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ON FAMILIES OF HOPF ALGEBRAS WITHOUT THE DUAL
CHEVALLEY PROPERTY

NAIHONG HU AND RONGCHUAN XIONG

Abstract. Let k be an algebraically closed field of characteristic zero. We
construct several families of finite-dimensional Hopf algebras over k with-
out the dual Chevalley property via the generalized lifting method. In par-
ticular, we obtain 14 families of new Hopf algebras of dimension 128 with
non-pointed duals which cover the eight families obtained in our unpublished
version, arXiv:1701.01991 [math.QA].

1. Introduction

Let k be an algebraically closed field of characteristic zero. This work is a con-
tribution to the classification of finite-dimensional Hopf algebras over k without
the dual Chevalley property, that is, the coradical is not a subalgebra. Until now,
there are few classification results on such Hopf algebras without pointed duals,
with some exceptions in [15]. More examples are needed to get a better under-
standing of the structures of such Hopf algebras.

Our strategy follows the principle proposed by Andruskiewitsch and Cuadra [3],
that is, the so-called generalized lifting method as a generalization of the lifting
method introduced by Andruskiewitsch and Schneider in [7]. Let A be a Hopf alge-
bra over k without the dual Chevalley property. Andruskiewitsch and Cuadra [3]
replaced the coradical filtration {A(n)}n≥0 with the standard filtration {A[n]}n≥0,
which is defined recursively by A[n] = A[n−1]

∧
A[0], where A[0] is the subalgebra

generated by the coradical A0. Under the assumption that SA(A[0]) ⊆ A[0], it
turns out that the standard filtration is a Hopf algebra filtration, and the associ-
ated graded coalgebra grA = ⊕∞n=0A[n]/A[n−1] with A[−1] = 0 is a Hopf algebra.
Denote by π : grA → A[0] the canonical projection which splits the inclusion
i : A[0] ↪→ grA. By a theorem of Radford [26], grA ∼= R#A[0] as Hopf algebras,
where R = (grA)coπ = ⊕n≥0R(n) is a connected N-graded braided Hopf algebra in
A[0]
A[0]
YD called the diagram of A. Moreover, R(1) as a subspace of P(R) is a braided

vector space called the infinitesimal braiding of A. If the coradical A0 is a Hopf
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subalgebra, then the standard filtration coincides with the coradical filtration. In
this case, grA is coradically graded and the diagram R of A is strictly graded, that
is, R(0) = k, R(1) = P(R). In general, it is an open question whether the diagram
R is strictly graded. See [8, 3] for details. The generalized lifting method consists
of the following questions (see [3]):

• Question 1. Let C be a cosemisimple coalgebra and S : C → C an injective
anti-coalgebra morphism. Classify all Hopf algebras L generated by C, such
that S|C = S.

• Question 2. Given L as in the previous item, classify all connected graded
Hopf algebras R in L

LYD.
• Question 3. Given L and R as in previous items, classify all liftings, that

is, classify all Hopf algebras A such that grA ∼= R]L. We call A a lifting
of R over L.

The motivation of this paper is [15] (also [3]). We fix two 16-dimensional Hopf
algebras H and H̃ appearing in [11, 16] without the dual Chevalley property and
study questions 2 and 3.

The Hopf algebras H and H̃ defined in Definitions 3.1 and 4.1 are generated
by their coradicals and have pointed duals appearing in [14]. In particular, H̃ ∼=
K ⊗ k[Z2] as Hopf algebras, where K is isomorphic to the Hopf algebra K defined
in [15, Proposition 2.1]. See subsections 3.1 and 4.1 for details.

For H, we determine all simple objects in H
HYD by using the equivalence HHYD ∼=

D(Hcop)M [25, Proposition 10.6.16]. Indeed, we show in Theorem 3.7 that there
are 16 one-dimensional objects kχi,j,k

with 0 ≤ i, j < 2, 0 ≤ k < 4 and 48 two-
dimensional objects Vi,j,k,ι with (i, j, k, ι) ∈ Λ = {(i, j, k, ι) | 0 ≤ i, j < 4, 0 ≤
k, ι < 2, 2k + j 6= 2(ι + 1) mod 4}. Then we determine all finite-dimensional
Nichols algebras over simple objects in H

HYD. Finally, we calculate their liftings
following the techniques in [7, 15]. We obtain the following result.

Theorem A. Let A be a finite-dimensional Hopf algebra over H such that the
corresponding infinitesimal braiding is a simple object V in H

HYD. Assume that
the diagram of A is strictly graded. Then V is isomorphic either to kχi,j,k

for
(i, j, k) ∈ Λ0 or to Vi,j,k,ι for (i, j, k, ι) ∈ Λ2 ∪ Λ3 ∪ Λ4, and A is isomorphic either
to

•
∧
kχi,j,k

]H for (i, j, k) ∈ Λ0;
• B(Vi,j,k,ι)]H for (i, j, k, ι) ∈ Λ2 ∪ Λ3;
• C4

i,j,k,ι(µ) for µ ∈ k and (i, j, k, ι) ∈ Λ4.

The sets Λ0,Λ2,Λ3,Λ4 as subsets of Λ are introduced in Lemma 3.13 and Propo-
sition 3.14, and |Λ2| − 4 = |Λ3| − 8 = |Λ4| − 8 = 0. It turns out that B(kχi,j,k

) is
an exterior algebra for (i, j, k) ∈ Λ0, and B(Vi,j,k,ι) is isomorphic as an algebra to
a quantum plane of dimension 4 or 8 for (i, j, k, ι) ∈ Λ2 or Λ3 ∪ Λ4, respectively.
These Nichols algebras appearing firstly in [23] were also described in [4] as special
kinds. As stated in [4], they are not of diagonal type.

The Hopf algebras
∧
kχi,j,k

]H with (i, j, k) ∈ Λ0, B(Vi,j,k,ι)]H with (i, j, k, ι) ∈
Λ2 or with (i, j, k, ι) ∈ Λ3 ∪Λ4 are the duals of pointed Hopf algebras of dimension
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32, 64 or 128, respectively. The Hopf algebras C4
i,j,k,ι(µ) depending on the param-

eters µ ∈ k and (i, j, k, ι) ∈ Λ4 are introduced in Definitions 3.20 and 3.22. They
have dimension 128 with non-pointed duals and constitute new examples of Hopf
algebras without the dual Chevalley property except for µ = 0.

For H̃, we determine all simple objects in H̃

H̃
YD by using the isomorphism H̃ ∼=

K ⊗ k[Z2]. We show that there are 16 one-dimensional objects kλi,j,k
in H̃

H̃
YD

for i, j ∈ I0,1, k ∈ I0,3, and 48 two-dimensional simple objects Wi,j,k,ι in H̃

H̃
YD

for (i, j, k, ι) ∈ Ω = {(i, j, k, ι) | i, j ∈ I0,3, k, ι ∈ I0,1, 2i 6= j mod 4}. Then
we determine all finite-dimensional Nichols algebras over simple objects in H̃

H̃
YD.

Finally, we calculate their liftings. We obtain the following result.
Theorem B. Let A be a finite-dimensional Hopf algebra over H̃ such that the
corresponding infinitesimal braiding is a simple object W in H̃

H̃
YD. Assume that

the diagram of A is strictly graded. Then W is isomorphic either to kλi,j,k
for

(i, j, k) ∈ Ω0 or to Wi,j,k,ι for (i, j, k, ι) ∈ Ω1 ∪Ω2 ∪Ω3 and A is isomorphic either
to

•
∧
kλi,j,k

]H̃ for (i, j, k) ∈ Ω0;
• B(Wi,j,k,ι)]H̃ for (i, j, k, ι) ∈ Ω1 ∪ Ω2;
• Ω3

i,j,k,ι(µ) for µ ∈ k and (i, j, k, ι) ∈ Ω3.

The set Ωi for 0 ≤ i ≤ 3 as a subset of Ω is introduced in Lemma 4.9 or
Proposition 4.10, and |Ω1|−4 = |Ω2|−8 = |Ω3|−8 = 0. It turns out that B(kλi,j,k

)
is an exterior algebra for (i, j, k) ∈ Ω0, dimB(Wi,j,k,ι) = 4 for (i, j, k, ι) ∈ Ω1 and
dimB(Wi,j,k,ι) = 8 for (i, j, k, ι) ∈ Ω2 ∪ Ω3. These 8-dimensional Nichols algebras
were firstly introduced in [15] and these 4-dimensional Nichols algebras did not
appear in [15] but have already appeared in [4]. They are isomorphic to quantum
planes as algebras but not as coalgebras since they are not of diagonal type.

For (i, j, k) ∈ Ω0, (i, j, k, ι) ∈ Ω1 and (i, j, k, ι) ∈ Ω2 ∪ Ω3, the Hopf algebras∧
kλi,j,k

]H̃ and B(Wi,j,k,ι)]H̃ are the duals of pointed Hopf algebras of dimension
32, 64 and 128, respectively. In particular, B(W2,j,0,0)]H̃ ∼= B(W2,j,0,0)]K ⊗ k[Z2]
as Hopf algebras for j ∈ {1, 3}. For (i, j, k, ι) ∈ Ω3, the Hopf algebra Ω3

i,j,k,ι(µ)
depending on the parameter µ ∈ k is introduced in Definition 4.16. Note that
Ω3
i,j,k,ι(0) ∼= B(Wi,j,k,ι)]H̃ for (i, j, k, ι) ∈ Ω3 and Ω3

3,j,0,0(µ) ∼= A3,j(µ) ⊗ k[Z2] as
Hopf algebras, where j ∈ {1, 3} and A3,j(µ) is given in [15, Definitions 5.4/5.6].
The Hopf algebras Ω3

i,j,k,ι(µ) with (k, ι, µ) 6= (0, 0, 0) are not isomorphic to the
tensor product Hopf algebra of a Hopf algebra of dimension 64 and k[Z2], and do
not have the dual Chevalley property with non-pointed duals. To the best of our
knowledge, they constitute new examples of Hopf algebras of dimension 128.

The paper is organized as follows. In section 2, we recall some basic knowledge
and notations of Yetter–Drinfeld modules, Nichols algebras and Radford biproduct.
In section 3, we determine all finite-dimensional Nichols algebras over simple objects
in H

HYD and their liftings. We first describe the structures of H and the Drinfeld
double D := D(Hcop). Next, we determine all simple D-modules and describe
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simple objects in H
HYD by using the equivalence HHYD ∼= DM. Then we describe the

braidings and determine all finite-dimensional Nichols algebras over simple objects
in H

HYD. Finally, we calculate the liftings of all finite-dimensional Nichols algebras
and prove Theorem A. In section 4, we determine all finite-dimensional Nichols
algebras over simple objects in H̃

H̃
YD and their liftings. For this, we first describe

the structure of H̃ and determine simple objects in H̃

H̃
YD by using the isomorphism

H̃ ∼= K⊗k[Z2]. Then we describe the braidings and determine all finite-dimensional
Nichols algebras over simple objects in H̃

H̃
YD. Finally, we calculate the liftings of

all finite-dimensional Nichols algebras and prove Theorem B.

2. Preliminaries

Conventions. Throughout the paper, our ground field k is an algebraically closed
field of characteristic zero. We denote by ξ a primitive 4th root of unity. Our
references for Hopf algebra theory are [25, 27].

The notation for a Hopf algebra H over k is standard: ∆, ε, and S denote the
comultiplication, the counit and the antipode. We use Sweedler’s notation for the
comultiplication and coaction; for example, for any h ∈ H, ∆(h) = h(1) ⊗ h(2),
∆(n) = (∆⊗ id⊗n)∆(n−1). We denote by Hop the Hopf algebra with the opposite
multiplication, by Hcop the Hopf algebra with the opposite comultiplication, and
by Hbop the Hopf algebra Hop cop. Denote by G(H) the set of group-like elements
of H. For any g, h ∈ G(H), Pg,h(H) = {x ∈ H | ∆(x) = x⊗g+h⊗x}. In particular,
the linear space P(H) := P1,1(H) is called the set of primitive elements.

