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A REMARK ON TRANS-SASAKIAN 3-MANIFOLDS

YANING WANG AND WENJIE WANG

Abstract. Let M be a trans-Sasakian 3-manifold of type (α, β). In this
paper, we give a negative answer to the question proposed by S. Deshmukh
[Mediterr. J. Math. 13 (2016), no. 5, 2951–2958], namely we prove that the
differential equation ∇β = ξ(β)ξ on M does not necessarily imply that M
is homothetic to either a Sasakian or cosymplectic manifold even when M is
compact. Many examples are constructed to illustrate this result.

1. Introduction

A trans-Sasakian manifold M is an almost contact metric manifold such that the
product M×R belongs to the class W4 of Hermitian manifolds (see [23]). Hermitian
manifolds of class W4 are closely related to locally conformally Kähler manifolds
(see [13]). In [18], Marrero gave the local structures of trans-Sasakian manifolds,
namely a connected trans-Sasakian manifold of dimension greater than three must
be of class C5 or C6. A trans-Sasakian manifold is said to be proper if it is one of
the above two cases. However, there exist many trans-Sasakian 3-manifolds which
are not proper (see [3, 20]), namely neither α nor β is zero. Therefore, to find
on what condition a trans-Sasakian 3-manifold is proper is an interesting problem.
Recently, S. Desmukh et al. in [8, 9, 10, 11, 12] obtained various conditions under
which a compact trans-Sasakian 3-manifold is homothetic to either a Sasakian
or a cosymplectic 3-manifold. Trans-Sasakian 3-manifolds under some curvature
restrictions were also studied by U. C. De et al. in [5, 6, 7] and Wang [24].

In [8], without the compactness assumption, Deshmukh proved

Theorem 1.1 ([8]). If a connected trans-Sasakian 3-manifold M of type (α, β)
satisfies ∇α = ξ(α)ξ with α 6= 0, then M is homothetic to a Sasakian manifold.

In the proof of the above theorem, Deshmukh found that ∇α = ξ(α)ξ and α 6= 0
imply∇β = ξ(β)ξ. In view of similar but different properties of α and β, the author
in [8] proposed the following interesting question:
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Question 1.1. Does the differential equation ∇β = ξ(β)ξ give a result similar to
Theorem 1.1 or not?

The above question is equivalent to asking if differential equation ∇β = ξ(β)ξ
on a trans-Sasakian 3-manifold implies that the manifold is homothetic to either
a Sasakian or cosymplectic 3-manifold. In this paper, we aim to investigate this
question and give a negative answer. Namely, we prove

Theorem 1.2. If a connected compact trans-Sasakian 3-manifold of type (α, β)
satisfies ∇β = ξ(β)ξ, then we have either α = 0 or β = 0. However, the vanishing
of α or β does not necessarily imply that the other one is a constant.

After giving proof of the above Theorem 1.2 in Section 3, we construct many
concrete examples to illustrate our main results.

2. Trans-Sasakian manifolds

According to D. E. Blair [2], an almost contact metric structure defined on a
smooth differentiable manifold M of dimension 2n + 1 is a (φ, ξ, η, g)-structure
satisfying

φ2 = −id + η ⊗ ξ, η(ξ) = 1,
φ∗g = g − η ⊗ η,

(2.1)

where φ is a (1, 1)-type tensor field, ξ is a tangent vector field called the character-
istic or the Reeb vector field, and η is a 1-form called the almost contact form. A
Riemannian manifold M furnished with an almost contact metric structure is said
to be an almost contact metric manifold, denoted by (M,φ, ξ, η, g).

Let M be an almost contact metric manifold of dimension 2n+1. On the product
M × R there exists an almost complex structure J defined by

J

(
X, f

d
dt

)
=
(
φX − fξ, η(X) d

dt

)
,

where X denotes a vector field tangent to M2n+1, t is the coordinate of R and f
is a C∞-function on M2n+1 × R. An almost contact metric manifold is said to be
normal if the above almost complex structure J is integrable and this is equivalent
to [φ, φ] = −2dη ⊗ ξ, where [φ, φ] denotes the Nijenhuis tensor of φ.

