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BRANCHING LAWS: SOME RESULTS AND NEW EXAMPLES

OSCAR MARQUEZ, SEBASTIAN SIMONDI, AND JORGE A. VARGAS

ABSTRACT. For a connected, noncompact simple matrix Lie group G so that
a maximal compact subgroup K has a three dimensional simple ideal, in this
note we analyze the admissibility of the restriction of irreducible square in-
tegrable representations for the ambient group when they are restricted to
certain subgroups that contain the three dimensional ideal. In this setting
we provide a formula for the multiplicity of the irreducible factors. Also, for
general G such that G/K is an Hermitian G-manifold we give a necessary and
sufficient condition so that an arbitrary square integrable representation of
the ambient group is admissible over the semisimple factor of K.

1. INTRODUCTION

Let G be a connected noncompact simple matrix Lie group. Henceforth, we fix
a maximal compact subgroup K of G and we assume both groups have the same
rank. We also fix T' C K a maximal torus. Thus, T is a compact Cartan subgroup
of G. Under these hypotheses, Harish-Chandra showed there exists irreducible
unitary representations of G so that its matrix coefficients are square integrable
with respect to a Haar measure on G. One aim of this note is to write down
explicit branching laws for the restriction of some irreducible square integrable
representation to specific subgroups H of G. A second objective is to show that
when G is simple, the symmetric space G/ K has G-invariant quaternionic structure,
and H is a specific subgroup locally isomorphic to the group SU(2,1), then an
irreducible square integrable representation for G has an admissible restriction to
H if and only if it is a quaternionic discrete series representation. The last objective
is to present results on admissible restriction of square integrable representations
to specific subgroups of G. To begin with, we recall a description of the irreducible
square integrable representations for G. Harish-Chandra showed that the set of
equivalence classes of irreducible square integrable representations is parameterized
by a lattice contained in the dual of the Lie algebra of a compact Cartan subgroup.
In order to state our results we need to specify the parametrization and set up some
notation. As usual, the Lie algebra of a Lie group is denoted by the corresponding
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lower case German letter. The complexification of a real vector space V' is denoted
by adding the subindex C. However, the root space for a root is denoted by the
real Lie algebra followed by a subindex equal to the root. V* denotes the dual
space to a vector space V. Let 6 be the Cartan involution which corresponds to
the subgroup K, the associated Cartan decomposition is denoted by g = € + p.
Let ®(g,t) denote the root system attached to the Cartan subalgebra tc. Hence,
O(g,t) = P, U D, = O(E,t) U D, (g,t) splits up as the disjoint union of the set of
compact roots and the set of noncompact roots. From now on, we fix a system of
positive roots A for ®.. For this note, either the highest weight or the infinitesimal
character of an irreducible representation of K is dominant with respect to A. The
Killing form on the Lie algebra g gives rise to an inner product (, ) in it*. As
usual, let p = p, denote half of the sum of the roots for some system of positive
roots for ®(g,t).

A Harish-Chandra parameter for G is A € it* such that (A, a) # 0 for every
a € ®(g,t), and so that A+ p is the differential of a character of T. To each Harish-
Chandra parameter, A, Harish-Chandra associated a unique irreducible square in-
tegrable representation (7§, Vi) of G. Moreover, he showed the map A — 7§ is a
bijection from the set of Harish-Chandra parameters dominant with respect to A
onto the set of equivalence classes of irreducible square integrable representations
for G. For a proof see [12].

In [2], Gross and Wallach have considered a quaternionic real form G of a
complex simple Lie group and constructed a specific subgroup H locally isomor-
phic to SU(2,1); their setting is as follows: a system of positive roots ¥ so that
A C U C P(g,t) is called small if the maximal root 5 for ¥ is compact, ¥ has at
most two noncompact simple roots aq, a; and after we write 8 = ngag + n1ag +
a linear combination of compact simple roots, we have the inequality ng +n; < 2.
A noncompact connected simple Lie group G is a quaternionic real form if g is an
inner form of a complex simple Lie algebra and if a compactly imbedded Cartan
subalgebra t has the property that ®(g,t) admits a small system of positive roots
so that ng + ny = 2. In [2], the list of the Lie algebras for the quaternionic real
forms is presented; we reproduce the list in section 3. It can be shown that the
set of equivalence classes of the set of quaternionic real forms is equal to the set
of equivalence classes of the set of noncompact simple Lie groups G so that the
associated global symmetric space admits a G-invariant quaternionic structure.

