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HÖRMANDER CONDITIONS FOR VECTOR-VALUED KERNELS
OF SINGULAR INTEGRALS AND THEIR COMMUTATORS

ANDREA L. GALLO, GONZALO H. IBAÑEZ FIRNKORN,
AND MARÍA SILVINA RIVEROS

Abstract. We study Coifman type estimates and weighted norm inequalities
for singular integral operators and their commutators, given by the convolution
with a vector-valued kernel. We define a weaker Hörmander type condition
associated with Young functions for the vector-valued kernels. With this gen-
eral framework we obtain as an example the result for the square operator
and its commutator given in [M. Lorente, M. S. Riveros, and A. de la Torre,
J. Math. Anal. Appl. 336 (2007), no. 1, 577–592].

1. Introduction

A classical problem in harmonic analysis is the following: given a linear operator
T , find the maximal operatorMT such that T is controlled byMT in the following
sense: ∫

Rn
|T f |p(x)w(x) dx ≤ C

∫
Rn
|MT f |p(x)w(x) dx, (1.1)

for some 0 < p <∞ and some 0 ≤ w ∈ L1
loc(Rn).

The maximal operatorMT is related to the operator T which is normally easier
to deal with. In general, MT is strongly related to the kernel of T .

The classical result of Coifman in [3] is: Let T be a Calderón–Zygmund operator;
then T is controlled by M , the Hardy–Littlewood maximal operator. In other
words, for all 0 < p <∞ and w ∈ A∞,∫

Rn
|Tf |p(x)w(x) dx ≤ C

∫
Rn

(Mf)p(x)w(x) dx.

Later in [16], Rubio de Francia, Ruiz, and Torrea studied operators with less
regularity in the kernel. They proved that for certain operators, (1.1) holds with
MT = Mrf = M(|f |r)1/r, for some 1 ≤ r < ∞. The value of the exponent
r is determined by the smoothness of the kernel, namely, the kernel satisfies an
Lr
′ -Hörmander condition (see the precise definition below). In [14], Martell, Pérez,
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and Trujillo-González proved that this control is sharp in the sense that one cannot
write a pointwise smaller operator Ms with s < r. This yields that for operators
satisfying only the classical Hörmander condition, H1, the inequality (1.1) does not
hold for any Mr, 1 ≤ r <∞.

More recently, in [12], Lorente, Riveros, and de la Torre defined a LA-Hörmander
condition where A is a Young function. If T is an operator that satisfies this
condition, then (1.1) holds for MA, the maximal operator associated to the Young
function A.

As a consequence of the Coifman inequality, a weighted modular end-point esti-
mate can be proved. In [11], Lorente, Martell, Riveros, and de la Torre proved the
following: if A is submultiplicative and λ > 0, then

w{x ∈ Rn : |Tf(x)| > λ} ≤ c
∫
Rn
A
(
|f(x)|
λ

)
Mw(x) dx.

An example of this type of operator is the square operator S (see the precise
definition below); by the results in [12] the following inequality holds:∫

Rn
|Sf |p(x)w(x) dx ≤ C

∫
Rn

(M3f)p(x)w(x) dx,

for all 0 < p <∞ and w ∈ A∞.
In [13] it was proved that the last inequality is not sharp, in the sense that M3

can be replaced by M2.

In this paper we define a new Hörmander condition in the case of vector-valued
kernels, weaker than the LA-Hörmander condition defined in [11]. We obtain ine-
quality (1.1) improving results, for vector-valued operators, obtained in [11]. The
applications of these results with the new condition are generalizations of those for
the square operator obtained in [13]. In these applications, the maximal operators
are of the form ML logLβ , with some β ≥ 0. For instance, we obtain for all 0 < p <
∞ and w ∈ A∞, ∫

R
|SXf |p(x)w(x) dx ≤ C

∫
R

(M2f)p(x)w(x) dx,

where X is an appropriate Banach space. If X = `2, then SX = S the square
operator, and in this case we obtain the same results as in [13].

In [2], Bernardis, Lorente, and Riveros defined LA,α-Hörmander conditions for
fractional integral operators. The authors obtained the inequality (1.1) with MA,α,
the fractional maximal operator associated to A. In this paper, we also give a
weaker condition for vector-valued kernels than the LA,α-Hörmander condition
and obtain a similar kind of results and applications.

The plan of this paper is as follows. The next section contains some definitions
and well known results. Later, in section 3, we introduced our condition and the
main results. The applications are presented in section 4. The proofs of the general
results are in sections 5. Finally in the last section we present the Hörmander
condition and the results for vector-valued fractional operators.
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2. Preliminaries

In this section we present some notions needed to understand the main results
and the applications. First we define the space in which we are going to work.

Let us consider the Banach spaces (X, ‖ · ‖X), where X = RZ and the norm in
this space is monotone, i.e.

‖{an}‖X ≤ ‖{bn}‖X if |an| ≤ |bn| for all n ∈ Z. (2.1)
Observe that ‖{an}‖X = ‖{|an|}‖X for all {an} ∈ X.

Remark 2.1. Some examples of these Banach spaces are the `p(Z) spaces, 1 ≤ p <
∞, and the space where the norm is associated to some Young function. Observe
that not all Banach spaces satisfy the condition (2.1); for example, consider X = RZ

with the norm

‖{xn}‖X :=

(x1 − x2)2 +
∑
n 6=1

x2
n

1/2

.

Let (. . . , 0, x1, x2, 0, . . . ) = (. . . , 0, 1, 3, 0, . . . ) and (. . . , 0, y1, y2, 0, . . . ) = (. . . , 0, 2, 3,
0, . . . ). Observe that |xn| ≤ |yn| for all n ∈ Z, and ‖{xn}‖X =

√
13 and ‖{yn}‖X =√

10. Hence, the norm is not monotone.

Remark 2.2. If X is a Banach lattice, the norm is monotone by definition.

Now, we define the notion of Young function, maximal operators related to a
Young function, and generalized Hörmander condition. For more details see [15].

A function A : [0,∞)→ [0,∞) is said to be a Young function if A is continuous,
convex, non-decreasing, and satisfies A(0) = 0 and lim

t→∞
A(t) =∞.

The average of the Luxemburg norm of a function f induced by a Young function
A in the ball B is defined by

‖f‖A,B := inf
{
λ > 0 : 1

|B|

∫
B

A
(
|f |
λ

)
≤ 1
}
.

Observe that if A(t) = tr, r ≥ 1, then ‖f‖A,B =
(

1
|B|
∫
B
|f |r

)1/r
.

