j=0

xjdn,j

) n∑
k=0

ckdn,k

}
= (4n+ 2)

{ n∑
k=0

ck+1dn,k −
( n∑
j=0

xjdn,j

) n∑
k=0

ckdn,k

}
,

where we have used Lemma 2 and the fact that dn,−1 = 0. Putting the definition
of ck+1 in the first sum one gets that r̃n is equal to

(4n+ 2)
{ n∑
k=0

dn,k

k∑
i=0

k∑
j=0

αi,j,kxjci −
( n∑
j=0

xjdn,j

) n∑
k=0

ckdn,k

}
.

By Lemma 4, the inner double sum in the first term could be summed up to n (in
both summands i, j) instead of k because αi,j,k = 0 if i, j > k. Changing the order
of summation and using the identity of Lemma 4 yields

(4n+ 2)
{ n∑
i=0

n∑
j=0

xjci

n∑
k=0

ai,j,kdn,k −
( n∑
j=0

xjdn,j

) n∑
k=0

ckdn,k

}
= (4n+ 2)

{ n∑
i=0

n∑
j=0

xjcidn,idn,j −
( n∑
j=0

xjdn,j

) n∑
k=0

ckdn,k

}
= 0.

If one puts (q) then one obtains, with exactly the same proof, the additional term

(4n+ 2)
{ n∑
k=0

dn,kδk

}
,

which is zero if 1 ≤ n by definition of δk. �

We record the first values of αi,j,k; recall that αi,j,k = αj,i,k. One has
α0,0,0 = 1,

α0,0,1 = 0, α0,1,1 = 1, α1,1,1 = 2,
α0,0,2 = 0, α0,1,2 = 0, α1,1,2 = 1, α0,2,2 = 1, α2,1,2 = α2,2,2 = 3.

3. Connection with Apéry type sequences and Heun’s equation

Our aim is to prove the following theorem which solves, in a certain closed form,
the recursion (2).

Theorem 2. Let θ be a complex number, α real and α < −2. Set

B0 := i(α− 6)
2
√

2− α
, K0 := i(θ − 1)√

2− α
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and assume that (x0, x1, x2, . . .) is a complex sequence such that

(−B0n
2 −B0n−K0) = (2n+ 1)

(
1 + 2

n∑
j=0

xjdn,j

)
,

for all n ≥ 1. Also define A1 := 2−α
4 and B1 := 1−θ

2 .
Then there exists (u) = (u0, u1, u2, . . .) which is a linear combination of (p), (q),

the solutions given in Theorem 1, such that if one writes U(x) = u0 +u1x+u2x
2 +

. . . , then
i) V (x) := U(−

√
2−α
2 x) is a holomorphic solution around x = 0 of

x(x− 1)(A1x− 1)V ′′ + (3A1x
2 − 2(A1 + 1)x+ 1)V ′ + (A1x−B1)V = 0. (4)

ii) The coefficients of

R(t) := (1− x)V 2(x) = r0 + r1t+ r2t
2 + · · · ,

where
t = x(A1x− 1)

x− 1 ,

that is

x = −
√

1 + αt+ t2 + 1 + t

2A1
,

satisfy the recursion (2). Also,

r0 = u2
0, r1 = −u0(u0 + u1

√
2− α).

Note: The above equation (4) is a particular case of Heun’s equation and is
connected to the problem of mapping the half plane onto a hyperbolic quadrangle.

We first prove some lemmas.

Lemma 5. Let B0,K0 be complex numbers and let (x0, x1, x2, . . .) be a complex
sequence such that

(−B0n
2 −B0n−K0) = (2n+ 1)

(
1 + 2

n∑
j=0

xjdn,j

)
,

for all n ≥ 1. Let (u) = (u0, u1, u2, . . .) be a solution of the recursion

(n+ 1)2un+1 − (−B0n
2 −B0n−K0)un − n2un−1 = 0, n ≥ 1,
K0u0 + u1 = 0.

Then (u) is a linear combination of (p) and (q) of Theorem 1.

Proof. This lemma is immediate observing that the hypothesis gives fn = (−B0n
2−

B0n−K0) in Theorem 1. �

Lemma 6. Let B0,K0 be complex numbers. Set

B1 := K0(−B0 ±
√

4 +B2
0)

2 , A1 := − (B0 ∓
√

4 +B2
0)2

4 .
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The sequence of complex numbers (u) = (u0, u1, u2, . . .) is a solution of the recursion

(n+ 1)2un+1 − (−B0n
2 −B0n−K0)un − n2un−1 = 0, n ≥ 1
K0u0 + u1 = 0,

if and only if V (x) := U

(
i

{
−B0±

√
4+B2

0
2

}
x

)
(here U(x) := u0 +u1x+u2x

2 +· · · )

is a holomorphic solution at x = 0 of

x(x− 1)(A1x− 1)V ′′ + (3A1x
2 − 2(A1 + 1)x+ 1)V ′ + (A1x−B1)V = 0.

Proof. The sequence of complex numbers (u) = (u0, u1, u2, . . .) satisfies the condi-
tions of Lemma 6 if and only if U(x) = u0 + u1x + u2x

2 + · · · is a holomorphic
function at x = 0 which satisfies

(−x3 +B0x
2 + x)U ′′ + (−3x2 + 2B0x+ 1)U ′ + (−x+K0)U = 0.