Given two (braided monoidal) categories C and D, denote by C ∼= D the (braided
monoidal) equivalence between C and D. Given n ≥ 0, we denote Zn = Z/nZ and
I0,n = {0, 1, . . . , n}. In particular, the operations ij and i±j are considered modulo
n+ 1 for i, j ∈ I0,n when not specified.

2.1. Yetter–Drinfeld modules and Nichols algebras. Let H be a Hopf al-
gebra with bijective antipode. A left Yetter–Drinfeld module M over H is a left
H-module (M, ·) and a left H-comodule (M, δ) satisfying

δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0), ∀v ∈ V, h ∈ H.

Let H
HYD be the category of Yetter–Drinfeld modules over H. H

HYD is braided
monoidal. For V,W ∈ H

HYD, the braiding cV,W is given by

cV,W : V ⊗W 7→W ⊗ V, v ⊗ w 7→ v(−1) · w ⊗ v(0), ∀ v ∈ V, w ∈W. (1)

Moreover, HHYD is rigid. Denote by V ∗ the left dual defined by

〈h · f, v〉 = 〈f, S(h)v〉, f(−1)〈f(0), v〉 = S−1(v(−1))〈f, v(0)〉.

Assume that H is a finite-dimensional Hopf algebra. Then H∗

H∗YD is braided
equivalent to H

HYD, see [5, 2.2.1]. Let {hi}i∈I0,n
and {hi}i∈I0,n

be the dual bases
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of H and H∗. If V ∈ H
HYD, then V ∈ H∗

H∗YD with the Yetter–Drinfeld module
structure given by

f · v = f(S(v(−1)))v(0), δ(v) =
∑
i

S−1(hi)⊗ hi · v, ∀v ∈ V, f ∈ H∗. (2)

Definition 2.1 ([8, Definition 2.1]). Let H be a Hopf algebra and V ∈ H
HYD. A

braided graded Hopf algebra R = ⊕n≥0R(n) in H
HYD is called a Nichols algebra

over V if
R(0) = k, R(1) = V, R is generated as an algebra by R(1), P(R) = V.

Let V ∈ H
HYD, then the Nichols algebra B(V ) over V is unique up to isomorphism

and isomorphic to T (V )/I(V ), where I(V ) ⊂ T (V ) is the largest N-graded ideal
and coideal in H

HYD such that I(V ) ∩ V = 0.
Remark 2.2. Let (V, c) be a braided vector space, that is, c : V ⊗ V 7→ V ⊗ V
is a linear isomorphism satisfying the braid equation (c ⊗ id)(id ⊗ c)(c ⊗ id) =
(id⊗ c)(c⊗ id)(id⊗ c). As well-known, B(V ) as a coalgebra and an algebra depends
only on (V, c). Let (W, c) be a vector subspace of V such that c(W ⊗W ) ⊂W ⊗W .
Then dimB(V ) =∞ if dimB(W ) =∞. See [17, 8] for details.

Nichols algebras play a key role in the classification of pointed Hopf algebras.
We close this subsection by giving the explicit relation between V and V ∗ in H

HYD.
Proposition 2.3 ([5, Proposition 3.2.30]). Let V be an object in H

HYD. If B(V )
is finite-dimensional, then B(V ∗) ∼= B(V )∗ bop.
2.2. Bosonization and Hopf algebras with a projection. Let R be a Hopf al-
gebra in H

HYD. We write ∆R(r) = r(1)⊗r(2) to avoid confusions. The bosonization
R]H is defined as follows: R]H = R ⊗ H as a vector space, and the multiplica-
tion and comultiplication are given by the smash product and smash-coproduct,
respectively:

(r]g)(s]h) = r(g(1) · s)]g(2)h, ∆(r]g) = r(1)](r(2))(−1)g(1) ⊗ (r(2))(0)]g(2). (3)
Clearly, the map ι : H → R]H, h 7→ 1]h, ∀h ∈ H, is injective and the map
π : R]H → H, r]h 7→ εR(r)h, ∀r ∈ R, h ∈ H, is surjective such that π ◦ ι = idH .
Moreover, R = (R]H)coH = {x ∈ R]H | (id⊗ π)∆(x) = x⊗ 1}.

Conversely, if A is a Hopf algebra with bijective antipode and π : A → H is a
bialgebra morphism admitting a bialgebra section ι : H → A such that π ◦ ι = idH ,
then A ' R]H, where R = AcoH is a Hopf algebra in H

HYD. See [26] for details.

3. On finite-dimensional Hopf algebras over H

In this section, we determine all finite-dimensional Nichols algebras over simple
objects in H

HYD and their liftings. These Nichols algebras have already appeared
in [15, 4] and consist of 2-dimensional exterior algebras, 4- and 8-dimensional al-
gebras with non-diagonal braidings [29, 15]. The bosonizations of these Nichols
algebras are finite-dimensional Hopf algebras over H without the dual Chevalley
property. Moreover, the non-trivial liftings of these Nichols algebras constitute new
examples of Hopf algebras of dimension 128 without the dual Chevalley property.
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3.1. The Hopf algebra H and its Drinfeld double. We firstly describe the
Hopf algebra H, which already appeared in [11, 16] and is generated by a simple
subcoalgebra C = k{a, b, c, d} as follows.

Definition 3.1. H as an algebra is generated by a, b, c, d satisfying the relations

a4 = 1, b2 = 0, c2 = 0, d4 = 1, a2d2 = 1, ad = da, bc = 0 = cb, (4)
ab = ξba, ac = ξca, bd = ξdb, cd = ξdc, bd = ca, ba = cd, (5)

and as a coalgebra is given by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d, ∆(c) = c⊗ a+ d⊗ c, (6)
∆(d) = d⊗ d+ c⊗ b, ε(a) = 1, ε(b) = 0, ε(c) = 0, ε(d) = 1, (7)

and its antipode is given by S(a) = a3, S(b) = ξca2, S(c) = ξ3ba2, S(d) = d3.

Remark 3.2. (1) G(H) = k{1, a2, da, da3}, P1,da3(H) = k{1 − da3, ca3},
P1,g(H) = k{1 − g} for g ∈ k{a2, da} and a linear basis of H is given
by {ai, bai, cai, dai, i ∈ I0,3}.

(2) Denote by {(ai)∗, (bai)∗, (cai)∗, (dai)∗, i ∈ I0,3} the basis of the dual Hopf
algebra H∗. Let

x̃ =
3∑
i=0

(bai)∗ + (cai)∗, g̃ =
3∑
i=0

ξi(ai)∗ + ξi+1(dai)∗, h̃ =
3∑
i=0

(ai)∗ − (dai)∗.

Then using the multiplication table induced by the relations of H, we have

g̃4 = 1, h̃2 = 1, h̃g̃ = g̃h̃, g̃x̃ = x̃g̃, h̃x̃ = −x̃h̃,

∆(x̃) = x̃⊗ ε+ g̃h̃⊗ x̃, ∆(g̃) = g̃ ⊗ g̃, ∆(h̃) = h̃⊗ h̃.

In particular, G(H∗) ∼= Z4 × Z2 with the generators g̃ and h̃.
(3) Let A be the Hopf algebra defined by A := 〈g, h, x | g4 = 1, h2 = 1, hg =

gh, hx = −xh, gx = xg, x2 = 1−g2〉; ∆(g) = g⊗g, ∆(h) = h⊗h, ∆(x) =
x ⊗ 1 + gh ⊗ x. It is listed in [14, section 2.5]. Clearly, G(A) ∼= Z4 × Z2
and {gj , gjh, gjx, gjhx}0≤j<4 is a linear basis of A. Moreover, A ∼= H∗

and the Hopf algebra isomorphism ψ : A 7→ H∗ is given by

ψ(gj) =
3∑
i=0

ξij(ai)∗ + ξij+j(dai)∗, ψ(gjh) =
3∑
i=0

ξij(ai)∗ − ξij+j(dai)∗,

ψ(gjx) =
3∑
i=0

√
2ξij+j((bai)∗ + (cai)∗), ψ(gjhx) =

3∑
i=0

√
2ξij+j((bai)∗ − (cai)∗).

Now we describe the Drinfeld double D := D(Hcop) of Hcop. Recall that D(H) ∼=
H∗cop ⊗H is a Hopf algebra with the tensor product coalgebra structure and the
algebra structure given by (p⊗ a)(q ⊗ b) = p〈q(3), a(1)〉q(2) ⊗ a(2)〈q(1), S

−1(a(3))〉b.
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Proposition 3.3. D := D(Hcop) as a coalgebra is isomorphic to Abop⊗Hcop, and
as an algebra is generated by the elements g, h, x, a, b, c, d satisfying the relations
in Hcop, the relations in Abop and

ag = ga, ah = ha, dg = gd, dh = hd, bg = gb, cg = gc,

bh = −hb, ax+ ξxa =
√

2ξ(c− ghb), dx− ξxd =
√

2ξ(ghc− b),

ch = −hc, bx+ ξxb =
√

2ξ(d− gha), cx− ξxc =
√

2ξ(ghd− a).

Proof. After a direct computation, we have that
∆2
Abop(g) = g ⊗ g ⊗ g, ∆2

Abop(h) = h⊗ h⊗ h,
∆2
Abop(x) = 1⊗ 1⊗ x+ 1⊗ x⊗ gh+ x⊗ gh⊗ gh,

∆2
Hcop(a) = a⊗ a⊗ a+ a⊗ c⊗ b+ c⊗ b⊗ a+ c⊗ d⊗ b,

∆2
Hcop(b) = b⊗ a⊗ a+ b⊗ c⊗ b+ d⊗ b⊗ a+ d⊗ d⊗ b,

∆2
Hcop(c) = a⊗ a⊗ c+ a⊗ c⊗ d+ c⊗ d⊗ d+ c⊗ b⊗ c,

∆2
Hcop(d) = d⊗ d⊗ d+ d⊗ b⊗ c+ b⊗ a⊗ c+ b⊗ c⊗ d.

It follows that
ag = 〈g, a〉ga〈g, S(a)〉 = ga, ah = 〈h, a〉ha〈h, S(a)〉 = ha,

dg = 〈g, d〉gd〈g, S(d)〉 = gd, dh = 〈h, d〉hd〈h, S(d)〉 = hd,

bg = 〈g, d〉gb〈g, S(a)〉 = gb, bh = 〈h, d〉hb〈h, S(a)〉 = −hb,
cg = 〈g, a〉gc〈g, S(d)〉 = gc, ch = 〈h, a〉hc〈h, S(d)〉 = −hc,
ax = 〈1, a〉c〈x, S(b)〉+ 〈1, a〉xa〈gh, S(a)〉+ 〈x, c〉ghb〈gh, S(a)〉

=
√

2ξc− ξxa−
√

2ξghb,
dx = 〈1, d〉b〈x, S(c)〉+ 〈1, d〉xd〈gh, S(d)〉+ 〈x, b〉ghc〈gh, S(d)〉

=
√

2ξ3b+ ξxd+
√

2ξghc,
bx = 〈1, d〉d〈x, S(b)〉+ 〈1, d〉xb〈gh, S(a)〉+ 〈x, b〉gha〈gh, S(a)〉

=
√

2ξd− ξxb−
√

2ξgha,
cx = 〈1, a〉a〈x, S(c)〉+ 〈1, a〉xc〈gh, S(d)〉+ 〈x, c〉ghd〈gh, S(d)〉

=
√

2ξ3a+ ξxc+
√

2ξghd. �

3.2. The representations of D. We compute simple D-modules. We begin this
subsection by describing the one-dimensional D-modules.