Each Young function A has an associated complementary Young function A
satisfying the generalized Hölder inequality

1
|B|

∫
B

|fg| ≤ 2‖f‖A,B‖g‖A,B .

If A,B, C are Young functions satisfying A−1(t)B−1(t)C−1(t) ≤ t, for all t ≥ 1,
then

‖fgh‖L1,B ≤ c‖f‖A,B‖g‖B,B‖h‖C,B .

Given f ∈ L1
loc(Rn), the maximal operator associated to the Young function A

is defined as
MAf(x) := sup

B3x
‖f‖A,B .
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For example, if β ≥ 0 and r ≥ 1, A(t) = tr(1 + log(t))β is a Young function then
MA = MLr(logL)β . If β = 0, A(t) = tr then MA = Mr, where Mrf = M(fr)1/r.
If r = 1 and β = k ∈ N, MA = ML(logL)k ≈ Mk+1, where Mk is the k-iterated of
M , the Hardy–Littlewood maximal.
Remark 2.3. Let us observe that when D(t) = t, which gives L1, then D(t) = 0
if t ≤ 1 and D(t) = ∞ otherwise. Observe that D is not a Young function but
one has LD = L∞. Besides, the inverse is D−1 ≡ 1 and the generalized Hölder
inequality makes sense if one of the three functions is D.

Once the Luxemburg average has been defined, we can introduce the notion of
the generalized Hörmander condition; for this we need to introduce some notation:
|x| ∼ s means s < |x| ≤ 2s, and given a Young function A, we write

‖f‖A,|x|∼s = ‖fχ|x|∼s‖A,B(0,2s).

In [11] and [12] the following classes were introduced.
Definition A. Let K be a vector-valued function, A be a Young function, and
k ∈ N ∪ {0}. Then K satisfies the LA,X,k-Hörmander condition (K ∈ HA,X,k), if
there exist cA > 1 and CA > 0 such that for all x and R > cA|x|:

∞∑
m=1

(2mR)nmk
∥∥‖K(· − x)−K(·)‖X

∥∥
A,|y|∼2mR ≤ CA.

We say that K ∈ H∞,k if K satisfies the previous condition with ‖ · ‖L∞,|x|∼2mR in
place of ‖ · ‖A,|x|∼2mR.

If k = 0, we denote HA,X = HA,X,0 and H∞,X = H∞,X,0.
Remark 2.4. There exists a relation between the Hörmander classes, HA,X,k.

(1) H∞,X,k ⊂ HA,X,k ⊂ HA,X,k−1 ⊂ · · · ⊂ HA,X,0 = HA,X ⊂ H1,X , for k ∈ N.
(2) If A and B are Young functions such that A(t) ≤ cB(t) for t > t0, some

t0 > 0, then
H∞,X,k ⊂ HB,X,k ⊂ HA,X,k ⊂ H1,X,k ⊂ H1,X .

(3) In the particular case of A(t) = tr, 1 ≤ r <∞, denoting Hr,X = HA,X , it
follows that

H∞,X,k ⊂ Hr2,X,k ⊂ Hr1,X,k ⊂ H1,X,k ⊂ H1,X , for all 1 < r1 < r2 <∞.

Next, we define the notions of singular integral operator and its commutator in
the vector-valued sense.
Definition 2.5. Consider a vector-valued function K, K(y) = {Kl(y)}l∈Z, with
Kl ∈ L1

loc(Rn \ {0}). Let

Tf(x) := p.v.
∫
Rn
K(x− y)f(y) dy = {(Kl ∗ f)(x)}l∈Z

=
{

p.v.
∫
Rn
Kl(x− y)f(y) dy

}
l∈Z

.
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The operator T will be a singular integral operator if it is strong (p0, p0), for some
p0 > 1, and the kernel K = {Kl}l∈Z ∈ H1,X .

Remark 2.6. The operator T is strong (p0, p0) in the sense of Bochner–Lebesgue
spaces. Given a Banach space X, LpX(Rn) is called Bochner–Lebesgue space with
the norm

(∫
Rn ‖f(x)‖pX dx

)1/p.
Remark 2.7. Since K = {Kl}l∈Z ∈ H1,X , T is of weak type (1,1) and satisfies
Kolmogorov’s inequality,(

1
|B|

∫
B

‖Tf‖εx
) 1
ε

≤ c 1
|B̂|

∫
B̂

|f |,

where 0 < ε < 1 and supp(f) = B̂ ⊂ B.

Let us recall the BMO space and the sharp maximal function. If f ∈ L1
loc(Rn)

define

M ]f(x) = sup
B3x

1
|B|

∫
B

∣∣∣∣f − 1
|B|

∫
B

f

∣∣∣∣ .
A locally integrable function f has bounded mean oscillation (f ∈ BMO) if

M ]f ∈ L∞ and the norm ‖f‖BMO = ‖M ]f‖∞.
Observe that the BMO norm is equivalent to

‖f‖BMO = ‖M ]f‖∞ ∼ sup
B

inf
a∈C

1
|B|

∫
B

|f(x)− a| dx.

Remark 2.8. The following are some properties of BMO:
Given b ∈ BMO, a ball B, k ∈ N ∪ {0}, A(t) = exp(t1/k) and q > 0, by

John–Nirenberg’s Theorem we have

‖(b− bB)k‖Lq,B ≤ ‖(b− bB)k‖A,B = ‖b− bB‖kexpL,B ≤ C‖b‖BMO. (2.2)

On the other hand, for any j ∈ N and b ∈ BMO, we have

|bB−b2jB | ≤
j∑

m=1
|b2m−1B−b2mB | ≤ 2n

j∑
m=1
‖b−b2mB‖L1,2mB ≤ 2nj‖b‖BMO. (2.3)

Definition 2.9. Given T a singular integral operator and b ∈ BMO, the k-th order
commutator of T , k ∈ N ∪ {0}, is defined by:

T kb f(x) := p.v.
∫
Rn

(b(x)− b(y))kK(x− y)f(y) dy

=
{

p.v.
∫
Rn

(b(x)− b(y))kKl(x− y)f(y) dy
}
l∈Z

.

Note that for k = 0, T kb = T and observe that T kb = [b, T k−1
b ], k ∈ N.

Remark 2.10. T kb f(x) = [b, T k−1
b ](f)(x) := b(x)T k−1

b (f)(x)− T k−1
b (bf)(x).
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We will consider weights in the Muckenhoupt classes Ap, 1 ≤ p ≤ ∞. Let w
be a non-negative locally integrable function. We say that w ∈ Ap if there exists
Cp <∞ such that for any ball B ⊂ Rn,(

1
|B|

∫
B

w

)(
1
|B|

∫
B

w−
1
p−1

)p−1
< Cp,

when 1 < p <∞, and for p = 1,

Mw(x) ≤ C1w(x), for a.e. x ∈ Rn.