Now V (x) = U

(
i

{
−B0±

√
4+B2

0
2

}
x

)
gives the required result after some alge-

braic manipulation. �

Definition. We define the linear operators L,L1 as follows:

L :=
{
t4 + αt3 + t2

} d3

dt3
+
{

6t3 + 9
2αt

2 + 3t
} d2

dt2

+
{

7t2 + (3α+ 2θ)t+ 1
} d
dt

+ (t+ θ),

L1 :=
{
t4 + αt3 + t2

} d2

dt2
+
{

2t3 + 3
2αt

2 + t

}
d

dt
+
{
t2 + 2θt

}
4 .

(5)

For the next two lemmas we will write for short L1 = P1(t) d
2

dt2 +P2(t) ddt + P3(t)
4 .

Lemma 7. Set A1 := 2−α
4 and B1 := 1−θ

2 . Let V (x) be a solution of

x(x− 1)(A1x− 1)V ′′ + (3A1x
2 − 2(A1 + 1)x+ 1)V ′ + (A1x−B1)V = 0.

Set W (t) :=
√

1− xV (x); here t = x(A1x−1)
x−1 , that is, x = −

√
1+αt+t2+1+t

2A1
. Then

L1W (t) = 0.

Proof. If all the functions involved are smooth enough, one has the following general
formula. Set W (t) := g(x)V (x) where t := f(x). Then W (t) satisfies (here ˙ denotes
the derivative with respect to t)

P1(t)Ẅ (t) + P2(t)Ẇ (t) + P3(t)
4 W (t) = H(t)
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if and only if V (x) satisfies (here ′ is the derivative with respect to x)

V ′′(x)P1(f(x))g(x)
f ′(x)2

+ V ′(x)
{P1(f(x))2g′(x)

f ′(x)2 − P1(f(x))f ′′(x)g(x)
f ′(x)3 + P2(f(x))g(x)

f ′(x)

}
+ V (x)

{P1(f(x))g′′(x)
f ′(x)2 − P1(f(x))f ′′(x)g′(x)

f ′(x)3 + P2(f(x))g′(x)
f ′(x) + P3(f(x))g(x)

4

}
= H(f(x)).

Hint: Just put the derivatives of W (t = f(x)) := g(x)V (x) with respect to x into
one equation to get the other. We note that this is a general formula valid for
smooth functions Pi.

Now take as Pi the polynomials defined by the linear operator L1, g(x) =√
1− x, t = f(x) = x(A1x−1)

x−1 and H(t) = 0. A tedious routine check gives the
result. �

Lemma 8. Let W (t) be a function such that

L1W (t) = H(t).

Then
L
{
W (t)2} = 6W ′(t)H(t) + 2W (t)H ′(t).

In particular, if L1W (t) = 0 then L
{
W (t)2} = 0.

Proof. We write for short Pi = Pi(t), W = W (t) and P4(t) := −t− θ. Then

d

dt

{(
P1

d2

dt2
+ P2

d

dt
+ P3

)
W 2
}

+ P4W
2

=
{
P1

d3

dt3
+ (P ′1 + P2) d

2

dt2
+ (P ′2 + P3) d

dt
+ (P ′3 + P4)

}
W 2 = L{W 2},

where the last equality follows checking that P ′1 + P2 = 6t3 + 9
2αt

2 + 3t and so on.
Also,

d

dt

{(
P1

d2

dt2
+ P2

d

dt
+ P3

)
W 2
}

+ P4W
2

= d

dt

{
P1(2W ′2 + 2WW ′′) + P22WW ′ + P3W

2}+ P4W
2

= d

dt

{
P12W ′2 + P3

2 W 2 + 2WH

}
+ P4W

2,

where we have used in the last equality the hypothesis L1W (t) = H(t), that is,
P1W

′′ +P2W
′ = −P3W/4 +H, and written H = H(t) for short. The last formula

is equal to

P14W ′W ′′ + 2P ′1W ′2 + P3WW ′ + P ′3
2 W 2 + 2W ′H + 2WH ′ + P4W

2

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



400 PABLO A. PANZONE

which, noticing that P ′
3

2 + P4 = 0, equals

4W ′
{
P1W

′′ + P ′1
2 W ′ + P3

4 W

}
+ 2W ′H + 2WH ′

= 4W ′ {L1W}+ 2W ′H + 2WH ′ = 6W ′H + 2WH ′,

and the lemma follows. �

Lemma 9. Assume P (n) is the polynomial defined by (1). Then a holomorphic
function around zero R(t) = r0 + r1t+ r2t

2 + · · · satisfies
LR(t) = r1 + θr0

if and only if the coefficients ri satisfy the recurrence
rnn

3 + rn−1P (n− 1) + rn−2(n− 1)3 = 0,
for n ≥ 2 with inital conditions r0, r1.

Proof. After grouping the coefficients of tn in the operator L one obtains the above
recursion. �

Finally we give the proof of Theorem 2.