In order to state Theorem 1, we fix a quaternionic real form G, a small system
of positive roots ¥ D A, and a noncompact simple root « for ¥. An irreducible
square integrable representation (wf, V) is called quaternionic discrete series rep-
resentation if the Harish-Chandra parameter A is dominant with respect to W.

For the quaternionic real form G, a particular copy b of su(2,1) contained in g
is constructed in [2]. For this, Gross and Wallach verify the equality

2(8,a)

(@, )

=1

Thus, the Lie subalgebra hc of gc spanned by the root vectors corresponding to
the roots {+a, £} is isomorphic to sl(3,C) and invariant under the conjugation
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of gc with respect to g. Hence, h := g N b is a real form for he. This real
form has a compactly embedded Cartan subalgebra, namely, u := tN . Thus, b
is isomorphic to su(2,1). Henceforth, we identify the set ®(h,u) with the subset
{xa,£8,+(8 — a)} of ®(g,1t).

(1.0) Let H denote the analytic subgroup of G with Lie algebra h. Then, L :=
KNH is a maximal compact subgroup for H. The system ®(h, u) has three systems
of positive roots to which the root 8 belongs to. The one that interests us is the
non-holomorphic system

\Ilq :\qu)(bau) :{ﬁ—a,0476}-

The simple roots for ¥, are f — a, . For a root v € ®(g,t), we denote its coroot
by ¥ € it. Let Ay, Ay denote the fundamental weights for W,, labeled so that
A (&) =0.

(1.1) Owing to results in [I], 13} [7], which we will review in section 2, it follows
that for a Harish-Chandra parameter A dominant with respect to the small system
¥ the irreducible representation (7§, Vy) restricted to H is an admissible repre-
sentation. That is, there exists a sequence of Harish-Chandra parameters for H,
dominant with respect to (3,

%
M1y 2y« v ey jy - 12U

and there exist positive integers

B\ pg), j=12,...

so that the restriction of (ﬂ'f, V) to H is unitarily equivalent to the discrete Hilbert
sum

o0
G.H H

Zn (Ag) (s Vi )

Jj=1
In [2] it is shown that ¥, := ¥ N ®, has 2d elements. Our hypothesis that G
is a quaternionic real form forces the root spaces for the roots +3 span a three
dimensional simple ideal sus(8) in £. We denote by €5 the complementary ideal to
suy(B) in €. Hence, we have the decompositions

t=Rif+ (tNt) and A= {B}Ud(E,tNE)NT.

For each \ € t¢, we write A = A; + Ay, with \; € CB, Ay € to. 1= tc Ny, Let
¢y : ¥ — u* denote the restriction map.

(1.2) We will verify, in (2.7), that for a Harish-Chandra parameter A\ dominant
for the small system W, we have that Ay is a Harish-Chandra parameter for Ko
or perhaps for a two fold cover of K5. From now on, 71{\{2 denotes the irreducible

representation for €5 of infinitesimal character Ay. As usual, Arnk, (77)\ ) denotes

the set of 7'M K>-weights for the representation my K2 and M (A2, v) stands for the

multiplicity of the weight v € Apng, (7r>\2 ).
In (2.7) we verify that for A dominant with respect to the small system ¥ the
weight A1 + v + aAq + bgy (A2) is dominant with respect to the system ¥, for every
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a,b € Z>p, and for every U N Ky-weight v of 7rf\(22. One result of this note is the
next theorem.

