A REMARK ON TRANS-SASAKIAN 3-MANIFOLDS

YANING WANG AND WENJIE WANG

ABSTRACT. Let M be a trans-Sasakian 3-manifold of type (α, β) . In this paper, we give a negative answer to the question proposed by S. Deshmukh [Mediterr. J. Math. **13** (2016), no. 5, 2951–2958], namely we prove that the differential equation $\nabla \beta = \xi(\beta)\xi$ on M does not necessarily imply that M is homothetic to either a Sasakian or cosymplectic manifold even when M is compact. Many examples are constructed to illustrate this result.

1. INTRODUCTION

A trans-Sasakian manifold M is an almost contact metric manifold such that the product $M \times \mathbb{R}$ belongs to the class W_4 of Hermitian manifolds (see [23]). Hermitian manifolds of class W_4 are closely related to locally conformally Kähler manifolds (see [13]). In [18], Marrero gave the local structures of trans-Sasakian manifolds, namely a connected trans-Sasakian manifold of dimension greater than three must be of class C_5 or C_6 . A trans-Sasakian manifold is said to be proper if it is one of the above two cases. However, there exist many trans-Sasakian 3-manifolds which are not proper (see [3, 20]), namely neither α nor β is zero. Therefore, to find on what condition a trans-Sasakian 3-manifold is proper is an interesting problem. Recently, S. Desmukh et al. in [8, 9, 10, 11, 12] obtained various conditions under which a compact trans-Sasakian 3-manifold is homothetic to either a Sasakian or a cosymplectic 3-manifold. Trans-Sasakian 3-manifolds under some curvature restrictions were also studied by U. C. De et al. in [5, 6, 7] and Wang [24].

In [8], without the compactness assumption, Deshmukh proved

Theorem 1.1 ([8]). If a connected trans-Sasakian 3-manifold M of type (α, β) satisfies $\nabla \alpha = \xi(\alpha)\xi$ with $\alpha \neq 0$, then M is homothetic to a Sasakian manifold.

In the proof of the above theorem, Deshmukh found that $\nabla \alpha = \xi(\alpha)\xi$ and $\alpha \neq 0$ imply $\nabla \beta = \xi(\beta)\xi$. In view of similar but different properties of α and β , the author in [8] proposed the following interesting question:

²⁰¹⁰ Mathematics Subject Classification. Primary 53D15; Secondary 53C25.

Key words and phrases. Compact trans-Sasakian 3-manifold; \mathcal{D} -homothetic deformation; α -Sasakian manifold; β -Kenmotsu manifold.

The authors were supported by the Youth Science Foundation of Henan Normal University (No. 2014QK01).

Question 1.1. Does the differential equation $\nabla \beta = \xi(\beta)\xi$ give a result similar to Theorem 1.1 or not?

The above question is equivalent to asking if differential equation $\nabla \beta = \xi(\beta)\xi$ on a trans-Sasakian 3-manifold implies that the manifold is homothetic to either a Sasakian or cosymplectic 3-manifold. In this paper, we aim to investigate this question and give a negative answer. Namely, we prove

Theorem 1.2. If a connected compact trans-Sasakian 3-manifold of type (α, β) satisfies $\nabla \beta = \xi(\beta)\xi$, then we have either $\alpha = 0$ or $\beta = 0$. However, the vanishing of α or β does not necessarily imply that the other one is a constant.

After giving proof of the above Theorem 1.2 in Section 3, we construct many concrete examples to illustrate our main results.

2. TRANS-SASAKIAN MANIFOLDS

According to D. E. Blair [2], an almost contact metric structure defined on a smooth differentiable manifold M of dimension 2n + 1 is a (ϕ, ξ, η, g) -structure satisfying

$$\phi^{2} = -\mathrm{id} + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

$$\phi^{*}g = g - \eta \otimes \eta, \qquad (2.1)$$

where ϕ is a (1, 1)-type tensor field, ξ is a tangent vector field called the characteristic or the Reeb vector field, and η is a 1-form called the almost contact form. A Riemannian manifold M furnished with an almost contact metric structure is said to be an *almost contact metric manifold*, denoted by (M, ϕ, ξ, η, g) .