Proof of Theorem 2. Assuming that α < −2 and putting B0 := i(α−6)
2
√

2−α , K0 :=
i(θ−1)√

2−α then one has +
√

4 +B2
0 = −i (2+α)

2
√

2−α and −B0 +
√

4 +B2
0 = i

√
2− α. In

the notation of Lemma 6 this gives A1 = 2−α
4 B1 = 1−θ

2 .
By Lemmas 5 and 6 one has that

V (x) = (1− x)U
(
−
√

2− α
2 x

)
satisfies part (i) of the theorem.

Part (ii) of the theorem follows from Lemmas 7, 8 and 9. �

4. Connection with modular forms and conformal mapping

In this section we start anew and we connect our sequences with a certain con-
formal mapping f(τ) described below and certain modular forms E(τ), E(τ)F0(τ)
related to f(τ). We show in Theorem 3 that, choosing constants α, θ in (1) de-
pending on f(τ), the coefficients of these modular forms (viewed in an appropriate
variable) are the sought sequences (a), (b) solutions of (2) described in the intro-
duction.

The function f(τ) is described as follows. Let Q0 be the open region in the
upper open complex plane H, described by the variable τ = τ1 + iτ2 with both
τ1, τ2 ∈ R (i.e., the τ -plane) surrounded by the lines iτ2 and 1/2 + iτ2 with 0 ≤ τ2
and the (half) circles C2, C1 whose centers are real, with radii r2 and r1 = 1/4− r2
respectively, 0 < r2 < 1/4. See figure 1. This region Q0 is a hyperbolic quadrangle
whose interior angles are all zero and whose vertices are 0, 2r2, 1/2, i∞.

By the Riemann mapping theorem there exists a conformal mapping f(τ) of this
region Q0 onto the upper open half plane which can be extended to the boundary
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Figure 1. Q0 is mapped conformally onto the upper open half
plane by the function f(τ).

of the region. Moreover, by applying a bilineal map from the upper half plane into
itself, one may normalize this mapping sending i∞→ 0, 0→ ρ, 2r2 → 1, 1/2→∞
with 0 < ρ < 1. As in the construction of the modular invariant one may apply
the Schwarz reflection principle an infinite number of times to the sides to get a
function which is an extension of f(τ) which we call in the same way. This function
is the Hauptmodul of the discrete group generated by the bilinear transformations
(not necessarily related to the modular group):

T1τ = τ + 1, T2τ = τ
τ
r2

+ 1 , T3τ =
τ 1+4r2

1−4r2
+ 4r2

1−4r2

τ 4
1−4r2

+ 1+4r2
1−4r2

.

Lemma 10. Under the above construction one has that the function f(τ) : H → C
is a holomorphic function, mapping Q0 conformally onto the upper plane, where

f(Tiτ) = f(τ) (6)
for i = 1, 2, 3 and (0 < ρ < 1)

f(i∞) = 0, f(0) = ρ, f(±2r2) = 1, f(±1/2) =∞.
Also, f(τ) takes real values on the lines iτ2 and 1/2 + iτ2 (0 ≤ τ2) and the half
circles C2, C1. Moreover, it has the mirror symmetry

f(−τ̄) = f(τ),
and f(τ) 6= 0, ρ, 1 in the open upper half plane H. See figure 1.

The last two statements follow from the construction of f(τ).
Writing q = e2πiτ one may write f(τ) as a Taylor series in q with radius of

convergence 1, because f(T1τ) = f(τ + 1) = f(τ). Such series will be of the form
e0q + O(q2) with e0 > 0, because f(τ) is univalent at τ = i∞ (that is at q = 0)
and f(τ) is real and increasing if τ moves from i∞ to i0 (on the line iτ2) or if τ
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Figure 2. The regions Q1, Q2, Q3, Q4.

moves from 1/2 to 1/2 + i∞ (on the line 1/2 + iτ2). All this gives that f(τ) is real
and increasing at q = 0 if q is real and then forces that all the coefficients of its
Taylor series must be real. Moreover one can see that there exists en ∈ R, e0 > 0
such that (see [6])

f(τ) = e0 q

∞∏
n=1

(1− qn)en = e0q − e0e1q
2 + e0

(−e1 + e2
1 − 2e2)

2 q3

+ e0
(3e2

1 − e3
1 + e1(−2 + 6e2)− 6e3)

6 q4 + · · · ,

around q = 0.
In this section our aim is to show how f(τ), ei ρ and the radius r2 are related

to the solutions (a), (b) of the recursion (2).
If we choose the circle C0 as the circle centered at zero of radius

√
r2, then C0

is orthogonal to the circle C1 (defined at the begining of this section), see figure 2.
We define the open regions Qi, i = 1, 2, 3, 4 in the same figure. For example, Q1 is
the exterior of the circles C0, C1, surrounded by the lines iτ2 and 1/2 + iτ2; it is a
hyperbolic quadrangle with angles 0, π2 ,

π
2 , 0.

Lemma 11. If τ ∈ H then

f
(
−r2

τ

)
= f(τ)− ρ
f(τ)− 1 .