Lemma 3.4. There are 16 non-isomorphic one-dimensional simple modules kχi,j,k

given by the characters χi,j,k with i, j ∈ I0,1, k ∈ I0,3, where
χi,j,k(g) = (−1)i, χi,j,k(h) = (−1)j , χi,j,k(x) = 0,

χi,j,k(a) = ξk, χi,j,k(b) = 0, χi,j,k(c) = 0, χi,j,k(d) = (−1)i(−1)jξk.
Moreover, any one-dimensional D-module is isomorphic to kχi,j,k

for some i, j ∈
I0,1, k ∈ I0,3.
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Proof. It is clear that these modules kχi,j,k
are pairwise non-isomorphic. Let χ ∈

G(D∗) = hom(D,k). Since a4 = g4 = d4 = h2 = 1, we have χ(a)4 = χ(g)4 =
χ(d)4 = χ(h)2 = 1. Since b2 = c2 = hx + xh = 0, it follows that χ(b) = χ(x) =
χ(c) = 0. Then the relation x2 = 1 − g2 yields χ(g)2 = 1. From the relation
bx + ξxb =

√
2ξ(d − gha), we have χ(d) = χ(g)χ(h)χ(a). Thus χ is completely

determined by χ(a), χ(g) and χ(h). Let χ(a) = ξk, χ(g) = (−1)i, χ(h) = (−1)j
for some i, j ∈ I0,1, k ∈ I0,3. Then χ = χi,j,k. The lemma is proved. �

Next, we describe two-dimensional simple D-modules. For this, consider the
finite set given by

Λ = {(i, j, k, ι) ∈ N×N×N×N | i, j ∈ I0,3, k, ι ∈ I0,1, 2k+ j 6= 2(ι+ 1) mod 4}.

A direct calculation shows that |Λ| = 48.

Lemma 3.5. For any 4-tuple (i, j, k, ι) ∈ Λ, there exists a simple left D-module
Vi,j,k,ι of dimension 2 with the action on a fixed basis given by

[a] =
(
−(−1)ιξi 0

0 (−1)ιξi+1

)
, [d] =

(
ξi 0
0 ξi+1

)
, [b] =

(
0 (−1)ι
0 0

)
,

[c] =
(

0 1
0 0

)
, [g] =

(
ξj 0
0 ξj

)
, [h] =

(
(−1)k 0

0 (−1)k+1

)
,

[x] =
(

0
√

2
2 ξ

3i+1(ξj(−1)k − (−1)ι)√
2ξi+1(ξj(−1)k + (−1)ι) 0

)
.

Moreover, any simple D-module of dimension 2 is isomorphic to Vi,j,k,ι for some
(i, j, k, ι) ∈ Λ and Vi,j,k,ι ∼= Vp,q,r,κ if and only if (i, j, k, ι) = (p, q, r, κ).

Proof. Since the elements g, h, a, d commute with each other and g4 = h2 = a4 =
d4 = 1, the matrices defining D-action on V can be of the form

[g] =
(
g1 0
0 g2

)
, [h] =

(
h1 0
0 h2

)
, [x] =

(
x1 x2
x3 x4

)
, [a] =

(
a1 0
0 a2

)
,

[d] =
(
d1 0
0 d2

)
, [b] =

(
b1 b2
b3 b4

)
, [c] =

(
c1 c2
c3 c4

)
,

where a4
1 = a4

2 = d4
1 = d4

2 = g4
1 = g4

2 = h2
1 = h2

2 = 1. Since xh + hx = bh + hb =
ch + hc = 0, it follows that x1 = x4 = b1 = b4 = c1 = c4 = 0, (h1 + h2)x2 = 0 =
(h1 + h2)x3, (h1 + h2)b2 = 0 = (h1 + h2)b3 and (h1 + h2)c2 = 0 = (h1 + h2)c3.

If h1 + h2 6= 0, then [x], [b], [c] are zero matrices and hence V is not simple
D-module, a contradiction. Therefore, we have h1 = −h2. Similarly, the relations
gx = xg, bg = gb and cg = gc yield g1 = g2.

Since b2 = 0 = c2 and bc = 0 = cb, it follows that b2b3 = c2c3 = b2c3 = b3c2 =
c2b3 = c3b2 = 0. By permuting the elements of the basis, we may assume that b3 =
0 = c3. From the relations ax+ ξxa =

√
2ξ(c− ghb) and dx− ξxd =

√
2ξ(ghc− b),

a1x2 + ξa2x2 =
√

2ξ(c2 − g1h1b2), a2x3 + ξa1x3 =
√

2ξ(c3 − g2h2b3),

d1x2 − ξd2x2 =
√

2ξ(g1h1c2 − b2), d2x3 − ξd1x3 =
√

2ξ(g2h2c3 − b3).
(8)
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Suppose that b2 = 0 = c2. Then it is clear that V is simple if and only if
x2x3 6= 0. By (8), we have that a1 + ξa2 = 0 = a2 + ξa1 and hence a1 = 0 = a2, a
contradiction. We may also assume that c2 = 1.

Since ab = ξba, ac = ξca, bd = ξdb and cd = ξdc, it follows that a1 − ξa2 = 0 =
d2 − ξd1. By the relations bd = ca and ba = cd, we have b22 − 1 = 0 = a2 − b2d2.

From the relations bx+ ξxb =
√

2ξ(d− gha) and cx− ξxc =
√

2ξ(ghd− a),

b2x3 + ξb3x2 =
√

2ξ(d1 − g1h1a1), b3x2 + ξb2x3 =
√

2ξ(d2 − g2h2a2),

c2x3 − ξc3x2 =
√

2ξ(g1h1d1 − a1), c3x2 − ξc2x3 =
√

2ξ(g2h2d2 − a2),

which implies that x3 =
√

2ξd1(b2 +g1h1). By (8), we have x2 =
√

2
2 ξd

3
1(g1h1−b2).

From the relations x2 = 1 − g2 and a2d2 = 1, we have x2x3 = 1 − g2
1 and a2

1d
2
1 =

1 = a2
2d

2
2. Indeed, a2 = b2d2, a1 = ξa2, d2 = ξd1, a1 = −b2d1 and hence the

relations a2
1d

2
1 = 1 = a2

2d
2
2 hold. Moreover, it follows by a direct computation that

the relation x2x3 = 1− g2
1 holds.

From the discussion above, the matrices defining the action on V are of the form

[a] =
(
−λ4λ1 0

0 ξλ4λ1

)
, [d] =

(
λ1 0
0 ξλ1

)
, [b] =

(
0 λ4
0 0

)
,

[c] =
(

0 1
0 0

)
, [g] =

(
λ2 0
0 λ2

)
, [h] =

(
λ3 0
0 −λ3

)
,

[x] =
(

0
√

2
2 ξλ

3
1(λ2λ3 − λ4)√

2ξλ1(λ2λ3 + λ4) 0

)
,

where λ4
1 = 1, λ4

2 = 1, λ2
3 = 1 and λ2

4 = 1. It is clear that V is simple if and only if
λ2λ3 +λ4 6= 0. If λ1 = ξi, λ2 = ξj , λ3 = (−1)k and λ4 = (−1)ι, then (i, j, k, ι) ∈ Λ.

We claim that Vi,j,k,ι ∼= Vp,q,r,κ if and only if (i, j, k, ι) = (p, q, r, κ) in Λ. Assume
that Φ : Vi,j,k,ι 7→ Vp,q,r,κ is an isomorphism of D-modules. Denote by [Φ] =
(pi,j)i,j=1,2 the matrix of Φ in the given basis. Since [c][Ψ] = [Ψ][c] and [a][Ψ] =
[Ψ][a], p21 = 0 = p11 − p22 and (ξp − ξi)p11 = 0 = (ξp − ξi+1)p12. Since Ψ is
isomorphic, ξi = ξp, which implies that p12 = 0 and [Φ] = p11I, where I is the
identity matrix. Similarly, ξj = ξq, k = r, ι = κ. Thus, the claim follows. �

Remark 3.6. For a left D-module V , there exists a left dual module V ∗ with the
module structure given by (h ⇀ f)(v) = f(S(h) · v) for all h ∈ D, v ∈ V , f ∈ V ∗.
A direct calculation shows that V ∗i,j,k,ι ∼= V−i−1,−j,k+1,ι+1 for all (i, j, k, ι) ∈ Λ.

Finally, we describe all the simple D-modules up to isomorphism.

Theorem 3.7. There exist 64 simple left D-modules up to isomorphism, among
which 16 one-dimensional modules are given in Lemma 3.4 and 48 two-dimensional
simple modules are given in Lemma 3.5.

Proof. We first claim that DM∼= D(grA)M. Indeed, DM∼= H
HYD by [25, Proposi-

tion 10.6.16] and H
HYD ∼= AAYD by [5, Proposition 2.2.1]. By [18, Theorem 4.3], A

is a cocycle deformation of grA. Then by [24, Theorem 2.7], AAYD ∼=
grA
grAYD and

hence the claim follows. Note that grA = B(W )]k[Γ], where Γ ∼= Z4 × Z2 with
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generators g, h and W := k{v} ∈ Γ
ΓYD with the Yetter–Drinfeld module struc-

ture given by g · x = x, h · x = −x and δ(x) = gh ⊗ x. A direct computation
shows that D(grA) is isomorphic to the Hopf algebra B generated by the elements
g1, g2, g3, g4, x1, x2 satisfying the relations

gigj = gjgi, g4
1+k = g2

2+k = 1, x2
k = 0, x1x2 + x2x1 = g1g2g4 − 1,

gix1 = χ(gi)x1gi, gix2 = χ−1(gi)x2gi,

with the coalgebra structure given by ∆(gi) = gi ⊗ gi, ∆(x1) = x1 ⊗ 1 + g1g2 ⊗ x1
and ∆(x2) = x2 ⊗ 1 + g4 ⊗ x2, where i, j ∈ I0,3, k ∈ I0,1, χ(g1) = 1, χ(g2) =
χ(g4) = −1 and χ(g3) = ξ. Clearly, B is a lifting of a quantum plane. Thus by [2,
Theorem 3.5], dimV < 3 for any simple B-module V . The proposition follows by
DM∼= D(grA)M. �

3.3. Nichols algebras in H
HYD. We describe simple objects in H

HYD and deter-
mine all finite-dimensional Nichols algebras over them. We first describe simple
objects in H

HYD by using the equivalence H
HYD ∼= DM [25, Proposition 10.6.16].

Lemma 3.8. Let kχi,j,k
= k{v} for any (i, j, k) ∈ I0,1 × I0,1 × I0,3. Then kχi,j,k

∈
H
HYD with the Yetter–Drinfeld module structure given by

a · v = ξkv, b · v = 0, c · v = 0, d · v = (−1)i+jξkv;

δ(v) =
{
a2i ⊗ v if j = 0;
da2i+3 ⊗ v if j = 1.

Proof. Since kχi,j,k
is a one-dimensional D-module, the H-action is given by the

restriction of the character of D given by Lemma 3.4 and the coaction must be of
the form δ(v) = t⊗ v, where t ∈ G(H) = {1, a2, da, da3} such that 〈g, t〉v = (−1)iv
and 〈h, t〉v = (−1)jv. Then the lemma follows by Remark 3.2 (3). �

Lemma 3.9. Let Vi,j,k,ι = k{v1, v2} for (i, j, k, ι) ∈ Λ. Then Vi,j,k,ι ∈ H
HYD with

the module structure given by
a · v1 = (−1)ι+1ξiv1, b · v1 = 0, c · v1 = 0, d · v1 = ξiv1,

a · v2 = (−1)ιξi+1v2, b · v2 = (−1)ιv1, c · v2 = v1, d · v2 = ξi+1v2,

and the comodule structure given by
(1) if k = 0: δ(v1) = aj⊗v1+w2ba

j−1⊗v2, δ(v2) = daj−1⊗v2+w1ca
j−1⊗v1;

(2) if k = 1: δ(v1) = daj−1⊗v1+w2ca
j−1⊗v2, δ(v2) = aj⊗v2−w1ba

j−1⊗v1,
where w1 = 1

2ξ
3i+1(ξj − (−1)ι+k) and w2 = ξi+1((−1)ι + (−1)kξj).

