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COMBINATORIAL AND MODULAR SOLUTIONS OF SOME
SEQUENCES WITH LINKS TO A CERTAIN CONFORMAL MAP

PABLO A. PANZONE

ABSTRACT. If f), is a free parameter, we give a combinatorial closed form
solution of the recursion

(n+ 1)2un+1 — fnun — n2uUp_1 = 0, n>1,

and a related generating function. This is used to give a solution to the Apéry
type sequence

5 3
Pan® 4+ rn_1 {ozn5 — 701712 + {g +29} n— 9} +rn,2(n71)3 =0, n>2,

for certain parameters «, 6.

We show from another viewpoint two independent solutions of the last
recursion related to certain modular forms associated with a problem of con-
formal mapping: Let f(7) be a conformal map of a zero-angle hyperbolic
quadrangle to an open half plane with values 0, p, 1, co (0 < p < 1) at the

cusps and define ¢t = t(7) := %f(r)%. Then the function

ENIGIE!

Br) = 2mi f(1) 1 - £
P

is a solution, as a generating function in the variable ¢, of the above recurrence.
In other words, E(7) = ro+rit+rat?+..., whererg = 1,7, = —0, a = 2— %.

1. INTRODUCTION

Let P(n) be the third degree polynomial in n defined by

3o o
N 2
P(n) =an’ + 51 +{2+20}n+9, (1)

with a, @ complex or real numbers.
One should notice that

3
P(n—1)=—P(-n) = an® — ?OénQ + {% + 20} n—0.
This paper is devoted to the study of sequences (r) = (rg,r1,72,...) defined by
ran® 4+ 1y 1 P(n—1)+7, o(n—12=0, n>2. (2)
2010 Mathematics Subject Classification. 11B37, 05A19, 11F03, 30C20.
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390 PABLO A. PANZONE

Case P(n—-1) (a)
1 —98n3 4+ 147n? — 147n + 49 (1,49,2701, 171549, 11951001, .. .)
2 —158n3 +237n% — 197n + 59 (1,59, 4801, 473859, 52189101, .. .)
3 —222n3 +333n2 — 253n + 71 (1,71,7801,1064671, 163373801, ... )
4 —222n3 4+ 333n2 — 221n + 55 (1,55,5713,762775, 115712941, .. .)
5  —222n3 +333n2 — 333n + 111 (1,111, 13861,1994411, 314768301, ... )
6  —286n° + 42902 — 333n 4+ 95 (1,95,13573, 2395355, 474461701, .. .)
7 —=318n3 +477n? — 189n + 15 (1,15,1873, 336095, 70689441, . .. )
8  —322n3 + 483n? — 291n + 65 (1,65,9433, 1800985, 393370541, . . . )
9  —382n3 +573n? — 253n + 31 (1,31,4801, 1046431, 265873201,...)
10 —482n3 + 723n2 — 603n + 181 (1,181,45001, 13558581, 4557147201, ... )
11 —898n3 + 1347n% — 459n + 5 (1,5,1693,846185,499129441, .. .)
12 —1890n2 + 2835n2 — 1195n + 125 (1, 125,94453,101362025, . ..)
TABLE 1.

We will be interested in the solutions (a), (b) of the above recurrence starting
with ap = 1, a3 = —0 and by = 0, b = 1. Of course any solution (r) is a linear
combination of (a) and (b).

Example 1. If P(n—1) = —34n3+51n% —27n+5, that is, « = —34, § = —5, then

, 2 .
one gets Apéry’s famous sequence a, = >.;_, (”Zk) (})". Here b, is the more
complicated expression

bn:éz<n+k) () {Zm3 22 3 )n+m)}.

k=0

see [I5]. Apéry used these sequences to prove the irrationality of ((3).

Example 2. One can find many sequences (ag, a1, ag, ... ) solutions of the above
recurrence having the notorious property of being integers for a long string before
becoming rational numbers. A few examples are given in Table [I} in all cases «, 6
are real and negative. Cases 1 and 11 (expanded) in that table are respectively
1, 49, 2701, 171549, 11951001, 885337929, 68479711021, 5468036535229,
335828273871136861 28448771913258275929

447382621294021 .
3 9 9 9 )

and

1, 5, 1693, 846185, 499129441, 322896384725, 221579880716125,
158412615229470425, 116716224422246465125, 88003121433329789819225,

67576191815704841837662513, 63723961714863;;1?98564392472485 e
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COMBINATORIAL AND MODULAR SOLUTIONS OF SOME SEQUENCES ... 391

This paper is, in some sense, an attempt to find the solutions (a), (b) of the
recurrence in closed form.

Our main results are Theorems 1-4, which we briefly discuss. We exhibit
the solutions of from two different viewpoints. Our first point of view is
combinatorial and is developed in sections 2, 3 and 5. Firstly, in Theorem [1}
which we believe is interesting in its own right, we solve the easier recursion
(n 4+ 1)%upy1 — fatn — n?u,_1 = 0, where f, is a free parameter. This result
can be seen as a variant of a certain recursion given in an interesting paper of
A. Schmidt [I3] and should be compared to it. To solve the recursion we need to
introduce certain combinatorial numbers linked to the Stirling numbers of first and
second kind. In section 3, namely Theorem [2| we show how a particular case of
Theorem |1| can be used to solve in closed form the recursion and is, in some
sense, a combinatorial solution of it. This solves also a particular case of Heun’s
equation. In Theorem [ of section 5 we present a generating function related to
the combinatorial numbers appearing in Theorem

Our second point of view is a modular one: F. Beukers showed the connection
of Apéry’s sequences, that is those of Example [T} with modular forms. Section 4 is
inspired by his remarkable paper [3] and this section can be read almost indepen-
dently from sections 2 and 3. Here we begin with a problem of a certain conformal
mapping: describe the function f(7) mapping a hyperbolic quadrangle, having an-
gles all equal to zero at all four cusps, to a half plane. As shown in Theorem [3]
we construct the solutions of the recursion as a generating function of certain
modular forms attached to f(7) with certain parameters «,6 depending on this
last function.