Finally we set A∞ = ∪1<pAp. It is well known that the Muckenhoupt classes
characterize the boundedness of the Hardy–Littlewood maximal function on weighted
Lp-Lebesgue spaces. Namely, w ∈ Ap, 1 < p ≤ ∞, if and only if M is bounded on
Lp(w); and w ∈ A1 if and only if M maps L1(w) into L1,∞(w).

In [12] and [11] the following results were proved.

Theorem B ([12]). Let K be a vector-valued function that satisfies the LA,X-
Hörmander condition and let T be the operator associated to K. Suppose T is
bounded in some Lp0 , 1 < p0 < ∞. Then, for any 0 < p < ∞ and w ∈ A∞, there
exists C such that ∫

Rn
‖Tf‖pxw ≤ C

∫
Rn

(MAf)pw,

for any f ∈ C∞c and whenever the left-hand side is finite.

For commutators of the operator T , there is the following result:

Theorem C ([11]). Let b ∈ BMO and k ∈ N ∪ {0}. Let A, B be Young functions
such that A−1(t)B−1(t)C−1

k (t) ≤ t, with Ck(t) = exp(t1/k) for t ≥ 1 if k ∈ N
and C−1

k ≡ 1 if k = 0. If T is a singular integral operator with kernel K ∈
HB,X ∩HA,X,k, then for any 0 < p <∞ and w ∈ A∞,∫

Rn
‖T kb f‖

p
Xw ≤ C

∫
Rn

(MAf)pw, f ∈ L∞c ,

whenever the left-hand side is finite. Furthermore, if A is sub-multiplicative, then
for all w ∈ A∞ and λ > 0,

w{x ∈ Rn : |T kb f(x)| > λ} ≤ c
∫
Rn
A
(
‖b‖kBMO|f(x)|

λ

)
Mw(x) dx.

3. Main results

In this section we will state a new condition, weaker than the generalized Hör-
mander condition (Definition A). The previous Theorems B and C still remain true
using this new condition.

Definition 3.1. Let K be a vector-valued function, A be a Young function and k ∈
N ∪ {0}. The function K satisfies the LA,X,k† -Hörmander condition (K ∈ H†A,X,k),
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HÖRMANDER CONDITIONS FOR VECTOR-VALUED KERNELS 231

if there exist cA > 1 and CA > 0 such that for all x and R > cA|x|,∥∥∥∥∥
{ ∞∑
m=1

(2mR)nmk‖Kl(· − x)−Kl(·)‖A,|y|∼2mR

}
l∈Z

∥∥∥∥∥
X

≤ CA.

We say that K ∈ H†∞,k if K satisfies the previous condition with ‖ · ‖L∞,|x|∼2mR in
place of ‖ · ‖A,|x|∼2mR.

If k = 0, we denote H†A,X = H†A,X,0 and H†∞,X = H†∞,X,0.

Remark 3.2. The classes H†A,X,k satisfy the same inclusion of the classes HA,X,k
(see Remark 2.4), and the relation between these classes is the following:

HA,X,k ( H†A,X,k.

In section 4, we give an explicit example of a kernel K such that K ∈ H†A,X,k
and K 6∈ HA,X,k (see Proposition F and Corollary 4.5).

Using Definition 3.1, the previous theorems are written as follows, for the case
k = 0:

Theorem 3.3. Let T be a vector-valued singular integral operator with kernel
K ∈ H†A,X . Then, for any 0 < p <∞ and w ∈ A∞, there exists C such that∫

Rn
‖Tf‖pXw ≤ C

∫
Rn

(MAf)pw, f ∈ L∞c (Rn), (3.1)

whenever the left-hand side is finite.

And for the case k ∈ N:

Theorem 3.4. Let b ∈ BMO and k ∈ N. Let A, B be Young functions such that
A−1(t)B−1(t)C−1

k (t) ≤ t, with Ck(t) = exp(t1/k) for t ≥ 1. If T is a vector-valued
singular integral operator with kernel K ∈ H†B,X ∩H

†
A,X,k, then for any 0 < p <∞

and w ∈ A∞, there exists C such that∫
Rn
‖T kb f‖

p
Xw ≤ C

∫
Rn

(MAf)pw, f ∈ L∞c (Rn),

whenever the left-hand side is finite.
Furthermore, if A is sub-multiplicative, then for all w ∈ A∞ and λ > 0,

w{x ∈ Rn : |T kb f(x)| > λ} ≤ c
∫
Rn
A
(
‖b‖kBMO|f(x)|

λ

)
Mw(x) dx.

Remark 3.5. These theorems are more general than Theorem B and C, since there
exists a singular integral operator whose kernel K ∈ H†A,X,k and K 6∈ HA,X,k for
some appropriate Young function A.

Let A(t) = exp(t
1

1+k ) − 1 and Ck(t) = exp(t1/k). If B(t) = exp(t) − 1 then
A−1(t)B−1(t)C−1

k (t) ≤ t. Thus, if K ∈ H†A,X,k then K ∈ H†B,X . In this case
Theorems 3.3 and 3.4 can be written as follows.
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Theorem 3.6. Let b ∈ BMO and k ∈ N ∪ {0}. Let A(t) = exp(t
1

1+k ) − 1. If T
is a vector-valued singular integral operator with kernel K ∈ H†A,X,k, then for any
0 < p <∞ and w ∈ A∞, there exists C such that∫

Rn
‖T kb f‖

p
Xw ≤ C

∫
Rn

(MAf)pw ≤ C
∫
Rn

(Mk+2f)pw, f ∈ L∞c (Rn),

whenever the left-hand side is finite.
Furthermore, for all w ∈ A∞ and λ > 0,

w{x ∈ Rn : |T kb f(x)| > λ} ≤ c
∫
Rn
A
(
‖b‖kBMO|f(x)|

λ

)
Mw(x) dx,

where A(t) = t(1 + log(t))k+1.

4. Applications and generalization

Now, we define the vector-valued singular integral operator, T̃ , and its commu-
tator, that will be an example of our results.

Definition 4.1. Let f be a locally integrable function in R. Let T̃ be defined as:

T̃ f(x) :=
{∫

R

(
1

2l+1χ(−2l,2l)(x− y)− 1
2lχ(−2l−1,2l−1)(x− y)

)
f(y) dy

}
l∈Z

=
∫
R
K(x− y)f(y) dy,

where K is

K(z) = {Kl(z)}l∈Z =
{

1
2l+1χ(−2l,2l)(z)−

1
2lχ(−2l−1,2l−1)(z)

}
l∈Z

.