Proof. Note that by Remark 3.2, we have that

(gl)∗ = 1
8

3∑
i=0

ξ−ilai + ξ−(i+1)ldai, (glh)∗ = 1
8

3∑
i=0

ξ−ilai − ξ−(i+1)ldai,

(glx)∗ = 1
8
√

2

3∑
i=0

ξ−(i+1)l(bai + cai), (glhx)∗ = 1
8
√

2

3∑
i=0

ξ−(i+1)l(bai − cai).
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Let {hi}1≤i≤16 and {hi}1≤i≤16 be the dual bases of H and H∗. Then the comodule
structure is given by δ(v) =

∑16
i=1 ci⊗ci ·v for any v ∈ Vi,j,k,ι. If we denote λ1 = ξi,

λ2 = ξj , λ3 = (−1)k and λ4 = (−1)ι, then

δ(v1) =
3∑
l=0

1∑
n=0

(glhn)∗ ⊗ glhn · v1 + (glhnx)∗ ⊗ glhnx · v1

=
3∑
l=0

1∑
n=0

λn3λ
l
2(glhn)∗ ⊗ v1 + λn3 (λ2)l(glhnx)∗ ⊗ x2v2

= 1
2[(1 + λ3)aj + (1− λ3)daj−1]⊗ v1 + 1

2
√

2
x2(1 + λ3)baj−1 ⊗ v2

+ 1
2
√

2
x2(1− λ3)caj−1 ⊗ v2,

δ(v2) =
3∑
l=0

1∑
n=0

((gl)(glhn)∗ ⊗ glhn · v2 + (glhnx)∗ ⊗ glhnx · v2

=
3∑
l=0

1∑
n=0

(−λ3)nλl2(glhn)∗ ⊗ v2 + (−λ3)n(λ2)l(glhnx)∗ ⊗ x1v1

= 1
2[(1− λ3)aj + (1 + λ3)daj−1]⊗ v2 + 1

2
√

2
x1(1− λ3)baj−1 ⊗ v1

+ 1
2
√

2
x1(1 + λ3)caj−1 ⊗ v1,

where x1 =
√

2
2 ξλ

3
1(λ2λ3 − λ4) and x2 =

√
2ξλ1(λ2λ3 + λ4). �

Remark 3.10. Let Vi,j,k,ι = k{v1, v2} ∈ H
HYD for (i, j, k, ι) ∈ Λ. Then by (2),

Vi,j,k,ι ∈ AAYD with the module structure given by

g · v1 = ξ−jv1, h · v1 = (−1)kv1, x · v1 = (−1)k+1x2ξ
−jv2,

g · v2 = ξ−jv2, h · v2 = (−1)k+1v2, x · v2 = (−1)kx1ξ
−jv1,

and the comodule structure given by
(1) for ι = 0: δ(v1) = g−2−ih⊗v1, δ(v2) = g−1−i⊗v2 +

√
2

2 ξ
1−ig−2−ihx⊗v1,

(2) for ι = 1: δ(v1) = g−i ⊗ v1, δ(v2) = g−i+1h⊗ v2 −
√

2
2 ξ

1−ig−ix⊗ v1,

where x1 =
√

2
2 ξ

1−i(ξj(−1)k − (−1)ι) and x2 = −
√

2ξi−1(ξj(−1)k + (−1)ι).

Then we describe the braidings of the simple objects in H
HYD.

Lemma 3.11. Let kχi,j,k
= k{v} ∈ H

HYD for (i, j, k) ∈ I0,1 × I0,1 × I0,3. Then the
braiding of kχi,j,k

is given by

c(v ⊗ v) =
{

(−1)ikv ⊗ v, if j = 0;
−(−1)(i+1)kv ⊗ v, if j = 1.
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Lemma 3.12. Let Vi,j,k,ι = k{v1, v2} ∈ H
HYD for (i, j, k, ι) ∈ Λ. Then the braiding

of Vi,j,k,ι is given by:

(1) If k = 0, then c

([
v1
v2

]
⊗
[
v1 v2

])
=[

(−1)(ι+1)jξijv1 ⊗ v1 (−1)jιξ(i+1)jv2 ⊗ v1 + c12v1 ⊗ v2
(−1)(ι+1)(j−1)ξijv1 ⊗ v2 (−1)ι(j−1)ξ(i+1)jv2 ⊗ v2 + c11v1 ⊗ v1

]
,

where c12 = (−1)j(ι+1)ξij + (−1)ι(j−1)ξ(i+1)j, c11 = 1
2 (−1)ι(j−1)ξ(j+2)i+j(ξj −

(−1)ι).

(2) If k = 1, then c

([
v1
v2

]
⊗
[
v1 v2

])
=[

(−1)(ι+1)(j−1)ξijv1 ⊗ v1 (−1)ι(j−1)ξ(i+1)jv2 ⊗ v1 + d12v1 ⊗ v2
(−1)(ι+1)jξijv1 ⊗ v2 (−1)jιξ(i+1)jv2 ⊗ v2 − d11v1 ⊗ v1

]
,

where d12 = (−1)(ι+1)(j−1)ξij + (−1)jιξ(i+1)j, d11 = 1
2 (−1)jιξ(j+2)i+j(ξj + (−1)ι).

Finally, we determine all finite-dimensional Nichols algebras over simple objects
in H

HYD and present them by generators and relations. We shall show that all
finite-dimensional Nichols algebras over the one-dimensional objects in H

HYD are
parametrized by the set

Λ0 = {(i, j, k) ∈ I0,1 × I0,1 × I0,3 | 2 - ik if j = 0 or, 2 | (i+ 1)k if j = 1}.
By Lemma 3.11, the next lemma follows immediately.
Lemma 3.13. Let (i, j, k) ∈ I0,1 × I0,1 × I0,3. The Nichols algebra B(kχi,j,k

) over
kχi,j,k

is

B(kχi,j,k
) =

{∧
kχi,j,k

, (i, j, k) ∈ Λ0;
k[v], others.

We shall determine all finite-dimensional Nichols algebras over two-dimensional
simple objects in H

HYD. Set n ∈ I0,1. Consider the finite subsets of Λ given by
Λ1 = {(i, j, k, ι) ∈ Λ | k = 0, (2ι+ 2 + i)j = 0 mod 4,

or k = 1, 2(ι+ 1)(j − 1) + ij = 0 mod 4},
Λ1∗ = {(i, j, k, ι) ∈ Λ | k = 0, 2ι(j − 1) + (i+ 1)j = 0 mod 4,

or k = 1, (2ι+ i+ 1)j = 0 mod 4},
Λ2 = {(i, j, k, ι) ∈ Λ | (i, j, k, ι) ∈ {(2n, 2, 1, 0), (2n+ 1, 2, 0, 1)},
Λ3 = {(i, j, k, ι) ∈ Λ | j ∈ {1, 3}, (i, k, ι) ∈ {(0, 0, 0), (2, 0, 1)} or (i, k) = (2, 1)},
Λ4 = {(i, j, k, ι) ∈ Λ | j ∈ {1, 3}, (i, k, ι) ∈ {(1, 1, 0), (3, 1, 1)} or (i, k) = (1, 0)}.

Clearly, Λ = ∪4
i=1Λi ∪Λ1∗ and |Λ2| − 4 = |Λ3| − 8 = |Λ4| − 8 = 0. It turns out that

the Nichols algebra B(Vi,j,k,ι) is finite-dimensional if (i, j, k, ι) ∈ ∪4
i=2Λi.

Proposition 3.14. Let V be a two-dimensional simple object in H
HYD. Then

B(V ) is finite-dimensional if and only if V is isomorphic to Vi,j,k,ι for (i, j, k, ι) ∈
Λ2 ∪ Λ3 ∪ Λ4. Moreover, the generators and relations are given by:
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(i, j, k, ι) ∈ relations of B(Vi,j,k,ι) with generators v1, v2 dimB(V )
Λ2 v2

1 = 0, v1v2 − (−1)kv2v1 = 0, v2
2 = 0 4

Λ3 v2
1 = 0, v1v2 − ξ(1+2k)jv2v1 = 0, v4

2 = 0 8
Λ4 v4

1 = 0, v1v2 + (−1)ιv2v1 = 0, v2
1 + 2(−1)ιv2

2 = 0 8

Proof. We claim that dimB(Vi,j,k,ι) = ∞ for (i, j, k, ι) ∈ Λ1 ∪ Λ1∗. Indeed, by
Lemma 3.12, the braiding of Vi,j,k,ι with (i, j, k, ι) ∈ Λ1 has the eigenvector v1⊗ v1
of eigenvalue 1. For any (i, j, k, ι) ∈ Λ1∗, there exists (p, q, r, µ) ∈ Λ1 such that
V ∗i,j,k,ι

∼= Vp,q,r,µ in H
HYD, then by Proposition 2.3 the claim follows.

For (α, β, µ, ν) ∈ Λ2, (i, j, k, ι) ∈ Λ3 ∪ Λ4, a direct computation shows that the
braided vector spaces Vα,β,µ,ν , Vi,j,k,1 and Vi,j,k,0 belong to the cases R2,1, R1,2 and
R1,2(a) in [22, 4], respectively. That is, the braiding matrices of Vα,β,µ,ν , Vi,j,k,1
and Vi,j,k,0 are given by

c

([
v1
v2

]
⊗
[
v1 v2

])
=
[
t2v1 ⊗ v1 tqv2 ⊗ v1 + (t2 − pq)v1 ⊗ v2
tpv1 ⊗ v2 t2v2 ⊗ v2

]
,

c

([
v1
v2

]
⊗
[
v1 v2

])
=
[
pv1 ⊗ v1 qv2 ⊗ v1 + (p− q)v1 ⊗ v2
pv1 ⊗ v2 −qv2 ⊗ v2 + kv1 ⊗ v1

]
, and

c

([
v1
v2

]
⊗
[
v1 v2

])
=
[
−qv1 ⊗ v1 pv2 ⊗ v1 + (p− q)v1 ⊗ v2
qv1 ⊗ v2 pv2 ⊗ v2 + kv1 ⊗ v1

]
,

respectively. More precisely,
• If (i, j, k, ι) ∈ Λ2, then t2 = −1, tq = (−1)k, tp = −1, t2 − pq = −2;
• if (i, j, k, 1) ∈ Λ3, then p = −1, q = ξ(1+2k)j , k = 1

2 (1− ξ(1+2k)j);
• if (i, j, k, 0) ∈ Λ3, then q = 1, p = ξ(1+2k)j , k = − 1

2 (ξ(1+2k)j + 1);
• if (i, j, k, 1) ∈ Λ4, then p = ξ(1+2k)j , q = 1, k = 1

2 (1 + ξ(1+2k)j);
• if (i, j, k, 0) ∈ Λ4, then q = ξ(1+2k)j , p = −1, k = 1

2 (ξ(1+2k)j − 1).
Then by [4, Proposition 3.3], [4, Proposition 3.10] and [4, Proposition 3.11], the
assertion follows. �

Remark 3.15. By Remark 3.6 and Proposition 2.3, B(V0,j,0,0) ∼= B(V3,−j,1,1)∗bop,
B(V2,j,0,1) ∼= B(V1,−j,1,0)∗bop and B(V2,j,1,ι) ∼= B(V1,−j,0,ι+1)∗bop, where j ∈ {1, 3}
and ι ∈ {0, 1}. From the proof of Proposition 3.14, the braiding matrices of V2,j1,0,1
and V2,j2,1,1 are, up to a primitive 4th root of unity, the same and so are V0,j1,0,0
and V2,j2,1,0, V1,j1,0,1 and V3,j2,1,1, V1,j1,0,0 and V1,j2,1,0, where j1, j2 ∈ {1, 3}.