Let M be an almost contact metric manifold of dimension 2n+1. On the product $M \times \mathbb{R}$ there exists an almost complex structure J defined by

$$J\left(X, f\frac{\mathrm{d}}{\mathrm{d}t}\right) = \left(\phi X - f\xi, \eta(X)\frac{\mathrm{d}}{\mathrm{d}t}\right),\,$$

where X denotes a vector field tangent to M^{2n+1} , t is the coordinate of \mathbb{R} and f is a \mathcal{C}^{∞} -function on $M^{2n+1} \times \mathbb{R}$. An almost contact metric manifold is said to be normal if the above almost complex structure J is integrable and this is equivalent to $[\phi, \phi] = -2d\eta \otimes \xi$, where $[\phi, \phi]$ denotes the Nijenhuis tensor of ϕ .

An almost contact metric manifold is said to be a trans-Sasakian manifold (see [18]) if it is normal and $d\eta = \alpha \Phi$, $d\Phi = 2\beta\eta \wedge \Phi$, where $\alpha = \frac{1}{2n} \operatorname{tr}(\phi \nabla \xi)$, $\beta = \frac{1}{2n} \operatorname{div} \xi$ and $\Phi(\cdot, \cdot) = g(\cdot, \phi \cdot)$. It is known (see [3]) that an almost contact metric manifold M is trans-Sasakian if and only if there exist two smooth functions α and β satisfying

$$(\nabla_X \phi)Y = \alpha(g(X, Y)\xi - \eta(Y)X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X)$$
(2.2)

for any vector fields X and Y.

A trans-Sasakian manifold is denoted by $(M, \phi, \xi, \eta, \alpha, \beta)$ and is called a trans-Sasakian manifold of type (α, β) . From the definition of tran-Sasakian manifolds, putting $Y = \xi$ in (2.2) and using (2.1) we have

$$\nabla_X \xi = -\alpha \phi X + \beta (X - \eta (X) \xi) \tag{2.3}$$

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

for any vector field X.

By Propositions 1 and 2 and Corollary 1 of [19], we observe that a normal almost contact metric 3-manifold is always trans-Sasakian. Therefore, by the definition of trans-Sasakian manifolds, we state that an almost contact metric 3-manifold is trans-Sasakian if and only if it is normal.

3. Some remarks on trans-Sasakian 3-manifolds

Before giving the proof of our main results, firstly we must clarify some important concepts that are easily confused.

As seen in the Introduction, a trans-Sasakian 3-manifold of type (α, β) is an α -Sasakian manifold (see [14]) if $\alpha \in \mathbb{R}^*$ and $\beta = 0$; or a β -Kenmotsu manifold if $\beta \in \mathbb{R}^*$ and $\alpha = 0$ (see [14]); or a cosymplectic manifold if $\alpha = \beta = 0$ (see [2]). An α -Sasakian manifold becomes a Sasakian manifold (see [2]) if $\alpha = 1$. Similarly, a β -Kenmotsu manifold becomes a Kenmotsu manifold (see [15]) if $\beta = 1$.

A trans-Sasakian manifold of type (α, β) is of C_6 -class if $\beta = 0$ (see [4]). As seen in [18, Lemma 3.1], α , on a trans-Sasakian manifold of C_6 -class of dimension greater than three, is a constant. Then the trans-Sasakian manifolds of C_6 -class of dimension greater than 3 are just α -Sasakian manifolds (see [14]). However, α on a trans-Sasakian 3-manifold of C_6 -class is not necessarily a constant even when the manifold is compact. The proof for this is given after proving Theorem 3.1.

