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BRANCHING LAWS: SOME RESULTS AND NEW EXAMPLES

OSCAR MÁRQUEZ, SEBASTIÁN SIMONDI, AND JORGE A. VARGAS

Abstract. For a connected, noncompact simple matrix Lie group G so that
a maximal compact subgroup K has a three dimensional simple ideal, in this
note we analyze the admissibility of the restriction of irreducible square in-
tegrable representations for the ambient group when they are restricted to
certain subgroups that contain the three dimensional ideal. In this setting
we provide a formula for the multiplicity of the irreducible factors. Also, for
general G such that G/K is an Hermitian G-manifold we give a necessary and
sufficient condition so that an arbitrary square integrable representation of
the ambient group is admissible over the semisimple factor of K.

1. Introduction

Let G be a connected noncompact simple matrix Lie group. Henceforth, we fix
a maximal compact subgroup K of G and we assume both groups have the same
rank. We also fix T ⊂ K a maximal torus. Thus, T is a compact Cartan subgroup
of G. Under these hypotheses, Harish-Chandra showed there exists irreducible
unitary representations of G so that its matrix coefficients are square integrable
with respect to a Haar measure on G. One aim of this note is to write down
explicit branching laws for the restriction of some irreducible square integrable
representation to specific subgroups H of G. A second objective is to show that
whenG is simple, the symmetric spaceG/K hasG-invariant quaternionic structure,
and H is a specific subgroup locally isomorphic to the group SU(2, 1), then an
irreducible square integrable representation for G has an admissible restriction to
H if and only if it is a quaternionic discrete series representation. The last objective
is to present results on admissible restriction of square integrable representations
to specific subgroups of G. To begin with, we recall a description of the irreducible
square integrable representations for G. Harish-Chandra showed that the set of
equivalence classes of irreducible square integrable representations is parameterized
by a lattice contained in the dual of the Lie algebra of a compact Cartan subgroup.
In order to state our results we need to specify the parametrization and set up some
notation. As usual, the Lie algebra of a Lie group is denoted by the corresponding
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46 O. MÁRQUEZ, S. SIMONDI, AND J. A. VARGAS

lower case German letter. The complexification of a real vector space V is denoted
by adding the subindex C. However, the root space for a root is denoted by the
real Lie algebra followed by a subindex equal to the root. V ? denotes the dual
space to a vector space V . Let θ be the Cartan involution which corresponds to
the subgroup K, the associated Cartan decomposition is denoted by g = k + p.
Let Φ(g, t) denote the root system attached to the Cartan subalgebra tC. Hence,
Φ(g, t) = Φc ∪ Φn = Φ(k, t) ∪ Φn(g, t) splits up as the disjoint union of the set of
compact roots and the set of noncompact roots. From now on, we fix a system of
positive roots ∆ for Φc. For this note, either the highest weight or the infinitesimal
character of an irreducible representation of K is dominant with respect to ∆. The
Killing form on the Lie algebra g gives rise to an inner product ( , ) in it?. As
usual, let ρ = ρg denote half of the sum of the roots for some system of positive
roots for Φ(g, t).

A Harish-Chandra parameter for G is λ ∈ it? such that (λ, α) 6= 0 for every
α ∈ Φ(g, t), and so that λ+ρ is the differential of a character of T . To each Harish-
Chandra parameter, λ, Harish-Chandra associated a unique irreducible square in-
tegrable representation (πGλ , Vλ) of G. Moreover, he showed the map λ 7→ πGλ is a
bijection from the set of Harish-Chandra parameters dominant with respect to ∆
onto the set of equivalence classes of irreducible square integrable representations
for G. For a proof see [12].

In [2], Gross and Wallach have considered a quaternionic real form G of a
complex simple Lie group and constructed a specific subgroup H locally isomor-
phic to SU(2, 1); their setting is as follows: a system of positive roots Ψ so that
∆ ⊂ Ψ ⊂ Φ(g, t) is called small if the maximal root β for Ψ is compact, Ψ has at
most two noncompact simple roots α0, α1 and after we write β = n0α0 + n1α1 +
a linear combination of compact simple roots, we have the inequality n0 + n1 ≤ 2.
A noncompact connected simple Lie group G is a quaternionic real form if g is an
inner form of a complex simple Lie algebra and if a compactly imbedded Cartan
subalgebra t has the property that Φ(g, t) admits a small system of positive roots
so that n0 + n1 = 2. In [2], the list of the Lie algebras for the quaternionic real
forms is presented; we reproduce the list in section 3. It can be shown that the
set of equivalence classes of the set of quaternionic real forms is equal to the set
of equivalence classes of the set of noncompact simple Lie groups G so that the
associated global symmetric space admits a G-invariant quaternionic structure.