Remark 3.16. The Nichols algebras B(Vi,j,k,ι) with (i, j, k, ι) ∈ Λ3 and B(Vi,j,k,0)
with (i, j, k, 0) ∈ Λ4 are isomorphic (up to a primitive 4th root of unity) to the
Nichols algebras B(V2,j) and B(V3,j) appearing in [15] as algebras but not as coal-
gebras since the braidings differ.

Remark 3.17. Let Vi,j,k,ι ∈ H
HYD with (i, j, k, ι) ∈ Λ2 ∪ Λ3 ∪ Λ4. Then Vi,j,k,ι ∈

A
AYD with the Yetter–Drinfeld module structure given by Remark 3.10. Denote
by Bi,j,k,ι the subalgebra of B(Vi,j,k,ι)]A generated by g, h, x, v1. Then Bi,j,k,ι is a
pointed Hopf algebra with Γ := G(Bi,j,k,ι) ∼= Z4×Z2. Note that Bi,j,k,ι is isomorphic
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to the quotient of B(Xi,j,k,ι)]k[Γ] by the relation x2 = 1 − g2, where Xi,j,k,ι =
k{x, v1} ∈ Γ

ΓYD with the Yetter–Drinfeld module structure given by

g · x = x, h · x = −x, g · v1 = ξ−jv1, h · v1 = (−1)kv1,

δ(x) = gh⊗ x, δ(v1) = g−2−ih⊗ v1 or δ(v1) = g−i ⊗ v1, if ι = 0 or ι = 1.

It is easy to see that grBi,j,k,ι ∼= B(Xi,j,k,ι)]k[Γ] and B(Xi,j,k,ι) is of diagonal type

with the generalized Dynkin diagram (see [20])
q11◦
x

q12q21 q22◦
v1

given by

(1) for ι = 0: q11 = −1, q12q21 = (−1)k+1ξ−j, q22 = (−1)kξ(2+i)j;
(2) for ι = 1: q11 = −1, q12q21 = (−1)kξ−j, q22 = ξij.

We claim that dimBi,j,k,ι = dimB(Vi,j,k,ι)]A and hence Bi,j,k,ι ∼= B(Vi,j,k,ι)]A
as Hopf algebras. Indeed, if (i, j, k, ι) ∈ Λ2, then a direct computation shows

that the Dynkin diagram of B(Xi,j,k,ι) is −1◦ −1 −1◦ . It follows by [9, 10] that
dimB(Xi,j,k,ι) = 8 and hence

dimBi,j,k,ι = dimB(Xi,j,k,ι)]k[Γ] = 64 = dimB(Vi,j,k,ι)]A.

If (i, j, k, ι) ∈ Λ3, then the Dynkin diagram is −1◦
ξ±j −1◦ . If (i, j, k, ι) ∈ Λ4,

then the Dynkin diagram is −1◦
ξ±j ξ∓j

◦ . It follows that dimB(Xi,j,k,ι) = 16 and
hence dimBi,j,k,ι = 128 = dimB(Vi,j,k,ι)]A.

We claim that grBi,j,k,ι ∼= B(Vi,j,k,ι)] grA. Recall that grA ∼= Aσ for some Hopf
2-cocycle σ. By [19, Proposition 4.2], σ = ε ⊗ ε − ζ, where ζ(xigjhk, xmgnhl) =
(−1)mkδ2,i+m for i, k,m, l ∈ I0,1, j, n ∈ I0,3. By [24, Theorem 2.7], a direct com-
putation shows that Vi,j,k,ι ∈ grA

grAYD with the module structure given by

g · v1 = ξ−jv1, h · v1 = (−1)kv1, x · v1 = α1v1 + α2v2,

g · v2 = ξ−jv2, h · v2 = (−1)k+1v2, x · v2 = β1v1 + β2v2,

and the comodule structure given by
(1) for ι = 0: δ(v1) = g−2−ih⊗ v1, δ(v2) = g−1−i ⊗ v2 +

√
2

2 ξ
1−ig−2−ihx⊗ v1;

(2) for ι = 1: δ(v1) = g−i ⊗ v1, δ(v2) = g−i+1h⊗ v2 −
√

2
2 ξ

1−ig−ix⊗ v1,
where α1, α2, β1, β2 ∈ k. By [21, Proposition 8.8], B(Vi,j,k,ι)]B(W ) ∼= B(Xi,j,k,ι)
and hence the claim follows.

From the preceding discussion, the Nichols algebras of dimension greater than 2
in Proposition 3.14 can be related to the Nichols algebras B(Xi,j,k,ι) of diagonal
type. More precisely, if (i, j, k, ι) ∈ Λ2, then the Dynkin diagram of B(Xi,j,k,ι)

is −1◦ −1 −1◦ . If (i, j, k, ι) ∈ Λ3, then the Dynkin diagram is −1◦
ξ±j −1◦ .

If (i, j, k, ι) ∈ Λ4, then the Dynkin diagram is −1◦
ξ±j ξ∓j

◦ . These generalized
Dynkin diagrams appeared in the second row or the third row in [20, Table 1]. They
are of Cartan type A2 or standard type A2. Note that Vi,j,k,ι ∈ H

HYD (or grA
grAYD) is

characterized by (i, j, k, ι) ∈ Λ. By [21, Proposition 8.6], we are able to obtain these
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Nichols algebras B(Vi,j,k,ι) (up to isomorphism) by splitting the Nichols algebras
B(Xi,j,k,ι) of diagonal type.

It should be mentioned that a similar idea was used in a recent work [1] to study
the Nichols algebras over basic Hopf algebras. In particular, our examples can be
recovered in a similar way.

3.4. Hopf algebras over H. We determine all finite-dimensional Hopf algebras
over H such that their diagrams are strictly graded and their infinitesimal braidings
are simple objects in H

HYD. We first show that the diagrams of these Hopf algebras
are Nichols algebras.

Lemma 3.18. Let A be a finite-dimensional Hopf algebra over H such that the
corresponding infinitesimal braiding V is a simple object in H

HYD. Assume that the
diagram of A is strictly graded. Then grA ∼= B(V )#H.

Proof. Let S be the graded dual of the diagram R of A. Then by the duality
principle [8, Lemma 2.4], S is generated by S(1) if and only if P(R) = R(1). Since
R is strictly graded, there exists an epimorphism S � B(W ), where W := S(1). If
V is a simple object in H

HYD, then by Remark 3.6, W must be simple in H
HYD. To

show that R is generated by R(1), it suffices to show that S is a Nichols algebra,
that is, to show that the relations of B(W ) also hold in S.

Assume W = kχi,j,k
:= k{v} with (i, j, k) ∈ Λ0. Then B(W ) =

∧
kχi,j,k

for
(i, j, k) ∈ Λ0. Suppose that v2 6= 0 in S. Since c(v ⊗ v) = −v ⊗ v, it follows that
v2 ∈ P(S) and c(v2⊗v2) = v2⊗v2, which implies that dimS =∞, a contradiction.
Therefore, the relation v2 = 0 holds in S.

Assume that W = Vi,j,0,ι with (i, j, 0, ι) ∈ Λ3. Set r1 = v1v2 − ξjv2v1 for
simplicity. By Proposition 3.14, B(W ) := k〈v1, v2 | v2

1 = 0, r1 = 0, v4
2 = 0〉 and the

relations of B(W ) are all primitive elements. As δ(v1) = aj ⊗ v1 + ξi+1((−1)ι +
ξj)baj−1⊗ v2 and δ(v2) = daj−1⊗ v2 + 1

2ξ
3i+1(ξj − (−1)ι)caj−1⊗ v1, we have that

δ(v2
1) = a2 ⊗ v2

1 + ξi+j+1((−1)ι + ξj)ba⊗ r1, δ(r1) = da⊗ r1.

Then by the formula defining the braiding in H
HYD, c(r⊗ r) = r⊗ r for r = v2

1 , r1
and hence v2

1 = 0 = r1 in S. Finally, we have that δ(v4
2) = 1 ⊗ v4

2 , which implies
that c(v4

2 ⊗ v4
2) = v4

2 ⊗ v4
2 and hence v4

2 = 0 in S.
Similarly, the claim follows for the remaining cases. �

Next, we shall show that there do not exist non-trivial liftings for the bosoniza-
tions of the Nichols algebras over kχi,j,k

with (i, j, k) ∈ Λ0 and over Vi,j,k,ι with
(i, j, k, ι) ∈ Λ2 ∪ Λ3.

Proposition 3.19. Let A be a finite-dimensional Hopf algebra over H such that
grA ∼= B(V )]H, where V is isomorphic either to kχi,j,k

for (i, j, k) ∈ Λ0 or to
Vi,j,k,ι for (i, j, k, ι) ∈ Λ2 ∪ Λ3. Then A ∼= grA.

Proof. We prove the assertion for V ∼= Vi,j,k,ι with (i, j, k, ι) ∈ Λ3, being the proof
for kχi,j,k

and (i, j, k, ι) ∈ Λ2 completely analogous. Note that grA ∼= B(Vi,j,k,ι)]H
for (i, j, k, ι) ∈ Λ3. We prove the assertion by showing that the relations of grA
also hold in A.
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Assume that k = 0. Then B(Vi,j,0,ι)]H is generated by x, y, a, b, c, d, subject to
the relations of H, the relations of B(Vi,j,1,ι) and the relations

ax = −xa, bx = −xb, cx = ξixc, dx = ξixd, ay − ξya = (−1)ιxc,
by − ξyb = (−1)ιxd, cy − ξi+1yc = xa, dy − ξi+1yd = xb.

The coalgebra structure is given by (6), (7), ∆(x) = x⊗1+aj⊗x+ξ(1+ξi+j)baj−1⊗
y and ∆(y) = y ⊗ 1 + daj−1 ⊗ y + 1

2ξ
3i+1(ξj − (−1)ι)caj−1 ⊗ x. Then

∆(x2) = x2 ⊗ 1 + a2 ⊗ x2 + ξ(ξj − ξi)ba⊗ (xy − ξjyx),
∆(xy − ξjyx) = (xy − ξjyx)⊗ 1 + da⊗ (xy − ξjyx).

From the second equation, we have xy−ξjyx ∈ P1,da(B(W )]H) = P1,da(H). Since
P1,da(H) = k{1− da}, it follows that xy− ξjyx = µ(1− da) for some µ ∈ k. Then
from the first equation, we get that

∆(x2 + ξ(ξj − ξi)µba) = (x2 + ξ(ξj−ξi)µba)⊗ 1 + a2 ⊗ (x2 + ξ(ξj−ξi)µba),

which implies that x2 + ξ(ξj − ξi)µba = ν(1−a2) for some ν ∈ k. Since ax2 = x2a,
bx2 = x2b and ab = ξba, it follows that µ = 0 = ν and hence x2 = 0 = xy − ξjyx
in A. Finally, a tedious computation shows that y4 ∈ P(A) and hence the relation
y4 = 0 holds in A. Consequently, A ∼= grA.

Assume that k = 1. Then B(Vi,j,1,ι)]H is generated by x, y, a, b, c, d, subject to
the relations of H, the relations of B(Vi,j,1,ι) and the relations

bx = (−1)ιxb, cx = −xc, dx = −xd, ay + ξ(−1)ιya = (−1)ιxc,
ax = (−1)ιxa, by + ξ(−1)ιyb = (−1)ιxd, cy + ξyc = xa, dy + ξyd = xb.