For this operator T̃ , the Banach space (X, ‖ · ‖X) will be (`2(Z), ‖ · ‖`2).

Definition 4.2. Let f be a measurable function in R, k ∈ N∪{0}, and b ∈ BMO.
The k-th order commutator is defined as

Skb f(x) := ‖T̃ kb f(x)‖`2 ,

where T̃ kb is the k-th order commutator of T̃ . The Skb is called the k-th commutator
of the square operator.

In [11] and [17] the authors studied the kernel of the square operator for the
one-sided case. The following results are for the two-sided case and the proofs are
analogous to the one-sided case.
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Proposition D ([17]). Let x0 ∈ R and i, j ∈ Z, i < j. Let x, y ∈ R such that
|x− x0| < 2i, y ∈ (x0 − 2j+1, x0 − 2j) or y ∈ (x0 + 2j , x0 + 2j+1). Then

|Kl(y − x)−Kl(y − x0)|

=



1
2j+1χ(x−2j ,x0−2j)∪ (x0+2j ,x+2j)(y) if l = j,

1
2j+2χ(x0−2j+1,x−2j+1)∪ (x+2j+1,x0+2j+1)(y)

+ 1
2j+1χ(x−2j ,x0−2j)∪ (x0+2j ,x+2j)(y) if l = j + 1,

1
2j+2χ(x0−2j+1,x−2j+1)∪ (x+2j+1,x0+2j+1)(y) if l = j + 2,
0 if l 6∈ {j, j + 1, j + 2}.

In [12], using Proposition D the authors proved the following results.

Proposition E ([12]). The kernel K 6∈ H∞, `2 .

Remark 4.3. As K 6∈ H∞, `2,k we can not use Theorem 3.4 to conclude that∫
R
|Skb f(x)|pw(x) dx =

∫
R
‖T̃ kb f(x)‖p`2w(x) dx ≤ C

∫
R
|Mk+1f(x)|pw(x) dx.

This inequality is still an open problem.

Proposition F ([11]). Let Aε(t) = exp(t
1

1+k+ε )−1, ε ≥ 0, and k ∈ N∪{0}. Then,
K ∈ HAε,`2,k for all ε > 0, and K 6∈ HA0,`2,k.

In [11] and [12], as an application of Theorems B and C, the authors obtained
the following result.

Theorem G ([11, 12]). Let b ∈ BMO and k ∈ N ∪ {0}. Let Skb be the k-th order
commutator of the square operator. Then for any 0 < p < ∞ and w ∈ A∞, there
exists C such that∫

R
(Skb f(x))pw(x) dx =

∫
R

(‖T̃ kb f(x)‖`2)pw(x) dx ≤ C
∫
R

(Mk+3f(x))pw(x) dx,

whenever the left-hand side is finite.

For the case of the kernel of the square operator we obtain:

Proposition 4.4. Let k ∈ N ∪ {0} and A be a Young function. Then,

K ∈ H†A, `2,k ⇔
∥∥∥∥{ mk

A−1(2m8)

}
m∈Z

∥∥∥∥
`2

<∞.

Corollary 4.5. Let A(t) = exp(t
1

1+k ) − 1. Then the kernel K ∈ H†A, `2,k for any
k ∈ N ∪ {0}.

Corollary 4.5 tells us that the kernel of the square operator satisfies the hypothe-
ses of Theorems 3.3 and 3.4 (see Theorem 3.6) and we obtain a new proof of the
following result.
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Theorem H ([13]). Let b ∈ BMO and k ∈ N ∪ {0}. Let Skb be the k-th order
commutator of the square operator. Then, for any 0 < p <∞ and w ∈ A∞, there
exists C such that∫

R
(Skb f(x))pw(x) dx ≤ C

∫
R
(Mk+2f(x))pw(x) dx,

whenever the left-hand side is finite.

4.1. Generalization of the square operator. In this subsection we will build
a family of operators and we will prove that they satisfy Proposition 4.4. These
operators are a generalization of the square operator.

Let X be a Banach space with a monotone norm, see (2.1). We define SXf(x) :=
‖T̃ f(x)‖X , where T̃ was defined in Definition 4.1. Observe that if X = `2 then
SX = S, the square operator.

We can generalize Proposition 4.4 and Corollary 4.5, replacing the `2-norm by
the X-norm. In this case, Proposition 4.4 states that for all k ≥ 0 and A a Young
function,

K ∈ H†A,X,k ⇔
∥∥∥∥{ mk

A−1(2m8)

}
m∈Z

∥∥∥∥
X

<∞. (4.1)

Also, Corollary 4.5 can be rewritten in this way: If A(t) = exp(t
1

1+k ) − 1 and
k ∈ N ∪ {0}, then K ∈ H†A,X,k.

Observe that if k ∈ N ∪ {0} and A(t) = exp(t
1

1+k ) − 1, by Proposition 4.4 we
have

K ∈ H†A,X,k ⇔

∥∥∥∥∥
{

1
m

}
m∈(Z−{0})

∥∥∥∥∥
X

= CA,X <∞. (4.2)

Applying Theorem 3.6, we obtain∫
Rn
|SkX,bf(x)|pw(x) dx =

∫
Rn
‖T̃ kb f(x)‖pX w(x) dx

6 c
∫
Rn

(
MAf(x)

)p
w(x) dx 6 c

∫
Rn

(
Mk+2f(x)

)p
w(x) dx,

whenever the left-hand side is finite.

Remark 4.6. Examples of the Banach spaces X are the `p spaces with 1 ≤ p ≤ ∞.
Observe that for p = 2 condition (4.2) holds, but it is easy to see that it does not
hold for p = 1. One open question is: Does there exist a Young function A such
that the condition (4.1) is finite for X = `1? For example, does there exist a Young
function such that the condition (4.2) is replaced by

∥∥∥{ 1
m2

}
m∈(Z−{0})

∥∥∥
`1

?

An interesting example is: given a Young function E , we denote XE = (RZ, ‖·‖E),
the Banach space with

‖{an}‖E = inf
{
λ > 0 :

∑
n∈Z
E
(
|an|
λ

)
≤ 1
}
.
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Now we give an example of a family of Young functions for which condition (4.2)
holds. Let us consider, for t ≥ 0, the Young function E(t) = tr (log(t+ 1))β , where
β ≥ 0 and r ≥ 1. For this it is enough to prove that there exists 0 < λ < ∞ such
that λ ∈ G, where

G :=

λ > 0 :
∑

m∈Z−{0}

E
(

1/m
λ

)
≤ 1

 .