In order to state Theorem 1, we fix a quaternionic real form G, a small system
of positive roots Ψ ⊃ ∆, and a noncompact simple root α for Ψ. An irreducible
square integrable representation (πGλ , V ) is called quaternionic discrete series rep-
resentation if the Harish-Chandra parameter λ is dominant with respect to Ψ.

For the quaternionic real form G, a particular copy h of su(2, 1) contained in g
is constructed in [2]. For this, Gross and Wallach verify the equality

2(β, α)
(α, α) = 1.

Thus, the Lie subalgebra hC of gC spanned by the root vectors corresponding to
the roots {±α,±β} is isomorphic to sl(3,C) and invariant under the conjugation
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of gC with respect to g. Hence, h := g ∩ hC is a real form for hC. This real
form has a compactly embedded Cartan subalgebra, namely, u := t ∩ h. Thus, h
is isomorphic to su(2, 1). Henceforth, we identify the set Φ(h, u) with the subset
{±α,±β,±(β − α)} of Φ(g, t).

(1.0) Let H denote the analytic subgroup of G with Lie algebra h. Then, L :=
K∩H is a maximal compact subgroup for H. The system Φ(h, u) has three systems
of positive roots to which the root β belongs to. The one that interests us is the
non-holomorphic system

Ψq := Ψ ∩ Φ(h, u) = {β − α, α, β}.

The simple roots for Ψq are β − α, α. For a root γ ∈ Φ(g, t), we denote its coroot
by γ̌ ∈ it. Let Λ1,Λ2 denote the fundamental weights for Ψq, labeled so that
Λ1(α̌) = 0.

(1.1) Owing to results in [1, 13, 7], which we will review in section 2, it follows
that for a Harish-Chandra parameter λ dominant with respect to the small system
Ψ the irreducible representation (πGλ , Vλ) restricted to H is an admissible repre-
sentation. That is, there exists a sequence of Harish-Chandra parameters for H,
dominant with respect to β,

µ1, µ2, . . . , µj , . . . in iu?

and there exist positive integers

nG,H(λ, µj), j = 1, 2, . . .

so that the restriction of (πGλ , Vλ) to H is unitarily equivalent to the discrete Hilbert
sum

∞∑
j=1

nG,H(λ, µj) (πHµj , Vµj ).

In [2] it is shown that Ψn := Ψ ∩ Φn has 2d elements. Our hypothesis that G
is a quaternionic real form forces the root spaces for the roots ±β span a three
dimensional simple ideal su2(β) in k. We denote by k2 the complementary ideal to
su2(β) in k. Hence, we have the decompositions

t = Riβ̌ + (t ∩ k2) and ∆ = {β} ∪ Φ(k2, t ∩ k2) ∩Ψ.

For each λ ∈ tC, we write λ = λ1 + λ2, with λ1 ∈ Cβ̌, λ2 ∈ t2C := tC ∩ k2C . Let
qu : t? → u? denote the restriction map.

(1.2) We will verify, in (2.7), that for a Harish-Chandra parameter λ dominant
for the small system Ψ, we have that λ2 is a Harish-Chandra parameter for K2
or perhaps for a two fold cover of K2. From now on, πK2

λ2
denotes the irreducible

representation for k2 of infinitesimal character λ2. As usual, ∆T∩K2

(
πK2
λ2

)
denotes

the set of T ∩K2-weights for the representation πK2
λ2

and M(λ2, ν) stands for the
multiplicity of the weight ν ∈ ∆T∩K2(πK2

λ2
).

In (2.7) we verify that for λ dominant with respect to the small system Ψ the
weight λ1 + ν + aΛ1 + bqu(λ2) is dominant with respect to the system Ψq for every
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a, b ∈ Z≥0, and for every U ∩K2-weight ν of πK2
λ2

. One result of this note is the
next theorem.

Theorem 1. Let G be a quaternionic real form, H as in (1.0) and (πGλ , Vλ) a
quaternionic discrete series representation for G. Then, nG,H(λ, µ) 6= 0 if and
only if µ = (n+ d)Λ1 + (m+ d)Λ2 + qu(λ2) + qu(ν) with arbitrary m,n ∈ Z≥0 and
T ∩K2-weight ν for πK2

λ2
. Moreover,

nG,H(λ, µ) = ∑
ν∈∆T∩K2

(
π
K2
λ2

)
,

m,n∈Z≥0,
µ=(n+d)Λ1+(m+d)Λ2+qu(λ2)+qu(ν)

M(λ2, ν)
(
m+ d− 2
d− 2

)(
n+ d− 2
d− 2

)
.

A question that naturally arises is: What are the Harish-Chandra parameters
for G, dominant with respect to ∆, so that πGλ has an admissible restriction to H?
The answer to this question is given in Proposition 1.