The coalgebra structure is given by (6), (7), ∆(x) = x ⊗ 1 + daj−1 ⊗ x + ξ(ξj −
(−1)ι)caj−1 ⊗ y and ∆(y) = y ⊗ 1 + aj ⊗ y + 1

2ξ(ξ
j + (−1)ι)baj−1 ⊗ x.

A direct computation shows that xy + ξjyx ∈ P1,da(B(Vi,j,1,ι)]H) = P1,da(H).
Since P1,da(H) = k{1 − da}, xy + ξjyx = µ(1 − da) for some µ ∈ k. Then it
follows by a direct computation that x2+ξ(1+ξj(−1)ι)µba ∈ P1,a2(B(Vi,j,1,ι)]H) =
P1,a2(H). Since P1,a2(H) = k{1−a2}, x2 +ξ(1+ξj(−1)ι)µba = ν(1−a2) for some
ν ∈ k. Since ax2 = x2a, bx2 = x2b and ab = ξba, it follows that µ = 0 = ν and
hence x2 = 0 = xy + ξjyx in A. Finally, ∆(y4) = ∆(y)4 = y4 ⊗ 1 + 1⊗ y4, which
implies that the relation y4 = 0 holds in A. Consequently, A ∼= grA. �

Now we define eight families of Hopf algebras C4
i,j,k,ι(µ) depending on the param-

eter µ ∈ k and show that they are indeed liftings of the Nichols algebras B(Vi,j,k,ι)
for (i, j, k, ι) ∈ Λ4.

Definition 3.20. For µ ∈ k and (i, j, 0, ι) ∈ Λ4, let C4
i,j,0,ι(µ) be the algebra

generated by x, y, a, b, c, d subject to the relations (4), (5) and

ax = −(−1)ιξxa, bx = −(−1)ιξxb, cx = ξxc, dx = ξxd,

ay + (−1)ιya = (−1)ιxc, by + (−1)ιyb = (−1)ιxd, cy + yc = xa, dy + yd = xb,

x2 + 2(−1)ιy2 = µ(1− a2), xy + (−1)ιyx = µca, x4 = 0.
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C4
i,j,0,ι(µ) is a Hopf algebra whose coalgebra structure is given by (6), (7) and

∆(x) = x⊗ 1 + aj ⊗ x− (ξj + (−1)ι)baj−1 ⊗ y,

∆(y) = y ⊗ 1 + daj−1 ⊗ y + 1
2(ξj − (−1)ι)caj−1 ⊗ x.

Remark 3.21. It is clear that C4
i,j,0,ι(0) ∼= B(Vi,j,0,ι)]H and C4

i,j,0,ι(µ) with µ 6= 0
is not isomorphic to C4

i,j,0,ι(0) as Hopf algebras for (i, j, 0, ι) ∈ Λ4. Moreover,
C4
i,j,0,ι(µ) ∼= T (Vi,j,k,ι)]H/J0, where J0 is the ideal generated by the elements given

by the last row of the equations in Definition 3.20.
Definition 3.22. For µ ∈ k and (i, j, 1, ι) ∈ Λ4, let C4

i,j,1,ι(µ) be the algebra
generated by x, y, a, b, c, d subject to the relations (4), (5) and

ax = −(−1)ιξixa, bx = −(−1)ιξixb, cx = ξixc, dx = ξixd,

ay + ya = (−1)ιxc, by + yb = (−1)ιxd, cy − ξi+1yc = xa, dy − ξi+1yd = xb,

x2 + 2(−1)ιy2 = µ(1− a2), xy + (−1)ιyx = (−1)ιµca, x4 = 0.

C4
i,j,1,ι(µ) is a Hopf algebra whose coalgebra structure is given by (6), (7) and

∆(x) = x⊗ 1 + daj−1 ⊗ x+ ((−1)ιξj − 1)caj−1 ⊗ y,

∆(y) = y ⊗ 1 + aj ⊗ y − 1
2((−1)ιξj + 1)baj−1 ⊗ x.

Remark 3.23. It is clear that C4
i,j,1,ι(0) ∼= B(Vi,j,1,ι)]H and C4

i,j,1,ι(µ) with µ 6= 0
is not isomorphic to C4

i,j,1,ι(0) as Hopf algebras for (i, j, 1, ι) ∈ Λ4. Moreover,
C4
i,j,1,ι(µ) ∼= T (Vi,j,k,ι)]H/J1, where J1 is the ideal generated by the elements given

by the last row of the equations in Definition 3.22.
Lemma 3.24. A linear basis of C4

i,j,k,ι(µ) is given by

{yrxsdtcubvaw, s, w ∈ I0,3, r, t+ u+ v ∈ I0,1}.
In particular, dimC4

i,j,k,ι(µ) = 128.

Proof. We prove the assertion for C4
i,j,k,ι(µ) by applying the Diamond Lemma [13]

with the order y < x < d < c < b < a. By the Diamond Lemma, it suffices to
show that all overlap ambiguities are resolvable, that is, the ambiguities can be
reduced to the same expression by different substitution rules. To verify all the
ambiguities are resolvable is tedious but straightforward. Here we only check the
overlaps (xy)y = x(y2), x3(xy) = (x4)y and (ay)y = a(y2).

Assume k = 0. Note that ax2 = −x2a. After a direct computation, cay =
(−1)ιyca− (−1)ιxa2. Then

(xy)y = −(−1)ιyxy + µcay = −(−1)ιy(µca− (−1)ιyx) + µcay

= −(−1)ιµyca+ y2x+ µcay = y2x+ µ(cay − (−1)ιyca)

= y2x− (−1)ιµxa2 = 1
2(−1)ι[µ(1− a2)− x2]x− (−1)ιµxa2

= 1
2(−1)ιµx(1− a2)− 1

2(−1)ιx3 = x(y2).
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Note that cax = (−1)ιxca, x(xy) = −(−1)ιxyx + µxca = −(−1)ι(−(−1)ιyx +
µca)x + µxca = yx2 − (−1)ιµcax + µxca = yx2. It follows that x3(xy) = yx4 =
0 = (x4)y. Similarly, we have that

(ay)y = −(−1)ιyay + (−1)ιxcy = −y(−ya+ xc) + (−1)ιx(xa− yc)
= y2a+ (−1)ιx2a− (yx+ (−1)ιxy)c = y2a+ (−1)ιx2a− µ(−1)ιcac

= 1
2(−1)ιµ(1− a2)a+ 1

2(−1)ιx2a = 1
2(−1)ιµ(a− a3)− 1

2(−1)ιax2 = a(y2).

Assume k = 1. The proof follows the same line as for k = 0. �

Now we show that C4
i,j,k,ι(µ) is a lifting of the bosonization B(Vi,j,k,ι)]H for

(i, j, k, ι) ∈ Λ4.

Lemma 3.25. For (i, j, k, ι) ∈ Λ4, grC4
i,j,k,ι(µ) ∼= B(Vi,j,k,ι)]H.

Proof. Let Λ0 be the subalgebra of C4
i,j,k,ι(µ) generated by the subcoalgebra C =

k{a, b, c, d}. We claim that Λ0 ∼= H. Indeed, consider the Hopf algebra map
ψ : H 7→ C4

i,j,k,ι(µ) given by the composition H ↪→ T (Vi,j,k,ι)]H � C4
i,j,k,ι(µ) ∼=

T (Vi,j,k,ι)]H/Jk. It is clear that ψ(C) ∼= C as coalgebras and ψ(H) ∼= Λ0 as Hopf
algebras. By Lemma 3.24, dim Λ0 = 16. Hence dimψ(H) = 16 and ψ(H) ∼= H,
which implies that the claim follows.

Let Λ1 = Λ0 +H{x, y}, Λ2 = Λ1 +H{x2, xy}, Λ3 = Λ2 +H{x3, x2y} and Λ4 =
Λ3 + H{x3y}. A direct computation shows that {Λ`}4`=0 is a coalgebra filtration
of C4

i,j,k,ι(µ). Hence, (C4
i,j,k,ι(µ))0 ⊆ H, which implies that (C4

i,j,k,ι(µ))[0] ∼= H.
Therefore, grC4

i,j,k,ι(µ) ∼= R4
i,j,k,ι]H. By definition, it is easy to see that Vi,j,k,ι ⊂

P(R4
i,j,k,ι). Then by Lemma 3.24, dimR4

i,j,k,ι = 8 = dimB(Vi,j,k,ι). Consequently,
grC4

i,j,k,ι(µ) ∼= B(Vi,j,k,ι)]H. �

Proposition 3.26. Let A be a finite-dimensional Hopf algebra over H such that
grA ∼= B(V )]H, where V is isomorphic to Vi,j,k,ι, for (i, j, k, ι) ∈ Λ4. Then A ∼=
C4
i,j,k,ι(µ).

Proof. Assume k = 0. Then grA ∼= C4
i,j,0,ι(0) as Hopf algebras. As ∆(x) = x⊗ 1 +

aj⊗x−(ξj+(−1)ι)baj−1⊗y and ∆(y) = y⊗1+daj−1⊗y+ 1
2 (ξj−(−1)ι)caj−1⊗x,

∆(x2 + 2(−1)ιy2) = (x2 + 2(−1)ιy2)⊗ 1 + a2 ⊗ (x2 + 2(−1)ιy2),
∆(xy + (−1)ιyx) = (xy + (−1)ιyx)⊗ 1− ca⊗ (x2 + 2(−1)ιy2)

+ da⊗ (xy + (−1)ιyx).

From the first equation, we have that x2 + 2(−1)ιy2 ∈ P1,a2(B(Vi,j,0,ι)]H) =
P1,a2(H). Since P1,a2(H) = k{1 − a2}, it follows that x2 + 2(−1)ιy2 = µ(1 − a2)
for some µ ∈ k. Then from the second equation, we get that

∆(xy + (−1)ιyx− µca) = (xy + (−1)ιyx− µca)⊗ 1 + da⊗ (xy + (−1)ιyx− µca).

Thus xy + (−1)ιyx − µca = ν(1 − da) for some ν ∈ k. Since ν(1 − da)c =
νc(1 − da) and c(xy + (−1)ιyx) = −ξ(xy + (−1)ιyx)c, it follows that ν = 0 and
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hence xy + (−1)ιyx = µca. Finally, ∆(x4) = ∆(x)4 = x4 ⊗ 1 + 1 ⊗ x4 and hence
the relation x4 = 0 must hold in A.

Since the defining relations of C4
i,j,0,ι(µ) hold in A, there is a Hopf algebra

epimorphism from C4
i,j,0,ι(µ) to A. Since dimA = dimC4

i,j,0,ι(µ) by Lemma 3.24,
it follows that A ∼= C4

i,j,0,ι(µ).
Assume k = 1. Then grA ∼= C4

i,j,1,ι(0) as Hopf algebras. As ∆(x) = x ⊗ 1 +
daj−1⊗x+((−1)ιξj−1)caj−1⊗y and ∆(y) = y⊗1+aj⊗y− 1

2 ((−1)ιξj+1)baj−1⊗x,
a direct computation shows that x2 + 2(−1)ιy2 = µ(1 − a2) and xy + (−1)ιyx −
(−1)ιµca = ν(1−da) for some µ, ν ∈ k. Since c(xy+(−1)ιyx) = −ξ(xy+(−1)ιyx)c
and c(1 − da) = (1 − da)c, it follows that ν = 0 and xy + (−1)ιyx = (−1)ιµca.
Finally, ∆(x4) = ∆(x)4 = x4⊗1+1⊗x4 and hence x4 = 0 in A. Since the defining
relations of C4

i,j,1,ι(µ) hold in A, there is a Hopf algebra epimorphism from C4
i,j,1,ι(µ)

to A. By Lemma 3.24, dimA = dimC4
i,j,1,ι(µ) and hence A ∼= C4

i,j,1,ι(µ). �

Finally, we have the classification of finite-dimensional Hopf algebras over H
such that their diagrams are strictly graded and their infinitesimal braidings are
simple objects in H

HYD.