A trans-Sasakian manifold of type (α, β) is of C_5 -class if $\alpha = 0$ (see [4]). On such manifolds of dimension greater than three there holds naturally $d\beta \wedge \eta = 0$ (see [22]), or equivalently, $\nabla \beta = \xi(\beta)\xi$. However, the above equation does not necessarily hold for dimension three. The set of all β -Kenmotsu manifolds is a proper subset of that of all trans-Sasakian manifolds of C_5 -class. For trans-Sasakian manifolds of C_5 -class with non-constant function β we refer the reader to [1, 3, 5, 22]. Note that a trans-Sasakian manifold of C_5 -class is also called a *f*-cosymplectic manifold (see [1]) or an *f*-Kenmotsu manifold (see [16, 22, 25]). In this paper, in order to answer Question 1.1 we also construct some compact trans-Sasakian 3-manifolds of C_5 -class with non-constant function β .

The following lemma was proved in [7] (see also [12]).

Lemma 3.1 ([7, Theorem 3.2]). On a trans-Sasakian 3-manifold of type (α, β) we have

$$\xi(\alpha) + 2\alpha\beta = 0.$$

In this paper, we denote by ∇f the gradient of a smooth function f on M. Moreover, putting n = 1 in [7, Proposition 3.4] we obtain the following lemma.

Lemma 3.2 ([7, Proposition 3.4]). On a trans-Sasakian 3-manifold of type (α, β) we have

$$Q\xi = \phi(\nabla\alpha) - \nabla\beta + (2(\alpha^2 - \beta^2) - \xi(\beta))\xi,$$

where Q denotes the Ricci operator associated with the Ricci tensor S which is defined by $S(\cdot, \cdot) = \operatorname{trace} \{X \to R(X, \cdot) \cdot\}.$

Now we are ready to prove the following

Theorem 3.1. If a connected trans-Sasakian 3-manifold of type (α, β) satisfies $\nabla \beta = \xi(\beta)\xi$, then one of the following cases occurs:

- (1) $\alpha \neq 0, \beta \in \mathbb{R}^*, and \xi(\alpha) \neq 0.$
- (2) $\alpha \neq 0, \beta = 0, and \xi(\alpha) = 0.$
- (3) $\alpha = 0, \beta \neq 0, \xi(\beta) \neq 0, and \nabla \xi(\beta) = \xi(\xi(\beta))\xi.$
- (4) $\alpha = 0, \beta \in \mathbb{R}.$

Proof. If on a connected trans-Sasakian 3-manifold of type (α, β) there holds $\nabla \beta = \xi(\beta)\xi$, taking the covariant derivative of this equation we have

$$\nabla_X \nabla \beta = X(\xi(\beta))\xi + \xi(\beta)(-\alpha \phi X + \beta X - \beta \eta(X)\xi)$$
(3.1)

for any vector field X, where we have used (2.3). Note that the Hessian H_{β} is a symmetric bilinear form defined by

$$H_{\beta}(X,Y) = g(\nabla_X \nabla \beta, Y)$$

for any vector fields X, Y. Thus, the inner product of (3.1) with Y gives

$$H_{\beta}(X,Y) = X(\xi(\beta))\eta(Y) - \alpha\xi(\beta)g(X,\phi Y) + \beta\xi(\beta)g(X,Y) - \beta\xi(\beta)\eta(X)\eta(Y).$$

Interchanging X and Y in the above equation gives

$$H_{\beta}(Y,X) = Y(\xi(\beta))\eta(X) - \alpha\xi(\beta)g(Y,\phi X) + \beta\xi(\beta)g(X,Y) - \beta\xi(\beta)\eta(X)\eta(Y).$$

In view of the symmetry of H_{β} , subtracting the above equation from the previous one gives

$$X(\xi(\beta))\eta(Y) - Y(\xi(\beta))\eta(X) - 2\alpha\xi(\beta)g(X,\phi Y) = 0$$
(3.2)

for any vector fields X, Y. Putting $Y = \xi$ in (3.2) gives $X(\xi(\beta)) - \xi(\xi(\beta))\eta(X) = 0$ for any vector field X. This is equivalent to $\nabla \xi(\beta) = \xi(\xi(\beta))\xi$.