A group G locally isomorphic to either SO(3, n) shares with the quaternionic real
forms that a suitable copy of the algebra su2 is an ideal in a maximal compactly
embedded subalgebra for g. A group locally isomorphic to SO(3, 2p + 1) has no
square integrable representations. For a group locally isomorphic to SO(3, 2n) and
n ≥ 2, in Proposition 2 we show that no irreducible square integrable representation
of G has an admissible restriction to the usual copy of “SO(3)” contained in G.
For the quaternionic group Sp(1, p) the usual factor “Sp(1)” of a maximal compact
subgroup is contained in a certain image H0 of Sp(1, 1). In Proposition 3 we show
that a quaternionic discrete series for Sp(p, 1) has admissible restriction to H0.
Additionally, we compute the Harish-Chandra parameter of each irreducible H0-
factor as well as the multiplicity of each factor.

The group SU(2, 1) can be mapped into a simple Lie group G in perhaps sev-
eral ways by maps φ : SU(2, 1) → G. A natural question is: What is the triple
(G, πGλ , φ) such that πλ restricted to the image of φ is an admissible representation?
In [10] we find that for the analytic subgroup H1 that corresponds to the image of
su(2, 1) in the rank one real form of a complex group type F4 no square integrable
representation of the ambient group has an admissible restriction to H1.

We would like to comment that this note grew up from results in the Ph.D. theses
of Sebastián Simondi and Oscar Márquez, successfully defended at the Faculty of
Mathematics, Astronomy and Physics at the Universidad Nacional de Córdoba,
Argentina, in 2007 and 2011 respectively.

2. Proof of Theorem 1

As in the hypothesis G is a connected, quaternionic simple Lie group and H is the
subgroup locally isomorphic to SU(2, 1). To begin with, we sketch a proof for the
statement: For λ dominant with respect to the small system Ψ, the representation
(πGλ , Vλ) restricted to H is admissible. In fact, for a system of positive roots Σ ⊂
Φ(g, t) in [1] is attached an ideal k1(Σ) for the Lie algebra k. The ideal is equal
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to the real form of the ideal of kC spanned by {[Yγ , Yφ] : γ, φ ∈ Σ ∩ Φn, Yγ ∈ gγ}
together with a subspace of the center zk of k.

(2.0) For the system Ψ, cf. [2, Prop. 1.3, Table 2.5], we have that any root in
Φc∩Ψ not equal to β is a linear combination of compact simple roots for Ψ. Thus,
for two noncompact roots in Ψ, their sum is a root only when the sum is equal
to β. Thus, k1(Ψ) is equal to su2(β) plus the contribution of the center. Now, from
the list of the quaternionic real forms, we read that zk is nonzero only for G locally
isomorphic to SU(2, p). For su(2, p), it is shown in [1] that for Ψ the contribution
of zk to k1(Ψ) is just the zero subspace. Hence, for a quaternionic system Ψ we
have

k1(Ψ) = su2(β).
Because of the definition of H we have that K1(Ψ) is contained in H, hence

Theorem 1 in [1] yields that for λ dominant with respect to Ψ the representation
(πGλ , Vλ) has an admissible restriction to H∩K as well as to the subgroup H. In [6]
we find a different proof of the admissibility.

Therefore, there exists a sequence of Harish-Chandra parameters for H, µ1, . . . ,
µn, . . . ∈ iu?, for which we may assume for every j, (µj , β) > 0, and positive
integers nG,H(λ, µj) so that the restriction of (πGλ , Vλ) restricted to H is equivalent
to the Hilbert sum ∑

j

nG,H(λ, µj)πHµj .

We are left to compute µj, to show that each µj is dominant for Ψq, and to compute
the integers nG,H(λ, µj).

For this we recall results in [1, 4]. For γ ∈ it? (resp. in iu?) we consider the
Dirac distribution δγ and the discrete Heaviside distribution defined by the series

yγ :=
∑
n≥0

δ γ
2 +nγ = δ γ

2
+ δ γ

2 +γ + δ γ
2 +2γ + . . .

For any strict multiset γ1, . . . , γr the convolution yγ1 ? · · · ? yγr is a well defined
distribution. In particular, we have

yγ ? · · · ? yγ︸ ︷︷ ︸
r

:= yrγ =
∑
n≥0

(
n+ r − 1
r − 1

)
δ( r2 +n)γ .

We have
uC = Cα̌+ Cβ̌, uC ∩ k2C = uC ∩ t2C = hC ∩ k2C = C(β̌ − 2α̌) = CΛ2.

qu : t?C → u?C denotes restriction map.
Next, we recall the sub-root system Φz := {γ ∈ Φ(k, t) : qu(γ) = 0}. Because of

(1.0) and (1.1),
Φz = {γ : (γ, α) = (γ, β) = 0} = {γ ∈ Φ(k2, t2) : qu∩t2(γ) = 0}.

