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HIGHER ORDER MEAN CURVATURES OF SAC
HALF-LIGHTLIKE SUBMANIFOLDS OF INDEFINITE ALMOST

CONTACT MANIFOLDS

FORTUNÉ MASSAMBA AND SAMUEL SSEKAJJA

Abstract. We introduce higher order mean curvatures of screen almost con-
formal (SAC) half-lightlike submanifolds of indefinite almost contact mani-
folds, admitting a semi-symmetric non-metric connection. We use them to
generalize some known results by Duggal and Sahin on totally umbilical half-
lightlike submanifolds [Int. J. Math. Math. Sci. 2004, no. 68, 3737–3753]. Also,
we derive a new integration formula via the divergence of some special vector
fields tangent to these submanifolds, which we later use to characterize min-
imal and maximal submanifolds. Several examples, where possible, are also
included to illustrate the main concepts.

1. Introduction

Null (or lightlike) subspaces exist naturally in semi-Riemannian spaces and they
play a central role in general relativity. More precisely, in the study of black holes
(small volumes of spacetime with infinite density). In fact, they are subspaces
whose induced metrics are singular (or simply with vanishing determinants). Dif-
ferential geometry of these subspaces was introduced by Duggal and Bejancu in
their book [6], which was later updated by Dugal and Sahin to [7]. Their ap-
proach was later adopted by many other researchers, including but not limited to
[3, 8, 9, 12, 13, 14, 17]. From the above pieces of work, we can see that the theory
of lightlike geometry rests on a number of operators, including shape, Ricci, etc.,
together with functions constructed from them, like mean curvature, scalar curva-
ture, etc. However, the most important of such functions are the ones derived from
algebraic invariants of their respective operators. For instance, trace, determinant,
and in a more general sense the r-th symmetric functions, σr. These functions
play a central role in studying higher order mean curvatures in differential geom-
etry of both Riemannian and semi-Riemannian manifolds. In fact, for any given
point in a manifold, the r-th symmetric function σr coincides with the r-th mean
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22 F. MASSAMBA AND S. SSEKAJJA

curvature Sr. A great deal of work has been done for r = 1 (see [6, 7, 8, 12] and
references therein). But the case r > 1 is strictly non-linear and complicated. The
most efficient way of studying this case is the use of Newton transformations, Tr,
of a given operator A (or a system of operators) which, in some way, linearises Sr.
That is to say, (−1)r−1rSr = tr(A ◦ Tr−1).

Let Mm+1 be a half-lightlike submanifold of an indefinite contact manifold
M

m+3 admitting a semi-symmetric non-metric connection. Then, M carries three
shape operators A∗E , AN and AW , where E, N and W are respectively vector fields
in its radical distribution, lightlike transversal bundle, and screen transversal bun-
dle. When the structure vector field ξ is tangent to M but not necessarily in its
screen distribution, then A∗E is a self-adjoint operator on TM while AN and AW
are generally not self-adjoint. If we suppose that M is a screen almost conformal
(SAC) [15] half-lightlike submanifold, then the operator AN becomes self-adjoint on
TM and therefore diagonalizable on TM , and hence we can investigate its higher
order mean curvatures. With such mean curvatures, one can also investigate in-
tegration geometry on such submanifolds. Integration geometry is fundamentally
important as it provides obstructions to the existence of foliations whose leaves
enjoy some special geometric properties: totally geodesic (or totally umbilical),
minimal, constant mean curvature, and many more. Also, it provides a way of
minimizing volume (of submanifolds) as well as energy defined from smooth vector
fields on manifolds (see [1] and references therein).

In this paper, we consider a SAC half-lightlike submanifold M of an indefinite
contact manifold M , admitting a semi-symmetric non-metric connection. We de-
rive equations relating the r-th mean curvatures and Newton transformations of
AN and A∗E . We generalize some known results for r = 1 and also derive new inte-
gration formulas by computing the divergence of some vector fields on the tangent
bundle of M . The formula is then used to characterize minimal and r-maximal
half-lightlike submanifolds. The rest of the paper is arranged as follows. Section 2
outlines the basic preliminary concepts needed in other parts of the paper. Sec-
tion 3 introduces Newton transformations of A∗E . In Section 4 we show that the
r-th mean curvatures and Newton transformations of AN and A∗E are in partial
variation (see Proposition 4.2 and Theorem 4.4). Also, we derive generalized differ-
ential equations for r-th mean curvatures (Theorem 4.10). In Section 5 we present
special integration formulas by computing the divergence of some vector fields (see
Theorem 5.7 and its corollaries).

2. Preliminaries

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact
structure (φ, ξ, η), i.e. φ is a tensor field of type (1, 1), ξ is a vector field, and η is
a 1-form satisfying

φ
2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, and φ(ξ) = 0.

Then (φ, ξ, η, g) is called an indefinite almost contact metric structure on M if
(φ, ξ, η) is an almost contact structure on M and g is a semi-Riemannian metric
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on M such that (see [4]) for any vector field X, Y on M ,

g(φX, φY ) = g(X,Y )− η(X) η(Y ).

It follows that, for any vector X on M , η(X) = g(ξ,X). We denote by Γ(Ξ) the
set of smooth sections of the vector bundle Ξ.

A connection ∇ on M is called a semi-symmetric non-metric connection [11, 17]
if ∇ and its corresponding torsion tensor T satisfy the equations

(∇Xg)(Y , Z) = −η(Y )g(X,Z)− η(Z)g(X,Y ) (2.1)

and

T (X,Y ) = η(Y )X − η(X)Y ,

for all X, Y and Z vector fields on M .
Let (M, g) be an (m + n)-dimensional semi-Riemannian manifold of constant

index ν, 1 ≤ ν < m + n, and let M be a submanifold of M of codimension n.
We assume that both m and n are ≥ 1. At a point p ∈ M , we define the orthog-
onal complement TpM⊥ of the tangent space TpM by TpM

⊥ = {X ∈ Γ(TpM) :
g(X,Y ) = 0, ∀Y ∈ Γ(TpM)}. Take RadTpM = RadTpM⊥ = TpM ∩ TpM⊥.

The submanifold M of M is said to be an r-lightlike submanifold if the mapping
RadTM : p ∈M −→ RadTpM defines a smooth distribution on M of rank r > 0.
We call RadTM the radical distribution on M .

We say that M is a half-lightlike submanifold of M (see [7]) if r = 1, n = 2, and
there exist E,W ∈ Γ(TpM⊥) such that

g(E, V ) = 0, g(W,W ) 6= 0, ∀V ∈ Γ(TpM⊥).

From this, we observe that E ∈ RadTpM and therefore,

g(E,X) = g(E, V ) = 0, ∀X ∈ Γ(TpM), V ∈ Γ(TpM⊥).

Thus, RadTM is locally (or globally) spanned by E.
Let S(TM) be a screen distribution which is a semi-Riemannian complementary

distribution of RadTM in TM , that is,

TM = RadTM ⊥ S(TM). (2.2)

Choose a screen transversal bundle S(TM⊥), which is semi-Riemannian and com-
plementary to RadTM in TM⊥. Since, for any null section E of RadTM , there ex-
ists a unique null section N of the orthogonal complement of S(TM⊥) in S(TM)⊥
such that g(E,N) = 1, it follows that there exists a lightlike transversal vector
bundle ltr(TM) locally spanned by N [6]. Let W ∈ Γ(S(TM⊥)) be a unit vector
field, then g(N,N) = g(N,Z) = g(N,W ) = 0, for any Z ∈ Γ(S(TM)).

Let tr(TM) be complementary (but not orthogonal) vector bundle to TM in
TM . Then,

tr(TM) = ltr(TM) ⊥ S(TM⊥),
TM = S(TM) ⊥ S(TM⊥) ⊥ {RadTM ⊕ ltr(TM)}. (2.3)
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Note that the distribution S(TM) is not unique, and is canonically isomorphic to
the factor vector bundle TM/RadTM [6].