Let X in (3.2) be an arbitrary unit vector field orthogonal to the Reeb vector field ξ . Putting $Y = \phi X$ in (3.2) we obtain $\alpha \xi(\beta) = 0$ and this implies that one of the following three cases occurs: $\alpha = 0$ and $\xi(\beta) \neq 0$, or $\alpha \neq 0$ and $\xi(\beta) = 0$, or $\alpha = \xi(\beta) = 0$. Notice that when $\xi(\beta) = 0$, by the assumption of the theorem we see that β is a constant. The proof follows from Lemma 3.1.

From equation (2.3) we obtain div $\xi = 2\beta$. Therefore, on any compact trans-Sasakian 3-manifold, β cannot be a non-zero constant. The following corollary follows directly from Theorem 3.1.

Corollary 3.1. On a non-cosymplectic compact trans-Sasakian 3-manifold of type (α, β) satisfying $\nabla \beta = \xi(\beta)\xi$, we have either $\alpha \neq 0$, $\beta = 0$ and $\xi(\alpha) = 0$, or $\alpha = 0$, $\beta \neq 0$, $\xi(\beta) \neq 0$ and $\nabla \xi(\beta) = \xi(\xi(\beta))\xi$.

Corollary 3.1 proves the first conclusion of Theorem 1.2. Next, we need only to show a proof of the last conclusion of Theorem 1.2, namely we show that there exist many trans-Sasakian 3-manifolds which are of C_5 -class with β a non-constant function or of C_6 -class with α a non-constant function. All the constructions in these examples depend on the following lemma. **Lemma 3.3** ([18]). Let (M, ϕ, ξ, η, g) be a trans-Sasakian 3-manifold of type (α, β) and f be a positive function on M. Then, (M, ϕ, ξ, η, g') is also a trans-Sasakian 3-manifold of type $(\frac{\alpha}{f}, \beta + \frac{1}{2f}\xi(f))$, where the Riemannian metric g' is defined by $g' = fg + (1 - f)\eta \otimes \eta.$

Example 3.1. Let (x, y, z) be the canonical Cartesian coordinates in \mathbb{R}^3 . On \mathbb{R}^3 there exists a standard Sasakian structure (see Blair [2, p. 60]) defined as

$$\xi = 2\frac{\partial}{\partial z}, \quad \eta = \frac{1}{2}(dz - ydx),$$

$$\phi = \begin{pmatrix} 0 & 1 & 0\\ -1 & 0 & 0\\ 0 & y & 0 \end{pmatrix} \quad \text{and} \quad g = \frac{1}{4} \begin{pmatrix} 1+y^2 & 0 & -y\\ 0 & 1 & 0\\ -y & 0 & 1 \end{pmatrix}.$$

The orthonormal ϕ -basis is given by $\{\xi, e_1 := 2\frac{\partial}{\partial y}, e_2 := \phi e_1 = 2(\frac{\partial}{\partial x} + y\frac{\partial}{\partial z})\}$. Let fbe a positive function on \mathbb{R}^3 . From Lemma 3.3, $(\mathbb{R}^3, \phi, \xi, \eta, g')$ is a trans-Sasakian 3-manifold of type $(\frac{1}{f}, \frac{1}{2f}\xi(f))$, where $g' = fg + (1-f)\eta \otimes \eta$.

Obviously, let f = f(x, y) be a non-constant positive function on \mathbb{R}^3 ; then the non-compact trans-Sasakian manifold $(\mathbb{R}^3, \phi, \xi, \eta, g')$ of type $(\frac{1}{f}, 0)$ is of C_6 -class but $\frac{1}{f}$ is not a constant and satisfies $\xi\left(\frac{1}{f}\right) = 0$.