Proof. This follows from the formulae (6). Indeed,

f
(
− r2

T1τ

)
= f

(
− r2

τ + 1

)
= f

( −r2/τ

1 + 1/τ

)
= f

(
T4(−r2

τ
)
)
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and T4 := τ
− τ
r2

+1 is the inverse of T2. Therefore by (6) one has f(T4(− r2
τ )) =

f(− r2
τ ), that is, f(− r2

T1τ
) = f(− r2

τ ). In the same way one proves that, for i = 1, 2, 3,

f
(
− r2

Tiτ

)
= f

(
− r2

τ

)
.

Observe that the function −r2/τ interchanges conformally Q1 with Q2 and Q3 with
Q4. As f(τ) is a Hauptmodul for the group generated by Ti then f(− r2

τ ) must be
a Hauptmodul also. The lemma follows by matching the values at the cusps. �

Some explicit known examples are the following:

i) If r2 = 1/8 then ρ = 1/2 and f(τ) = 1
2

{
1−

√
1− 16q

∏∞
n=1

(
1+q2n

1+q2n+1

)8
}

.

ii) If r2 = 1/6 then ρ = 1/9, and f(τ) = q
∏∞
n=1(1− q6n−5)4(1− q6n−1)4(1−

q6n−4)−4(1− q6n−2)−4.
iii) If r2 = 1/5 then ρ = 1

2 −
11

10
√

5 and f(τ) = f0(τ)
f0(τ)+ 11

2 + 5
√

5
2

, where f0(τ) :=

q
∏∞
n=1(1− qn)5(n5). Here

(
n
5
)

is the Legendre symbol.
From now on we write ′ to denote the derivative with respect to τ .

Definition. Define

t(τ) := 1
ρ
f(τ)f

(
− r2

τ

)
= 1
ρ
f(τ)f(τ)− ρ

f(τ)− 1 ,

t0(τ) := f(τ)− f
(
− r2

τ

)
= f(τ)− f(τ)− ρ

f(τ)− 1 ,

E(τ) := − 1
t(τ) {ρ− 2 + ρt(τ)}

t′0(τ)
2πi ,

F (τ) := −1
ρ
E(τ)2t0(τ)t(τ).

From this definition it is seen that
t(τ) = t

(
−r2

τ

)
,

t0(τ) = −t0
(
−r2

τ

)
.

(7)

We denote by τ∗ the point of intersection of the circles C0, C1. Recall that the
point i√r2 belongs to C0. See figure 2.

Lemma 12. The function t(τ) maps Q1 univalently onto the upper half plane.
One has the mirror symmetry t(τ) = t(−τ) and t(i∞) = 0, t

(
1
2

)
=∞,

t(i
√
r2) = 2− ρ− 2

√
1− ρ

ρ
=: ρmin, t(τ∗) = 2− ρ+ 2

√
1− ρ

ρ
=: ρmax,

where 0 < ρmin < 1 < ρmax. See figure 3. Also,
f(i
√
r2) = 1−

√
1− ρ.
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Figure 3. Q1 is mapped conformally onto the upper open half
plane by the function t(τ).

Proof. The mirror symmetry of t(τ) and the values t(i∞) = 0, t(1/2) = ∞ follow
trivially from the properties of f(τ).

We prove the mapping property of t(τ): as f(τ) takes real values on the lines iτ2,
iτ2 +1/2 and the circle C1 then t(τ) takes real values there. Also any point τ on the
circle C0 goes to −τ̄ by the transformation − r2

τ which gives ρt(τ) = f(τ)f(−τ̄) =
|f(τ)|2 ∈ R using the mirror symmetry of f . Therefore t(τ) takes real values on
the boundary of Q1.

This last fact and the definition t(τ) = 1
ρf(τ) f(τ)−ρ

f(τ)−1 which gives that t(τ) is a
2 :1 map, yield that t(τ) maps Q1 univalently onto the upper half plane. (Hint:
If τ moves anticlockwise on the boundary of Q1 then t(τ) must move on the real
line from −∞ to +∞, without “bouncing back” for, otherwise, a real point would
have three preimages at least; thus the derivative of t(τ) on the line iτ2 must be
purely complex. The image t(Q1) is open, it must contain a point from the upper
half plane and using the mirror symmetry, t(Q1) = t(Q4). Therefore t(Q1) can not
touch the real line for, otherwise, again a real point would have three preimages at
least. This yields that t(Q1) must be the upper half plane.)

Finally observe that the point i√r2, which belongs to C0, goes to itself by the
transformation − r2

τ . Also f(− r2
τ∗ ) = f(−τ∗) = f(τ∗) = f(τ∗), where the last

equality follows because f(τ) takes real values on C1. Then, by Lemma 11, f(i√r2)
and f(τ∗) are the roots of the equation x = x−ρ

x−1 , i.e., f(i√r2) = 1 −
√

1− ρ and
f(τ∗) = 1+

√
1− ρ (observe that f(i√r2) should be the smallest root). The lemma

follows from these values and the fact that 0 < ρ < 1. �

From the definition of t(τ) one calculates that in a neighbourhood of q = 0

t = e0q + e0

( (ρ− 1)e0

ρ
− e1

)
q2 + . . . (8)

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



COMBINATORIAL AND MODULAR SOLUTIONS OF SOME SEQUENCES . . . 405

and therefore the local inverse in a neighbourhood of t = 0 is

q = t

e0
+
(

1
ρe0
− 1
e0

+ e1

e2
0

)
t2 + . . . (9)

Thus one has t0(τ) = −ρ+ e0(2− ρ)q + e0 {(1− ρ)e0 + (ρ− 2)e1} q2 + . . . and

E(τ) = 1 +
(
e0

ρ
− e1

)
q + . . . ,

Putting (9) into this last equation we get that in a neighbourhood of t = 0

E(τ) = 1 +
(

1
ρ
− e1

e0

)
t+ . . . . (10)

Definition. If F (τ) =
∑∞
n=1 ãnq

n we define F0(τ) :=
∑∞
n=1

ãn
n3 q

n and ζF :=∑∞
n=1

ãn
n3 .