Let P be the projection of TM onto S(TM). Throughout this paper, we shall
suppose that ξ is a unit space-lightlike vector field. Moreover, from (2.3) ξ is
decomposed as

ξ = ξS + aE + bN + eW, (2.4)

where ξS denotes the projection of the tangential part of ξ onto S(TM) and a =
η(N), b = η(E) and e = εη(W ), with ε = ±1, are smooth functions on M . The
Gauss–Weingarten formulas are given by

∇XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM) (2.5)
∇XV = −AVX +∇tXV, ∀X ∈ Γ(TM), V ∈ Γ(tr(TM)). (2.6)

Notice that {∇XY,AVX} and {h(X,Y ),∇tXV } belong to Γ(TM) and Γ(tr(TM))
respectively. Further, ∇ and ∇t are linear connections on M and trTM , respec-
tively. The second fundamental form h is a symmetric F(M)-bilinear form on
Γ(TM) with values in Γ(tr(TM)) and the shape operator AV is a linear endomor-
phism of Γ(TM). Then, for all X,Y ∈ Γ(TM), (2.5) and (2.6) give

∇XY = ∇XY +B(X,Y )N +D(X,Y )W, (2.7)
∇XN = −ANX + τ(X)N + ρ(X)W,
∇XW = −AWX + φ(X)N, (2.8)
∇XPY = ∇∗XPY + C(X,PY )E, (2.9)
∇XE = −A∗EX − δ(X)E, (2.10)

for all E ∈ Γ(RadTM), N ∈ Γ(ltr(TM)), and W ∈ Γ(S(TM⊥)), where

h(X,Y ) = B(X,Y )N +D(X,Y )W,

C is the local second fundamental form on S(TM), {AN , AW } and A∗E are the
shape operators on TM and S(TM) respectively, and τ , ρ, φ, and δ are differential
1-forms on TM . Notice that ∇∗ is a metric connection on S(TM) while ∇ is
generally not a metric connection. In fact, using (2.1) and (2.7), we deduce

(∇Xg)(Y,Z) = B(X,Y )λ(Z) +B(X,Z)λ(Y )
− η(Y )g(X,Z)− η(Z)g(X,Y ),

(2.11)

for all X,Y, Z ∈ Γ(TM), where λ is a 1-form on TM given by λ(·) = g(·, N). It
is well known ([6, 7]) that B and D are independent of the choice of S(TM) and
they satisfy

B(X,E) = 0, D(X,E) = −φ(X), ∀X ∈ Γ(TM). (2.12)
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The three local second fundamental forms B, D, and C are related to their shape
operators by the following equations:

g(A∗EX,Y ) = B(X,Y )− bg(X,Y ), g(A∗EX,N) = 0, (2.13)
g(AWX,Y ) = D(X,Y )− eg(X,Y ) + φ(X)λ(Y ),

g(ANX,PY ) = C(X,PY )− ag(X,PY )− λ(X)η(PY ), (2.14)
g(ANX,N) = −aλ(X), g(AWX,N) = ρ(X)− eλ(X), (2.15)

δ(X) = τ(X)− bλ(X), ∀X,Y ∈ Γ(TM).

From the first equations of (2.12) and (2.13) we deduce that A∗E is S(TM)-valued,
self-adjoint, and satisfies A∗EE = 0. Let R and R denote the curvature tensors of
M and M respectively. Then, using the Gauss–Weingarten equations for M , we
derive

R(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y,Z)ANX +D(X,Z)AWY
−D(Y,Z)AWX + {(∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y,Z)
− τ(Y )B(X,Z) + φ(X)D(Y,Z)− φ(Y )D(X,Z)}N + {(∇XD)(Y,Z)
− (∇YD)(X,Z) + ρ(X)B(Y, Z)− ρ(Y )B(X,Z)}W,

(2.16)

R(X,Y )N = −∇X(ANY ) +∇Y (ANX) +AN [X,Y ] + τ(X)ANY
− τ(Y )ANX + ρ(X)AWY − ρ(Y )AWX + {B(X,ANX)−B(X,ANY )
+ 2dτ(X,Y ) + φ(X)ρ(Y )− φ(Y )ρ(X)}N + {D(X,ANX)−D(X,ANY )
+ 2dρ(X,Y ) + ρ(X)τ(Y )− ρ(Y )τ(X)}W, ∀X,Y ∈ Γ(TM).

(2.17)

A half-lightlike submanifold M of an indefinite almost contact manifold M , with
ξ ∈ Γ(TM), is called screen almost conformal (SAC) [15] if the shape operators
AN and A∗E of M and S(TM), respectively, are linked to each other by

AN = ϕA∗E + λ⊗ ξ, (2.18)

or, equivalently,

C(X,PY ) = ϕB(X,Y ) + λ(X)η(PY ), ∀X,Y ∈ Γ(TM), (2.19)

where ϕ is a non-vanishing smooth function on a coordinate neighborhood U of M .
Furthermore, M is screen almost homothetic if ϕ is a non-vanishing constant func-
tion.

When ∇ is a metric connection, it is easy to show that g(ANX,N) = 0 for
any X ∈ Γ(TM), for any half-lightlike submanifold. Hence AN is a screen-valued
operator, and thus the screen almost conformality condition (2.18) makes sense
only if ξ ∈ Γ(S(TM)).

In the following example, we consider the connection in the ambient space to be
Levi-Civita and construct a SAC half-lightlike submanifold of an indefinite Ken-
motsu manifold.
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In what follows, we consider a manifold M = (R2m+1
q , φ0, ξ, η, g) with its usual

Kenmotsu structure given by
η = dz, ξ = ∂z,

g = η ⊗ η − e−2z

q
2∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi) + e−2z
m∑

i=q+1
(dxi ⊗ dxi + dyi ⊗ dyi),

φ0

(
m∑
i=1

(Xi∂x
i + Yi∂y

i) + Z∂z

)
=

m∑
i=1

(Yi∂xi −Xi∂y
i),

where (xi, yi, z) are Cartesian coordinates and ∂tk = ∂
∂tk

, for t ∈ R2m+1.

Example 2.1. Let M = (R9
2, g) be a semi-Euclidean space, where g is of signature

(−,+,+,+,−,+,+,+,+) with respect to the canonical basis
(∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z).

Let ∇ be the Levi-Civita connection with respect to the semi-Riemannian metric
g and consider the vector fields u1, . . . , u9, where for all 1 ≤ i ≤ 8 we have

ui = ez
4∑

α′=1
fiα′(x1, . . . , x4, y1, . . . , y4, z)∂xα′

+ ez
8∑

β′=α′+1
fiβ′(x1, . . . , x4, y1, . . . , y4, z)∂yβ′ , det(fij) 6= 0,

u9 = −ξ,
where functions fiα′ and fiβ′ are defined such that the action of the connection
∇ on the basis {u1, . . . , u9} gives ∇uiui = ξ for all i = 1, 5, ∇ujuj = −ξ for all
j = 2, 3, 4, 6, 7, 8, ∇u3u1 = ezu5, ∇u3u5 = −ezu1, ∇u7u1 = ezu5, ∇u7u5 = −ezu1,
∇u1u3 = ezu5, ∇u1u7 = ezu5, ∇u5u3 = −ezu1, ∇u5u7 = ezu1, and the rest of the
connections ∇uiuj = 0 for all i 6= j, where i, j = 1, . . . , 8. Furthermore, the non-
vanishing brackets are [ui, u9] = ui, for all i = 1, . . . , 8. Using Koszul’s formula,
we have ∇uiu9 = ui for all i = 1, . . . , 8 and ∇u9u9 = 0. From these constructions,
(φ0, u9, η, g) defines an almost contact structure on R9

2. Therefore, (R9
2, φ0, u9, η, g)

is an indefinite Kenmotsu manifold.
Next, let us consider a submanifold M of R9

2 above which is given by the equation
x1 =

√
2(x2 + y2). By straightforward calculations, one can easily show that the

vectors E = 1√
2 (u6 + u2)− u1, Z1 = u3, Z2 = u7, Z3 = u6 − u2, Z4 = u5, Z5 = u8,

and Z6 = u9 = −ξ form a local frame of TM . Clearly, RadTM = span{E} and
S(TM) = span{Z1, . . . , Z6}. Also, the lightlike transversal bundle ltr(TM) and
co-screen S(TM⊥) are respectively spanned by N and W , where N = 1

2
√

2 (u6 +
u2)+ 1

2u1 and W = U4. Thus, M is a half-lightlike submanifold of (R9
2, φ0, u9, η, g).