Proof of Theorem A. The Hopf algebras from different families are pairwise
non-isomorphic since their infinitesimal braidings are pairwise non-isomorphic as
Yetter–Drinfeld modules over H. And the rest of assertions follow by Lemmas 3.13
and 3.18, and Propositions 3.14, 3.19 and 3.26.

4. On finite-dimensional Hopf algebras over H̃

In this section, we determine all finite-dimensional Nichols algebras over simple
objects in H̃

H̃
YD and their liftings. These Nichols algebras have already appeared in

[15, 4] and consist of 2-dimensional exterior algebras, 4- and 8-dimensional algebras
with non-diagonal braidings. The bosonizations of these Nichols algebras are finite-
dimensional Hopf algebras over H̃ without the dual Chevalley property. Moreover,
the non-trivial liftings of these Nichols algebras might constitute new examples of
Hopf algebras of dimension 128 without the dual Chevalley property.

4.1. Finite-dimensional Nichols algebras in H̃

H̃
YD. We firstly describe the

Hopf algebra H̃, which already appeard in [11, 16] and is generated by its coradical
as follows:

Definition 4.1. H̃ as an algebra is generated by a, b, c satisfying the relations

a4 = 1, b2 = 1, c2 = 0, ac = ξca, ba = ab, bc = cb, (9)

and as a coalgebra is given by

∆(a) = a⊗ a+ a2c⊗ c, ∆(b) = b⊗ b, ∆(c) = c⊗ a+ a3 ⊗ c, (10)

and its antipode is given by S(a) = a3, S(b) = b, S(c) = ξ3c.

Remark 4.2. (1) G(H̃) = {1, a2, b, a2b}, P1,a2(H̃) = {1− a2, a3c}.
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(2) Let K be the subalgebra of H̃ generated by the elements a, c. Then K is a
Hopf subalgebra of H̃ which is isomorphic to the Hopf algebra EA given in
[16, Lemma 3.3] or K given in [15, Proposition 2.1] as Hopf algebras. In
particular, H̃ ∼= K ⊗ k[Z2] as Hopf algebras.

(3) Let A1 be the pointed Hopf algebra of dimension 16 defined by A1 :=
k〈g, h, x | gh−hg = h2 = g4−1 = x2−g2+1 = gx+xg = hx−xh = 0〉 with
∆(g) = g⊗ g, ∆(h) = h⊗ h and ∆(x) = x⊗ g+ 1⊗ x. Let A′′4 be the Hopf
subalgebra of A1 generated by g, x. Then A′′4 is the unique pointed Hopf
algebra of dimension 8 with non-pointed dual [28] and A1 ∼= A′′4 ⊗ k[Z2].
Moreover, A′′4 ∼= K∗ by [16, Lemma 3.3] and hence H̃∗ ∼= A′′4 ⊗k[Z2] ∼= A1.

(4) The set {gj , xgj , j ∈ I0,3} is a linear basis of A′′4 . Let {(ai)∗, (aic)∗, i ∈
I0,3} be the basis of A′′4 dual to {ai, aic, i ∈ I0,3}. By [15, Remark 2.4], the
Hopf algebra isomorphism φ : A′′4 → K∗ is given by

φ(gj) =
3∑
i=0

ξ−ij(ai)∗, ψ(xgj) =
√

2ξ
3∑
i=0

ξ−(i+1)j(aic)∗.

Lemma 4.3. Let H and K be finite-dimensional Hopf algebras. Suppose that V
or W is a simple object in H

HYD or K
KYD, respectively. Then V ⊗W is a simple

object in H⊗K
H⊗KYD by the diagonal action and coaction. Moreover, for any simple

object U ∈ H⊗K
H⊗KYD, U ∼= V ⊗W for some simple object V ∈ H

HYD and simple
object W ∈ K

KYD.

Proof. Since H⊗K
H⊗KYD ∼= D(H⊗K)M∼= D(H)⊗D(K)M, the proposition follows. �

Next, we determine the simple objects in H̃

H̃
YD. Consider the set Ω given by

Ω = {(i, j, k, ι) ∈ N×N×N×N | 0 ≤ i, j < 4, 0 ≤ k, ι < 2, 2i 6= j mod 4}.
Clearly, |Ω| = 48.

Proposition 4.4. Let kλi,j,k
= k{e} for (i, j, k) ∈ I0,1× I0,1× I0,3. Then kλi,j,k

∈
H̃

H̃
YD with the Yetter–Drinfeld module structure given by

a · e = ξkv, b · e = (−1)i, c · e = 0, δ(e) = a2kbj ⊗ e.

Let Wi,j,k,ι = k{e1, e2} for (i, j, k, ι) ∈ Ω. Then Wi,j,k,ι is a simple object in H̃

H̃
YD

with the Yetter–Drinfeld module structure given by
a · e1 = ξie1, b · e1 = (−1)ke1, c · e1 = 0,
a · e2 = −ξi+1e2, b · e2 = (−1)ke2, c · e2 = e1,

δ(e1) = bιa4−j ⊗ e1 + (ξ3i − ξi+j)bιa1−jc⊗ e2,

δ(e2) = bιa2−j ⊗ e2 + 1
2(ξi + ξ3i+j)bιa3−jc⊗ e1.

Moreover, any simple object W in H̃

H̃
YD is isomorphic to kλi,j,k

for some (i, j, k) ∈
I0,1 × I0,1 × I0,3 or Wi,j,k,ι for some (i, j, k, ι) ∈ Ω.
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Proof. It follows by [15, Propositions 3.1 and 3.3] and Lemma 4.3. �

Remark 4.5. By [15, Remark 2.8], W ∗i,j,k,ι ∼= W−i+1,−j+2,k,ι for (i, j, k, ι) ∈ Ω.

Remark 4.6. Let Wi,j,k,ι = k{e1, e2} ∈ H̃

H̃
YD for (i, j, k, ι) ∈ Ω. Then by (2),

Wi,j,k,ι ∈ A1
A1
YD with the Yetter–Drinfeld module structure given by

g · e1 = ξ−je1, h · e1 = (−1)ιe1, x · e1 =
√

2ξ(ξ−i−j − ξi)e2,

g · e2 = ξ2−je2, h · e2 = (−1)ιe2, x · e2 = −1
2(ξi−j + ξ−i)e1,

δ(e1) = gihk ⊗ e1, δ(e2) = gi−1hk ⊗ e2 +
√

2
2 ξi−1xgi−1hk ⊗ e1.

Now we describe the braidings of the simple objects in H̃

H̃
YD.

Proposition 4.7. Let kλi,j,k
= k{e} ∈ H̃

H̃
YD for (i, j, k) ∈ I0,1 × I0,1 × I0,3. Then

the braiding of kλi,j,k
is given by c(e⊗ e) = (−1)ij+ke⊗ e.

Proposition 4.8. Let Wi,j,k,ι = k{e1, e2} ∈ H̃

H̃
YD for (i, j, k, ι) ∈ Ω. Then the

braiding of Wi,j,k,ι is given by

c

([
e1
e2

]
⊗
[
e1 e2

])
= (−1)kι

[
ξ−ije1 ⊗ e1 ξ(1−i)je2 ⊗ e1+s12e1 ⊗ e2
ξi(2−j)e1 ⊗ e2 −ξ2i−ij+je2 ⊗ e2+s11e1 ⊗ e1

]
,

where s12 = ξ−ij − ξ2i−ij+j, s11 = 1
2 (ξ−ij + ξ2i−ij+j).

Finally, we determine all finite-dimensional Nichols algebras over simple ob-
jects in H̃

H̃
YD and present them by generators and relations. We shall show that

all finite-dimensional Nichols algebras over one-dimensional objects in H̃

H̃
YD are

parametrized by the set
Ω0 = {(i, j, k) ∈ I0,1 × I0,1 × I0,3 | 2 - ij + k}.

By Proposition 4.7, the next result follows immediately.

Lemma 4.9. The Nichols algebra B(kλi,j,k
) over kλi,j,k

for (i, j, k) ∈ I0,1×I0,1×I0,3
is

B(kλi,j,k
) =

{
k[e] if (i, j, k) ∈ (i, j, k) ∈ I0,1 × I0,1 × I0,3 − Ω0,∧
kλi,j,k

if (i, j, k) ∈ Ω0.

We shall determine all finite-dimensional Nichols algebras over two-dimensional
simple objects in H̃

H̃
YD. For simplicity, denote by Ωi for 1 ≤ i ≤ 3 the finite subset

of Ω given by
Ω1 = {(i, j, k, ι) ∈ Ω | j = 0, 2, k = ι = 1},
Ω2 = {(i, j, k, ι) ∈ Ω | i− 2 = kι = 0 or i = k − 1 = ι− 1 = 0, j 6= 2},
Ω3 = {(i, j, k, ι) ∈ Ω | i− 3 = kι = 0 or i− 1 = k − 1 = ι− 1 = 0, j 6= 0}.
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It is easy to check that |Ω1| = 4, |Ω2| = 8 = |Ω3| and ξ(1−i)j(−1)kι = −ξj for
(i, j, k, ι) ∈ Ω1 ∪ Ω2. It turns out that the Nichols algebra B(Wi,j,k,ι) is finite-
dimensional for (i, j, k, ι) ∈ Ω1 ∪ Ω2 ∪ Ω3.

Proposition 4.10. Let W be a two-dimensional simple object in H̃

H̃
YD. Then

B(W ) is finite-dimensional if and only if W is isomorphic to Wi,j,k,ι for (i, j, k, ι) ∈
Ω1 ∪ Ω2 ∪ Ω3. Moreover, the generators and relations are given by

(i, j, k, ι) ∈ relations of B(Vi,j,k,ι) with generators v1, v2 dimB(V )
Ω1 e2

1 = 0, e1e2 + ξje2e1 = 0, e2
2 = 0 4

Ω2 e2
1 = 0, e1e2 + ξje2e1 = 0, e4

2 = 0 8
Ω3 e4

1 = 0, e1e2 + e2e1 = 0, e2
1 − 2e2

2 = 0 8

Proof. Assume that (i, j, k, ι) ∈ Ω − ∪3
i=1Ωi; we claim that dimB(Wi,j,k,ι) = ∞.

Indeed, a direct computation shows that (−1)kιξ−ij = 1 or (−1)kιξ2i−ij+j = −1.
If (−1)kιξ−ij = 1, then the braiding of Wi,j,k,ι contains an eigenvector e1 ⊗ e1
of eigenvalue 1 and hence the claim follows. If (−1)kιξ2i−ij+j = −1, then by
Remark 4.5 and Proposition 2.3, the claim follows.