As with E(τ) we may look at the expression of E(τ)F0(τ) as a function of t. A
calculation gives that in a neighbourhood of t = 0

E(τ)F0(τ) = t+
(

15
8ρ −

3
4 −

3e1

8e0

)
t2 + . . . . (11)

We finally connect our construction with the sequences at the beginning of the
paper.

Theorem 3. Set α = 2− 4
ρ and θ = e1

e0
− 1

ρ . Then the following holds:
i) Let (a) = (1, a1, a2, . . . ) be the sequence of numbers that are the coefficients

of E(τ) = 1 + ta1 + t2a2 + . . . , that is (10). Then (a) satisfy the recurrence
(2) and a0 = 1, a1 = −θ.

ii) Let (b) = (0, 1, b2, b3, . . . ) be the sequence of numbers that are the coeffi-
cients of E(τ)F0(τ) = t + t2b2 + . . . , that is (11). Then (b) satisfy the
recurrence (2) and b0 = 0, b1 = 1.

Moreover, LE(τ) = 0 and LE(τ)F0(τ) = 1, where L is the operator defined by
(5).

Proof. i) Our aim is to show that the function
√
E(τ), viewed as a function of the

variable t, satisfies
L1
√
E(τ) = 0, (12)

where L1, L are the operators defined in section 3, see formula (5). If this is
so, then using Lemma 8 and Lemma 9 one gets that the coefficients of E(τ) =
1 + a1t+ a2t

2 . . . satisfy the recurrence (2). To ease the proof we write ′ (resp. ˙)
for the derivative with respect to τ (resp. t) and

√
E(τ) =

√
E. Thus for a generic

function f we have, for example, ḟ = f ′

t′ . Note: In the space of modular forms
(under the group that we have) the function

√
E(τ) is a 1-form and by a theorem

of P. Stiller it satisfies a differential equation of second order in the variable t where
t(τ) is the Hauptmodul for that group, namely equation (12). We give here a direct
and self contained proof of this fact adapted from the third proof of Proposition 21
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of [17]; the reader may recognize the coefficients A,B below as certain Rankin-
Cohen brackets whose definitions we do not need. For a more general point of view
the reader may consult [17].

Firstly observe that one trivially has

d

dt2

√
E +A

d

dt

√
E +B

√
E

= 1
t′

(√E′
t′

)′
+
√
Et′′ − 2

√
E
′
t′√

Et′2

√
E
′

t′
−
√
E
√
E
′′ − 2

√
E
′2

t′2
√
E

2

√
E = 0.

We will see that, up to a factor, this is equation (12). We calculate explicitly
the factors A,B as functions of t. Recall that from the definitions

2πiE(τ) = g(t(τ))t′0(τ),

where
g(t) := − 1

t(ρ− 2 + ρt) .

The relationship between t(τ) and t0(τ) can be read from the definitions and is
given in a neighbourhood of t = 0, that is iτ = i∞, by

t0(τ) = −
√
ρ {−4t(τ) + ρ(1 + t(τ))2}. (13)

We write for short
h(t) := −

√
ρ {−4t+ ρ(1 + t)2}.

Thus (dropping the variables) one has 2πiE′ = ġt′t′0 + gt′′0 , t′0 = ḣt′ and t′′0 =
ḧt′2 + t′′ḣ. Therefore

E′

E
= t′

( ġ
g

+ ḧ

ḣ

)
+ t′′

t′
.

Putting this into the definition of A = t′′

t′2 − E′

Et′ one gets

A = − ġ
g
− ḧ

ḣ
=

2t3 + 3α
2 t

2 + t

t4 + αt3 + t2
,

if α := 2− 4
ρ .

The coefficient B is calculated as follows. One has by definition

B = −
√
E
√
E
′′ − 2

√
E
′2

t′2
√
E

2 =
(

1
4

{
E′

E

}2
− 1

2

{
E′

E

}′) 1
t′2

and also
E′

E
= −t′A+ t′′

t′
(14)(

E′

E

)′
= −t′2Ȧ−At′′ +

( t′′
t′

)′
.
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Therefore B = A2

4 + Ȧ
2 −

S(t,τ)
2t′2 , where S(t, τ) := ( t

′′

t′ )′ − 1
2 ( t

′′

t′ )2 is the Schwarzian.
Here we recall two basic facts about the Schwarzian: −S(t, τ)/t′2 = S(τ, t) (see [8,
Exercise 9, p. 377] or use the composition formula for the Schwarzian). Therefore