By straightforward calculations, we have∇Z1N = 1
2e
zu5, ∇Z2N = 1

2e
zu5, ∇Z3N =

∇Z4N = ∇Z5N = ∇Z6N = 0, ∇EN = −u9 = ξ. Furthermore, ∇Z1E = − 1
2e
zu5,

∇Z2E = − 1
2e
zu5, ∇Z3E = ∇Z4E = ∇Z5E = ∇Z6E = ∇EE = 0. From these
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connections, the 1-forms τ and ρ vanish on TM . Therefore, from (2.8) and (2.10)
we deduce that ANZ1 = − 1

2e
zu5, ANZ2 = − 1

2e
zu5, ANZ3 = ANZ4 = ANZ5 =

ANZ6 = 0, ANE = u9 = −ξ. Also, A∗EZ1 = ezu5, A∗EZ2 = ezu5, A∗EZ3 =
A∗EZ4 = A∗EZ5 = A∗EZ6 = A∗EE = 0. From these relations, we deduce that
ANX = ϕA∗EX + λ(X)ξ for all X ∈ Γ(TM), with ϕ = − 1

2 . Hence, M is SAC
half-lightlike submanifold of (R9

2, φ0, u9, η, g).

When ∇ is a semi-symmetric non-metric connection, one can easily verify that
g(ANX,N) = −η(N)λ(X), for any X ∈ Γ(TM). See (2.15) for details. This
shows that AN is generally not a screen-valued operator. Thus, the screen almost
conformality condition (2.18) allows a ξ ∈ Γ(TM) but not necessarily in S(TM),
given by ξ = ξS + aE. Since on any SAC half-lightlike submanifold we have
ξ ∈ Γ(TM), it is easy to see from (2.4) that b = 0 and e = 0. Hence, using (2.14)
and (2.19) we deduce that M is a SAC half-lightlike submanifold of M admitting
a semi-symmetric non-metric connection if and only if

ANX = ϕA∗EX − aX, ∀X ∈ Γ(TM). (2.20)

Furthermore, if M is a SAC half-lightlike submanifold of an almost contact man-
ifold M admitting a semi-symmetric non-metric connection, then from (2.20) the
operator AN is self-adjoint on TM and thus diagonalizable on TM . Also, from
(2.20) we have that any SAC half-lightlike submanifold of an almost contact mani-
fold admitting a semi-symmetric non-metric connection, with the structure vector
field ξ ∈ Γ(S(TM)), is screen conformal.

3. Newton transformations of A∗E

Let M be an (n + 3)-dimensional almost contact metric manifold admitting a
semi-symmetric non-metric connection and (M, g, S(TM)) be a codimension two
SAC half-lightlike submanifold of M . Since A∗E is a self-adjoint operator, from
(2.13) and (2.20) we can see that AN is a self-adjoint linear operator on TM .
Thus, A∗E and AN are diagonalizable. Hence, A∗E has n + 1 real eigenvalues κ∗0 =
0, κ∗1, . . . , κ∗n (the principal curvatures) corresponding to a set of quasi-orthonormal
frame field of eigenvector fields {Z0 = E,Z1, . . . , Zn}. By the SAC condition (2.20)
it is easy to see that −a, (ϕκ∗1− a), . . . , (ϕκ∗n− a) are eigenvalues of AN . Moreover
the matrix of AN has the form

AN = diag(−a, ϕκ∗1 − a, . . . , ϕκ∗n − a).

Associated to the shape operator A∗E are n+ 1 algebraic invariants

S∗r = σr(κ∗0, κ∗1, . . . , κ∗n),

where σr : Mn+1 → R, for r = 0, 1, . . . , n+ 1, are symmetric functions given by

σr(κ∗0, κ∗1, . . . , κ∗n) =
∑

0≤i1<···<ir≤n
κ∗i1 · · ·κ

∗
ir . (3.1)
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Let us denote by I the identity map in Γ(TM). Then, the characteristic polynomial
of A∗E is given by

Q(t) = det(A∗E − tI) =
n+1∑
α=0

(−1)αS∗r tn+1−α.

The normalized r-th mean curvature H∗r of M is defined by

H∗r =
(
n+ 1
r

)−1
S∗r and H∗0 = 1 (a constant function 1).

In particular, when r = 1, then H∗1 = 1
n+1 tr(A∗E), which is called the mean cur-

vature of the half-lightlike submanifold M . On the other hand, H∗2 relates directly
with the (intrinsic) scalar curvature of M . Often times, H∗r , instead of S∗r , is called
the r-th mean curvature [3, 2]. Moreover, the functions S∗r (H∗r ) are smooth on
the whole M and, for any point p ∈M , S∗r coincides with the r-th mean curvature
at p. Throughout this paper, we shall use S∗r instead of H∗r .

The Newton transformations T ∗r : Γ(TM)→ Γ(TM), for r = 0, 1, . . . , n+1, of a
SAC half-lightlike submanifold M of an (n+ 3)-dimensional almost contact metric
manifold M with respect to AN are given by

T ∗r =
r∑

α=0
(−1)αS∗αA∗r−αE , (3.2)

or equivalently by the inductive formula

T ∗0 = I, T ∗r = (−1)rS∗r I +A∗E ◦ T ∗r−1, 1 ≤ r ≤ n. (3.3)

Notice that, by the Cayley-Hamiliton theorem, we have T ∗n+1 = 0. Moreover, T ∗r
are also self-adjoint and commute with A∗E .

It is important to note that the operators T ∗r depend on the choice of the
transversal bundle tr(TM) and the screen distribution S(TM). Suppose a screen
distribution S(TM) changes to another screen S(TM)′. The following are some
of the local transformation equations due to this change (see [6, p. 87] for more
details):

W ′i =
n∑
j=1

W j
i (Wj − εjcjE) , (3.4)

N ′(X) = N − 1
2g(W,W )E +W, (3.5)

A
′∗
EX = A∗EX +B(X,N −N ′)E, (3.6)

∇′XY = ∇XY +B(X,Y ){1
2g(W,W )E −W}, (3.7)

for any X, Y ∈ Γ(TM |U ), where W =
∑n
i=1 ciWi, {Wi} and {W ′i} are the local

orthonormal bases of S(TM) and S(TM)′ with respective transversal sections N
and N ′ for the same null section B. Here ci and W j

i are smooth functions on U
and {ε1, . . . , εn} is the signature of the basis {W1, . . . ,Wn}. Denote by ω the dual
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1-form of W , characteristic vector field of the screen change, with respect to the
induced metric g = g|M , that is,

ω(X) = g(X,W ), ∀ X ∈ Γ(TM). (3.8)

Consider an orthogonal basis {Zi}, for i ∈ {1, . . . , n}, which diagonalizes A′∗E and
A∗E . Let k′i and ki be the eigenvalues corresponding to the eigenvector Zi. Then,
from (3.6) we have (k′i − ki)Zi = −B(Zi,W )E, which shows that the eigenvalues
change under the change of the screen distribution. Since the generalized expansion
Θr depends on the eigenvalues ki, i.e. Θr = (−1)rS∗r = (−1)rσr(k1, . . . , kn), then a
change of N will cause a change in it. Now, let {Θ, T ∗r } and {Θ′, T ∗′r } be two sets
of the above objects under a change in N . Applying the recurrence relation (3.3)
and the fact that TrZi = (−1)rS∗ir Zi, we have

T ∗
′

r Zi = Θ′rI + (−1)r−1S∗i
′

r−1A
∗′
EZi, (3.9)

T ∗r Zi = ΘrI + (−1)r−1S∗ir−1A
∗
EZi. (3.10)

Subtracting the second relation in (3.9) from the first and using relation (3.6) with
X = Zi, we deduce that the operators T ∗r and T ∗

′

r are related by the equation

T ∗
′

r = Tr + (Θ′r −Θr)I + θrA
∗
E +B(T ∗

′

r−1, N −N ′)E, (3.11)

where θr := (−1)r−1(S∗i′r−1−S∗ir−1). It is easy to see that the tensor T ∗r is unique if
and only if the null hypersurface M is totally geodesic. For more details on Newton
transformations and their properties, we refer the reader to [2], [1] and many more
references therein.