2. A SECOND ORDER RECURSION

The aim of this section is to prove Theorem [I} which solves, in a combinatorial
way, a second order recursion. It is inspired by Asmus Schmidt’s paper [13] and
it could be seen as a generalization of Example 2| in [I4]. We need first some
definitions.

We write s(i, k) for the Stirling numbers of first kind, which may be defined by
the binomial

i

(a_c) S

7 7!
k=0

Recall that s(j,7) =11if j >0, s(4,0) =0 if 1 <4, that is, (g) =1.

Definition. We will write for short, if 0 < k < n,

o $00) (1)

i=k

By definition we put d,,, =0if0<n < kandd,_; =0if 0 <n.
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Observe that dy, o = 1 for all n > 0. One has

doo =1,

dio=1, dig=2,

doo=1, do1=3, dap=3,

dso=1, ds1= 11/3, ds2 =05, ds3=10/3,

dio=1, dus=25/6, dio=85/12, duz=35/6, dys=35/12.

We write for short

- EE(IO0S24

u=1i =y

Observe that this is a finite sum because (ﬁ) = 0 if £ < u. Note that §; ;1 = 0 if
k<iork<yj.

Definition. We define «; ; ;; by

k

Z s(k,r)o e = K!Bij k-

r=0

Recall the well known fact that Stirling matrices are inverse to each other. This
yields that the last equation can be inverted to give

k

ZS(kz,r)r!ﬁi,j,r = 04,5,k

r=0

where S(i,7) are the Stirling numbers of second kind. Recall that these numbers
may be defined by 2" = Y"7_ S(n, k)(z)g, where (z), = z(x — 1) (z —n+1)
(here (z)p = 1) is the falling factorial.

Thus the last equation is

Qi 5,0 0!8i.5,0
= M y

Qi j ke k!Bi jk
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COMBINATORIAL AND MODULAR SOLUTIONS OF SOME SEQUENCES ... 393

where M is the square matrix with k£ 4+ 1 rows defined by

S(0,0) 0 0 - 0
S(1,00 S(1,1) 0 - 0
$(2,0) S(2,1) S(2,2) - 0
S(k,0) S(k,1) S(k,2) -+ S(kk)

1 0 0 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

=10 1 3 1 0 0

0 1 7 6 1 0

0 S(k,1) Sk,2) S(k,3) S(k4) 1

Definition. We define the real numbers d;, by the equation

i: dn k0 = 0,
k=0

for n > 1, and by definition dg = 1.
From one sees that d, , = %L, (2:), thus & is well defined. One computes
bo=1, 6 =-1/2, d=1/6, 63=0, d,=-1/30, 65=0,
0¢ =1/42, 6, =0, 0s=—-1/30, &9 =0, d10=5/66,
011 =0, &2 =—-691/2730, 813 =0, 14 =7/6.

Our objective is to prove the following result.
Theorem 1. Let (xg,%1,...,%},...) be any sequence of complex numbers. Let
n
fn = (2n + 1) (1 + 2 Z J?jdmj),
j=0
and consider sequences (u) = (ug,u1,...) satisfying the recursion formula
(n 4 1) *ups1 — fattn — n*tp_1 = 0.

Then the recursion has two independent solutions (p), (q) as follows:
The element p,, is represented as

n
Pn = § den,ka
k=0
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where
Co — ].,
k k
Ck+1 = E E Q5 5 kTjCqe
1=0 j=0

The element q,, is represented as

n

dn = Z ekdn,ka

k=0
where
eo =0,
ko k
€+l = Z Z Qi j kT je; + O
i=0 j=0

Our proof will follow from some lemmas. Firstly we have the following result of
A. Schmidt as given in [I4, Example 2, p. 366].

Lemma 1. Set g, = gn(z) :== > 1 (5)(}) (";H) =3 o dnr ™. Ifn >0 then
(n+1)2gn1 — 2n+1)(1 4 22)g, — n’g_1 = 0.
We will need the following lemma.
Lemma 2. For0<k<n-+1,
(n+ 1)2dpsrp — 20+ Vdn g — ndn1,ge = (40 + 2)dn k1.
Proof. The identity of the last lemma can be written as
(7 +1)%gnr1(z) = (20 + 1)gn(@) = n*gn-1(2) = (4n + 2)zgs(2).

Taking out the coefficient of ¥ in this recurrence one gets the desired identity. [

Lemma 3. The following identity holds:
n+0\ (n\ /n+u\/n 7" n+k\ /n\ (u+\ (k\ [k
(O -2 OO0 06

Proof. This is basically Lemma 1 of [I3] which uses the Pfaff-Saalschiitz identity.
See page 196 of that paper. O

Lemma 4. Let o be the real numbers defined at the beginning of this section.
Then o; =0 if k <iork <jand o = k. Also

n
dpidn; = g Qg j kn k-
k=0
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Proof. Recall that

=2 () ()0 G

u=1i {=j

Thus ﬂi,j,k = 5j,i,k and this implies QG gk = k- Also /Bi,j,k =0ifi>korj>k
which implies «; j =0if i > k or j > k.
Next we prove the stated identity. Firstly observe that if k& < n one may write
: i) s(4,g
61 Jok = Zu 7 Z@ 7 (u#) (u) (IZ) S(Z'l) S(Z']) :
Now multiply the identity of Lemma [3| by S(“ s % and add from u = i up to
n and £ = j up to n. The left-hand side gives