B = A2

4 + Ȧ

2 + S(τ, t)
2 , (15)

and S(τ, t) can be calculated explicitly as a function of t as in [5, pp. 131–135] (or
see [8, Theorem 10.2.1]) because by Lemma 12, the function τ(t), the inverse of
t(τ) defined on that lemma, maps conformally the upper half plane (in the variable
t) onto a hyperbolic quadrangle (in the variable τ). Moreover, by the same lemma,
it sends the points 0, ρmin, ρmax,∞ to the points i∞, i√r2, τ∗, 1/2 respectively, and
at these last points the quadrangle has angles 0, π/2, π/2, 0. Therefore (see [5] or
[8]),

S(τ, t) = 1
2t2 + 3/4

2(ρmin − t)2 + 3/4
2(ρmax − t)2 + β1

t
+ β2

ρmin − t
+ β3

ρmax − t

for some constants (accessory parameters) βi. Also at a neighbourhood of infinity
one has

S(τ, t) = 1
2t2 +O(1/t3).

So S(τ, t)t → 0, S(τ, t)t2 → 1/2 if t → ∞. These conditions imply that β2, β3
can be given in terms of β1 alone.

But coefficient β1 is given by

β1 = e1

e0
+ 1
ρ
− 1,

which can be calculated with the formula S(τ, t) = −S(t, τ)/t′2 using the expression
of t(τ) given by (8) and knowing that S(τ, t) = 1

2t2 + β1
t +O(1) around t = 0, see [8].

This yields

B =
t2

4 + t
2 ( e1
e0
− 1

ρ )
t4 + αt3 + t2

.

Part (i) of the theorem is proved.

ii) From the definition of F0(τ), F (τ) one trivially has

F ′′′0 = (2πi)3F = − (2πi)3

ρ
E2t0t. (16)

Also, Ḟ0 = F ′
0
t′ , F̈0 = (F

′
0
t′ )′/t′ = F ′′0

1
t′2 −F ′0 t

′′

t′3 and
...
F0 = F ′′′0

1
t′3 −F ′′0 3t′′

t′4 −F ′0 1
t′ ( t

′′

t′3 )′.
Therefore with a suitable combination we can make the terms F ′0 and F ′′0 disappear,
that is,

...
F0 + F̈0

3t′′

t′2
+ Ḟ0

t′′′

t′3
= F ′′′0

t′3
. (17)

We will prove that EF0, viewed as a function of the variable t, satisfies

LEF0 = 1 (18)
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and this will prove our theorem because this equation is equivalent to the desired
recursion by Lemma 9. We do this basically by showing that (17) and (18) are, up
to a factor, equal.

As we already proved that LE = 0 one has that

LEF0 =
...
F0EP1 + F̈0(3P1Ė + P2E) + Ḟ0(3P1Ë + 2P2Ė + EP3) (19)

(here Pi = Pi(t) are the polynomials defined by L = P1
d3

dt3 + P2
d2

dt2 + P3
d
dt + P4.)

We calculate the coefficients of the last equation: using Ė
E = −A + t′′

t′2 (which is
(14)) and the fact that

P2 − 3P1A = 0 (20)
one gets

3P1Ė + P2E = E
(
P2 − 3P1A+ 3P1

t′′

t′2

)
= EP1

3t′′

t′2
. (21)

In the same way Ë
E = ( t

′′

t′2 −A)2 − Ȧ+ t′′′

t′3 − 2t′′2

t′4 and one gets

3P1Ë + 2P2Ė + EP3

= E

{
(P3 − 2AP2 + 3A2P1 − 3P1Ȧ) + 2t′′

t′2
(P2 − 3P1A) + 3P1

( t′′′
t′3
− t′′2

t′4

)}
.

Using (20) one may simplify the first and second terms of the last inner sum
obtaining

E

{
(P3 −AP2 − 3P1Ȧ) + 3P1

( t′′′
t′3
− t′′2

t′4

)}
= E

{
(P3 −AP2 − 3P1Ȧ) + 2P1

S(t, τ)
t′2

+ P1
t′′′

t′3

}
.

But in part (i), formula (15), we have calculated the Schwarzian S(t, τ)/t′2 =
−S(τ, t) = A2

2 + Ȧ− 2B. Inserting this into the last equation one sees that every-
thing in the inner sum cancels out except the last term. This yields

3P1Ë + 2P2Ė + EP3 = EP1
t′′′

t′3
. (22)

Thus using (22) and (21) in (19) one gets LEF0 = EP1

{ ...
F0 + F̈0

3t′′

t′2 + Ḟ0
t′′′

t′3

}
.

Thus (17) and (16) yield

LEF0 = − (2πi)3

t′3ρ
P1E

3t0t = 1,

where the last equality follows using the definition of E and the derivative of (13).
This ends our proof. �

The following two lemmas complement the last theorem.

Lemma 13. The following hold:
i) E(τ) = 1

2πi
f ′(τ)
f(τ)

1
1− f(τ)

ρ

.
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ii) E(− r2
τ ) = − τ

2

r2
E(τ) and E(τ) has, as a function of q, radius of conver-

gence 1.
iii) F (− r2

τ ) = − τ
4

r2
2
F (τ) and F (τ) has, as a function of q, radius of conver-

gence 1.
iv) ãn = O(n2) and ζF :=

∑∞
n=1

ãn
n3 is a convergent series. Also

E(τ) (F0(τ)− ζF ) = E
(
−r2

τ

)(
F0(−r2

τ
)− ζF

)
.