Example 3.2. Let S^3 be the standard unit sphere which is defined by

$$S^3 = \big\{(x,y,z,w) \in \mathbb{R}^4: x^2 + y^2 + z^2 + w^2 = 1\big\}.$$

On S^3 we consider the following three vector fields:

$$e_{1} = -z\frac{\partial}{\partial x} + w\frac{\partial}{\partial y} + x\frac{\partial}{\partial z} - y\frac{\partial}{\partial w},$$

$$e_{2} = -w\frac{\partial}{\partial x} - z\frac{\partial}{\partial y} + y\frac{\partial}{\partial z} + x\frac{\partial}{\partial w},$$

$$e_{3} = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} - w\frac{\partial}{\partial z} + z\frac{\partial}{\partial w}.$$

On S^3 there exists a standard Sasakian structure $(S^3, \phi, \xi, \eta, g)$ (see [2] and also [17, p. 158, Theorem 3.2]) as follows:

$$\xi = e_1, \quad \eta = g(e_1, \cdot),$$

$$\phi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with respect to the ϕ -basis $\{e_1, e_2, e_3\}$. Let f be a positive function on S^3 . From Lemma 3.3, $(S^3, \phi, \xi, \eta, g')$ is a trans-Sasakian 3-manifold of type $(\frac{1}{f}, \frac{1}{2f}\xi(f))$, where $g' = fg + (1 - f)\eta \otimes \eta$.

Let f be a non-constant positive function on S^3 satisfying the partial differential equation $-y\frac{\partial f}{\partial x} + x\frac{\partial f}{\partial y} - w\frac{\partial f}{\partial z} + z\frac{\partial f}{\partial w} = 0$. For example, let be $f = \ln(x^2 + y^2)$ or $f = \ln(z^2 + w^2)$. Then, the compact trans-Sasakian 3-manifold $(S^3, \phi, \xi, \eta, g')$ of type $(\frac{1}{f}, 0)$ is of C_6 -class but $\frac{1}{f}$ is not a constant and satisfies $\xi(\frac{1}{f}) = 0$.

From Examples 3.1 and 3.2 we have

Proposition 3.1. A trans-Sasakian 3-manifold M of type $(\alpha, 0)$ is not necessarily α -Sasakian even when the manifold is compact.

Example 3.3. Let $\mathbb{H}^3(-1)$ be the usual hyperbolic 3-space which is defined by $\mathbb{H}^3(-1) = \{(x, y, z) \in \mathbb{R}^3 : x > 0\}$ with Riemannian metric $g = \frac{1}{x^2}(dx \otimes dx + dy \otimes dy + dz \otimes dz)$. On $\mathbb{H}^3(-1)$ there exists a Kenmotsu structure given as (see [4]):

$$\begin{split} \xi &= -x \frac{\partial}{\partial x}, \quad \eta = g(\xi, \cdot), \\ \phi \xi &= 0, \quad \phi \frac{\partial}{\partial y} = \frac{\partial}{\partial z}, \quad \phi \frac{\partial}{\partial z} = -\frac{\partial}{\partial y}. \end{split}$$

Let $f = f(x) \neq x^c$, c a constant, be an arbitrary non-constant positive function defined on \mathbb{H}^3 . Therefore, from Lemma 3.3, the non-compact trans-Sasakian 3-manifold $(\mathbb{H}^3, \phi, \xi, \eta, g')$ of type $(0, 1 - \frac{x}{2f} \frac{\partial f}{\partial x})$ is of C_5 -class satisfying $\nabla \beta = \xi(\beta)\xi$ but neither β -Kenmotsu nor cosymplectic.

Example 3.4. Let S be the usual unit circle $S = \{e^{it}\}$ and T^2 be the torus with the standard Kähler structure (J, g_{T^2}) . Then, from [19], the product $(S \times T^2, g)$ with the Riemannian metric $g = dt \otimes dt + g_{T^2}$ is a cosymplectic 3-manifold with $\xi = \frac{\partial}{\partial t}$ and $\eta = dt$. Let $f = f(t) \neq e^{ct}$, c a constant, be an arbitrary non-constant positive function defined on $S \times T^2$. Therefore, from Lemma 3.3, the compact trans-Sasakian 3-manifold $(S \times T^2, \phi, \xi, \eta, g')$ of type $(0, \frac{1}{2f} \frac{\partial f}{\partial t})$ is of C_5 -class satisfying $\nabla \beta = \xi(\beta)\xi$ but neither β -Kenmotsu nor cosymplectic.