The Weyl group for the system Φz is denoted by Wz. Because of (2.0) the Weyl
group W for the pair (k, t) is equal to the product 〈Sβ〉 ×W (k2, t). Thus,

Wz\W = 〈Sβ〉 ×Wz\W (k2, t).

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)
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Let

∆(k/l) := qu[Ψ ∩ Φ(k, t)\Φz]\Φ(l, u) = qu[{β} ∪Ψ(k2, t)\Φz]\{β}
= qu∩k2(Ψ ∩ Φ(k2, t ∩ k2)\Φz) =: ∆(k2/u ∩ k2).

We set ρz = 1
2

∑
γ∈Ψ∩Φz

γ, and for σ ∈ it? the Weyl polynomial is defined to be

$(σ) :=
∏
γ∈Ψ∩Φz

(σ, γ)∏
γ∈Ψ∩Φz

(ρz, γ) .

As before, we write λ = λ1 + λ2, with λ1 ∈ Riβ̌ and λ2 ∈ t2. Then, owing to
(1.2), for γ ∈ Φ(k2, t) ∩Ψ we have the equality λ(γ̌) = λ2(γ̌). Thus, λ2 is a Harish-
Chandra parameter for K2 or perhaps for a two-fold cover of K2. Actually, it
readily follows that λ2 is a Harish-Chandra parameter for K2 if and only if β

2 lifts
to a character of T . Therefore, replacing if necessary G by a two-fold cover, we
have that λ2 is a Harish-Chandra parameter for K2.

We now state according to [4] the branching law for the restriction of the ir-
reducible representation πK2

λ2
of infinitesimal character λ2 to the one dimensional

torus H ∩ K2 = U ∩ K2. The restriction of πK2
γ to H ∩ K2 is the sum of one-

dimensional representations σ1, . . . , σr with multiplicity M(λ2, σj) for j = 1, . . . , r.
The formula of Heckman for this particular case reads∑

µ∈∆U∩K2

(
π
K2
λ2

)M(λ2, µ)δµ

=
∑

s∈Wz\W (k2,t)

ε(s)$(sλ2) δqu∩k2 (sλ2) ? y∆(k2/u∩k2). (2.4)

Another fact needed for the proof is a formula in [1] for the restriction of πGλ to
the subgroup H. The hypothesis for the truth of the formula is K1(Ψ) being a
subgroup of H, which in our case holds because of our choice of Ψ and H. The
hypothesis on G and on the system Ψ yields that for each w ∈W the multiset

SHw := [∆(k/l) ∪ qu(wΨn)]\Φ(h, u)

is strict. This also follows from an explicit computation of SHw , which we will carry
out later on. The formula that encodes the parameters µj and the multiplicities
nG,H(λ, µj) is:∑

µ∈iu?:(µ,β)>0

nG,H(λ, µ)(δµ − δSβµ) =
∑

w∈Wz\W

ε(w)$(wλ)δqu(wλ) ? ySHw . (2.5)

To elaborate on (2.4) and (2.5) we recall a few known results. It is convenient
to think of (u ∩ su2(β))? (resp. t?2) as the linear functionals on t that vanish on t2
(resp. on u ∩ su2(β)); hence, for λ2 ∈ t2, we have the equality qu(λ2) = qu∩k2(λ2).
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For w ∈W (k2, t2) we have the equalities

qu(wλ) = λ1 + qu∩k2(wλ2)
qu(wSβλ) = Sβ(λ1) + qu∩k2(wλ2)
$(wλ) = $(wλ2)

$(wSβλ) = $(wλ2).

From Table 2.5 in [2] it follows that any root in Φ(k2, t) is a linear combination
of compact simple roots in Ψ. Thus, Lemma 3.3 in [3] yields

wΨn = Ψn for w ∈W (k2, t). (2.6)

In [2, Proposition 1.3] it is shown that Ψn =
{
γ ∈ Ψ : 2(β,γ)

(β,β) = 1
}

, and that the
map γ 7→ β − γ is an involution in Ψn. Thus, the number of elements of Ψn is an
even number 2d and we may write

Ψn = {γ2, . . . , γd, β − γ2, . . . , β − γd, α, β − α}.

Hence, we have Sβ(Ψn) = −Ψn. Also in [2, Proposition 2] it is shown that

qu(γj) = Λ1 for j = 2, . . . , d.