SEGRERTO)()

using the definition of d,, 1, while the right-hand side is equal to

Z<n+k)( )ZZ(”)( )(’;)Qu;'])

u=1 {=j

e

due to the definition of B; ;r and because £ < n. That is, we have proved that

dn,idn,j = Z (n_;;k> ( )Bl,L

k=0

By definition of «; ;; one has that ZI::O 3(2;7") «; jr = Bijx. Therefore

o [T ) P

k=0 k=0 r=0 k
n n n
s(u,m) (n+u\ (n
=Yoo () (1) = X s
r=0 u=r u u u r=0
which proves the lemma. O

Finally we prove Theorem [T}
Proof of Theorem[1, Set

T 1= (n + 1)2pn+1 = fnPn — n2pn—1~

Our aim is to prove that 7, = 0 for all n > 1.
Writing the definition of p,, without any explicit ¢, one has that 7, is equal to

n+1 n n n—1
4+ 1> cudnrrge — (20 + 1) (1 +2 ijdn,j) S rdns =12 Y cxdn 1
k=0 3=0 k=0 k=0
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We collect the terms with ¢; alone. Remembering that dy, n+1 = dp—1 ny1 =
dp—1,n = 0, this can be rearranged to give that 7, is equal to

n+1

Z Ck {(n + 1)2dn+u€ —2n+1)dpr — nan,Lk} — (4n + 2)(ijdn’j) chdn,k
k=0 §=0 k=0
n+1

= (4n+2) {chdnk 1 (Z% nJ)
= (4n + 2){ ch+1dn,k - (zn:ffjdn,j> den’k}’
k=0 j=0

k=0

crdn k}

x>
0
[}

where we have used Lemma [2| and the fact that d,, _; = 0. Putting the definition
of ¢4 in the first sum one gets that 7, is equal to

(4n +2) { Zd" k Z Zaw kT C; — (Z)xjdn’j) ;ckdn’k}.
j= =0

=0 j=0

By Lemma E the inner double sum in the first term could be summed up to n (in
both summands ¢, j) instead of k because «; ; = 0if ¢, j > k. Changing the order
of summation and using the identity of Lemma [4] yields

(4n +2) { Z Zz]ci Za” knk — (ijdna) chdmk}
=0 k=0

i=0 j=0
= (4TL -+ 2){ Z ijcidn,idn,j — (ijdn,]) chdmk} =0.
i=0 j=0 j=0 k=0

If one puts (¢) then one obtains, with exactly the same proof, the additional term

(4 +2) i 3}
k=0

which is zero if 1 < n by definition of Jy. (]
We record the first values of «; j x; recall that a; j i = ;. One has

0,00 = 1,
00,01=0, an11=1 a111=2,

@0,0,2 = 0, @p,1,2 = 0, a1,1,2 = 1, @p,2,2 = 1, 21,2 = (X222 = 3.

3. CONNECTION WITH APERY TYPE SEQUENCES AND HEUN’S EQUATION

Our aim is to prove the following theorem which solves, in a certain closed form,
the recursion .

Theorem 2. Let 8 be a complex number, a real and o < —2. Set
i(a—6) Koo (6 —1)

By = 22/ =)
R W gy 0T - a
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COMBINATORIAL AND MODULAR SOLUTIONS OF SOME SEQUENCES ... 397

and assume that (zg,z1,2a,...) is a complex sequence such that

n
(—Bon? — Bon — Ko) = (2n + 1) (1 +2)° xjdn,j),
=0

for allm > 1. Also define Ay := 2_Ta and By := %.

Then there exists (u) = (uo, u1,ug, . ..) which is a linear combination of (p), (q),
the solutions given in Theorem such that if one writes U(x) = ug +urz +usz?+
..., then

i) V(x):= U(f@x) is a holomorphic solution around x =0 of
z(r —1)(A1z — V" + (3412° = 2(A1 + Dz + D)V + (A1z — B))V =0.  (4)
it) The coefficients of

R(t):= (1 —a)V?(x) =ro +rit + 7o’ + -,

where
= .73(14133 - 1)
o oz—=1
that is
o ~VItal 2414t
24, ’

satisfy the recursion . Also,
ro =ug, 1 =—ug(uo+ur1v2—a).
Note: The above equation is a particular case of Heun’s equation and is
connected to the problem of mapping the half plane onto a hyperbolic quadrangle.
We first prove some lemmas.

Lemma 5. Let By, Ky be complex numbers and let (xo,x1,22,...) be a complex
sequence such that

n
(—Bon? — Bon — Ko) = (2n + 1) (1 +2%° xjdn,j),
§=0
for alln > 1. Let (u) = (ug,u1,us,...) be a solution of the recursion
(n 4 1)*up1 — (=Bon® — Bon — Ko)up — n*u,_1 =0, n > 1,
Koug +uy = 0.
Then (u) is a linear combination of (p) and (q) of Theorem [l

Proof. This lemma is immediate observing that the hypothesis gives f,, = (—Bon?—
Byn — Kj) in Theorem O

Lemma 6. Let By, Ky be complex numbers. Set

B — K()(—B():t 4+Bg) A = (BU$\/4+B3)2
1= , 1= — .
2 4

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



398 PABLO A. PANZONE

The sequence of complex numbers (u) = (ug, u1, usg, . . .) is a solution of the recursion
(n+ 1)%upy1 — (—Bon? — Bon — Ko)u, —nu,_1 =0, n>1
Koug +u1 =0,
if and only if V(z) := U (z % ”AHBS} :c> (here U(z) := up+urz+usa®+--- )
is a holomorphic solution at x = 0 of
z(x — 1) (A1z — 1)V + (3A12% — 2(Ay + Do+ 1)V’ + (Ayz — B,)V = 0.