Let S∗βr = σr(κ∗0, κ∗1, . . . , κ∗β−1, κ
∗
β+1, . . . , κ

∗
n) for 1 ≤ β ≤ n. A half-lightlike

submanifold M of an (n + 3)-dimensional almost contact metric manifold M is
called r-umbilical (resp. r-maximal) [3] if for all i, j ∈ {1, . . . , n}, we have

S∗ir = S∗jr (resp. H∗r = 0), 1 ≤ r ≤ n. (3.12)
Then, the following algebraic properties of T ∗r are well-known (see [3, 2, 1] and
references therein for details):

T ∗r Zβ = (−1)rS∗βr Zβ ,

tr(T ∗r ) = (−1)r(n+ 1− r)S∗r ,
tr(A∗E ◦ T ∗r−1) = (−1)r−1rS∗r ,

tr(A∗2E ◦ T ∗r−1) = (−1)r(−S∗1S∗r + (r + 1)S∗r+1),
tr(T ∗r−1 ◦ ∇XA∗E) = (−1)r−1X(S∗r ), ∀X ∈ Γ(TM). (3.13)

Next, we define the divergence of the operator T ∗r : Γ(TM)→ Γ(TM) as the vector
field div∇(T ∗r ) ∈ Γ(TM) and given by

div∇(T ∗r ) = tr(∇T ∗r ) =
n∑
β=0

(∇ZβT ∗r )Zβ . (3.14)

In line with (3.12), we can see that the SAC half-lightlike submanifold given in
Example 2.1 is r-minimal with 1 ≤ r ≤ 6.
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4. Fundamental SAC equations of AN

In this section, we derive SAC equations of AN from those of A∗E . We use some of
them to generalize some known results of [8]. Let TM = span{Z0 = E,Z1, . . . , Zn}
and S(TM) = span{Z1, . . . , Zn}.

Proposition 4.1. Let M be a SAC half-lightlike submanifold of an almost contact
manifold M admitting a semi-symmetric non-metric connection. Let S1 and S∗1 be
the first order mean curvatures corresponding to the two shape operators AN and
A∗E respectively. Then,

S1 = ϕS∗1 − an. (4.1)

Proof. From H1 = 1
n+1 tr(AN ) and H1 =

(
n+ 1

1

)−1
S1, we have S1 = tr(AN ).

From the last equation and the fact that M is a SAC half-lightlike submanifold,
we have S1 = tr(AN )|S(TM) = ϕ tr(A∗E)− an, which completes the proof. �

In the next proposition, we generalize Proposition 4.1.

Proposition 4.2. Let M be a SAC half-lightlike submanifold of an almost contact
manifold M admitting a semi-symmetric non-metric connection. Let Sr and S∗r
be the r-th mean curvatures corresponding to the two shape operators AN and A∗E
respectively. Then, for all r ≥ 1 we have

Sr = ϕrS∗r + J∗r (a, ϕ), (4.2)

where for a given A∗E, J∗r are smooth functions in a and ϕ given by

J∗r (a, ϕ) =
∑

0<i1<···<ir≤n
(−1)rar

+
∑

0≤i1<···<ir≤n

r−1∑
j=1

(−1)r+jej(κ∗i1, . . . , κ∗ir)ar−jϕj . (4.3)

Proof. Let κ∗0, . . . , κ∗n be the eigenvalues (principal curvatures) of A∗E and consider
a linear factorization of a kth-degree monic polynomial in t below:

k∏
i=1

(t−Xi) =
k∑
s=0

(−1)ses(X1, . . . , Xk)tk−s, (4.4)

where es denotes the sth-degree symmetric function in the variables X1, . . . , Xk.
Thus, if Sr is the r-th mean curvature of AN , then we have from the definition of
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Sr and (4.4) that

Sr =
∑

0≤i1<···<ir≤n
κi1 · · ·κir

=
∑

0≤i1<···<ir≤n

r∏
j=1

(ϕκ∗ij − a)

= ϕr
∑

0≤i1<···<ir≤n
er(κ∗i1 , . . . , κ

∗
ir ) +

∑
0<i1<···<ir≤n

(−1)rar

+
∑

0≤i1<···<ir≤n
(−1)r{−e1(κ∗i1 , . . . , κ

∗
ir)ar−1ϕ+ · · ·

+ (−1)r−1er−1(κ∗i1 , . . . , κ
∗
ir )aϕ

r−1}

= ϕrS∗r +
∑

0<i1<···<ir≤n
(−1)rar

+
∑

0≤i1<···<ir≤n

r−1∑
j=1

(−1)r+jej(κ∗i1 , . . . , κ
∗
ir )a

r−jϕj ,

which proves (4.2) and (4.3), hence the proposition. �

Notice that J∗r (0, ϕ) = 0, which is the case when the structure vector field ξ
belongs to S(TM). From (4.2), we have S1 = ϕS∗1 + J∗1 (a, ϕ) and from (4.3), we
can see that J∗1 (a, ϕ) = −an. Thus, S1 = ϕS∗1 − an, which is Proposition 4.1.

In what follows, we construct a SAC half-lightlike submanifold in which ξ ∈
Γ(S(TM)) of an indefinite almost contact manifold M = R9

2, admitting a semi-
symmetric non-metric connection. Notice from (2.20) that, under the above condi-
tions, we have a = 0 and therefore the corresponding SAC half-lightlike submanifold
is actually screen conformal.

Example 4.3. Let M = (R9
2, φ0, ξ, η, g) be an almost contact manifold, where g

is of signature (−,−,+,+,+,+,+,+,+) with respect to the canonical basis
(∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂z),

where (x1, . . . , x8, z) are the usual coordinates on M . Let φ0∂x1 = ∂x2, φ0∂x2 =
−∂x1, φ0∂x3 = ∂x4, φ0∂x3 = −∂x4, φ0∂x5 = ∂x6, φ0∂x6 = −∂x5, φ0∂x7 = ∂x8,
φ0∂x8 = −∂x7, and φ0∂z = 0. Consider a submanifold of M defined by

M = {(x1, . . . , x8, z) ∈ R9
2 : x1 = x2 − x7 − x8}.

Following simple calculations, we can see that the vector E = ∂x1−∂x2 +∂x7 +∂x8
is lightlike with corresponding lightlike transversal vectorN = − 1

4 (∂x1−∂x2−∂x7−
∂x8). Hence, RadTM = span{E} and ltr(TM) = span{N}. Furthermore, the
vector fields Z1 = ex1∂x3, Z2 = ex1∂x4, Z3 = ex1∂x6, Z4 = ∂x1 +∂x2−∂x7 +∂x8,
Z5 = − 1

4 (∂x1 + ∂x2 + ∂x7 − ∂x8), and Z6 = ∂z = ξ, span S(TM). Also, S(TM =
span{W}, where W = −ex1∂x5. Hence, M is a half-lightlike submanifold of M .
By straightforward calculations, we have [E,N ] = 0, [Zj , N ] = 0, for j = 4, 5, 6 and
[Zi, N ] = 1

4Zi, for i = 1, 2, 3. In a similar way, we have [Zj , E] = 0 for j = 4, 5, 6
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and [Zi, E] = −Zi, for i = 1, 2, 3. Further, [Z1, Z4] = −Z1, [Z1, Z5] = 1
4Z1,

[Z2, Z4] = −Z2, [Z2, Z5] = 1
4Z2, [Z3, Z4] = −Z3, [Z3, Z5] = 1

4Z3. Additionally,
[W,E] = −W and [W,N ] = 1

4W . All other brackets vanish. Notice that S(TM)
is integrable. Using the fact that ∇ is a semi-symmetric non-metric connection,
we get τ = ρ = 0, ∇EN = 0, ∇Z1N = 1

4Z1, ∇Z2N = 1
4Z2, ∇Z3N = 1

4Z3,
∇ZjN = 0, for j = 4, 5, 6. Also, φ = 0, ∇EE = 0, ∇Z1E = −Z1, ∇Z2E = −Z2,
∇Z3E = −Z3, ∇ZjE = 0, for j = 4, 5, 6. From these calculations, we deduce
that ANX = − 1