The equality Λ1 +Λ2 = β yields qu(β−γj) = Λ2. From these and (2.6) we conclude
that, for w ∈W (k2, t),

qu(wΨn) = {Λ1, . . . ,Λ1︸ ︷︷ ︸
d−1

,Λ2, . . . ,Λ2︸ ︷︷ ︸
d−1

, α, β − α},

qu(wSβΨn) = Sβ(qu(wΨn)) = {Λ1, . . . ,Λ1︸ ︷︷ ︸
d−1

,Λ2, . . . ,Λ2︸ ︷︷ ︸
d−1

, α, α− β}.

The previous calculations let us conclude that, for w ∈W (k2, t2),

SHw = {Λ1, . . . ,Λ1︸ ︷︷ ︸
d−1

,Λ2, . . . ,Λ2︸ ︷︷ ︸
d−1

} ∪∆(k2/u ∩ k2)

SHSβw = {−Λ1, . . . ,−Λ1︸ ︷︷ ︸
d−1

,−Λ2, . . . ,−Λ2︸ ︷︷ ︸
d−1

} ∪∆(k2/u ∩ k2).

The right hand side of (2.5), after we apply the previous calculations, becomes
equal to∑

s∈Wz\W (k2)

ε(s)$(sλ2)δλ1 ? δqu∩k2
(sλ2) ? yd−1

Λ1
? yd−1

Λ2
? y∆(k2/u∩k2)

−
∑

s∈Wz\W (k2)

ε(s)$(sλ2)δSβλ1 ? δqu∩k2
(sλ2) ? yd−1

SβΛ1
? yd−1

SβΛ2
? y∆(k2/u∩k2)

=
∑

σ∈∆U∩K2 (πK2
λ2

)

M(λ2, σ)δσ ? [δλ1 ? y
d−1
Λ1

? yd−1
Λ2

? δSβλ1 ? y
d−1
SβΛ1

? yd−1
SβΛ2

]
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=
∑

σ,p,q∈Z≥0

M(λ2, σ)
(
p+ d− 2
d− 2

)(
q + d− 2
d− 2

)
δλ1+σ ? δpΛ1 ? δqΛ2

+
∑

σ,p,q∈Z≥0

M(λ2, σ)
(
p+ d− 2
d− 2

)(
q + d− 2
d− 2

)
δSβ(λ1+σ) ? δpSβΛ1 ? δqSβΛ2 .

(2.7) We now show: For every p, q ∈ Z≥0, and for every U ∩ K2-weight σ of
πK2
λ2

the weight λ1 + σ + pΛ1 + qqu(λ2) is dominant with respect to the system
Ψq = {α, β − α, β}.

In fact, because of a theorem of Kostant, every T2-weight of πK2
λ2

lies in the
convex hull of {s(λ2), s ∈W (k2, t)}. Thus, there exist non negative real numbers ct
so that σ =

∑
t∈W (k2,t) ctqu(tλ2) and

∑
t ct = 1. The hypothesis that λ is regular

and dominant with respect to Ψ yields λ1(β̌) = λ(β̌) > 0.
We write (λ1 + σ + pΛ1 + qλ2, α) = λ(β̌)α(β̌) +

∑
t

(qu(tλ2), α) + p(Λ1, α) and

qu(tλ2) = (tλ2, β − 2α)(β − 2α). Now, since α ∈ iu?, we have

(qu(tλ2), α) = (tλ2, α) = (λ2, t
−1α) = (λ, t−1α) > 0,

because t is a product of reflections about compact simple roots for Ψ, α ∈ Ψn and
(2.7).

For

(λ1 + σ + pΛ1 + qλ2, β − α)

=
∑
t

ct(tλ1, β − α) +
∑
t

ct(tλ2, β − α) + q(λ2, β − α)

=
∑
t

ct(qu(tλ1 + tλ2), β − α) + q(λ2, β − α)

=
∑
t

ct(tλ, β − α) > 0,

because of β − α ∈ Ψn, t ∈ W (k2, t) and λ is regular dominant for Ψ. We have
concluded the proof of Theorem 1, because we have shown that the left hand side
of (2.5) is expressed as claims the statement of Theorem 1. This finishes the proof
of Theorem 1. �

Note. Wallach in [13] considered the case where the lowest K-type for πλ is equal
to a representation of su2(β) times the trivial representation of K2.

3. Admissible restrictions to “SU(2, 1)” of discrete series for
quaternionic real forms

To begin with we list the Lie algebra of the Lie groups where Theorem 1 applies.
Up to equivalence, the list of the Lie algebras for quaternionic real forms is: su(2, n),
so(4, n), EII = e6(2), EVI = e7(−5), EIX = e8(−24), FI = f4(4) and G = g2(2).
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For the corresponding groups, we show that a square integrable irreducible rep-
resentation for G has an admissible restriction to the subgroup H locally isomor-
phic to SU(2, 1) constructed by Gross–Wallach if and only if the Harish-Chandra
parameter is dominant with respect to the small system Ψ.