An almost contact metric manifold is said to be a trans-Sasakian manifold (see
[18]) if it is normal and dη = αΦ, dΦ = 2βη∧Φ, where α = 1

2n tr(φ∇ξ), β = 1
2n div ξ

and Φ(·, ·) = g(·, φ·). It is known (see [3]) that an almost contact metric manifold M
is trans-Sasakian if and only if there exist two smooth functions α and β satisfying

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (2.2)

for any vector fields X and Y .
A trans-Sasakian manifold is denoted by (M,φ, ξ, η, α, β) and is called a trans-

Sasakian manifold of type (α, β). From the definition of tran-Sasakian manifolds,
putting Y = ξ in (2.2) and using (2.1) we have

∇Xξ = −αφX + β(X − η(X)ξ) (2.3)
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for any vector field X.
By Propositions 1 and 2 and Corollary 1 of [19], we observe that a normal almost

contact metric 3-manifold is always trans-Sasakian. Therefore, by the definition
of trans-Sasakian manifolds, we state that an almost contact metric 3-manifold is
trans-Sasakian if and only if it is normal.

3. Some remarks on trans-Sasakian 3-manifolds

Before giving the proof of our main results, firstly we must clarify some impor-
tant concepts that are easily confused.

As seen in the Introduction, a trans-Sasakian 3-manifold of type (α, β) is an
α-Sasakian manifold (see [14]) if α ∈ R∗ and β = 0; or a β-Kenmotsu manifold if
β ∈ R∗ and α = 0 (see [14]); or a cosymplectic manifold if α = β = 0 (see [2]). An
α-Sasakian manifold becomes a Sasakian manifold (see [2]) if α = 1. Similarly, a
β-Kenmotsu manifold becomes a Kenmotsu manifold (see [15]) if β = 1.

A trans-Sasakian manifold of type (α, β) is of C6-class if β = 0 (see [4]). As
seen in [18, Lemma 3.1], α, on a trans-Sasakian manifold of C6-class of dimension
greater than three, is a constant. Then the trans-Sasakian manifolds of C6-class
of dimension greater than 3 are just α-Sasakian manifolds (see [14]). However, α
on a trans-Sasakian 3-manifold of C6-class is not necessarily a constant even when
the manifold is compact. The proof for this is given after proving Theorem 3.1.

A trans-Sasakian manifold of type (α, β) is of C5-class if α = 0 (see [4]). On such
manifolds of dimension greater than three there holds naturally dβ∧η = 0 (see [22]),
or equivalently, ∇β = ξ(β)ξ. However, the above equation does not necessarily
hold for dimension three. The set of all β-Kenmotsu manifolds is a proper subset
of that of all trans-Sasakian manifolds of C5-class. For trans-Sasakian manifolds
of C5-class with non-constant function β we refer the reader to [1, 3, 5, 22]. Note
that a trans-Sasakian manifold of C5-class is also called a f -cosymplectic manifold
(see [1]) or an f -Kenmotsu manifold (see [16, 22, 25]). In this paper, in order to
answer Question 1.1 we also construct some compact trans-Sasakian 3-manifolds
of C5-class with non-constant function β.

The following lemma was proved in [7] (see also [12]).

Lemma 3.1 ([7, Theorem 3.2]). On a trans-Sasakian 3-manifold of type (α, β) we
have

ξ(α) + 2αβ = 0.

In this paper, we denote by ∇f the gradient of a smooth function f on M .
Moreover, putting n = 1 in [7, Proposition 3.4] we obtain the following lemma.

Lemma 3.2 ([7, Proposition 3.4]). On a trans-Sasakian 3-manifold of type (α, β)
we have

Qξ = φ(∇α)−∇β + (2(α2 − β2)− ξ(β))ξ,
where Q denotes the Ricci operator associated with the Ricci tensor S which is
defined by S(·, ·) = trace{X → R(X, ·)·}.

Now we are ready to prove the following
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Theorem 3.1. If a connected trans-Sasakian 3-manifold of type (α, β) satisfies
∇β = ξ(β)ξ, then one of the following cases occurs:

(1) α 6= 0, β ∈ R∗, and ξ(α) 6= 0.
(2) α 6= 0, β = 0, and ξ(α) = 0.
(3) α = 0, β 6= 0, ξ(β) 6= 0, and ∇ξ(β) = ξ(ξ(β))ξ.
(4) α = 0, β ∈ R.