Theorem 1. Let G be a quaternionic real form, H as in (1.0) and (7§,V3) a
quaternionic discrete series representation for G. Then, n@ T (\ u) # 0 if and
only if p= (n+ d)A1 + (m+ d)As + qu(X2) + qu(v) with arbitrary m,n € Z>o and
T N Ks-weight v for 71')]\{22. Moreover,

nSHI(\ p) =

m+d—2\[/n+d—2
> M(AW)< i >< i )
VEATNK, (77;22) ,
m,n€lxo,
p=(n+d)A1+(m+d)A2+qu(A2)+qu(v)

A question that naturally arises is: What are the Harish-Chandra parameters
for G, dominant with respect to A, so that 77? has an admissible restriction to H?
The answer to this question is given in Proposition [I]

A group G locally isomorphic to either SO(3,n) shares with the quaternionic real
forms that a suitable copy of the algebra su, is an ideal in a maximal compactly
embedded subalgebra for g. A group locally isomorphic to SO(3,2p + 1) has no
square integrable representations. For a group locally isomorphic to SO(3,2n) and
n > 2, in Proposition 2] we show that no irreducible square integrable representation
of G has an admissible restriction to the usual copy of “SO(3)” contained in G.
For the quaternionic group Sp(1,p) the usual factor “Sp(1)” of a maximal compact
subgroup is contained in a certain image Hy of Sp(1,1). In Proposition [3| we show
that a quaternionic discrete series for Sp(p, 1) has admissible restriction to Hp.
Additionally, we compute the Harish-Chandra parameter of each irreducible Hy-
factor as well as the multiplicity of each factor.

The group SU(2,1) can be mapped into a simple Lie group G in perhaps sev-
eral ways by maps ¢ : SU(2,1) — G. A natural question is: What is the triple
(G, 7§, ¢) such that 7y restricted to the image of ¢ is an admissible representation?
In [I0] we find that for the analytic subgroup H; that corresponds to the image of
su(2,1) in the rank one real form of a complex group type Fy no square integrable
representation of the ambient group has an admissible restriction to H;.

We would like to comment that this note grew up from results in the Ph.D. theses
of Sebastian Simondi and Oscar Marquez, successfully defended at the Faculty of
Mathematics, Astronomy and Physics at the Universidad Nacional de Cérdoba,
Argentina, in 2007 and 2011 respectively.

2. PROOF OF THEOREM [I]

As in the hypothesis G is a connected, quaternionic simple Lie group and H is the
subgroup locally isomorphic to SU(2,1). To begin with, we sketch a proof for the
statement: For A\ dominant with respect to the small system W, the representation
(Wf, Vi) restricted to H is admissible. In fact, for a system of positive roots ¥ C
®(g,t) in [I] is attached an ideal €;(X) for the Lie algebra €. The ideal is equal
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to the real form of the ideal of ¢ spanned by {[Y,,Y4] : 7,0 € N ®,,Y, € g,}
together with a subspace of the center 3¢ of £.

(2.0) For the system W, cf. [2, Prop. 1.3, Table 2.5], we have that any root in
®.N WY not equal to S is a linear combination of compact simple roots for ¥. Thus,
for two noncompact roots in ¥, their sum is a root only when the sum is equal
to 8. Thus, € (V) is equal to sus () plus the contribution of the center. Now, from
the list of the quaternionic real forms, we read that 3¢ is nonzero only for G locally
isomorphic to SU(2, p). For su(2,p), it is shown in [I] that for ¥ the contribution
of 3¢ to € () is just the zero subspace. Hence, for a quaternionic system ¥ we
have

8 (V) = sup(B).

Because of the definition of H we have that K7(¥) is contained in H, hence
Theorem 1 in [I] yields that for A dominant with respect to ¥ the representation
(7§, Vi) has an admissible restriction to H N K as well as to the subgroup H. In [6]
we find a different proof of the admissibility.

Therefore, there exists a sequence of Harish-Chandra parameters for H, p1, ...,
Py .. € au*, for which we may assume for every j, (uj,5) > 0, and positive
integers n® (A, 1;) so that the restriction of (7§, V) restricted to H is equivalent

to the Hilbert sum
Z nGH (), uj)ﬂfj.
J

We are left to compute 1, to show that each p; is dominant for ¥, and to compute
the integers nH (X, u ).