Let λ > 1, ∑
m∈Z−{0}

E
(

1/m
λ

)
=

∑
m∈(Z−{0})

log
(

1
|m|λ

+ 1
)β 1

(λm)r

≤ log
(

1
λ

+ 1
)β 1

λr

∑
m∈(Z−{0})

1
mr

≤ log(2)β 1
λr
c.

Observe that log(2)β 1
λr c ≤ 1 if and only if c log(2)β ≤ λr. In particular, λ0 :=(

log(2)βC + 1
)1/r satisfies this inequality, i.e., λ0 ∈ G. Thus, we have that (4.2) is

true.

4.2. Proof of Proposition 4.4 and Corollary 4.5. In this subsection we pro-
ceed to study the applications. Let K be the kernel of the square operator, defined
above.

Definition. We define the sets
−F−m := (x− 2m+i,−2m+i) F−m := (x+ 2m+i, 2m+i)
−F+

m := (−2m+i, x− 2m+i) F+
m := (2m+i, x+ 2m+i)

−Fm :=
{
−F−m if x < 0,
−F+

m if x > 0,
Fm :=

{
F−m if x < 0,
F+
m if x > 0.

Observe that if |x| < 2i, [−Fm ∪ Fm] ∩ [−Fm−1 ∪ Fm−1] = ∅, for all m ∈ Z.

Proof of Proposition 4.4. Recall that K ∈ H†A, `2,k if there exist cA > 1 and CA > 0
such that for each x and R > cA|x|,∥∥∥∥∥

{ ∞∑
m=1

(2mR)nmk‖(Kl(· − x)−Kl(·))χ|y|∼2mR(·)‖A,B(0,2m+1R)

}
l∈Z

∥∥∥∥∥
X

≤ CA.

(4.3)
Let us prove that∥∥∥∥{ mk

A−1(2m8)

}
m∈Z

∥∥∥∥
`2

<∞⇒ K ∈ H†A,`2,k.
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If x = 0, (Kl(· −x)−Kl(·)) = 0 for all l ∈ Z, then the condition (4.3) is trivial.
Let x 6= 0. Let R = 2i, i ∈ Z, x such that |x| < 2i, Im := (−2m+i, 2m+i) and −Fm
and Fm as above. For l ∈ Z, using Proposition D we obtain
∞∑
m=1

2m+imk‖(Kl(· − x)−Kl(·))χ|y|∼2m+i‖A,Im+1

= 2l+ilk
∥∥∥∥ 1

2l+i+1χ−Fl∪Fl

∥∥∥∥
A,Il+1

+ 2l−1+i(l − 1)k
∥∥∥∥ 1

2l+i+1χ−Fl∪Fl + 1
2l+iχ−Fl−1∪Fl−1

∥∥∥∥
A,Il

+ 2l−2+i(l − 2)k
∥∥∥∥ 1

2l + i
χ−Fl−1∪Fl−1

∥∥∥∥
A,Il−1

≤ 2l+ilk
∥∥∥∥ 1

2l+i+1χ−Fl∪Fl

∥∥∥∥
A,Il+1

+ 2l−1+i(l − 1)k
∥∥∥∥ 1

2l+i+1χ−Fl∪Fl

∥∥∥∥
A,Il

+ 2l−1+i(l − 1)k
∥∥∥∥ 1

2l+iχ−Fl−1∪Fl−1

∥∥∥∥
A,Il

+ 2l−2+i(l − 2)k
∥∥∥∥ 1

2l+iχ−Fl−1∪Fl−1

∥∥∥∥
A,Il−1

.

Using that ∥∥∥∥ 1
2l+i+1χ−Fl∪Fl

∥∥∥∥
A,Il
≤ 2

∥∥∥∥ 1
2l+i+1χ−Fl∪Fl

∥∥∥∥
A,Il+1

and ∥∥∥∥ 1
2l+iχ−Fl−1∪Fl−1

∥∥∥∥
A,Il−1

≤ 2
∥∥∥∥ 1

2l+iχ−Fl−1∪Fl−1

∥∥∥∥
A,Il

we get
∞∑
m=1

2m+imk‖(Kl(· − x)−Kl(·))χ|y|∼2m+i‖A,Im+1

≤ 2.2l+ilk
∥∥∥∥ 1

2l+i+1χ−Fl∪Fl

∥∥∥∥
A,Il+1

+ 2.2l−1+i(l − 1)k
∥∥∥∥ 1

2l+iχ−Fl−1∪Fl−1

∥∥∥∥
A,Il

= lk

A−1
(

2l+i+2

2|x|

) + (l − 1)k

A−1
(

2l+i+1

2|x|

)
≤ 2lk

A−1
(

2l+i+1

|x|

) ,
where the last inequality holds due to A−1 being monotone.
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Then, for all |x| < 2i, we obtain∥∥∥∥{ ∞∑
m=1

2m+imk‖(Kl(· − x)−Kl(·))χ|y|∼2m+i‖A,tm+1

}
l∈Z

∥∥∥∥
`2

≤

∥∥∥∥∥
{

2lk

A−1
(

2l+i+1

|x|

)}
l∈Z

∥∥∥∥∥
`2

.

In particular, the last inequality holds for all |x| < 2i
4 . As |x| < 2i

4 , we have
2l+i+1

|x| > 2l8,∥∥∥∥{ ∞∑
m=1

2m+imk‖(Kl(· − x)−Kl(·))χ|y|∼2m+i‖A,Bm+1

}
l∈Z

∥∥∥∥
`2

≤
∥∥∥∥{ 2lk

A−1
(

2l+i+1

|x|

)}
l∈Z

∥∥∥∥
`2

≤
∥∥∥∥{ 2lk

A−1 (2l8)

}
l∈Z

∥∥∥∥
`2

= 2
∥∥∥∥{ lk

A−1 (2l8)

}
l∈Z

∥∥∥∥
`2
.

Then, by hypothesis, we obtain K ∈ H†A,`2,k.

Now let us prove that K ∈ H†A,`2,k ⇒
∥∥∥∥{ mk

A−1(2m8)

}
m∈Z

∥∥∥∥
`2
<∞. By hypothesis,

there exist cA > 1 and CA > 0 such that for all R ∈ R and for all x, |x|cA < 2i,
then ∥∥∥∥{ ∞∑

m=1
2mR mk‖(Kl(· − x)−Kl(·))χ|y|∼2mR‖A,Bm+1

}
l∈Z

∥∥∥∥
`2
≤ CA.