Proof. If on a connected trans-Sasakian 3-manifold of type (α, β) there holds ∇β =
ξ(β)ξ, taking the covariant derivative of this equation we have

∇X∇β = X(ξ(β))ξ + ξ(β)(−αφX + βX − βη(X)ξ) (3.1)

for any vector field X, where we have used (2.3). Note that the Hessian Hβ is a
symmetric bilinear form defined by

Hβ(X,Y ) = g(∇X∇β, Y )

for any vector fields X, Y . Thus, the inner product of (3.1) with Y gives

Hβ(X,Y ) = X(ξ(β))η(Y )− αξ(β)g(X,φY ) + βξ(β)g(X,Y )− βξ(β)η(X)η(Y ).

Interchanging X and Y in the above equation gives

Hβ(Y,X) = Y (ξ(β))η(X)− αξ(β)g(Y, φX) + βξ(β)g(X,Y )− βξ(β)η(X)η(Y ).

In view of the symmetry of Hβ , subtracting the above equation from the previous
one gives

X(ξ(β))η(Y )− Y (ξ(β))η(X)− 2αξ(β)g(X,φY ) = 0 (3.2)
for any vector fields X, Y . Putting Y = ξ in (3.2) gives X(ξ(β))−ξ(ξ(β))η(X) = 0
for any vector field X. This is equivalent to ∇ξ(β) = ξ(ξ(β))ξ.

Let X in (3.2) be an arbitrary unit vector field orthogonal to the Reeb vector
field ξ. Putting Y = φX in (3.2) we obtain αξ(β) = 0 and this implies that one of
the following three cases occurs: α = 0 and ξ(β) 6= 0, or α 6= 0 and ξ(β) = 0, or
α = ξ(β) = 0. Notice that when ξ(β) = 0, by the assumption of the theorem we
see that β is a constant. The proof follows from Lemma 3.1. �

From equation (2.3) we obtain div ξ = 2β. Therefore, on any compact trans-
Sasakian 3-manifold, β cannot be a non-zero constant. The following corollary
follows directly from Theorem 3.1.

Corollary 3.1. On a non-cosymplectic compact trans-Sasakian 3-manifold of type
(α, β) satisfying ∇β = ξ(β)ξ, we have either α 6= 0, β = 0 and ξ(α) = 0, or α = 0,
β 6= 0, ξ(β) 6= 0 and ∇ξ(β) = ξ(ξ(β))ξ.

Corollary 3.1 proves the first conclusion of Theorem 1.2. Next, we need only
to show a proof of the last conclusion of Theorem 1.2, namely we show that there
exist many trans-Sasakian 3-manifolds which are of C5-class with β a non-constant
function or of C6-class with α a non-constant function. All the constructions in
these examples depend on the following lemma.
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Lemma 3.3 ([18]). Let (M,φ, ξ, η, g) be a trans-Sasakian 3-manifold of type (α, β)
and f be a positive function on M . Then, (M,φ, ξ, η, g′) is also a trans-Sasakian
3-manifold of type (αf , β + 1

2f ξ(f)), where the Riemannian metric g′ is defined by
g′ = fg + (1− f)η ⊗ η.
Example 3.1. Let (x, y, z) be the canonical Cartesian coordinates in R3. On R3

there exists a standard Sasakian structure (see Blair [2, p. 60]) defined as

ξ = 2 ∂
∂z
, η = 1

2(dz − ydx),

φ =

 0 1 0
−1 0 0
0 y 0

 and g = 1
4

1 + y2 0 −y
0 1 0
−y 0 1

 .

The orthonormal φ-basis is given by
{
ξ, e1 := 2 ∂

∂y , e2 := φe1 = 2( ∂
∂x+y ∂

∂z )
}

. Let f
be a positive function on R3. From Lemma 3.3, (R3, φ, ξ, η, g′) is a trans-Sasakian
3-manifold of type ( 1

f ,
1

2f ξ(f)), where g′ = fg + (1− f)η ⊗ η.
Obviously, let f = f(x, y) be a non-constant positive function on R3; then the

non-compact trans-Sasakian manifold (R3, φ, ξ, η, g′) of type ( 1
f , 0) is of C6-class

but 1
f is not a constant and satisfies ξ

(
1
f

)
= 0.