For this we recall results in [I, @]. For v € it* (resp. in iu*) we consider the
Dirac distribution 6., and the discrete Heaviside distribution defined by the series

Yy = Z 5%—0—117 = 5% + 5%-‘-7 + 5%-‘-2"/ +..
n>0

For any strict multiset vi,...,7, the convolution y,, x--- %y, is a well defined
distribution. In particular, we have

, n—l—r—l)
y *...*y ::y = 6l n .
v v ¥ ;20: ( r—1 (5+n)y
We have
uc = Ca+CB, uc Nty =ucNity = bhe Nty = C(B — 2d) = CA,.

qu : t& — ug denotes restriction map.
Next, we recall the sub-root system ®; := {y € ®(¢,t) : qu(y) = 0}. Because of
(1.0) and (1.1),

;= {’7 : (’770‘) =(1,8) = O} = {7 € (I)(E%t?) S qunty (’7) = O}'

The Weyl group for the system &, is denoted by W;. Because of (2.0) the Weyl
group W for the pair (&,t) is equal to the product (Sg) x W (¢, t). Thus,

W\W = (Sg) x W;\W (£2,1).
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Let

AE/1) := qu[T N, HO\D\D(L ) = qu[{B} U W(E2, )\ ;]\ {5}
= qunt, (\I’ n ‘I)(EQ, tN Eg)\@a) =: A(Eg/u n Eg)

1
We set p; = 3 Z v, and for o € it* the Weyl polynomial is defined to be
YEYND,

1 cvns, (0:7)

o) = H'yG\I/rKDz (p3:7)

As before, we write A = A + A9, with A\ € RiB and A2 € t5. Then, owing to
(1.2), for v € ®(t2,t) N T we have the equality A(¥) = A2(¥). Thus, Az is a Harish-
Chandra parameter for Ko or perhaps for a two-fold cover of Ks. Actually, it
readily follows that A\ is a Harish-Chandra parameter for K5 if and only if g lifts
to a character of T. Therefore, replacing if necessary G by a two-fold cover, we
have that Ay is a Harish-Chandra parameter for K.

We now state according to [4] the branching law for the restriction of the ir-
reducible representation 77)[\22 of infinitesimal character Ao to the one dimensional
torus H N Ky = U N Ky. The restriction of ﬂfo to H N K5 is the sum of one-
dimensional representations o1, ..., o, with multiplicity M (Xe,0;) for j =1,...,7.
The formula of Heckman for this particular case reads

Z M()\Qa U)au
HEAUNK, (ﬂ'f;)

= D e9)@(5X2) Fgure, (she) * YA(eajurtn)  (2:4)
SEW,\IW (£2,0)

Another fact needed for the proof is a formula in [I] for the restriction of 7§ to
the subgroup H. The hypothesis for the truth of the formula is K;(¥) being a
subgroup of H, which in our case holds because of our choice of ¥ and H. The
hypothesis on G and on the system V¥ yields that for each w € W the multiset

S = [AR/1) U gu(wP,)\ (b, )

is strict. This also follows from an explicit computation of S| which we will carry
out later on. The formula that encodes the parameters p; and the multiplicities

nGH(\, ) s
Z nG’H()\,u)((SH —05,u) = Z e(w)@w(WA)dg, (wx) * YsH . (2.5)
pEu*:(p,8)>0 weW;\W

To elaborate on (2.4)) and (2.5) we recall a few known results. It is convenient
to think of (uNsuy(B))* (resp. t5) as the linear functionals on t that vanish on tz
(resp. on uNsug(f)); hence, for Ay € ta, we have the equality ¢,(A2) = qune, (A2).
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For w € W (3, t3) we have the equalities

Qu(wA) = A1 + quae, (WA2)
qu(wSgA) = Sp(A1) + qure, (WA2)
@w(wA) = w(wlz)
@w(wSp\) = w(whs).