Proof. The sequence of complex numbers (u) = (ug, u1, uz, . ..) satisfies the condi-
tions of Lemma |§| if and only if U(z) = ug + w1z + uga?® + - -+ is a holomorphic
function at x = 0 which satisfies

(—=2® + Boz® + 2)U" + (=322 + 2Byz + 1)U’ + (—2 + Ko)U = 0.

Now V(z) =U <Z {BOiQ ”4+B‘2’} x) gives the required result after some alge-

braic manipulation. O

Definition. We define the linear operators L, L, as follows:

L:= {t4+at3+t2}d—3+{6t3+9at2+3t}d—2
' dt? 2 dt?
d
+{7t2+(3a+29)t+1}%+(t+9), (5)
d 3 d {t*+26t}
I, = {44 3 42 943 1 2 o2 d )
= {t"+ ot +t}dt2—|—{t+2at +t}dt+ 1

For the next two lemmas we will write for short L; = P; (t)% + Po(t) 4 4 P3T(t).

Lemma 7. Set A; := 232 and By := 152, Let V(z) be a solution of

r(z— 1) (A1 — D)V + (3412° — 2(A; + Dz + 1)V’ + (Ayx — By)V = 0.

Set W(t) :==+/1—xzV(x); here t = Azl ynat is, @ = _—W. Then

z—1
LW (t) =0.
Proof. If all the functions involved are smooth enough, one has the following general

formula. Set W(t) := g(z)V(x) where t := f(x). Then W (t) satisfies (here " denotes
the derivative with respect to t)

PO (1) + PV (t) + 220

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)
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if and only if V' (x) satisfies (here ’ is the derivative with respect to z)

V(o) L
P20 @) P@) S (@)e() | Palf(@)(a)
+Vi{™ Fila)? T T
P@)d"(®) P @g'@) | PU@)e @)  Psf)g)
+VE{ 50 O L
— H(J(2)).

Hint: Just put the derivatives of W (¢t = f(x)) := g(x)V (z) with respect to x into
one equation to get the other. We note that this is a general formula valid for
smooth functions P;.

Now take as P; the polynomials defined by the linear operator Li, g(x) =

Vi—z, t = f(z) = % and H(t) = 0. A tedious routine check gives the
result. g

Lemma 8. Let W (t) be a function such that
LW (t) = H(t).
Then
L{Wt)*} =6W'(t)H(t) + 2W (t)H'(t).

In particular, if LyW (t) = 0 then L{W(t)*} = 0.
Proof. We write for short P, = P;(t), W = W (t) and Py(t) := —t — 6. Then

d d? d 5 9

(R 2 et n)we)

dt3 dt? dt

where the last equality follows checking that P + P, = 6t3 4+ Jat? + 3t and so on.

Also,
4L (p P d ) )

d? d? d
= {Plf + (Pl + Po)—5 + (P + P3)— + (P35 + P4)} W? = L{W?},

= % {PL2W"? 4 2WW") + PR2WW' + PsW?} + P,W?

T dt

where we have used in the last equality the hypothesis LiW(¢) = H(t), that is,
PW" + P,W' = —PsW/4+ H, and written H = H(t) for short. The last formula
is equal to

d
{P oW’ 4 3W2 + 2WH} + PyW?2,

P/
P AW'W" +2P/W" + PsWW' + ESWQ +2W'H + 2WH' + P,W?

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



400 PABLO A. PANZONE

which, noticing that 22 —|— P, =0, equals

4
— AW {I,W} 4+ 2W'H + 2WH' = 6W'H + 2W H’,

and the lemma follows. O

P! P
4AW! {le” T 71W’ T 3W} L OW'H + oW H

Lemma 9. Assume P(n) is the polynomial defined by . Then a holomorphic
function around zero R(t) = ro + rit + rot? + -+ satisfies

LR(t) =1+ 0rg
if and only if the coefficients r; satisfy the recurrence
ran® + 1y 1 P(n— 1) 4+ rp_a(n —1)3 =0,
for n > 2 with inital conditions rq,r1.

Proof. After grouping the coefficients of ¢ in the operator L one obtains the above
recursion. (]

Finally we give the proof of Theorem [2]

Proof of Theorem[3 Assuming that a < —2 and putting By := o 6) , Ko =

272
Z\(/Q then one has ++/4 + B§ = —iy 2+a) and Bo + Va4 B2 = z\/2 —a. In
the notation of Lemma |§| this gives A1 O‘ B, = T'

By Lemmas [5] and [6] one has that

/2 —
Viz)=(1- m)U( — O‘x)
satisfies part (i) of the theorem.
Part (ii) of the theorem follows from Lemmas and [9] O

4. CONNECTION WITH MODULAR FORMS AND CONFORMAL MAPPING

In this section we start anew and we connect our sequences with a certain con-
formal mapping f(7) described below and certain modular forms E(7), E(7)Fy(T)
related to f(7). We show in Theorem [3| that, choosing constants «, 6 in de-
pending on f(7), the coefficients of these modular forms (viewed in an appropriate
variable) are the sought sequences (a), (b) solutions of described in the intro-
duction.

The function f(7) is described as follows. Let @y be the open region in the
upper open complex plane H, described by the variable 7 = 71 + im5 with both
71,72 € R (i.e., the 7-plane) surrounded by the lines ite and 1/2 + it with 0 < 7
and the (half) circles Co, C; whose centers are real, with radii 7o and 1 = 1/4 —r9
respectively, 0 < ry < 1/4. See figure [1| This region Qy is a hyperbolic quadrangle
whose interior angles are all zero and whose vertices are 0, 2ry, 1/2, ioco.