Let i ∈ Z. If R = 2i, then |x| < 2i. Thus, using Proposition D we get∥∥∥∥{ ∞∑
m=1

2m+imk‖(Kl(· − x)−Kl(·))χ|y|∼2m+i‖A,Bm+1

}
l∈Z

∥∥∥∥
`2

≥
∥∥∥∥{2l+ilk

∥∥∥∥ 1
2l+i+1χ−Fl∪Fl

∥∥∥∥
A,Il+1

}
l∈Z

∥∥∥∥
`2

=
∥∥∥∥{2l+ilk 1

2l+1+iA−1
(

2l+i+2

2|x|

)}
l∈Z

∥∥∥∥
`2

=
∥∥∥∥{ lk

2A−1
(

2l+i+1

|x|

)}
l∈Z

∥∥∥∥
`2

= 1
2

∥∥∥∥{ lk

A−1
(

2l+i+1

|x|

)}
l∈Z

∥∥∥∥
`2
,
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which holds for all |x| < 2i. Then, taking supremum, we obtain

CA ≥ sup
2i−2<|x|<2i−1

∥∥∥∥{ ∞∑
m=1

2mR mk‖(Kl(· − x)−Kl(·))χ|y|∼2mR‖A,Bm+1

}
l∈Z

∥∥∥∥
`2

≥ sup
2i−2<|x|<2i−1

1
2

∥∥∥∥{ lk

A−1
(

2l+i+1

|x|

)}
l∈Z

∥∥∥∥
`2
≥ 1

2

∥∥∥∥{ lk

A−1 (2l8)

}
l∈Z

∥∥∥∥
`2
.

Hence, ∥∥∥∥{ lk

A−1 (2l8)

}
l∈Z

∥∥∥∥
`2
≤ 2CA <∞. �

Proof of Corollary 4.5. Let A(t) = exp(t1+k) − 1. Using Proposition 4.4, it is
enough to prove that for any k ∈ N ∪ {0},∥∥∥∥{ lk

A−1 (2l8)

}
l∈Z

∥∥∥∥
`2
<∞.

As A(t) = exp(t1+k)− 1, we have that A−1(t) = log(t+ 1)k+1.
If m = 0, A−1(2m) = A−1(1) = log(1 + 1)k+1 = log(2)k+1 6= 0, then mk

A−1(2m8) = 0.
Also, A−1(2m8) = log(2m8 + 1)k+1 ≥ log(2m8)k+1 ≥ log(2m)k+1. Then, we get∥∥∥∥{ mk

A−1 (2m8)

}
m∈Z

∥∥∥∥2

`2
=
∑
m∈Z

(
mk

A−1(2m8)

)2
=

∑
m∈Z\{0}

(
mk

A−1(2m8)

)2

≤
∑

m∈Z\{0}

(
mk

log(2m)k+1

)2
=

∑
m∈Z\{0}

(
1

log(2)k+1
mk

mk+1

)2

= 1
log(2)2(k+1)

∑
m∈Z\{0}

1
m2 <∞. �

5. Proofs of the main results

For the proof of the main results we need the following lemma.
Lemma 5.1. Let k ∈ N ∪ {0}. Let A, B be Young functions such that
A−1(t)B−1(t)C−1

k (t) ≤ t, with Ck(t) = exp(t1/k) for t ≥ 1. If T is a vector-valued
singular integral operator with kernel K such that K ∈ H†B,X ∩ H

†
A,X,k, then for

any b ∈ BMO, 0 < δ < ε < 1 we have:
a) if k = 0, B = A, then there exists C > 0 such that

M ]
δ‖Tf‖x(x) :=

(
M ]‖Tf‖δx

) 1
δ (x) ≤ C MAf(x),

for all x ∈ Rn.
b) If k ∈ N, then there exists C = C(δ, ε) > 0 such that

M ]
δ (‖T kb f‖X)(x) ≤ C

k−1∑
j=0
‖b‖k−jBMOMε(T jb f)(x) + C‖b‖kBMOMAf(x),

for all x ∈ Rn.
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Proof. The argument is similar to the proof of Lemma 5.1 in [11]; we only give
the main changes. Let’s consider part (b); the proof of part (a) is analogous, with
k = 0.

Let K ∈ H†B,X ∩H
†
A,X,k and k ∈ N. Then for any λ ∈ R, we can write

T kb f(x) = T ((λ− b)kf)(x) +
k−1∑
m=0

Ck,m(b(x)− λ)k−mTmb f(x). (5.1)

Let us fix x ∈ Rn and B a ball such that x ∈ B, B̃ := 2B, and cB the center of
the ball B. Let f = f1 + f2, where f1 := fχB̃ , and let a := ‖T (bB̃ − b)kf2(cB)‖X .
Using (5.1) and taking λ = bB̃ = 1

|B̃|

∫
B̃
b,

(
1
|B|

∫
B

∣∣‖T kb f(y)‖δX − |a|δ
∣∣ dy)1/δ

≤
(

1
|B|

∫
B

‖T kb f(y)− T (bB̃ − b)
kf2(cB)‖δX dy

)1/δ

=
(

1
|B|

∫
B

∥∥∥ k−1∑
m=0

Ck,m(b(y)− bB̃)k−mTmb f(y) + T ((bB̃ − b)
kf)(y)

− T ((bB̃ − b)
kf2)(cB)

∥∥∥δ
X
dy

)1/δ

≤ C

[
k−1∑
m=0

Ck,m

(
1
|B|

∫
B

∥∥(b(y)− bB̃)k−mTmb f(y)
∥∥δ
X
dy

)1/δ

+
(

1
|B|

∫
B

∥∥T ((bB̃ − b)
kf1)(y)

∥∥δ
X
dy

)1/δ

+
(

1
|B|

∫
B

∥∥T ((bB̃ − b)
kf2)(y)− T ((bB̃ − b)

kf2)(cB)
∥∥δ
X
dy

)1/δ
]

= C[I + II + III].