Assume that (i, j, k, ι) ∈ ∪3
i=1Ωi. Then the braided vector space Wi,j,k,ι belongs

to the case R2,1, R1,2 or R1,2(a) in [4] for (i, j, k, ι) ∈ Ω1, Ω2 or Ω3, respectively.
More precisely,

• If (i, j, k, ι) ∈ Ω1, then t2 = ξij(−1)kι = −1, tq = ξ(1−i)j(−1)kι = −ξj ,
tp = ξi(2−j)(−1)kι = (−1)i+1;
• if (i, j, k, ι) ∈ Ω2, then p = −1, q = ξ(1−i)j(−1)kι = −ξj , k = 1

2 (p+ q);
• if (i, j, k, ι) ∈ Ω3, then q = (−1)kιξi(2−j), p = −1, k = − 1

2 (q + p).
Then by [4, Proposition 3.3, 3.10 and 3.11], the assertion follows. �

Remark 4.11. By Remark 4.5 and Proposition 2.3, B(Wi,2,1,1) ∼= B(W1−i,0,1,1)∗bop

and B(Wi,j,k,ι) ∼= B(W1−i,j,k,ι)∗bop, where j = 1, 3, i = 0, 2 and k, ι ∈ {0, 1}. From
the proof of Proposition 4.10, the braiding matrices of Wi,j,k,ι for (i, j, k, ι) ∈ Ω2

are, up to a primitive 4th root of unity, the same and so are for (i, j, k, ι) ∈ Ω3.
The Nichols algebras B(Wi,j,k,ι) for (i, j, k, ι) ∈ Ω2 ∪ Ω3 have already appeared in
[15], and B(Wi,j,k,ι) with (i, j, k, ι) ∈ Ω1 are isomorphic to the Nichols algebras
B(Vi,j,k,ι) with (i, j, k, ι) ∈ Λ2.

Remark 4.12. It should be pointed out that B(Wi,j,k,0)]K is a Hopf subalgebra of
B(Wi,j,k,0)]H̃ for (i, j, k, 0) ∈ Ω1 ∪ Ω2 ∪ Ω3 and B(Wi,j,0,0)]H̃ ∼= B(Wi,j,0,0)]K ⊗
k[Z2] as Hopf algebras, where i ∈ {2, 3}, j ∈ {1, 3}.

Remark 4.13. Note that grA′′4 ∼= (A′′4)σ for some Hopf 2-cocycle σ. By [19,
Proposition 4.2],

σ = ε⊗ ε− ζ, where ζ(xigj , xkgl) = (−1)jkδ2,i+k for i, k ∈ I0,1, j, l ∈ I0,3.

Similar to Remark 3.17, the Nichols algebras of dimension greater than 2 in Propo-
sition 4.10 can be related to the Nichols algebras B(Yi,j,k,ι) of diagonal type. More
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precisely, if (i, j, k, ι) ∈ Ω1, then the Dynkin diagram of B(Yi,j,k,ι) is −1◦ −1 −1◦ .

If (i, j, k, ι) ∈ Ω2, then the Dynkin diagram is −1◦
ξ±j −1◦ . If (i, j, k, ι) ∈ Ω3, then

the Dynkin diagram is −1◦
ξ±j ξ∓j

◦ .

4.2. Finite-dimensional Hopf algebras over H̃. In this subsection, we de-
termine all finite-dimensional Hopf algebras over H̃ such that their diagrams are
strictly graded and their infinitesimal braidings are simple objects in H̃

H̃
YD. We

first show that the diagrams of these Hopf algebras are Nichols algebras.

Lemma 4.14. Let A be a finite-dimensional Hopf algebra over H̃ such that the
corresponding infinitesimal braiding W is a simple object in H̃

H̃
YD. Assume that

the diagram of A is strictly graded. Then grA ∼= B(W )]H̃.

Proof. Similar to the proof of Proposition 3.18. �

Next, we shall show that there do not exist non-trivial liftings for the bosoniza-
tions of the Nichols algebras over kλi,j,k

with (i, j, k) ∈ Ω0, and over Wi,j,k,ι with
(i, j, k, ι) ∈ Ω1 ∪ Ω2.

Proposition 4.15. Let A be a finite-dimensional Hopf algebra over H̃ such that
grA ∼= B(W )]H̃, where W is isomorphic either to kλi,j,k

for (i, j, k) ∈ Ω0 or to
Wi,j,k,ι for (i, j, k, ι) ∈ Ω1 ∪ Ω2. Then A ∼= grA.

Proof. We prove the assertion by showing that the defining relations of grA hold
in A. Assume that W ∼= Wi,j,k,ι for (i, j, k, ι) ∈ Ω1. Note that B(Wi,j,k,ι)]H̃ is
generated by x, y, a, b, c satisfying the relations (9) and the relations

ax = ξixa, bx = (−1)kxb, cx = ξ3ixc, ay + ξi+1ya = (−1)ixc,

by = (−1)kyb, cy + ξ3(i+1)yc = xa, x2 = 0, xy + ξjyx = 0, y2 = 0,

with the coalgebra structure given by (10), ∆(x) = x ⊗ 1 + bιa4−j ⊗ x + (ξ3i −
ξi+j)bιa1−jc⊗ y and ∆(y) = y ⊗ 1 + bιa2−j ⊗ y + 1

2 (ξi + ξ3i+j)bιa3−jc⊗ x.
A direct computation shows that y2 ∈ P(A) and xy + ξjyx ∈ P1,a2(A). Then

y2 = 0 in A. Since P1,a2(A) = P1,a2(B(Vi,j,k,ι)]H̃) = P1,a2(H̃) = k{1− a2, a3c}, it
follows that xy+ ξjyx = µ(1− a2) + νa3c for some µ, ν ∈ k. Since a(xy+ ξjyx) =
ξ2i+1(xy+ ξjyx)a and c(xy+ ξjyx) = ξ2i−1(xy+ ξjyx)c, it follows that µ = ν = 0
and hence xy + ξjyx = 0 in A. Finally, ∆(x2) = x2 ⊗ 1 + 1 ⊗ x2, which implies
that the relation x2 = 0 holds in A. Consequently, the assertion follows.

For W ∼= Wi,j,k,ι for (i, j, k, ι) ∈ Ω2 or kλi,j,k
for (i, j, k) ∈ Ω0, the proof follows

the same lines as Wi,j,k,ι for (i, j, k, ι) ∈ Ω1. �

Now we define eight families of Hopf algebras Ω3
i,j,k,ι(µ) with (i, j, k, ι) ∈ Ω3

and show that they are indeed liftings of the Nichols algebras B(Wi,j,k,ι) with
(i, j, k, ι) ∈ Ω3.
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Definition 4.16. For µ ∈ k and (i, j, k, ι) ∈ Ω3, let Ω3
i,j,k,ι(µ) be the algebra

generated by x, y, a, b, c, satisfying the relations (9) and the following ones:

ax = ξixa, bx = (−1)kxb, cx = ξ3ixc, ay + ξi+1ya = (−1)ixc, by = (−1)kyb,

cy + ξ3(i+1)yc = xa, x4 = 0, xy + yx = −µξiac, x2 − 2y2 = µ(1− a2).

Ω3
i,j,k,ι(µ) is a Hopf algebra with the coalgebra structure given by (10) and

∆(x) = x⊗ 1 + bιa4−j ⊗ x+ (ξ3i − ξi+j)bιa1−jc⊗ y,

∆(y) = y ⊗ 1 + bιa2−j ⊗ y + 1
2(ξi + ξ3i+j)bιa3−jc⊗ x.

Remark 4.17. (1) It is clear that Ω3
i,j,k,ι(0) ∼= B(Wi,j,k,ι)]H̃ and Ω3

i,j,k,ι(µ)
with µ 6= 0 is not isomorphic to Ω3

i,j,k,ι(0) for (i, j, k, ι) ∈ Ω3.
(2) Denote by Ω3

i,j,k,ι(µ) the subalgebra of Ω3
i,j,k,ι(µ) generated by a, c, x and y.

It is clear that Ω3
i,j,0,ι(µ) ∼= Ω3

i,j,0,ι(µ) ⊗ k[Z2] as algebras but not as coal-
gebras. Moreover, Ω3

i,j,0,0(µ) ∼= Ω3
i,j,0,0(µ) ⊗ k[Z2] as Hopf algebras. In

particular, Ω3
i,j,0,0(µ) is isomorphic to the Hopf algebra Ai,j(µ) in [15, Def-

initions 5.4/5.6].

Lemma 4.18. A linear basis of Ω3
i,j,k,ι(µ) is given by

{yrxsatbucv, s, t ∈ I0,3, r, u, v ∈ I0,1}.

In particular, dim Ω3
i,j,k,ι(µ) = 128.

Proof. By the Diamond Lemma, it suffices to show that all overlaps ambiguities
are resolvable with the order y < x < a < b < c < d. Here we only show that
(xy)y = x(y2), (x4)y = x3(xy) are resolvable and the others are completely similar.

After a direct computation, we have that (ac)y − y(ac) = ξixa2. Then

(xy)y = (−yx− µξiac)y = −yxy − µξiacy = −y(−yx− µξiac)− µξiacy
= y2x+ µξi(yac− acy) = y2x− µξ2ixa2 = y2x+ µxa2

= 1
2[x2 − µ(1− a2)]x+ µxa2 = 1

2x
3 − 1

2µ(1− a2)x+ µxa2

= 1
2x

3 − 1
2µx+ 1

2µxa
2 = x(y2).

Note that acx = xac, then
x2y = −xyx− µξixac = (yx+ µξiac)x− µξixac = yx2 + µξiacx− µξixac = yx2.

Therefore x3(xy) = yx4 = 0 = y(x4). It follows that the overlaps (xy)y =
x(y2), (x4)y = x3(xy) are resolvable. �

Now we show that Ω3
i,j,k,ι(µ) is a lifting of the bosonization B(Wi,j,k,ι)]H̃ for

(i, j, k, ι) ∈ Ω3.

Lemma 4.19. For (i, j, k, ι) ∈ Ω3, gr Ω3
i,j,k,ι(µ) ∼= B(Wi,j,k,ι)]H̃.
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Proof. Similar to the proof of Proposition 3.25. �

Proposition 4.20. Let A be a finite-dimensional Hopf algebra over H̃ such that
grA ∼= B(W )]H̃, where W is isomorphic to Wi,j,k,ι for (i, j, k, ι) ∈ Ω3. Then
A ∼= Ω3

i,j,k,ι(µ).

Proof. Note that grA ∼= Ω3
i,j,k,ι(0) as Hopf algebras. As ∆(x) = x ⊗ 1 + bιa4−j ⊗

x+(ξ3i−ξi+j)bιa1−jc⊗y and ∆(y) = y⊗1+bιa2−j⊗y+ 1
2 (ξi+ξ3i+j)bιa3−jc⊗x, a

direct computation shows that x2 − 2y2 ∈ P1,a2(A) = P1,a2(H̃). Since P1,a2(H̃) =
k{1−a2, a3c}, we have x2−2y2 = µ(1−a2)+νa3c for some µ, ν ∈ k. Furthermore,
it follows by a direct computation that
∆(xy + yx+ ξiµac) = (xy + yx+ ξiµac)⊗ 1 + 1⊗ (xy + yx+ ξiµac) + νac⊗ a3c.

Then a tedious computation on A[1] shows that the last equation holds only if
ν = 0, which implies that xy + yx + ξiµac = 0 and x2 − 2y2 = µ(1 − a2) in A.
Finally, ∆(x4) = ∆(x)4 = x4 ⊗ 1 + 1⊗ x4 and hence x4 = 0 in A.

Since the defining relations of Ω3
i,j,k,ι(µ) hold in A, there is a Hopf algebra

epimorphism from Ω3
i,j,k,ι(µ) to A. By Lemma 4.18, dimA = dim Ω3

i,j,k,ι(µ) and
hence A ∼= Ω3

i,j,k,ι(µ). �

Finally, we have the classification of finite-dimensional Hopf algebras over H̃
such that their diagrams are strictly graded and their infinitesimal braidings are
simple objects in H̃

H̃
YD.

Proof of Theorem B. The Hopf algebras from different families are pairwise
non-isomorphic since their infinitesimal braidings are pairwise non-isomorphic as
Yetter–Drinfeld modules over H̃. And the rest of assertions follow by Lemmas 4.9
and 4.14, and Propositions 4.10, 4.15 and 4.20.
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