By the Riemann mapping theorem there exists a conformal mapping f(7) of this
region )y onto the upper open half plane which can be extended to the boundary

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)
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T plane

o fr)

Cs

¢y

FIGURE 1. @ is mapped conformally onto the upper open half
plane by the function f(7).

of the region. Moreover, by applying a bilineal map from the upper half plane into
itself, one may normalize this mapping sending ico — 0, 0 — p, 2rs — 1, 1/2 — 0o
with 0 < p < 1. As in the construction of the modular invariant one may apply
the Schwarz reflection principle an infinite number of times to the sides to get a
function which is an extension of f(7) which we call in the same way. This function
is the Hauptmodul of the discrete group generated by the bilinear transformations
(not necessarily related to the modular group):

1+4rs 4ro

Tor — T dry T 1—dry
3T = 4 dtdry

1747‘2 1747‘2

-
Thr=7+1, Tor=——7,
! AN

Lemma 10. Under the above construction one has that the function f(r) : H — C
s a holomorphic function, mapping Qo conformally onto the upper plane, where

f(Ti) = f(7) (6)
fori=1,2,3and (0<p<1)
flico) =0, f(0)=p, [f(£2r2)=1, [f(£1/2)=oc.
Also, f(7) takes real values on the lines ity and 1/2 4+ imo (0 < 1) and the half
circles Co, C1. Moreover, it has the mirror symmetry
f(=7) = [f(7),
and f(1) # 0,p,1 in the open upper half plane H. See figure .
The last two statements follow from the construction of f(7).
Writing ¢ = €™ one may write f(7) as a Taylor series in ¢ with radius of
convergence 1, because f(T17) = f(7+ 1) = f(7). Such series will be of the form

eoq + O(q?) with ey > 0, because f(7) is univalent at 7 = ico (that is at ¢ = 0)
and f(7) is real and increasing if 7 moves from ico to i0 (on the line imy) or if 7
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T plane

Q4

-1/2 - 2re : 0 27y 1/2
FIGURE 2. The regions @1, Q2, @3, Q4.

moves from 1/2 to 1/2+ ioo (on the line 1/2+i7y). All this gives that f(7) is real
and increasing at ¢ = 0 if ¢ is real and then forces that all the coefficients of its
Taylor series must be real. Moreover one can see that there exists e, € R, eg > 0
such that (see [6])

(—e1 +ef —2e) 4
2

o0
f(r)=eoq H(l —¢")°" = eoq — e0e1q” + €o

n=1

3e2 — €3 + e1(—2 + 6ey) — Ge
(el — ey 1(6 2) 3)q4+...,

+€0

around g = 0.

In this section our aim is to show how f(7), e; p and the radius rq are related
to the solutions (a), (b) of the recursion (2).

If we choose the circle Cy as the circle centered at zero of radius /r,, then Co
is orthogonal to the circle C; (defined at the begining of this section), see figure
We define the open regions @y, i = 1,2, 3,4 in the same figure. For example, Q); is
the exterior of the circles Cy, Cq, surrounded by the lines im and 1/2 + i7o; it is a
hyperbolic quadrangle with angles 0, 7, 7, 0.

Lemma 11. If 7 € H then

13-t

Proof. This follows from the formulae (6]). Indeed,
f( - %) - f(_ T’,:i 1) - f(1_f1//:) - f<T4(_r72))
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and Ty := # is the inverse of Th. Therefore by (6) one has f(Tu(—2)) =
f(=2), that is, f(=#%) = f(—"22). In the same way one proves that, fori = 1,2,3,

T1T
T9 o _ 7;2
(-2:)=1(=3)
Observe that the function —rs /7 interchanges conformally Q1 with Q2 and Q5 with
Q4. As f(7) is a Hauptmodul for the group generated by T; then f(—*2) must be
a Hauptmodul also. The lemma follows by matching the values at the cusps. [

Some explicit known examples are the following:

8
i) Ifry = 1/8 then p = 1/2 and f(r) = {1 - \/1 —16¢T, (11;‘;7%)

ii) If ro = 1/6 then p=1/9, and f(7) = q[[oo, (1 — ¢5"=5)*(1 — ¢S~ 1) (1 —
q6n—4)—4(1 _ 6n—2)—4.

q
iif) If ro = 1/5 then p = § — 13—1\/5 and f(r) = ﬁ, where fo(7) :=
g, (1— q")s(g). Here (g) is the Legendre symbol.
From now on we write ’ to denote the derivative with respect to 7.

Definition. Define

0= 307 (-2) = o=t
ooy g5 (- 2) = s~ {35E.
L to(7)

F(r):= —%E(T)2t0(7)t(7).

From this definition it is seen that

tr) =t (-2),

to(7) = —to (—%2)

We denote by 7% the point of intersection of the circles Cy, C;. Recall that the
point 7,/r2 belongs to Co. See figure

(7)

Lemma 12. The function t(7) maps Q1 univalently onto the upper half plane.

One has the mirror symmetry t(1) = t(—7) and t(ico) = 0, t(%) = 00,

. 2—p—2y1— 2—p+2y1—
t(iy/ra) = % = Pmin, (T*) = %

where 0 < ppin < 1 < pmax. See figure @ Also,

flivra) =1—+/1—p.

=* Pmax,
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7 plane t plane

iy/T2 @ i(7)

T#

0 Pmin Pmax

FIGURE 3. Q7 is mapped conformally onto the upper open half
plane by the function ¢(7).

Proof. The mirror symmetry of ¢(7) and the values t(ico) = 0, ¢(1/2) = oo follow
trivially from the properties of f(7).

We prove the mapping property of ¢(7): as f(7) takes real values on the lines i7s,
iTo+1/2 and the circle C; then ¢(7) takes real values there. Also any point 7 on the
circle Co goes to —7 by the transformation —22 which gives pt(7) = f(7)f(-7) =
|f(7)]?> € R using the mirror symmetry of f. Therefore t(7) takes real values on
the boundary of @Q;.