From Table 2.5 in [2] it follows that any root in ®(&s,t) is a linear combination
of compact simple roots in ¥. Thus, Lemma 3.3 in [3] yields

w¥,, =V, for we W(t,t). (2.6)

(3,8)
map -y +— [ — v is an involution in W,,. Thus, the number of elements of ¥,, is an

even number 2d and we may write

In [2| Proposition 1.3] it is shown that ¥,, = {’y ew: 20 1}7 and that the

\I]n = {’727"'3’7d75_’727"'aﬁ_’yd>a7ﬁ_a}'
Hence, we have S3(¥,,) = —¥,,. Also in [2, Proposition 2| it is shown that
qu(yj) =AM forj=2,...,d

The equality A +As = 8 yields ¢u(8—";) = A2. From these and (2.6) we conclude
that, for w € W, t),

Qu(wan) = {Ah e 7A1;A23 v 3A27a36 - Ol},
d—1 d—1

qu(’LUSB\I’n) = Sg(qu(wllfn)) = {A17 e ,Al, AQ, . ,AQ, a, — B}

d—1 d—1

The previous calculations let us conclude that, for w € W (s, t3),

Sg = {A17"'7A17A27"~;A2}UA(EQ/LLHEQ)
d—1 d—1
Sglgw = {7Ala .. .,7/\1, *AQ; ey *AQ} U A(Eg/uﬂgg)

d—1 d—1

The right hand side of (2.5), after we apply the previous calculations, becomes
equal to

Z E(S)w(S)‘Q)(s)\l * 6qumeQ (S>‘2) * yjd\jl * y;d\;l * YA (k2 /unts)
SEW,\W (£2)

d— d—1
- Z 6(8)@(8)\2)(556,\1 *5qume2 (S)‘2) *ySB/{l *ySﬁAz * YA (82 /unts)
SEW\W (€2)
= Z M(A270)60*[5>\1 *yi:l *yi;l *65[3)\1 *ysﬁAl *ygg}\z]

K.
O'EAUQKQ (71')\22)
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+d—2 +d—2
= Z M(}\Q,O’) (p d—2 )(q d—2 )6)\1+U*5PA1 *5111\2

0.,p,q€ZL>0

+d—2\[(q+d—2
+ Z M(A2,0)<pd_2 >(qd_2 >5SB(A1+U)*5PSEA1*5quA2.

0,p,q€L>0

(2.7) We now show: For every p,q € Z>o, and for every U N Ka-weight o of
Wﬁ"’ the weight A1 + o + pA; + qqu(A2) is dominant with respect to the system
U, ={o,8—a,B}.

In fact, because of a theorem of Kostant, every Ts-weight of wf\{; lies in the
convex hull of {s(A2),s € W(¥z,t)}. Thus, there exist non negative real numbers ¢,
so that o = 7y (e, o Ctqu(tA2) and 37, ¢, = 1. The hypothesis that A is regular

and dominant with respect to ¥ yields A\1(8) = A\(8) > 0.
We write (A + 0 +pA1 + gha, @) = M(B)a(B) + Y (qu(tAa), @) + p(A1, @) and
t

qu(th2) = (tA2, B — 2a) (B — 2ar). Now, since « € iu*, we have
(qu(tr2), @) = (tAg,a) = (Ag, t7 ) = (At a) >0,

because t is a product of reflections about compact simple roots for ¥, a € ¥,, and
(2.7).
For
(A1 + 0 +pA1L+ g, B—a)

= a(th,B—a)+ Y athe, B —a)+ g2, 8 —a)
t t

= th(qu<t)\l +t)‘2>7ﬁ - Oé) + Q()‘QHB - Oé)
t

= th(t)Vﬁ - Oé) >0,
t

because of f —«a € U,,, t € W(¥2,t) and A is regular dominant for ¥. We have
concluded the proof of Theorem [I} because we have shown that the left hand side
of (2.5) is expressed as claims the statement of Theorem [I| This finishes the proof
of Theorem [1l O

Note. Wallach in [I3] considered the case where the lowest K-type for ) is equal
to a representation of sus(3) times the trivial representation of Ks.

3. ADMISSIBLE RESTRICTIONS TO “SU(2,1)” OF DISCRETE SERIES FOR
QUATERNIONIC REAL FORMS

To begin with we list the Lie algebra of the Lie groups where Theorem [I] applies.
Up to equivalence, the list of the Lie algebras for quaternionic real forms is: su(2,n),
50(4, n), EIl = eﬁ(g), EVI = 67(_5), EIX = Qg(_24), FI = f4(4) and G = 92(2).
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For the corresponding groups, we show that a square integrable irreducible rep-
resentation for G has an admissible restriction to the subgroup H locally isomor-
phic to SU(2,1) constructed by Gross—Wallach if and only if the Harish-Chandra
parameter is dominant with respect to the small system V.