Proof. i) The definition of t0(τ) gives

t′0 = f2 − 2f + 2− ρ
(f − 1)2 f ′.

Using this last formula, the definition of t(τ) and the definition of E(τ) one gets
the desired formula.

ii-iii) By Lemma 10 the function f(τ) 6= 0, 1, ρ in the open upper half plane.
From the expression (i) one has that E(τ) has radius of convergence 1 as a function
of q. The same happens with both t(τ) and t0(τ) and therefore with F (τ).

The transformation formulae follow from (7) and its derivative with respect to
τ using the definition of E(τ).

iv) If F (τ) =
∑∞
n=1 ãnq

n then ãn
n2 = O(1), the proof being similar to that

of Theorem 6.17 on [2, p. 134]. Also the function
∫∞

0 F (iτ)τs−1dτ has an an-
alytic continuation to all the s-complex plane, the later integral being equal to
Γ(s)
(2π)s

∑∞
n=1

ãn
ns . Using a theorem of Ingham or Newman (see [9], [10]) one gets that

ζF =
∑∞
n=1

ãn
n3 is convergent.

Apply Proposition 1.2 of [3] (with N = 1/r2, ε = −1, k = 4 there) to the
transformation formula we have already proved F (− r2

τ ) = − τ
4

r2
2
F (τ), giving

(F0(τ)− ζF ) = −τ
2

r2

(
F0(−r2

τ
)− ζF

)
.

Multiplying this by formula (ii) gives the result. Note: in Proposition 1.2 of [3] it
is stated that N = 1/r2 should be a natural number but this is unnecessary. �

The reason for introducing the constant ζF is the following result.

Lemma 14. The functions E(τ) and

E(τ) (F0(τ)− ζF ) =
∞∑
0
{bn − ζFan} tn

have, as functions of the parameter t (recall formulas (10) and (11)), radius of
convergence ρmin and greater than or equal to ρmax, respectively.

Proof. Looking at the function E(τ)(F0(τ)− ζF ) as a multivalued function of the
parameter t = t(τ) we get that this funcion has radius of convergence either ρmin,
ρmax or ∞. By the transformation formula (iv) of Lemma 14, looking carefully
at what happens around t = ρmin, one gets that the function has no singularity
there. For doing this one should recall, as already observed, that the transformation

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



410 PABLO A. PANZONE

−r2/τ interchanges conformally Q1 with Q2 and Q3 with Q4, and maps the point
i/
√
r2 (in the τ plane) to ρmin (in the t plane). So its radius of convergence is either

greater than or equal to ρmax. Note: one may use here Poincaré’s theorem (see for
example [1, p. 141]) to prove that the radius of convergence is exactly ρmax.

Doing the same with the function E(τ) one has that now, due to the transfor-
mation formula (ii) of Lemma 14, this function has radius of convergence ρmin. �

5. Generating functions

In this section we give some results concerning the combinatorial numbers ap-
pearing in Theorem 1.

Our first result links a double Legendre type series with an elliptic type integral.
More precisely:

Lemma 15. If x, y, t are in a neighbourhood of zero then

∞∑
n=0

tn

{
n∑
i=0

(
n

i

)(
n+ i

i

)
xi

}
n∑
j=0

(
n

j

)(
n+ j

j

)
yj


= 1
π
√
B

∫ 1

0

dz√
z(1− z)(1− zA+)(1− zA−)

, (23)

where

A∓ := A∓(x, y, t) =
4t
√
y(1 + y)

1 + 2x∓ 2
√
x(1 + x) + t

{
−1− 2y + 2

√
y(1 + y)

}
and

B := B(x, y, t) = 1 + t2(1 + 2x)
{
−1− 2y + 2

√
y(1 + y)

}
+ t2

{
1 + 8y2 − 4

√
y(1 + y)− 8y

{
−1 +

√
y(1 + y)

}}
.

Proof. One has the well known generating function for the Legendre type polyno-
mials ([12, pp. 66, 78])

∞∑
n=0

tn

{
n∑
i=0

(
n

i

)(
n+ i

i

)
xi

}
= 1√

1− 2t(1 + 2x) + t2
. (24)
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Using (24) and Cauchy’s formula one may write
∞∑
n=0

t2n

{
n∑
i=0

(
n

i

)(
n+ i

i

)
xi

}
n∑
j=0

(
n

j

)(
n+ j

j

)
yj


= 1

2πi

∫
|z|=1

dz

z
√

(1− 2tz(1 + 2x) + t2z2)(1− 2t/z(1 + 2y) + t2/z2)

= 1
2πi

∫
|z|=1

dz

t
√

(z − α1)(z − α2)(z − α3)(z − α4)

= 1
2π

∫
|z|=1

dz

t
√

(z − α1)(α2 − z)(z − α3)(z − α4)
,

where α1,2 = t
{

1 + 2y ∓ 2
√
y(1 + y)

}
and α3,4 = 1

t

{
1 + 2x∓ 2

√
x(1 + x)