This last fact and the definition (1) = %f(r) ;E:;:f which gives that t(7) is a
2:1 map, yield that ¢(7) maps @; univalently onto the upper half plane. (Hint:
If 7 moves anticlockwise on the boundary of @7 then ¢(7) must move on the real
line from —oo to +o00, without “bouncing back” for, otherwise, a real point would
have three preimages at least; thus the derivative of ¢(7) on the line i must be
purely complex. The image ¢(Q1) is open, it must contain a point from the upper
half plane and using the mirror symmetry, t(Q1) = t(Q4). Therefore ¢(Q1) can not
touch the real line for, otherwise, again a real point would have three preimages at
least. This yields that ¢(Q1) must be the upper half plane.)

Finally observe that the point i,/rz, which belongs to Cp, goes to itself by the
transformation —72. Also f(—22) = f(—7%) = f(7%) = f(7%), where the last
equality follows because f(7) takes real values on C;. Then, by Lemma fiy/r2)
and f(7x) are the roots of the equation = Z=£ ie., f(iy/r2) =1 —+/1—p and

r—1"
f(m%) = 14+/T — p (observe that f(i,/r2) should be the smallest root). The lemma
follows from these values and the fact that 0 < p < 1. (|

From the definition of ¢(7) one calculates that in a neighbourhood of ¢ = 0

-1
t:€0q+60(w—€1>q2+... (8)
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and therefore the local inverse in a neighbourhood of ¢t = 0 is

t 1 1
q+(+ >t2+ 9)
€p PEO €o 60
Thus one has to(7) = —p + eo(2 — p)g+eo {(1 — p)eo + (p — 2)e1} ¢* + ... and

E(r )—1+(p—61>q—|—...,

Putting (@ into this last equation we get that in a neighbourhood of t =0

E(T):1+<1—el>t+.... (10)

Definition. If F(7) = Y07 G,q" we define Fy(r) = Y07, &q¢" and (p :=
2ot

As with E(7) we may look at the expression of E(7)Fy(7) as a function of t. A
calculation gives that in a neighbourhood of t =0

E(T)FO()_t+<;i—i—;’2)t2+.... (11)

We finally connect our construction with the sequences at the beginning of the
paper.
Theorem 3. Set a =2 — % and 0 = i—[l) — %. Then the following holds:
i) Let (a) = (1,a1,a2,...) be the sequence of numbers that are the coefficients
of E(1) = 1+ta; +t*as+. .., that is (10). Then (a) satisfy the recurrence
and ag =1, a1 = —0.
it) Let (b) = (0,1,b9,b3,...) be the sequence of numbers that are the coeffi-
cients of E(T)Fo(t) = t + t2by + ..., that is (11]). Then (b) satisfy the
recurrence (2) and byp =0, by = 1.
Moreover, LE(1) =0 and L E(7)Fo(7) = 1, where L is the operator defined by
(B)-

Proof. 1) Our aim is to show that the function \/E(7), viewed as a function of the

variable t, satisfies
Li\/E(r) =0, (12)

where L1, L are the operators defined in section 3, see formula . If this is
so, then using Lemma 8] and Lemma |§| one gets that the coefficients of E(7) =
14 ait + ast?. .. satisfy the recurrence ([2). To ease the proof we write ’ (resp. )
for the derivative with respect to 7 (resp t) and /F = V/E. Thus for a generic

pid
t

(under the group that we have) the function y/F(7) is a 1-form and by a theorem
of P. Stiller it satisfies a differential equation of second order in the variable ¢ where
t(7) is the Hauptmodul for that group, namely equation . We give here a direct
and self contained proof of this fact adapted from the third proof of Proposition 21

function f we have, for example, f = Note: In the space of modular forms
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of [I7]; the reader may recognize the coefficients A, B below as certain Rankin-
Cohen brackets whose definitions we do not need. For a more general point of view
the reader may consult [17].

Firstly observe that one trivially has

d d

—VE+A—VE+ BVE

dt2f+ dtf+ VE
- 1(@’)I+ VEY ~2VEv VE VEVE'-2E”
it/ t/ \/Et,g t/ t’2\/E2 — U.

We will see that, up to a factor, this is equation . We calculate explicitly
the factors A, B as functions of ¢. Recall that from the definitions

2miE(7) = g(t(7))to(7),

where
1
tp—2+pt)
The relationship between ¢(7) and to(7) can be read from the definitions and is
given in a neighbourhood of t = 0, that is i7 = ico, by

to(r) = —/p {—4t(7) + p(1 + t(7))?}. (13)

g(t) =

We write for short

h(t) := —/p{—4t + p(1 +t)2}.

Thus (dropping the variables) one has 2miE" = gt't; + gtg, to = ht' and t] =
ht'? +t"h. Therefore

Putting this into the definition of A = tt,,; — EEt/, one gets

- 0
Ao 9 _h_ 2+ R4t
g h tr+atd+t2’
if :=2—4.
The coefficient B is calculated as follows. One has by definition

po VEVE'-ovE" (1(F\* 1B\ 1
B 2 E" C\4 1\ E 2 | E tr2
and also
El t//
f:—t’A—i—? (14)

E/ ' 12 A " t// !
(E> — 24— At +(7).
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Therefore B = ATQ +4 - SQ(:;;), where S(t,7) : (%)/ - %(%’)2 is the Schwarzian.
Here we recall two basic facts about the Schwarzian: —S(t,7)/t’? = S(7,t) (see [8|
Exercise 9, p. 377] or use the composition formula for the Schwarzian). Therefore
A2 A S(r,t)