Example 3.2. Let S3 be the standard unit sphere which is defined by
S3 =

{
(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 1

}
.

On S3 we consider the following three vector fields:

e1 = −z ∂
∂x

+ w
∂

∂y
+ x

∂

∂z
− y ∂

∂w
,

e2 = −w ∂

∂x
− z ∂

∂y
+ y

∂

∂z
+ x

∂

∂w
,

e3 = −y ∂
∂x

+ x
∂

∂y
− w ∂

∂z
+ z

∂

∂w
.

On S3 there exists a standard Sasakian structure (S3, φ, ξ, η, g) (see [2] and also
[17, p. 158, Theorem 3.2]) as follows:

ξ = e1, η = g(e1, ·),

φ =

0 0 0
0 0 −1
0 1 0

 and g =

1 0 0
0 1 0
0 0 1


with respect to the φ-basis {e1, e2, e3}. Let f be a positive function on S3. From
Lemma 3.3, (S3, φ, ξ, η, g′) is a trans-Sasakian 3-manifold of type

( 1
f ,

1
2f ξ(f)

)
,

where g′ = fg + (1− f)η ⊗ η.
Let f be a non-constant positive function on S3 satisfying the partial differential

equation −y ∂f∂x + x∂f∂y − w
∂f
∂z + z ∂f∂w = 0. For example, let be f = ln(x2 + y2) or

f = ln(z2 + w2). Then, the compact trans-Sasakian 3-manifold (S3, φ, ξ, η, g′) of
type ( 1

f , 0) is of C6-class but 1
f is not a constant and satisfies ξ

( 1
f

)
= 0.
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From Examples 3.1 and 3.2 we have

Proposition 3.1. A trans-Sasakian 3-manifold M of type (α, 0) is not necessarily
α-Sasakian even when the manifold is compact.

Example 3.3. Let H3(−1) be the usual hyperbolic 3-space which is defined by
H3(−1) = {(x, y, z) ∈ R3 : x > 0} with Riemannian metric g = 1

x2 (dx⊗ dx+ dy ⊗
dy + dz ⊗ dz). On H3(−1) there exists a Kenmotsu structure given as (see [4]):

ξ = −x ∂

∂x
, η = g(ξ, ·),

φξ = 0, φ
∂

∂y
= ∂

∂z
, φ

∂

∂z
= − ∂

∂y
.

Let f = f(x) 6= xc, c a constant, be an arbitrary non-constant positive func-
tion defined on H3. Therefore, from Lemma 3.3, the non-compact trans-Sasakian
3-manifold (H3, φ, ξ, η, g′) of type (0, 1− x

2f
∂f
∂x ) is of C5-class satisfying ∇β = ξ(β)ξ

but neither β-Kenmotsu nor cosymplectic.

Example 3.4. Let S be the usual unit circle S = {eit} and T 2 be the torus with
the standard Kähler structure (J, gT 2). Then, from [19], the product (S × T 2, g)
with the Riemannian metric g = dt ⊗ dt + gT 2 is a cosymplectic 3-manifold with
ξ = ∂

∂t and η = dt. Let f = f(t) 6= ect, c a constant, be an arbitrary non-constant
positive function defined on S×T 2. Therefore, from Lemma 3.3, the compact trans-
Sasakian 3-manifold (S × T 2, φ, ξ, η, g′) of type (0, 1

2f
∂f
∂t ) is of C5-class satisfying

∇β = ξ(β)ξ but neither β-Kenmotsu nor cosymplectic.

From Examples 3.1 and 3.4 we have

Proposition 3.2. A trans-Sasakian 3-manifold M of type (0, β) satisfying ∇β =
ξ(β)ξ is not necessarily β-Kenmotsu or cosymplectic even when M is compact.

Remark 3.1. The proof of Theorem 1.2 follows from Corollary 3.1 and Proposi-
tions 3.1 and 3.2.
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