Proposition 1. Let G be a quaternionic real form, a small system of positive roots
Ψ, su2(β), k2, H as in the previous section. Let Σ be a system of positive roots
in Φ(g, t) so that ∆ ⊂ Σ. Then, a square integrable irreducible representation with
Harish-Chandra parameter dominant with respect to Σ has an admissible restriction
to H if and only if Σ = Ψ.

Proof. From the list of Vogan diagrams, we notice that there exists a subgroup of
H1 of G so that (G,H1) is a symmetric pair and H ⊂ H1 and T ⊂ H1. Hence,
if Σ ⊃ ∆ is a system of positive roots for Φ(g, t) so that some irreducible square
integrable representation πGµ with µ dominant with respect to σ has admissible
restriction to H, then [6, Theorem 2.8] implies that πGµ has admissible restriction
H1. Owing to [1, Prop. 2], we have that k1(Σ) is a subalgebra of h1. Except for
some G locally isomorphic to SO(4, 2n), the Lie algebra k is the sum of two simple
ideals, hence k1(Σ) is equal to su2(β). A case by case computation forces Σ = Ψ.
For a group G locally isomorphic to SO(4, 2n), n ≥ 2, we select two different choices
of H1 which forces once again k1(Σ) to be equal to a copy of su2(β) and Σ = Ψ. �

4. Other groups

A group G locally isomorphic to either SO(3, n) or Sp(1, n) shares with the
quaternionic real forms that a copy su2 is an ideal in any maximal compactly
embedded subalgebra of g. Next, we analyze admissible restrictions of square inte-
grable representations to the subgroup corresponding to the copy of su2 mentioned
in the previous sentence.

We recall that from a criterion of Harish-Chandra it follows that a group locally
isomorphic to SO(3, 2n + 1) has no irreducible square integrable representation,
whereas a group locally isomorphic to SO(3, 2n) does have a non empty discrete
series. For a group G locally isomorphic to SO(3, p) a maximally compactly imbed-
ded subalgebra is isomorphic to the direct sum of the ideals so(3), so(p). For the
next statement we denote the analytic subgroup of G corresponding to so(3) by K1.

Proposition 2. For a group G locally isomorphic to SO(3, 2n) no irreducible
square integrable representation has an admissible restriction to K1.

Proof. Because n ≥ 1 we have that K1 is contained in a subgroup H1 of G locally
isomorphic to SO(3, 1). Next, we recall Theorem 1.2 in [5] which gives us: If a
unitary representation of G has an admissible restriction to K1 then it has an ad-
missible restriction to H1. Hence, if an irreducible square integrable representation
of G had admissible restriction to K1 we would have that H1 has a nonempty dis-
crete series, which is not true since H1 is locally isomorphic to SO(3, 1). Another
proof follows from [1] and the fact that K1(Ψ) is never equal to K1. �
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For a group G locally isomorphic to Sp(1, q) we fix a maximal compact subgroup
K and a compact Cartan subgroup T . Therefore, there exists an orthogonal basis
{ε1, δ1, . . . , δq} for it? and a system of positive roots Σ so that

Σ ∩ Φc = {2ε1, δi ± δj , 1 ≤ i < j ≤ q, 2δj , j = 1, . . . , q}
and Σ ∩ Φn = {ε1 ± δj , j = 1, . . . , q}. The simple roots are ε1 − δ1, δj − δj+1, j =
1, . . . , q, 2δq. The maximal root is β = 2ε1. It readily follows that k1(Σ) = su2(2ε1).
Let h0 denote the real form of the Lie subalgebra spanned by the root vectors
corresponding to the roots

Φ(h0, u) := {±2ε1,±2δ1,±(ε1 ± δ1)}.
Then, h0 is isomorphic to sp(1, 1). As for the quaternionic case, let H0 denote the
analytic subgroup of G associated to h0. Owing to [1, Theorem 1], we have that for
λ dominant with respect to Σ the representation πGλ restricted to H0 is admissible.
Let µj , nG,H0(λ, µj) be as in (1.1). Let Σq := Σ ∩ Φ(h0, u). Let HCL∩K2

(
πK2
λ2

)
denote the set of Harish-Chandra parameters for the L ∩K2-irreducible factors of
the restriction of πK2

λ2
to the subgroup L ∩K2. We have:

Proposition 3. Assume λ is dominant with respect to Σ. Then, for j = 1, . . .
the parameters µj := λ1 + σ + jε1 are dominant with respect to Σq. Besides,
nG,H0(λ, µ) 6= 0 if and only if µ = µj for some j. Moreover,

nG,H0(λ, µ) =
∑

σ∈HCL∩K2 (πK2
λ2

),
p∈Z≥0

µ=λ1+σ+pε1

M(λ2, σ)
(
p+ 2q − 3

2q − 3

)
.