}
for

(say) x, y, t real, positive and small enough. Observe that in such case 0 < α1 <
α2 < 1 < α3 < α4. Therefore the curve |z| = 1, which encloses α1, α2, may be
deformed to two circles of radius ε around α1, α2 and two segments: one from α1 +ε
to α2 − ε and another from α2 − ε to α1 + ε. Making ε tend to zero yields that the
last formula is equal to

1
π

∫ α2

α1

dz

t
√

(z − α1)(α2 − z)(z − α3)(z − α4)
,

which after making the change of variables Z = z−α1
α2−α1

yields

1
π
√
t2(α3 − α1)(α4 − α1)

∫ 1

0

dZ√
Z(1− Z)(1− Z α2−α1

α3−α1
)(1− Z α2−α1

α4−α1
)
,

which proves the lemma because B(x, y, t2) = t2(α3−α1)(α4−α1) and A∓(x, y, t2)
are α2−α1

α3−α1
and α2−α1

α4−α1
, respectively. �

The next lemma gives a generating function related to the numbers βi,j,k defined
in section 2. The sums shown are intended to be from zero to infinity, for example∑
n,k means

∑∞
n=0

∑∞
k=0 and so on.

Theorem 4. Assume x, y, t are in a neighbourhood of zero and A∓, B are defined
as in the last lemma. Then if q = e2πiτ and q̃ = e2πiτ̃ ,∑

n,i,j

tnxiyj
∑
k

βi,j,k

(
n

k

)(
n+ k

k

)

=
∫ 1

0

∫ 1

0

∫ 1

0

(1 + q−1)y(1 + q̃−1)x

π
√
B(q, q̃, t)

√
z(1− z)(1− zA+(q, q̃, t))(1− zA−(q, q̃, t))

dzdτdτ̃ .

Remark: The above theorem is related to the Legendre transform. Given a
generic sequence βk one may generate another sequence ∆n called the Legendre
transform as

∆n =
n∑
k=0

βk

(
n

k

)(
n+ k

k

)
.
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One has the inversion formula ([14])

βk =
k∑
j=0

(−1)k−j 2j + 1
k + j + 1

(
k
j

)(
k+j
j

)∆j .

Proof. Observe that ∑
j

(
x

j

)
wj = (1 + w)x. (25)

Recalling that
(
x
i

)
=
∑i
k=0 s(i, k)x

k

i! =
∑
k s(i, k)x

k

i! and the definition of βi,j,k
one has∑

n

tn
∑
i,j

xiyj
∑
k

βi,j,k

(
n

k

)(
n+ k

k

)

=
∑
n

tn
∑
i,j

xiyj
∑
k

∑
u,`

(
u+ `

k

)(
k

u

)(
k

`

)
s(u, i)
u!

s(`, j)
`!

(
n

k

)(
n+ k

k

)

=
∑
n

tn
∑
k,`,u

(
x

u

)(
y

`

)(
k

u

)(
k

`

)(
u+ `

k

)(
n

k

)(
n+ k

k

)

Lemma 3=
∑
n

tn

{∑
`

(
y

`

)(
n

`

)(
n+ `

`

)}{∑
u

(
x

u

)(
n

u

)(
n+ u

u

)}

=
∫ 1

0

∫ 1

0
(1 + q−1)y(1 + q̃−1)x

×
∑
n

tn

{
n∑
`=0

q`
(
n

`

)(
n+ `

`

)}{ n∑
u=0

q̃u
(
n

u

)(
n+ u

u

)}
dτdτ̃ ,

where q = e2πiτ and q̃ = e2πiτ̃ , and the last equality follows from (25) and the
trivial fact that

∫ 1
0 q

idτ = 0 (resp. = 1) if i 6= 0 (resp. i = 0). Using (23) in the
inner sum of the last formula gives the result. �

Our final observation is one concerning the solution (p) = (p1, p2, . . . ) in Theo-
rem 1, where the definitions of dn,k, ck are given. First, observe that from (24) and
(25) one has, if q = e2πiτ ,

∞∑
n=0

tn

{
n∑
i=0

(
x

i

)(
n

i

)(
n+ i

i

)}
=
∫ 1

0

(1 + q)x√
1− 2t(1 + 2q−1) + t2

dτ

=
∞∑
n=0

tn
n∑
k=0

xkdn,k,
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where we have used Lemma 1. Therefore using this last formula, if ck is any
sequence and q̃ = e2πiτ̃ , on has formally that∫ 1

0

∫ 1

0

{∑
k

ckq̃
−kyk

}
(1 + q)q̃√

1− 2t(1 + 2q−1) + t2
dτdτ̃ =

∞∑
n=0

tn

{
n∑
k=0

ckdn,ky
k

}
.

In particular, if ck is the sequence of numbers defined as in Theorem 1 and putting
y = 1 in the last equation one gets∫ 1

0

∫ 1

0

{∑
k

ckq̃
−k

}
(1 + q)q̃√

1− 2t(1 + 2q−1) + t2
dτdτ̃ =

∞∑
n=0

tnpn,

which is a formal generating function of the solutions of (n + 1)2un+1 − fnun −
n2un−1 = 0, the recurrence given in Theorem 1.
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