The estimates of I and II are analogous to the corresponding ones in [11, Lemma
5.1]. Then

I ≤ c
k−1∑
m=0

Ck,m‖b‖k−mBMOMε(‖T kb f‖X)(x),

II ≤ C‖b‖kBMOMAf(x).
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Now III. By Jensen’s inequality and the property of the norm (2.1), we get

III ≤ 1
|B|

∫
B

‖T ((bB̃ − b)
kf2)(y)− T ((bB̃ − b)

kf2)(cB)‖X dy

= 1
|B|

∫
B

∥∥∥∥{∫
B̃c

(Kl(y − z)−Kl(cB − z))(bB̃ − b(z))
kf(z) dz

}∥∥∥∥
X

dy

≤ 1
|B|

∫
B

∥∥∥∥{∣∣∣∣∫
B̃c

(Kl(y − z)−Kl(cB − z))(bB̃ − b(z))
kf(z) dz

∣∣∣∣}∥∥∥∥
X

dy

≤ 1
|B|

∫
B

∥∥∥∥{∫
B̃c
|Kl(y − z)−Kl(cB − z)||bB̃ − b(z)|

k|f(z)| dz
}∥∥∥∥

X

dy.

For each coordinate l ∈ Z, we proceed as in the proof of Lemma 5.1 in [11]. Let
Bj := 2j+1B, for j ≥ 1, and we obtain∫
B̃c
|Kl(y − z)−Kl(cB − z)||bB̃ − b(z)|

k|f(z)| dz

≤ C‖b‖kBMOMAf(x)
( ∞∑
j=1

(2jR)n‖(Kl(y − ·)−Kl(cB − ·))χSj‖B,Bj

+
∞∑
j=1

(2jR)njk‖(Kl(y − ·)−Kl(cB − ·))χSj‖A,Bj

)
.

Hence,

III ≤ 1
|B|

∫
B

∥∥∥∥{C‖b‖kBMOMAf(x)
( ∞∑
j=1

(2jR)n‖(Kl(y − ·)−Kl(cB − ·))χSj‖B,Bj

+
∞∑
j=1

(2jR)njk‖(Kl(y − ·)−Kl(cB − ·))χSj‖A,Bj

)}∥∥∥∥
X

dy

≤ C‖b‖kBMOMAf(x) 1
|B|

∫
B

[∥∥∥∥ ∞∑
j=1

(2jR)n‖(Kl(y − ·)−Kl(cB − ·))χSj‖B,Bj
∥∥∥∥
X

+
∥∥∥∥ ∞∑
j=1

(2jR)njk‖(Kl(y − ·)−Kl(cB − ·))χSj‖A,Bj
∥∥∥∥
X

]
dy

≤ C‖b‖kBMOMAf(x) 1
|B|

∫
B

dy = C‖b‖kBMOMAf(x),

where the last inequality holds since K ∈ H†B,X ∩ H
†
A,X,k and we have used that

x ∈ B ⊂ Bj and that |xB − y| < R since y ∈ B.
Thus,(

1
|B|

∫
B

|‖T kb (y)‖δX − |a|δ| dy
)1/δ

≤ C
k−1∑
m=0

Ck,m‖b‖k−mBMOMε(‖T kb f‖X)(x)

+ C‖b‖kBMOMAf(x). �
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Now we proceed to prove the main theorems.

Proof of Theorem 3.3. By the extrapolation result Theorem 1.1 in [5], estimate
(3.1) holds for all 0 < p < ∞ and all w ∈ A∞ if, and only if, it holds for some
0 < p0 < ∞ and all w ∈ A∞. Therefore, we will show that (3.1) is true for p0,
which is taken such that T is of strong type (p0, p0).

First we consider w ∈ L∞ ∩ A∞. Since w ∈ A∞, there exists r > 1 such that
w ∈ Ar. Observe that for 0 < δ = p0/r < 1, w ∈ Ap0/δ. Since f ∈ L∞c , we have

‖Mδ(Tf)‖Lp0(w) = ‖M(|Tf |δ)‖
1
δ

L
p0
δ (w)

≤ C ‖Tf‖Lp0 (w) ≤ ‖w‖L∞‖Tf‖Lp0 <∞.

Then using part (a) of Lemma 5.1 we obtain∫
Rn
‖Tf‖p0

x w ≤
∫
Rn
M 1

r
(‖Tf‖p0

x )w =
∫
Rn

(
M(‖Tf‖p0 /r

x )
)r
w

≤ c
∫
Rn

(
M ](‖Tf‖δx)

)p0/δ
w = c

∫
Rn

(
M ]
δ (‖Tf‖x

)p0
w

≤ c
∫
Rn

(
MAf

)p0
w.

Thus, for all w ∈ L∞ ∩A∞ we have (3.1) for p0, that is∫
Rn
‖Tf‖p0

x w ≤ c
∫
Rn

(
MAf

)p0
w.

If we consider w ∈ A∞, for any N > 0 we define wN = min{w,N}. Then
wN ∈ A∞ and also [wN ]A∞ ≤ C[w]A∞ with C independent of N . Since wN ∈ L∞,
(3.1) holds for wN and C does not depend on N . Letting N → ∞ and using the
monotone convergence theorem we conclude (3.1) for p0 and any w ∈ A∞.

Thus, as mentioned, using the extrapolation results obtained in [5], (3.1) holds
for all 0 < p <∞ and w ∈ A∞. �

Proof of Theorem 3.4. The proof is analogous to the proof of Theorem 3.3, part
(a), in [11], using in this case Lemma 5.1. �

6. Fractional integrals

For fractional integral operators there exist LA,α-Hörmander conditions defined
in [2]. The authors obtained the inequality (1.1) with MA,α, the fractional maxi-
mal operator associated to A. In this section, we present a weaker condition for
fractional vector-valued kernels and obtain similar results and applications.

Recall the notation: |x| ∼ s means s < |x| ≤ 2s and given a Young function A
we write ‖f‖A,|x|∼s = ‖fχ|x|∼s‖A,B(0,2s).

The new condition is the following.

Definition 6.1. Let Kα = {Kα,l}l∈Z be a vector-valued function, A be a Young
function, 0 < α < n, and k ∈ N ∪ {0}. The function Kα satisfies the Lα,A,X,k† -
Hörmander condition (K ∈ H†α,A,X,k), if there exist cA > 1 and CA > 0 such that

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)
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for all x and R > cA|x|,∥∥∥∥∥
{ ∞∑
m=1

(2mR)n−αmk‖Kα,l(· − x)−Kα,l(·)‖A,|y|∼2mR

}
l∈Z

∥∥∥∥∥
X

≤ CA.

We say that Kα ∈ H†α,∞,k if Kα satisfies the previous condition with ‖·‖L∞,|x|∼2mR
in place of ‖ · ‖A,|x|∼2mR.

If k = 0, we denote H†α,A,X = H†α,A,X,0 and H†α,∞,X = H†α,∞,X,0.