B=7+3 2’
and S(7,t) can be calculated explicitly as a function of ¢ as in [B, pp. 131-135] (or
see [8, Theorem 10.2.1]) because by Lemma the function 7(t), the inverse of
t(7) defined on that lemma, maps conformally the upper half plane (in the variable
t) onto a hyperbolic quadrangle (in the variable 7). Moreover, by the same lemma,
it sends the points 0, pmin, Pmax, 00 to the points ico, i/T2, 7%, 1/2 respectively, and
at these last points the quadrangle has angles 0,7/2,7/2,0. Therefore (see [5] or

8]),

1 3/4 3/4 B B2 Bs
S(r,t) = — —
(T ) 2t2 * 2(pmin - t)2 * Q(pmax - t)2 * t * Pmin -t * Pmax —t
for some constants (accessory parameters) 3;. Also at a neighbourhood of infinity
one has

(15)

1
S(7,t) = = + O(1/t%).
(1) = gz + O(/#)
So S(r,t)t — 0,8(7,t)t?> — 1/2 if t — oo. These conditions imply that B2, 33
can be given in terms of 5; alone.
But coefficient 5y is given by
€1 1

181:7+7717
€ P

which can be calculated with the formula S(7,t) = —S(¢, 7)/t"? using the expression
of t(7) given by (8) and knowing that S(7,t) = 5 + 21 +0(1) around t = 0, see [8].
This yields
2
L BrsE-
th4 ot + 12
Part (i) of the theorem is proved.

ii) From the definition of Fy(7), F(7) one trivially has
(2mi)3

F' = (2mi)*F = —~——— E?tt. (16)

- F{ 7 FiNr 1" 1 ,t” m 1 1 3t 11t \r
Also, Fy = 3¢, Fo = (3)'/t' = F 7z — Fiym and Fo = F' 5 — F' 5 — For (35)'
Therefore with a suitable combination we can make the terms F{j and F{ disappear,
that is,

3t” . t/// B Fé/l

F0+F0t/72+F0t73 — tlS . (17)
We will prove that EFy, viewed as a function of the variable ¢, satisfies
LEF, =1 (18)
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and this will prove our theorem because this equation is equivalent to the desired
recursion by Lemma @ We do this basically by showing that and are, up
to a factor, equal.

As we already proved that LE = 0 one has that

LEFy = FoEP) 4+ Fo(3P,E 4+ P,E) + Fy(3P E + 2P, E + EPs) (19)
(here P; = P;(t) are the polynomials defined by L = Plé% + Pgdd% + P3% + Py.)

We calculate the coeflicients of the last equation: using % =—-A+ % (which is
(T4)) and the fact that
P, —3PA=0 (20)

one gets
t// ) 3t/l

3P\ E + PE = E(P2 ~3PLA+ 3P ) = EP (21)

I 1" . 2 "2
In the same way % = (f,—z — A2 - A+ % — 2:,4 and one gets

3P, E 4+ 2P,F + EP;y
1!

+ # 12

Using one may simplify the first and second terms of the last inner sum
obtaining

=F {(P3 —2AP, +3A%P, — 3P, A) +

A t/// t//2
E {(P3 — APy — 3P A) + 3P, (73 - tq)}

. S(t,T) "
:E{(Pg—AP2—3P1A)+2P1 72 +P1t73 .
But in part (i), formula (I5), we have calculated the Schwarzian S(t,7)/t”* =
=S(r,t) = A; + A — 2B. Inserting this into the last equation one sees that every-
thing in the inner sum cancels out except the last term. This yields
"

3P, E +2P,FE + EP; = EP; e (22)

Thus using and in one gets LEFy = EP; {Fg JrFO% +F‘0%}.
Thus and yield

27i)3
LEFR = — ™) by 1,
t/Sp
where the last equality follows using the definition of £ and the derivative of .
This ends our proof. O

The following two lemmas complement the last theorem.

Lemma 13. The following hold:

i) B(r) = 3558 —er
P
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i) B(="2) = —:—zE(T) and E(7) has, as a function of q, radius of conver-
gence 1.

i) F(="2) = —%F(T) and F(1) has, as a function of q, radius of conver-
gence 1.

) @y =O0(n?) and (p ==Y 0" | % is a convergent series. Also

() (Fo(r) =) = B (=2) (Fo(=2) = ¢r ).
Proof. i) The definition of to(7) gives

- f2_2f+2_pf/
(f=1)? '

Using this last formula, the definition of ¢(7) and the definition of E(7) one gets

the desired formula.

ii-iii) By Lemma [10| u 0| the function f(7) # 0,1,p in the open upper half plane.
From the expression (i) one has that E(7) has radius of convergence 1 as a function
of g. The same happens with both ¢(7) and ¢o(7) and therefore with F(r).

The transformation formulae follow from and its derivative with respect to
7 using the definition of E (7).

iv) If F(1) = Y07 @ng™ then 23 = O(1), the proof being similar to that
of Theorem 6.17 on [2, p. 134]. Also the function [° F(i7)r*"'dr has an an-
alytlc continuation to all the s-complex plane, the later integral being equal to

>°o°, %=, Using a theorem of Ingham or Newman (see [9], [10]) one gets that

to

2‘11')b n
Cr =Y ) % is convergent.

Apply Proposition 1.2 of [3] (with N = 1/re, ¢ = —1, k = 4 there) to the
transformation formula we have already proved F(—22) = :74 (1), giving

72
(Fo(r) = Cr) = == (Fo(=22) = Cr)
) T
Multiplying this by formula (ii) gives the result. Note: in Proposition 1.2 of [3] it
is stated that N = 1/r should be a natural number but this is unnecessary. O

The reason for introducing the constant (g is the following result.