4A
∗
EX, for all X ∈ Γ(TM). Thus M is a SAC (in particular,

screen homothetic) half-lightlike submanifold, with ϕ = − 1
4 and a = 0, of M

admitting a semi-symmetric non-metric connection. Further still, if k∗0 , . . . , k∗6 and
k0, . . . , k6 are the principal curvatures of A∗E and AN with respect to the basis
of eigenvectors {E,Z1, . . . , Z6}, respectively, then from the above information we
have k∗0 = 0, k∗1 = 1, k∗2 = 1, k∗3 = 1, k∗4 = 0, k∗5 = 0, k∗6 = 0 and k0 = 0,
k1 = − 1

4 , k2 = − 1
4 , k3 = − 1

4 , k4 = 0, k5 = 0, k6 = 0. Hence, the matrices of A∗E
and AN are respectively the diagonal matrices given by diag(0, 1, 1, 1, 0, 0, 0) and
diag(0,− 1

4 ,−
1
4 ,−

1
4 , 0, 0, 0). Furthermore,

S∗r = σr(k∗0 , . . . , k∗6) = σr(0, 1, 1, 1, 0, 0, 0), 1 ≤ r ≤ 6.

Notice that S∗0 = 1, S∗1 = 3, S∗2 = 3, etc. In a similar way, if Sr is the r-th mean
curvature with respect to AN , then

Sr = σr(k0, . . . , k6) = σr(0,−
1
4 ,−

1
4 ,−

1
4 , 0, 0, 0) =

(
−1

4

)r
S∗r , 1 ≤ r ≤ 6.

Finally, we notice that the mean curvatures S∗r and Sr are also conformally related,
i.e., Sr = ϕrS∗r and J∗r (0,− 1

4 ) = 0.

Theorem 4.4. Let M be a SAC half-lightlike submanifold of an almost contact
manifold M admitting a semi-symmetric non-metric connection. Let Tr and T ∗r be
the r-th Newton transformations corresponding to the two shape operators AN and
A∗E respectively. Then, for all r ≥ 1 we have

Tr = ϕrT ∗r +N ∗r (a, ϕ), (4.5)

where N ∗r are operators depending on a, ϕ, and A∗E given by

N ∗r (a, ϕ) =
r∑

α=1
(−1)α

{
J∗α(a, ϕ) (ϕA∗E − aI)

r−α

+ ϕαS∗α

r−α∑
k=1

(−1)k
(
r − α
k

)
(ϕA∗E)r−α−k (aI)k

}
+

r∑
j=1

(−1)j
(
r

j

)
(ϕA∗E)r−j(aI)j .

(4.6)
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Proof. Using the fact that M is SAC half-lightlike submanifold, the definition of
Tr, (3.2), and Proposition 4.2 we get

Tr =
r∑

α=0
(−1)αSαAr−αN = ArN +

r∑
α=1

(−1)αSαAr−αN

= (ϕA∗E − aI)
r +

r∑
α=1

(−1)α (ϕαS∗α + J∗α(a, ϕ)) (ϕA∗E − aI)
r−α

.

Applying the binomial theorem, the above equation leads to

Tr = ϕrA∗rE +
r∑
j=1

(−1)j
(
r

j

)
(ϕA∗E)r−j(aI)j +

r∑
α=0

(−1)α{ϕαS∗α + J∗α(a, ϕ)}

× {(ϕA∗E)r−α +
r−α∑
k=1

(−1)k
(
r − α
k

)
(ϕA∗E)r−α−k (aI)k}. (4.7)

Expanding the two brackets in (4.7) gives

Tr = ϕrA∗rE + ϕr
r∑

α=1
(−1)αS∗αA∗r−αE

+
r∑

α=1
(−1)α

{
J∗α(a, ϕ) (ϕA∗E − aI)

r−α

+ ϕαS∗α

r−α∑
k=1

(−1)k
(
r − α
k

)
(ϕA∗E)r−α−k (aI)k

}
+

r∑
j=1

(−1)j
(
r

j

)
(ϕA∗E)r−j(aI)j ,

which gives Tr = ϕrT ∗r +N ∗r (a, ϕ), and this completes the proof. �

From now on, we shall write J∗r instead of J∗r (a, ϕ) and N ∗r instead of N ∗r (a, ϕ).
Next, we use Proposition 4.2 above to state the following:

Proposition 4.5. Let M be a SAC half-lightlike submanifold of an almost contact
metric manifold M admitting a semi-symmetric non-metric connection. Let S∗r
and T ∗r denote the r-th mean curvature and Newton transformations with respect
to A∗E respectively. Then, for all r ≥ 1 we have

tr(Tr) = ϕr tr(T ∗r ) + (−1)r(n+ 1− r)J∗r , (4.8)
tr(AN ◦ Tr−1) = ϕr tr(A∗E ◦ T ∗r−1) + (−1)r−1rJ∗r ,

tr(A2
N ◦ Tr−1) = ϕr+1 tr(A∗2E ◦ T ∗r−1)

+ (−1)r{ϕS∗1J∗r − anϕrS∗r − anJ∗r + (r + 1)J∗r+1}. (4.9)

Proof. The proof follows by straightforward calculations. �

Further, using (4.8) and (4.5) we deduce the following:
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Corollary 4.6. Let M be a SAC half-lightlike submanifold of an almost contact
metric manifold M admitting a semi-symmetric non-metric connection. Let S∗r
and T ∗r denote the r-th mean curvature and Newton transformations with respect
to A∗E respectively. Then, for all r ≥ 1, the trace of N ∗r satisfies

tr(N ∗r ) = (−1)r(n+ 1− r)J∗r . (4.10)

Next, we use Theorem 4.4 to state the following:

Theorem 4.7. Let M be a SAC half-lightlike submanifold of an almost contact
manifold M admitting a semi-symmetric non-metric connection. Let Tr and T ∗r be
the r-th Newton transformations corresponding to the two shape operators AN and
A∗E respectively. Then, the operator N ∗r satisfies the recurrence relation

N ∗1 = anI,
N ∗r = (−1)rJ∗r I− aϕr−1T ∗r−1 − aN ∗r−1 + ϕA∗E ◦ N ∗r−1, r ≥ 2.

(4.11)

Proof. Using the inductive formula (3.3), (4.2), (4.5), and (2.20) for a SAC half-
lightlike submanifold, we obtain the desired equation (4.11). �

Notice that (4.11) implies the following:

Corollary 4.8. Let M be a SAC half-lightlike submanifold of an almost contact
manifold M admitting a semi-symmetric non-metric connection. Let Sr and S∗r
be the r-th mean curvatures corresponding to the two shape operators AN and A∗E
respectively. Then, for all r ≥ 2 we have

tr(A∗E ◦ N ∗r−1) = (−1)r−1ϕ−1{rJ∗r + a(n+ 2− r)(ϕr−1S∗r−1 + J∗r−1)},
tr(A∗2E ◦ N ∗r−1) = ϕ−1 tr(A∗E ◦ N ∗r )− aϕ−1 tr(A∗E ◦ N ∗r−1)

+ aϕr−2 tr(A∗E ◦ T ∗r−1) + ϕ−1(−1)r−1J∗r S
∗
1 .