Proposition 1. Let G be a quaternionic real form, a small system of positive roots
U, suy(8), b, H as in the previous section. Let ¥ be a system of positive roots
in ®(g,t) so that A C X. Then, a square integrable irreducible representation with
Harish-Chandra parameter dominant with respect to 2 has an admissible restriction
to H if and only if X = .

Proof. From the list of Vogan diagrams, we notice that there exists a subgroup of
H; of G so that (G, Hy) is a symmetric pair and H C Hy and T C H;. Hence,
if ¥ D A is a system of positive roots for ®(g,t) so that some irreducible square
integrable representation ’/TE with g dominant with respect to ¢ has admissible
restriction to H, then [0, Theorem 2.8] implies that ’/TE has admissible restriction
H,. Owing to [I, Prop. 2], we have that ¢;(X) is a subalgebra of b;. Except for
some G locally isomorphic to SO(4,2n), the Lie algebra ¢ is the sum of two simple
ideals, hence £ (X) is equal to sus(8). A case by case computation forces ¥ = 0.
For a group G locally isomorphic to SO(4, 2n), n > 2, we select two different choices

of H; which forces once again €1 () to be equal to a copy of sus(f) and X =¥. O

4. OTHER GROUPS

A group G locally isomorphic to either SO(3,n) or Sp(1,n) shares with the
quaternionic real forms that a copy suy is an ideal in any maximal compactly
embedded subalgebra of g. Next, we analyze admissible restrictions of square inte-
grable representations to the subgroup corresponding to the copy of sus mentioned
in the previous sentence.

We recall that from a criterion of Harish-Chandra it follows that a group locally
isomorphic to SO(3,2n 4 1) has no irreducible square integrable representation,
whereas a group locally isomorphic to SO(3,2n) does have a non empty discrete
series. For a group G locally isomorphic to SO(3,p) a maximally compactly imbed-
ded subalgebra is isomorphic to the direct sum of the ideals s0(3), so(p). For the
next statement we denote the analytic subgroup of G corresponding to s0(3) by K;.

Proposition 2. For a group G locally isomorphic to SO(3,2n) no irreducible
square integrable representation has an admissible restriction to K;.

Proof. Because n > 1 we have that K; is contained in a subgroup H; of G locally
isomorphic to SO(3,1). Next, we recall Theorem 1.2 in [5] which gives us: If a
unitary representation of G has an admissible restriction to K7 then it has an ad-
missible restriction to Hy. Hence, if an irreducible square integrable representation
of G had admissible restriction to K; we would have that H; has a nonempty dis-
crete series, which is not true since Hj is locally isomorphic to SO(3,1). Another
proof follows from [I] and the fact that K;(¥) is never equal to K. O
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For a group G locally isomorphic to Sp(1, ¢) we fix a maximal compact subgroup
K and a compact Cartan subgroup 7. Therefore, there exists an orthogonal basis
{€1,01,...,04} for it and a system of positive roots ¥ so that

Em@c:{2€176ii(§j71§i<‘jSq,Q(Sj?j:L"'7Q}

and XN ®, = {e; £6;,7 =1,...,¢}. The simple roots are ¢; — 01, 0; — dj+1, j =
1,...,q, 204. The maximal root is 8 = 2¢;. It readily follows that £ (X) = sus(2¢;).
Let ho denote the real form of the Lie subalgebra spanned by the root vectors
corresponding to the roots

q)(bo, Ll) = {:l:2€1, :|:251, :l:(El + 51)}

Then, hg is isomorphic to sp(1,1). As for the quaternionic case, let Hy denote the

analytic subgroup of G associated to hy. Owing to [I, Theorem 1], we have that for

A dominant with respect to X the representation ﬂf restricted to Hy is admissible.

Let pj, nHo (X ;) be as in (1.1). Let ¥, := XN ®(ho,u). Let HCOpnk, (Wﬁ"’)
denote the set of Harish-Chandra parameters for the L N Ks-irreducible factors of
the restriction of wf\(; to the subgroup L N K5. We have:

Proposition 3. Assume A is dominant with respect to 3. Then, for j = 1,...
the parameters p; = A\ + o + jei are dominant with respect to X,. DBesides,
n@Ho (X, 1) # 0 if and only if u = w; for some j. Moreover,

WSl = Y M(g0) (p 20— 3).