Lemma 14. The functions E(1) and

E(r) (Fo(r) = ¢p) = D {bn — Cpan}t”
0

have, as functions of the parameter t (recall formulas and ), radius of
convergence pmin and greater than or equal to pmax, TESpectively.

Proof. Looking at the function E(7)(Fy(7) — {r) as a multivalued function of the
parameter t = t(7) we get that this funcion has radius of convergence either pmin,
Pmax OF 00. By the transformation formula (iv) of Lemma looking carefully
at what happens around ¢ = pnin, one gets that the function has no singularity
there. For doing this one should recall, as already observed, that the transformation
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—ro /7 interchanges conformally (7 with Q2 and Q3 with @4, and maps the point
i//72 (in the 7 plane) to pmin (in the ¢ plane). So its radius of convergence is either
greater than or equal to pmax. Note: one may use here Poincaré’s theorem (see for
example [IL p. 141]) to prove that the radius of convergence is exactly pmax.
Doing the same with the function E(7) one has that now, due to the transfor-
mation formula (ii) of Lemma this function has radius of convergence pyin. O

5. GENERATING FUNCTIONS

In this section we give some results concerning the combinatorial numbers ap-
pearing in Theorem 1.

Our first result links a double Legendre type series with an elliptic type integral.
More precisely:

Lemma 15. If z,y,t are in a neighbourhood of zero then

S EOCHEO )

n=0
dz

1 1
B W\/E/o V20— 2)(1 - 2A)(1 - 24_) (23)

where

4t\/y(1 +y)

Lv2rF2y/alt o) +e{-1-2+2/50 ¥ 5)}

Ap = Ag(z,y,t) =

and

B = Bla,y,t) =1+ 201+ 20) {~1 -2y +2/y(T + ) }
+2 {1482 4y +y) - sy {1+ VT T 9)}}-

Proof. One has the well known generating function for the Legendre type polyno-
mials ([12, pp. 66, 78])

ni—o%tn {z: CZ) (";”)x} N \/1—2t(11+2x)+t2' (24)
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Using and Cauchy’s formula one may write

S (s () HE O )

B L/ dz
- 2mi lol=1 24/ (1 = 2t2(1 + 22) + 1222)(1 — 2t/2(1 + 2y) + 2/22)
_ L/ dz

210 Jyz1=1 /(2 — ) (z — a2)(z — a3)(z — a4)

1 dz
27 /z—l ty/(z—a1)(az = 2)(z —a3)(z — au)’

where ag 2 = t{1+2y:|:2\/y(l+y)} and ag g4 = %{1+2x:|:2\/x(1+x)} for

(say) x,y,t real, positive and small enough. Observe that in such case 0 < a1 <
as < 1 < asz < a4. Therefore the curve |z| = 1, which encloses a1, as, may be
deformed to two circles of radius € around a1, as and two segments: one from aq +e¢
to as — € and another from as — € to a3 + €. Making € tend to zero yields that the
last formula is equal to

1 [* dz
™ /al t/(z—a1)(az — 2)(z — a3)(z — as)’

which after making the change of variables Z = == yields
/ dZ
2 _ _ as—o o—on Y
/e —anas —a) o\ [20 - 2)(1 - z22=at)(1 - z22=a)
which proves the lemma because B(z,y,t?) = t*(az —a1) (s — 1) and Ag(z,y,t?)
are =2t and g2=71, respectively. O

The next lemma gives a generating function related to the numbers j3; ; ;, defined
in section 2. The sums shown are intended to be from zero to infinity, for example

D n means Y70 (37 ) and so on.

Theorem 4. Assume x,y,t are in a neighbourhood of zero and A+, B are defined
as in the last lemma. Then if ¢ = €™ and § = e>™7,

seerTal()(1)

n,i,j

/ / / (+a A +a ) dzdrd7.
0 7T'\/B q Qa \/Z 1_2 1_ZA+(Q7q7 ))(1_ZA (QaQ7 ))

Remark: The above theorem is related to the Legendre transform. Given a
generic sequence [ one may generate another sequence A, called the Legendre

transform as
so=n () (1)
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One has the inversion formula ([14])

k ) k
_i 25+1 ()
_ _1\k—J J .
5’“_2,_( 1 k+j+1(k+,j)AJ'
j=0 J

Proof. Observe that

3 (”“f)wj = (1+w)®. (25)

k

Recalling that (%) = Zizo s(i k)5 = >, s(4, kz)gi—:c and the definition of f; ; &
one has

sesTan() ()
-Sesa S ()00 )
- s (OGO
e (s OOCHEOO )
// (I+q ) (1+q )
TS OCOHE O

where ¢ = €™ and § = e?™7, and the last equality follows from and the

trivial fact that fol q'dt = 0 (resp. = 1) if i # 0 (resp. i = 0). Using in the
inner sum of the last formula gives the result. O

3

Our final observation is one concerning the solution (p) = (p1,p2,...) in Theo-
rem where the definitions of d,, 1, ci;, are given. First, observe that from and
one has, if ¢ = 2™,

Ztn {z”g( >(l>(n+z>} o /1-2t(1 +q2);—1)+t2 ar

_Zthl' dnk7
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where we have used Lemma [l Therefore using this last formula, if ¢; is any

sequence and § = ™", on has formally that
1 1 § [e’e} n
~k, k (1+q)1 - n k
ckq "y drdt = t crdn kY
/0 /0 z,; V1=2t(1+2¢77) +#2 nz:% gj

In particular, if ¢ is the sequence of numbers defined as in Theorem [ and putting
y = 1 in the last equation one gets

1 1 g 00
1 q
/ / Z ck(j—k ( i) drdf = § " pn,
VI=2t(1+2¢7 1)+ 12 =

which is a formal generating function of the solutions of (n + 1)%u,41 — fatly —
n?u,_1 = 0, the recurrence given in Theorem
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