Proof. We begin writing the equalities (2.4) and (2.5) for the setting of the Propo-
sition. For this particular case (2.4) reads∑

µ∈HCL∩K2 (πK2
λ2

)

M(λ2, µ)
∑

r∈W (L∩K2,U∩K2)

ε(r)δrµ

=
∑

s∈Wz\W (k2,t)

ε(s)$(sλ2)δqu∩k2
(sλ2) ? y∆(k2/l∩k2).

The multiset
SH0
w := [∆(k/l) ∪ qu(wΨn)]\Φ(h, u)

is strict. This follows from an explicit computation of SH0
w , which we will carry out

after the next formula. The formula (2.5) becomes:

∑
µ∈iu?

(µ,ε1)>0, (µ,δ1)>0

nG,H(λ, µ)

 ∑
t∈W (L,U)

ε(t)δtµ


=

∑
w∈Wz\W

ε1(w)$(wλ)δqu(wλ) ? ySHw .
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In this case, u ∩ k1 = Riε̌1, u ∩ k2 = Riδ̌1, and l ∩ k2 = su2(2δ1). Furthermore,
Ψ ∩ Φz = {δi ± δj , 2 ≤ i < j ≤ q}, W = 〈S2ε1〉 × W (k2, t2), and Wz\W =
〈S2ε1〉 ×Wz\W (k2, t2).

For w ∈W (k2, t2), wΨn = Ψn, wS2ε1Ψn = −Ψn and

qu(wΨn)\Φ(h, u) = {ε1, . . . , ε1}︸ ︷︷ ︸
2(q−1)

qu(wS2ε1Ψn)\Φ(h, u) = {−ε1, . . . ,−ε2}︸ ︷︷ ︸
2(q−1)

∆(k, l) = qu(Ψc\Φz)\Φ(h, u) = {2ε1, 2δ1, δ1, . . . , δ1︸ ︷︷ ︸
2(q−1)

}\Φ(h, u) = ∆(k2, l ∩ k2).

Therefore, for w ∈W (k2, t) we have

SH0
w = {ε1, . . . , ε1}︸ ︷︷ ︸

2(q−1)

∪∆(k2, l ∩ k2)

SH0
S2ε1w

= {ε1, . . . , ε1}︸ ︷︷ ︸
2(q−1)

∪∆(k2, l ∩ k2).

After replacing SH0
w by the result obtained in the previous line, the right hand

side of the formula similar to the one in (2.5) becomes∑
t∈{1,S2ε1}

s∈Wz\W (k2,t2)

ε(t)ε(s)$(sλ2)δtλ1 ? δqu(sλ2) ? y∆(k2/l∩k2) ? y
2(q−1)
tε1

=
∑

t∈{1,S2ε1}

ε(t)
∑

r∈W (k2,t2)
σ∈HC

ε(r)M(λ2, σ)δtλ1+rσ ? y
2(q−1)
tε1

=
∑
t,r,σ
p∈Z≥0

ε(t)ε(s)M(λ2, σ)
(
p+ 2(q − 1)− 1

2(q − 1)− 1

)
δtr(λ1+σ+pε1)

=
∑
p≥0

∑
σ

M(λ2, σ)
(
p+ 2q − 3

2q − 3

) ∑
w∈W (L,U)

ε(w)δw(λ1+σ+pε1).

By a reasoning similar to (2.7) we obtain that λ1 +σ+pε1 is dominant with respect
to Ψq and we have concluded the proof of Proposition 3. �

5. Simondi’s thesis

Sebastián Simondi’s Ph.D. thesis [9] was defended in March 2007. Most of his
results were verified in a case by case checking. By now, some of his results are
a consequence of work of Toshi Kobayashi [7, 6, 1]. This section does not include
proofs of the stated results; we will point out those results that follow from the

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)
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work of T. Kobayashi, Kobayashi–Oshima, and Duflo–Vargas, and those results we
believe are still not in the literature.

We now describe the results. For this, we fix a noncompact connected matrix
simple Lie group G and a maximal compact subgroup K for G. Henceforth, H
is a closed reductive subgroup of G so that L := H ∩ K is a maximal compact
subgroup for H and that (G,H) is a symmetric pair. Hence, (K,L) is a Riemannian
symmetric pair.

As in the previous sections we assume G admits irreducible square integrable
representations. We would like to point out that in the course of the computation
extensive use was made of the description for the set of equivalence classes of
square integrable irreducible representations given by Harish-Chandra in terms of
Harish-Chandra parameters.

In [1, 5, 7, 6] we find criteria for checking whether or not the restriction of
an square integrable representation for G is an admissible representation for a
subgroup H. By means of these criteria, the classification of the symmetric pairs
given by Berger and a case by case checking, we have:

Theorem 2. Assume (G,H) is a symmetric pair and (π, V ) is an irreducible square
integrable representation for G. If k is a simple Lie algebra, then the restriction of
π to H is not an admissible representation.