Proposition 4.9. Let (M, g, S(TM)) be an (n+1)-dimensional SAC half-lightlike
submanifold of an indefinite nearly cosymplectic manifold M admitting a semi-
symmetric non-metric connection. Denote by ∇ the induced connection on TM .
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Then

g(div∇(Tr), X)
= (−1)r−1λ(X)(ϕrE(S∗r ) + E(ϕr)S∗r + E(J∗r )) + g((∇EAN )Tr−1E,X)

+ ϕg(div∇(ϕr−1T ∗r−1), A∗EX) + ϕg(div∇(N ∗r−1), A∗EX)

− ag(div∇(ϕr−1T ∗r−1), X)− ag(div∇(N ∗r−1), X)
+ aλ(X)ϕr−1 tr(A∗E ◦ T ∗r−1) + aλ(X) tr(A∗E ◦ N ∗r−1)

− ϕrλ(X) tr(A∗
2

E ◦ T ∗r−1)− ϕλ(X) tr(A∗
2

E ◦ N ∗r−1)
+ aτ(X)ϕr−1 tr(T ∗r−1) + (a− ϕ)τ(X) tr(N ∗r−1)
− ϕrτ(X) tr(A∗E ◦ T ∗r−1) + (aη(X)− ϕη(A∗EX)) tr(N ∗r−1)
+ (aϕr−1η(X)− ϕrη(A∗EX)) tr(T ∗r−1) + ϕrη(X) tr(A∗E ◦ T ∗r−1)
+ (−1)r−1η(X)rJ∗r + (ϕrλ(A∗EX)− aϕr−1λ(X)) tr(A∗E ◦ T ∗r−1)

+ (ϕλ(A∗EX)− aλ(X)) tr(N ∗r−1) +
n∑
i=0

{
g(R(Zi, X)ϕr−1T ∗r−1Zi, N)

+ g(R(Zi, X)N ∗r−1Zi, N) + ϕrτ(Zi)B(X,T ∗r−1Zi)
+ ϕτ(Zi)B(X,N ∗r−1Zi)− aτ(Zi)(ϕr−1g(X,T ∗r−1Zi) + g(X,N ∗r−1Zi))
+ λ(T ∗r−1Zi)(ϕrB(Zi, A∗EX)− aϕr−1B(X,Zi))
+ λ(N ∗r−1Zi)(ϕB(Zi, A∗EX)− aB(X,Zi))
+ (−ϕrλ(A∗E(T ∗r−1Zi))− ϕλ(A∗E(N ∗r−1Zi)) + aϕr−1λ(T ∗r−1Zi)
+ aλ(N ∗r−1Zi))B(X,Zi) + (−ϕrη(A∗E(T ∗r−1Zi))− ϕη(A∗E(N ∗r−1Zi))
+ aϕr−1η(T ∗r−1Zi) + aλ(N ∗r−1Zi))g(X,Zi) + (aη(N ∗r−1Zi)
+ aϕr−1η(T ∗r−1Zi))g(X,Zi)− (ϕη(N ∗r−1Zi)

+ ϕrη(T ∗r−1Zi))g(A∗EX,Zi)
}
, ∀X ∈ Γ(TM).

(4.12)

Proof. From (3.3), (3.14), and the fact that AN is self-adjoint, we derive

g(div∇(Tr), X) = (−1)rPX(Sr) + g(div∇(Tr−1), ANX)

+ g(
n∑
α=0

(∇ZαAN )Tr−1Zα, X), (4.13)

for all X ∈ Γ(TM).
Using the definition of covariant derivative we have

g((∇ZiAN )Tr−1Zi, X) = g(Tr−1Zi, (∇ZiAN )X) + g(∇ZiAN (Tr−1Zi), X)i
− g(∇Zi(ANX), Tr−1Zi) + g(AN (∇ZiX), Tr−1Zi)
− g(AN (∇ZiTr−1Zi), X),

(4.14)
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for all X ∈ Γ(TM). By virtue of (2.11) and the fact that AN is a self-adjoint
operator, equation (4.14) reduces to
g((∇ZiAN )Tr−1Zi, X) = g(Tr−1Zi, (∇ZiAN )X)

+B(Zi, ANX)λ(Tr−1Zi) +B(Zi, Tr−1Zi))λ(ANX)
−B(Zi, AN (Tr−1Zi))λ(X)−B(Zi, X)λ(AN (Tr−1Zi)
+ η(X)g(Zi, AN (Tr−1Zi))− η(ANX)g(Zi, Tr−1Zi)
− η(Tr−1Zi)g(Zi, ANX) + η(AN (Tr−1Zi))g(Zi, X),

(4.15)

for any X ∈ Γ(TM).
Now, applying (2.16), (2.17), (2.20), and (4.15) we derive
g((∇ZiAN )Tr−1Zi, X) = g(Tr−1Zi, (∇XAN )Zi)

+ g(R(Zi, X)Tr−1Zi, N) + ϕ{τ(Zi)B(X,Tr−1Zi)
− τ(X)B(Zi, Tr−1Zi)} − a{τ(Zi)g(X,Tr−1Zi)
− τ(X)B(Zi, Tr−1Zi)}+B(Zi, ANX)λ(Tr−1Zi)
+B(Zi, Tr−1Zi))λ(ANX)−B(Zi, AN (Tr−1Zi))λ(X)
−B(Zi, X)λ(AN (Tr−1Zi) + η(X)g(Zi, AN (Tr−1Zi))
− η(ANX)g(Zi, Tr−1Zi)− η(Tr−1Zi)g(Zi, ANX)
+ η(AN (Tr−1Zi))g(Zi, X), ∀X ∈ Γ(TM).

(4.16)

Finally, substituting (4.16) in (4.13) and using Propositions 4.2 and 4.5 and The-
orem 4.4 we obtain the required equation (4.12). �

A semi-Riemannian manifoldM of constant curvature c is called a semi-Riemannian
space form ([6, 7]) and is denoted by M(c). Then, the curvature tensor R of M(c)
is given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y }, ∀X,Y, Z ∈ Γ(TM). (4.17)

Next, using Proposition 4.9 we have the following:

Theorem 4.10. Let M(c) be r-totally umbilical SAC half-lightlike submanifold of
constant curvature c and with an integrable screen distribution S(TM), of an indef-
inite contact manifold Mn+3, admitting a semi-symmetric non-metric connection.
Suppose that M ′ is a leaf of M(c). If the structure vector field ξ is tangent to M(c),
but not in S(TM), then

(−1)r(ϕrE(S∗r ) + E(ϕr)S∗r + E(J∗r ))

= −ϕr tr(A∗
2

E ◦ T ∗r−1)− ϕ tr(A∗2E ◦ N ∗r−1)− ϕrτ(E) tr(A∗E ◦ T ∗r−1)
+ a tr(A∗E ◦ N ∗r−1) +A′ tr(T ∗r−1) +B′ tr(N ∗r−1),

where A′ = aτ(E)− cϕr−1 and B′ = (a− ϕ)τ(E)− a− c.
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Proof. Since M is a space form, then div∇(Tr) ∈ Γ(TM⊥). Thus, taking X = E in
(4.12) and simplifying the resultant equation while considering (2.12), (2.20), and
(4.17), we get

(−1)r(ϕrE(S∗r ) + E(ϕr)S∗r + E(J∗r ))− a tr(A∗E ◦ N ∗r−1)
+ ϕr tr(A∗2E ◦ T ∗r−1) + ϕ tr(A∗2E ◦ N ∗r−1)− aϕrτ(E) tr(T ∗r−1)
+ (ϕ− a)τ(E) tr(N ∗r−1) + ϕrτ(E) tr(A∗E ◦ T ∗r−1)
+ a tr(N ∗r−1) + c(ϕr−1 tr(T ∗r−1) + tr(N ∗r−1)) = 0,

from which our assertion follows by re-arrangement. �

From the above theorem we have:

Corollary 4.11. Let M(c) be a r-totally umbilical SAC half-lightlike submanifold
of constant curvature c and with an integrable screen distribution S(TM), of an
indefinite nearly contact manifold M

n+3, admitting a semi-symmetric non-metric
connection. Suppose that M ′ is a leaf in M(c). If the structure vector field ξ is
tangent to M(c) and belongs to S(TM), then M(c) is a semi-Euclidean space if
and only if

ϕrE(S∗r ) + E(ϕr)S∗r = (−1)r−1ϕr(tr(A∗2E ◦ T ∗r−1) + τ(E) tr(A∗E ◦ T ∗r−1)).

Proof. The proof follows easily from Theorem 4.10 using the fact a = 0 when
ξ ∈ Γ(S(TM)). �

From Corollary 4.11 we have
ϕrE(S∗r ) + E(ϕr)S∗r = ϕr(tr(A∗2E ◦ T ∗r−1) + τ(E) tr(A∗E ◦ T ∗r−1))

= rϕrS∗r τ(E) + ϕr
n∑
i=1

k∗2i S
∗α
r−1,

which on simplifying gives

E(ϕrS∗r ) = rϕrS∗r τ(E) + ϕr
n∑
i=1

k∗2i S
∗α
r−1. (4.18)

Notice that (4.18) recovers Theorem 4.5 of [8], which says: For a conformal half-
lightlike submanifold M(c) with mean curvature K, if M ′ is a totally umbilical leaf
in M(c), then the submanifold is a semi-Euclidean space if and only if Ksatisfies

E(K)−Kτ(E)−K2ϕ−1 = 0.