29 -3
0€H LAy (13 2),
PEL>o
p=A1+0+pe;

Proof. We begin writing the equalities (2.4) and (2.5) for the setting of the Propo-
sition. For this particular case (2.4) reads

S MOww Y b

HEH Criey (r2) reW (LNK» UNK>)

= Z €(8)@(8A2)0g, e, (SA2) * YA (b, /10082) -
SEW, \W (E2,0)

The multiset

Su = [AE/1) U gu(w¥,)\®(h,u)
is strict. This follows from an explicit computation of SHo, which we will carry out
after the next formula. The formula (2.5) becomes:

S wsiow| X dom,

pEU* teW (L,U)
(t1,€1)>0, (1£,61)>0

= Y aw)m(WA)g, () *Ysa-
weW; \W
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In this case, uNt = Ri¢y, unNty = Rz’gl, and [N € = su5(261). Furthermore,
v N (I)a = {(51 + (Sj, 2 <1 <3< q}, W = <5251> X W(EQ,fQ), and Wﬁ\W =
<SQ€1> X WZ\W(E%’(Q).

For w € W(Eg,tg), w¥, =W, stelmn = -V, and

qu(w\yn)\(b(h?u) = {617 ctt 61}
—_——
2(g—1)
Qu(ws261 \Iln)\q)(hau) = {_617 ceey _62}
2(¢g—1)
A(E, [) = qu(\Ilc\CI{.,)\(I)(b,u) = {261, 251, 517 e ,51}\@([}, 11) = A(EQ, [N EQ)
2(¢—1)

Therefore, for w € W (ts,t) we have

Sgo = {61, c. ,61} UA(EQ, [N Ez)
—_———
2(¢—1)
Sgoelw = {61, ey 61} UA(EQ, [N 82)
—_————
2(¢g—1)

After replacing SH° by the result obtained in the previous line, the right hand
side of the formula similar to the one in (2.5) becomes

Z E(t)e(s)w(S/\Q)dt)\l * 6%(5)\2) *YA(k2/1NE) * yt26(1q_1)
te{1,S2¢, }
S€W5\W(Eg,t2)

= Y ey > e(r)M (X2, 0)dix, o * yier

te{1,52¢, } reW (€z,t2)

c€HC
p+2(¢—1)—1
= t;y e(t)E(S)M()\Q, O’)( 2((] _ 1) 1 6tr(>\1+0+p61)
péizo
p+2¢—3
= ZZM(/\27U)< % — 3 ) Z €(W)dw(x+o-+per)-
p>0 o 4 weW (L,U)

By a reasoning similar to (2.7) we obtain that A; + 0+ pe; is dominant with respect
to ¥, and we have concluded the proof of Proposition O

5. SIMONDI’S THESIS

Sebastidn Simondi’s Ph.D. thesis [9] was defended in March 2007. Most of his
results were verified in a case by case checking. By now, some of his results are
a consequence of work of Toshi Kobayashi [7 [6l [I]. This section does not include
proofs of the stated results; we will point out those results that follow from the
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work of T. Kobayashi, Kobayashi-Oshima, and Duflo-Vargas, and those results we
believe are still not in the literature.

We now describe the results. For this, we fix a noncompact connected matrix
simple Lie group G and a maximal compact subgroup K for G. Henceforth, H
is a closed reductive subgroup of G so that L := H N K is a maximal compact
subgroup for H and that (G, H) is a symmetric pair. Hence, (K, L) is a Riemannian
symmetric pair.

As in the previous sections we assume G admits irreducible square integrable
representations. We would like to point out that in the course of the computation
extensive use was made of the description for the set of equivalence classes of
square integrable irreducible representations given by Harish-Chandra in terms of
Harish-Chandra parameters.