Nowadays, this result follows from [1] or from [8].
For the next result we fix a maximal compact connected subgroup L′ for K so

that the rank of K is equal to the rank of L′.

Theorem 3. Let (π, V ) be an irreducible square integrable representation for G.
We assume k is a simple Lie algebra. Then, π restricted to L′ is not an admissible
representation.

When L′ is a maximal compact subgroup of a reductive subgroup H of G so that
(G,H) is a symmetric pair, Theorem 3 follows from Theorem 2 and results in [1].
For the other subgroups L′ the proof has been done in a case by case checking
based on the classification of the equal rank maximal subgroups of K obtained by
Borel–de Siebenthal and work of Toshi Kobayashi on criteria on admissibility of
restriction of representations.

Under the hypothesis that k is not a simple Lie algebra, (G,H) a symmetric
pair, and the subgroups L,K are of the same rank, we obtain a complete list, in the
language of Harish-Chandra parameters, of the square integrable representations
for G which do not have an admissible restriction to H. Nowadays these results
are included in [8, 11].

For the last result of this note we further assume (G,K) is an Hermitian sym-
metric pair. Then, the center of K is a one dimensional torus. Let Kss denote
the semisimple factor of K. We fix a maximal torus T for K. The hypothesis on
(G,K) allows us to choose, once for all, a holomorphic system of positive roots
Ψh in Φ(g, t). In [5] it is shown that either a holomorphic or a antiholomorphic
discrete series for G has an admissible restriction to Kss if and only if G/K is not
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a tube domain. The next result gives a criterion which allows to determine when
an arbitrary irreducible square integrable representation has admissible restriction
to Kss. For this we recall that the set of equivalence classes for irreducible square
integrable representations is parameterized by the set of Harish-Chandra parame-
ters λ dominant with respect to ∆ := Ψh ∩ Φc. For a Harish-Chandra parameter
λ dominant with respect to ∆, the regularity of λ determines a system of positive
roots Ψλ := {α ∈ Φ(g, t) : λ(α̌) > 0} which satisfies Ψλ ∩ Φc = ∆. In the table
below, we list for each Hermitian symmetric pair (G,K) subsets I, Ĩ of Ψh.

g k

sp(n,R) u(n)

If n = 2l,

I = {(ek + en−k+1)}lk=1

Ĩ = −I

If n = 2l + 1,
I = {2el+1} ∪ {(ek + en−k+1)}lk=1

Ĩ = −I

so∗(2n) u(n)

If n = 2l,
I = {(ek + en−k+1)}lk=1

Ĩ = −I
If n = 2l + 1,
I = {(ek + en−k+1)}lk=1 ∪ {el+1 + el+2}
Ĩ = {(−ek − en−k+1)}lk=1 ∪ {−el − el+1}

su(p, q) su(p)⊕ u(q)
I = {ei − eγi}

p
i=1

Ĩ = {−ei + ebi}
p
i=1

e6(−14) so(10)⊕ so(2)
I = {ε1, ε2, e1 + e5, e2 + e5}
Ĩ = −I

e7(−25) e6 ⊕ so(2)
I = {η1, η2, e1 + e6}
Ĩ = −I

Theorem 4. Assume (G,K) is an Hermitian symmetric pair and fix an irreducible
square integrable irreducible representation (πGλ , Vλ) for G of Harish-Chandra pa-
rameter λ. Without loss of generality we may and will assume λ is dominant with
respect to ∆. We further assume πGλ is neither holomorphic nor antiholomorphic.
Then, πGλ restricted to Kss is an admissible representation if and only if either I
or Ĩ is a subset of Ψλ.
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The proof of the last theorem is carried out based on the classification of Her-
mitian symmetric pairs and criteria due to Kobayashi [7, 6].

Here, in notation of Bourbaki:

γi = i+
[

(i− 1)(q − p)
p

]
+ p, for 1 ≤ i ≤ p,

bi =
{
i+ 1 + [ i(q−p)p ] + p if i(q−p)

p /∈ Z,
i+ i(q−p)

p + p if i(q−p)
p ∈ Z,

for 1 ≤ i ≤ p,

ε1 = 1
2(−e1 − e2 − e3 − e4 + e5 − e6 − e7 + e8),

ε2 = 1
2(−e1 − e2 + e3 + e4 + e5 − e6 − e7 + e8),

η1 = 1
2(−e1 + e2 − e3 − e4 + e5 + e6 − e7 + e8),

η2 = 1
2(−e1 − e2 + e3 + e4 − e5 + e6 − e7 + e8).
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