5. Special Minkowski integration formulae

In this section, we present a new integration formula on a special SAC half-
lightlike submanifold (M, g, S(TM), S(TM⊥)) of an indefinite nearly cosymplec-
tic manifold (M, g), called SAC H-half-lightlike submanifold, via the computa-
tion of div∇(TrHX ′) and div∇(TrHX ′ + TrE), where X ′ ∈ Γ(S(TM)⊥) and
E ∈ Γ(RadTM). As an application, we apply our formula in classifying mini-
mal and r-maximal SAC half-lightlike submanifolds. We shall suppose that M is
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closed and bounded (compact). An almost contact manifold M is said to be nearly
cosymplectic if

(∇Xφ)Y + (∇Y φ)X = 0, (5.1)
for any vector fields X, Y on M , where∇ is the connection for the semi-Riemannian
metric g.

Replacing Y by ξ in (5.1) we obtain

∇Xξ = −HX, (5.2)

where H is a (1,1) tensor given by HX = φ(∇ξφ)X. The linear operator H has
the properties ([16]):

H φ+ φH = 0, Hξ = 0, η ◦H = 0, (∇Xφ)ξ = φHX,

and g(HX,Y ) = −g(X,H Y ) (i.e. H is skew-symmetric),

for all X,Y ∈ Γ(TM).

Proposition 5.1. Let (M, g, S(TM), S(TM⊥)) be any half-lightlike submanifold
of an indefinite nearly cosymplectic manifold (M, g). Then

HS(TM)⊥ ⊂ S(TM).

Proof. On a lightlike submanifold we have

S(TM)⊥ = {RadTM ⊕ ltr(TM)} ⊥ S(TM⊥).

Thus, to show that HS(TM)⊥ ⊂ S(TM) it is enough to show that

H RadTM ⊂ S(TM), Hltr(TM) ⊂ S(TM), and HS(TM⊥) ⊂ S(TM).

Now, let E ∈ Γ(RadTM); then by the anti-symmetry of H we have g(HE,E) = 0.
This shows that HE has no component along ltr(TM). Thus, we can see that
HE ∈ Γ(TM ⊥ S(TM⊥)), which indicates that HE has a possibility of belonging
to Γ(TM). Considering this option and the fact that on a half-lightlike submanifold
rank(RadTM) = 1, we can see that H RadTM is a distribution on M of rank 1
such thatH RadTM∩RadTM={0}. Therefore, we can choose a particular S(TM)
containing H RadTM as one of its subbundles. Further, let N ∈ Γ(ltr(TM)); then
g(HN,E) = −g(N,HE) = 0. Thus, HN has no component along ltr(TM). Since
g(HN,N) = 0 we can see that HN has no component along RadTM . Hence,
HN ∈ Γ(S(TM) ⊥ S(TM⊥)), from which we can also choose HN ∈ Γ(S(TM)).
Using a similar reasoning as above, we can see that g(HW,W ) = 0, g(HW,E) = 0,
and g(HW,N) = 0, for W ∈ Γ(S(TM⊥)). From the last three equations, it is
obvious that HW is neither in Γ(RadTM) nor in Γ(ltr(TM)). Also, we infer
that HW /∈ Γ(S(TM⊥)). In fact, if HW ∈ Γ(S(TM⊥)) then there exists a non-
vanishing function ω such that HW = ωW . Taking the g-product of the last
equation with respect to W we get 0 = g(HW,W ) = ωg(W,W ) 6= 0, which is a
contradiction. Thus, HW ∈ Γ(S(TM)), which completes the proof. �

Using Proposition 5.1 we have the following:
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Definition 5.2. Let (M, g, S(TM), S(TM⊥)) be any half-lightlike submanifold
of an indefinite nearly cosymplectic manifold (M, g). We say that M is H-half-
lightlike submanifold of M if

HS(TM)⊥ ⊂ S(TM).

Unlike the non-degenerate submanifolds, in the lightlike submanifolds it is gen-
erally difficult to define certain geometric operators like divergence and Laplacian.
This is attributed to the degeneracy of the induced metric tensor g. However, as
(M, g) is paracompact we can normalize it to (M, g̃), where

g̃ := g + λ⊗ λ (5.3)

is a non-degenerate metric tensor. More details on the normalization process can
be found in [3, 10]. With such a metric, we can successfully define the previously
mentioned operators, as well as defining a special volume form dV on M to aid in
the integration formulae that will follow. From now on, we assume that M carries
such a metric tensor.

Proposition 5.3. Let (M, g, S(TM), S(TM⊥)) be a SAC H-half-lightlike sub-
manifold of an indefinite nearly cosymplectic manifold (M, g) admitting a semi-
symmetric non-metric connection. Then,

g̃(∇ETrHX ′, E) = (−1)rSrη(HX ′), (5.4)

g(∇ZiTrHX ′, Zi) = g(HX ′, (∇ZiTr)Zi) + g(∇∗ZiTrHX
′, Zi)

− g(HX ′, (∇∗ZiTr)Zi)− η(HX ′)g(Zi, TrZi)
+ (−1)rSrη(HX ′),

(5.5)

for all X ′ ∈ Γ(S(TM)⊥), where ∇∗ is the metric connection on S(TM).

Proof. First, observe from (5.3) that

g̃(X,E) = g(X,N), (5.6)

for any X ∈ Γ(TM). Thus, a straightforward calculation leads to

g(∇ETrHX ′, N) = (−1)rg(∇ESrHX ′, N) = (−1)rg(Sr∇EHX ′, N).

Now, applying (2.9) to the above equation we get

g(∇ETrHX ′, N) = (−1)rg(Sr∇∗EHX ′, N) + (−1)rSrC(E,HX ′),

from which we get

g(∇ETrHX ′, N) = (−1)rSrC(E,HX ′). (5.7)

Applying (2.14) to (5.7) with X = E and PY = HX ′ we get

g(∇ETrHX ′, N) = (−1)rSrη(HX ′),

which, if considered with (5.6), proves (5.4). On the other hand, using (2.11) we
derive

g(∇ZiTrHX ′, Zi) = Zi(g(TrHX ′, Zi))− g(HX ′, Tr∇ZiZi). (5.8)
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Now, applying the definition of covariant derivative of Tr on (5.8) we get

g(∇ZiTrHX ′, Zi) = g(HX ′, (∇ZiTr)Zi) + Zi(g(TrHX ′, Zi))
− g(HX ′,∇ZiTrZi) + (−1)rSrη(HX ′)
+ η(Zi)g(HX ′, TrZi).

(5.9)

Also, using (2.11) we derive

Zi(g(HX ′, TrZi))− g(HX ′,∇ZiTrZi)
= g(Tr∇ZiHX ′, Zi)− η(HX ′)g(Zi, TrZi)− η(Zi)g(Zi, TrHX ′). (5.10)

Then substituting (5.10) in (5.9) and then applying (2.9) we get (5.5), which com-
pletes the proof. �

Now we are ready to compute div∇(TrHX ′).

Theorem 5.4. Let (M, g, S(TM), S(TM⊥)) be a SAC H-half-lightlike submanifold
of an indefinite nearly cosymplectic manifold (M, g) admitting a semi-symmetric
non-metric connection. Then,

div∇(TrHX ′) = g(div∇(ϕrT ∗r ), HX ′) + g(div∇(N ∗r ), HX ′)

− g(div∇
∗
(ϕrT ∗r ), HX ′)− g(div∇

∗
(N ∗r ), HX ′)

+ tr(∇∗(ϕrT ∗rHX ′)) + tr(∇∗(N ∗rHX ′))
− ϕrη(HX ′) tr(T ∗r )− η(HX ′) tr(N ∗r )
+ (−1)r(n+ 1)η(HX ′)(ϕrS∗r + J∗r ),

for all X ′ ∈ Γ(S(TM)⊥).