We also need an extra condition that ensures a certain control of the size; in
this case it is:

Definition 6.2. Let A be a Young function and let 0 < α < n. The function
Kα = {Kα,l}l∈Z is said to satisfy the S †α,A,X condition, denoted by Kα ∈ S †α,A,X ,
if there exists a constant C > 0 such that∥∥∥{‖Kα,l‖A,|x|∼s

}
l∈Z

∥∥∥
X
≤ Csα−n.

Remark 6.3. If A(t) ≤ cB(t) for t > t0, some t0 > 0, then

H†α,B,X,k ⊂ H
†
α,A,X,k and S †α,B,X ⊂ S †α,A,X .

Remark 6.4. Observe that the Mα,A is the fractional maximal operator associated
to the Young function A, that is

Mα,Af(x) := sup
B3x
|B|α/n‖f‖A,B .

The results in this case are

Theorem 6.5. Let A be a Young function and 0 < α < n. Let Tαf = {Kα,l∗f}l∈Z
with kernel Kα = {Kα,l}l∈Z ∈ S †α,A,X ∩ H†α,A,X . Let 0 < p < ∞ and w ∈ A∞.
Then there exists c > 0 such that∫

Rn
‖Tαf‖pXw ≤ C

∫
Rn

(Mα,Af)pw, f ∈ L∞c (Rn),

whenever the left-hand side is finite.

Theorem 6.6. Let 0 < α < n, b ∈ BMO and k ∈ N. Let Tα be a convolu-
tion operator with kernel Kα = {Kα,l}l∈Z such that Tα is bounded from Lp0

X (dx)
to Lq0

X (dx), for some 1 < p0, q0 < ∞. Let A, B be Young functions such that
A−1(t)B−1(t)C−1

k (t) ≤ t, with Ck(t) = exp(t1/k) for t ≥ 1. If Kα ∈ S †α,A,X ∩
H†α,A,X ∩H

†
α,B,X,k, then for any 0 < p < ∞ and any w ∈ A∞, there exists c > 0

such that ∫
Rn
‖T kα,bf‖

p
Xw ≤ C‖b‖

pk
BMO

∫
Rn

(Mα,Af)pw, f ∈ L∞c (Rn),

whenever the left-hand side is finite.
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Remark 6.7. The proofs of these results are analogous to the ones in [2] with the
same changes of the results for the vector-valued singular integral operators above.
Also for the proofs of these results we need the following lemma, whose proof is
analogous to that of Lemma 5.1 and that of Theorem 3.6 in [2].

Lemma 6.8. Let A be a Young function and 0 < α < n. Let Tαf = Kα ∗ f with
kernel Kα ∈ S †α,A,X ∩ H

†
α,A,X . Then for all 0 < δ < ε < 1 there exists c > 0 such

that
M ]
δ‖Tαf‖x(x) =

(
M ]‖Tαf‖δX

) 1
δ (x) ≤ c Mα,Af(x),

for all x ∈ Rn and f ∈ L∞c .

There exist relations between the kernels which satisfy the fractional condi-
tions S †α,A,X and H†α,A,X,k and the kernels which satisfy the conditions S †A,X and
H†A,X,k. The next proposition shows this relation and also a form to define kernels
such that they satisfy the fractional condition. The proof is analogous to that of
Proposition 4.1 in [2].

Proposition 6.9. Let K = {Kl}l∈Z and Kα = {Kα,l}l∈Z defined by Kα(x) =
|x|αK(x). If K ∈ S †A,X ∩H

†
A,X,k then Kα ∈ S †α,A,X ∩H

†
α,A,X,k.

We know that, for certain Banach spaces X, the kernel of the square operator sa-
tisfies the conditions S †A,X and H†A,X,k, for example X = `p and A(t) = exp

1
1+k −1;

for more examples see Section 4. Now we can define the fractional square operator,

Sα,Xf(x) := ‖T̃αf(x)‖X =
∥∥∥∥{∫

R
|x− y|αKl(x− y)f(y) dy

}∥∥∥∥
X

,

where K = {Kl}l∈Z is the kernel defined in Section 4. Let b ∈ BMO and k ∈ N;
the commutator is defined by

Skα,X,bf(x) := ‖T̃ kα,bf(x)‖X =
∥∥∥∥{∫

R

(b(x)− b(y))k|x− y|αKl(x− y)f(y) dy
}
l∈Z

∥∥∥∥
X

.

By Proposition 6.9, we have that Sα,Xf(x) satisfies the hypothesis of Theo-
rem 6.6. Then, Theorem 3.6 for the fractional square operator is

Theorem 6.10. Let b ∈ BMO, k ∈ N ∪ {0}, and 0 < α < n. Let A(t) =
exp(t

1
1+k )− 1. If K ∈ S †A,X ∩H

†
A,X,k, i.e.∥∥∥∥∥

{
1
m

}
m∈(Z−{0})

∥∥∥∥∥
X

= CA,X <∞,

then, for any 0 < p <∞ and w ∈ A∞, there exists C such that∫
Rn
|Skα,X,bf(x)|pw(x) dx 6 C

∫
Rn

(
Mα,L logLk+1f(x)

)p
w(x) dx.

In [1], the authors studied the weights for the fractional maximal operator related
to a Young function in the context of variable Lebesgue spaces. They characterized
the weights for the boundedness of Mα,A with A(t) = tr(1 + log(t))β , r ≥ 1 and
β ≥ 0.
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For any 1 ≤ p, q <∞, we define the Ap,q weight class this way: w ∈ Ap,q if and
only if wq ∈ A1+ q

p′
.

The result in the classical Lebesgue spaces, that is, the variable Lebesgue spaces
with constant exponent, is the following.

Theorem I ([1]). Let w be a weight, 0 < α < n, 1 < p < n/α, and 1/q = 1/p−α/n.
Let A(t) = tr(1 + log(t))β, with 1 ≤ r < p and β ≥ 0. Then Mα,A is bounded from
Lp(wp) into Lq(wq) if and only if wr ∈ Ap/r,q/r.

Applying this result to Theorem 6.10 we obtain that if w ∈ Ap,q then for all
1 < p < n/α and 1/q = 1/p− α/n,∫

Rn
|Skα,X,bf(x)|qwq(x) dx ≤ c

∫
Rn

(
Mα,L logLk+1f(x)

)q
wq(x) dx

≤ c
∫
Rn
|f(x)|pwp(x) dx.

So we have the following result.

Corollary 6.11. Let 0 < α < 1, 1 < p < 1/α, and 1/q = 1/p − α. If w ∈ Ap,q
then Skα,X,b is bounded from Lp(wp) into Lq(wq).
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