In [T, B [7, 6] we find criteria for checking whether or not the restriction of
an square integrable representation for G is an admissible representation for a
subgroup H. By means of these criteria, the classification of the symmetric pairs
given by Berger and a case by case checking, we have:

Theorem 2. Assume (G, H) is a symmetric pair and (w, V') is an irreducible square
integrable representation for G. If € is a simple Lie algebra, then the restriction of
7w to H is not an admissible representation.

Nowadays, this result follows from [I] or from [g].

For the next result we fix a maximal compact connected subgroup L’ for K so
that the rank of K is equal to the rank of L’.

Theorem 3. Let (m,V) be an irreducible square integrable representation for G.
We assume € is a simple Lie algebra. Then, w restricted to L' is not an admissible
representation.

When L’ is a maximal compact subgroup of a reductive subgroup H of G so that
(G, H) is a symmetric pair, Theorem [3| follows from Theorem |2 and results in [I].
For the other subgroups L’ the proof has been done in a case by case checking
based on the classification of the equal rank maximal subgroups of K obtained by
Borel-de Siebenthal and work of Toshi Kobayashi on criteria on admissibility of
restriction of representations.

Under the hypothesis that ¢ is not a simple Lie algebra, (G, H) a symmetric
pair, and the subgroups L, K are of the same rank, we obtain a complete list, in the
language of Harish-Chandra parameters, of the square integrable representations
for G which do not have an admissible restriction to H. Nowadays these results
are included in [8] [I1].

For the last result of this note we further assume (G, K) is an Hermitian sym-
metric pair. Then, the center of K is a one dimensional torus. Let K4 denote
the semisimple factor of K. We fix a maximal torus T for K. The hypothesis on
(G, K) allows us to choose, once for all, a holomorphic system of positive roots
Uy, in ®(g,t). In [5] it is shown that either a holomorphic or a antiholomorphic
discrete series for G has an admissible restriction to K, if and only if G/K is not
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a tube domain. The next result gives a criterion which allows to determine when
an arbitrary irreducible square integrable representation has admissible restriction
to Ks. For this we recall that the set of equivalence classes for irreducible square
integrable representations is parameterized by the set of Harish-Chandra parame-
ters A dominant with respect to A := ¥, N ®.. For a Harish-Chandra parameter
A dominant with respect to A, the regularity of A determines a system of positive
roots ¥y = {a € ®(g,t) : A(&) > 0} which satisfies ¥y N &, = A. In the table
below, we list for each Hermitian symmetric pair (G, K) subsets I, T of ¥,.

g 14
If n = 21,
I={(ex+ en—rt+1) ey
f=—1
sp(n,R) u(n)
Ifn=20+1,
I={2e101} U{(ex + en—rt1) o
I=-1
If n=2I,
I={(ex+ en—rt+1) ey
I=-1
50%(2n) u(n)
Ifn=20+1,

I={(ex+en—rt1) iy U{ersr +era}
I={(—ex—en k1) ey U{—€e1 — €1}
I'={ei—ey, }le
I={—e+ey}’,

I = {61,62,61 + €5, €2 + 65}

su(p,q) | su(p) ®u(q)

¢o(—14) | 50(10) ® s0(2)

I=-1
I'={m,n2,e1+es}
e7(—25) ¢ B s0(2) Fo g

Theorem 4. Assume (G, K) is an Hermitian symmetric pair and fix an irreducible
square integrable irreducible representation (77?7 Vi) for G of Harish-Chandra pa-
rameter A. Without loss of generality we may and will assume X is dominant with
respect to A. We further assume W)Cf s neither holomorphic nor antiholomorphic.
Then, ©§ restricted to K is an admissible representation if and only if either I

or I is a subset of Uy.
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The proof of the last theorem is carried out based on the classification of Her-

mitian symmetric pairs and criteria due to Kobayashi [7, [6].

Here, in notation of Bourbaki:

1) —
FY’L’L+|:(Z)(qp):|+p7 fOI'lS’LSp,
p
,L_|_1+ i(q_p) + lf i((]—p) Z’
(TR S i
i+ =+ ITEZ’
1
51:5(—61—62—63—64+€5—66—€7+68),
1
e2=g(~e1—extestestes —es—ertes),
1
771:5(*61+62*€3*€4+65+66*67+68),
1
7]2:5(—61—€2+63+64—€5+66—67+68).
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