Proof. By definition of divergence we have

div∇(TrHX ′) = tr(∇TrHX ′)

=
n∑
i=1

g(∇ZiTrHX ′, Zi) + g̃(∇ETrHX ′, E). (5.11)

Now, applying (5.4) and (5.5) of Proposition 5.3 to (5.11) we get the desired equa-
tion, which ends the proof. �

Theorem 5.5. Let (M, g, S(TM), S(TM⊥)) be a SAC H-half-lightlike submanifold
of an indefinite nearly cosymplectic manifold (M, g) admitting a semi-symmetric
non-metric connection. Then

div∇(TrE) = (−1)r(A1S
∗
r +A2J

∗
r + ϕrE(S∗r ) + E(J∗r )),

where
A1 = ϕrτ(E) + E(ϕr)− ϕrS∗1 and A2 = τ(E)− S∗1 ,

for any E ∈ Γ(RadTM).
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Proof. By straightforward calculations we have

div∇(TrE) = tr(∇TrE) =
n∑
i=1

g(∇ZiTrE,Zi) + g̃(∇ETrE,E). (5.12)

But
g̃(∇ETrE,E) = g(∇ETrE,N) = (−1)r(E(Sr) + Srg(∇EE,N)). (5.13)

Now, applying (2.10) and Proposition 4.2 to (5.13) we get
g(∇ETrE,N) = (−1)r(E(ϕrS∗r ) + E(J∗r ) + τ(E)(ϕrS∗r + J∗r )).

Also,
g(∇ZiTrE,Zi) = (−1)r−1(ϕrS∗r + J∗r )g(A∗EZi, Zi). (5.14)

Finally, replacing (5.13) and (5.14) in (5.12), we get the desired result. �

From Theorems 5.4 and 5.5 we have:

Theorem 5.6. Let (M, g, S(TM), S(TM⊥)) be a SAC H-half-lightlike submanifold
of an indefinite nearly cosymplectic manifold (M, g) admitting a semi-symmetric
non-metric connection. Then,

div∇(Tr(HX ′ + E)) = g(div∇(ϕrT ∗r ), HX ′) + g(div∇(N ∗r ), HX ′)

− g(div∇
∗
(ϕrT ∗r ), HX ′)− g(div∇

∗
(N ∗r ), HX ′)

+ tr(∇∗(ϕrT ∗rHX ′)) + tr(∇∗(N ∗rHX ′))
+ (−1)r(B1S

∗
r +B2J

∗
r + ϕrE(S∗r ) + E(J∗r )),

where
B1 = A1 + ϕrrη(HX ′) and B2 = A2 + rη(HX ′),

for all X ′ ∈ Γ(S(TM)⊥).

Proof. The proof follows directly from Theorems 5.4 and 5.5, equation (4.8) and
the fact that div∇(Tr(HX ′ + E)) = div∇(TrHX ′) + div∇(TrE). �

From the above theorem we have the following:

Theorem 5.7. Let (M, g, S(TM), S(TM⊥)) be a compact SAC H-half-lightlike
submanifold of an indefinite nearly cosymplectic manifold (M, g) admitting a semi-
symmetric non-metric connection. Let dV denote a volume form on M with respect
to g̃. Then,

(−1)r−1
∫
M

(B1S
∗
r +B2J

∗
r + ϕrE(S∗r ) + E(J∗r )) dV

=
∫
M

g(div∇(ϕrT ∗r ), HX ′) dV +
∫
M

g(div∇(N ∗r ), HX ′) dV

−
∫
M

g(div∇
∗
(ϕrT ∗r ), HX ′) dV −

∫
M

g(div∇
∗
(N ∗r ), HX ′) dV

+
∫
M

tr(∇∗(ϕrT ∗rHX ′)) dV +
∫
M

tr(∇∗(N ∗rHX ′)) dV,
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where
B1 = A1 + ϕrrη(HX ′) and B2 = A2 + rη(HX ′),

for all X ′ ∈ Γ(S(TM)⊥).

Proof. Since M is compact, then applying Stokes’ theorem we see that∫
M

div∇(Tr(HX ′ + E)) dV = 0, ∀X ′ ∈ Γ(S(TM)⊥). (5.15)

Now, using (5.15) and Theorem 5.6 we get the desired result. �

In particular, if M is an indefinite cosymplectic manifold (i.e., H = 0), then∫
M

(B1S
∗
r +B2J

∗
r + ϕrE(S∗r ) + E(J∗r )) dV = 0.

Corollary 5.8. Let (M, g, S(TM), S(TM⊥)) be a compact SAC H-half-lightlike
submanifold of an indefinite nearly cosymplectic manifold (M, g) admitting a semi-
symmetric non-metric connection. If ξ ∈ Γ(S(TM)), then

(−1)r−1
∫
M

(B1S
∗
r + ϕrE(S∗r )) dV =

∫
M

g(div∇(ϕrT ∗r ), HX ′) dV

−
∫
M

g(div∇
∗
(ϕrT ∗r ), HX ′) dV +

∫
M

tr(∇∗(ϕrT ∗rHX ′)) dV,

for all X ′ ∈ Γ(S(TM)⊥).

When M is a SAC H-half-lightlike submanifold of constant sectional curvature,
then div∇(Tr) ∈ Γ(TM⊥) and hence we have the following:

Corollary 5.9. Let (M, g, S(TM), S(TM⊥)) be a compact SAC H-half-lightlike
submanifold of constant curvature of an indefinite nearly cosymplectic manifold
(M, g) admitting a semi-symmetric non-metric connection. Then,

(−1)r−1
∫
M

(B1S
∗
r +B2J

∗
r + ϕrE(S∗r ) + E(J∗r )) dV

= −
∫
M

g(div∇
∗
(ϕrT ∗r ), HX ′) dV −

∫
M

g(div∇
∗
(N ∗r ), HX ′) dV

+
∫
M

tr(∇∗(ϕrT ∗rHX ′)) dV +
∫
M

tr(∇∗(N ∗rHX ′)) dV,

for all X ′ ∈ Γ(S(TM)⊥).

Some applications of Theorem 5.7. Integral formulae are very important in
differential geometry since they provide obstructions to the existence of foliations
whose leaves enjoy some special geometric properties, such as being totally ge-
odesic (or totally umbilic), minimal, constant mean curvature, and many more.
Most of the interesting and useful integral formulae in both Riemannian and semi-
Riemannian geometry are obtained by computing the divergence of certain vector
fields and applying Stokes’ theorem (see some examples in [2]). Such integral
formulae have also been studied in degenerate submanifolds, particularly on null
hypersurfaces (see [3, 5]).
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A half-lightlike submanifold (M, g) is said to be minimal if S∗1 = 0. Moreover,
if S∗r = 0, for all r ≥ 1, then we say that M is r-maximal [3]. Let us suppose that
τ(E) = 0, that is, the local section E is a geodesic [7], and that ξ is tangent to M .
Furthermore, we assume that M is a normal nearly cosymplectic manifold, in which
H = 0. Under these assumptions, B1 = A1 = E(ϕr)−ϕrS∗1 , B2 = A2 = −S∗1 , and
J∗r = 0. Thus, the integral formula of Theorem 5.7 reads as∫

M

((E(ϕr)− ϕrS∗1 )S∗r + ϕrE(S∗r )) dV = 0, (5.16)

for all r ≥ 1. Setting r = 1 in the above formula and then using Corollary 4.11, we
get ∫

M

ϕS∗21 dV = 0.

In the case that ϕ is a constant function, we get S∗1 = 0, that is M is minimal. In
addition to this, if tr(A∗E

2 ◦ T ∗r−1) is a non-negative function on M , then (3.13),
(5.16) and Corollary 4.11 imply that S∗r = 0. That is, M is r-minimal. Thus, based
on the above discussion we have the following characterization result.

Theorem 5.10. Let (M, g) be a totally umbilical SAC H-half-lightlike submanifold
of a normal nearly cosymplectic manifold (M, g), such that E is a geodesic and
that ξ is tangent to M . Then, M is a minimal submanifold of M . Moreover, if
tr(A∗E

2 ◦ T ∗r−1) is a non-negative function on M , then M is r-maximal.
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