From Examples 3.1 and 3.4 we have

Proposition 3.2. A trans-Sasakian 3-manifold M of type $(0, \beta)$ satisfying $\nabla \beta = \xi(\beta)\xi$ is not necessarily β -Kenmotsu or cosymplectic even when M is compact.

Remark 3.1. The proof of Theorem 1.2 follows from Corollary 3.1 and Propositions 3.1 and 3.2.

Acknowledgement

The authors would like to thank the reviewer for his or her careful reading and useful suggestions.

References

- N. Aktan, M. Yildirim and C. Murathan, Almost f-cosymplectic manifolds, Mediterr. J. Math. 11 (2014), no. 2, 775–787. MR 3198639.
- [2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progress in Mathematics, Volume 203, Birkhäuser, 2010. MR 2682326.
- [3] D. E. Blair and J. A. Oubiña, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), no. 1, 199–207. MR 1059874.

- [4] D. Chinea and C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15–36. MR 1080209.
- [5] U. C. De and K. De, On a class of three-dimensional trans-Sasakian manifolds, Commun. Korean Math. Soc. 27 (2012), no. 4, 795–808. MR 3025885.
- [6] U. C. De and A. Sarkar, On three-dimensional trans-Sasakian manifolds, Extracta Math. 23 (2008), no. 3, 265–277. MR 2524542.
- [7] U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), no. 2, 247–255. MR 1982228.
- [8] S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math. 13 (2016), no. 5, 2951–2958. MR 3554289.
- S. Deshmukh, Geometry of 3-dimensional trans-Sasakaian [i.e. trans-Sasakian] manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 62 (2016), no. 1, 183–192. MR 3686608.
- [10] S. Desmukh, U. C. De and F. Al-Solamy, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Publ. Math. Debrecen 88 (2016), no. 3-4, 439–448. MR 3491752.
- [11] S. Deshmukh and F. Al-Solamy, A note on compact trans-Sasakian manifolds, Mediterr. J. Math. 13 (2016), no. 4, 2099–2104. MR 3530920.
- [12] S. Deshmukh and M. M. Tripathi, A note on trans-Sasakian manifolds, Math. Slovaca 63 (2013), no. 6, 1361–1370. MR 3146625.
- [13] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35–58. MR 0581924.
- [14] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1–27. MR 0615665.
- [15] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J. 24 (1972), no. 1, 93–103. MR 0319102.
- [16] V. Mangione, Harmonic maps and stability on f-Kenmotsu manifolds, Int. J. Math. Math. Sci. 2008, Art. ID 798317, 7 pp. MR 2377360.
- [17] M. Markellos and C. Tsichlias, Contact metric structures on S³, Kodai Math. J. 36 (2013), no. 1, 154–166. MR 3043406.
- [18] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. 162 (1992), 77–86. MR 1199647.
- [19] Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239–250. MR 0630244.
- [20] Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41–50. MR 0859423.
- [21] Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73–87. MR 1028604.
- [22] Z. Olszak and R. Roşca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), no. 3-4, 315–323. MR 1154263.
- [23] J. A. Oubiña, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187–193. MR 0834769.
- [24] Y. Wang, Minimal and harmonic Reeb vector fields on trans-Sasakian 3-manifolds, J. Korean Math. Soc. 55 (2018), no. 6, 1321–1336. MR 3883483.
- [25] A. Yildiz, U. C. De and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65 (2013), no. 5, 684–693. MR 3150789.

YANING WANG AND WENJIE WANG

Yaning Wang[™] School of Mathematics and Information Sciences, Henan Normal University, Xinxiang 453007, Henan, P. R. China wyn051@163.com

Wenjie Wang School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China wangwj0720163.com

Received: December 15, 2017 Accepted: December 12, 2018

264