REVISTA DE LA UNION MATEMATICA ARGENTINA
Vol. 60, No. 1, 2019, Pages 265-298

Published online: June 29, 2019
https://doi.org/10.33044/revuma.v60nlal?

FINITE-DIMENSIONAL HOPF ALGEBRAS OVER THE
KAC-PALJUTKIN ALGEBRA Hyg

YUXING SHI

ABSTRACT. Let Hg be the Kac—Paljutkin algebra [Trudy Moskov. Mat. Obs¢.
15 (1966), 224-261], which is the neither commutative nor cocommutative
semisimple eight dimensional Hopf algebra. All simple Yetter—Drinfel’d mod-
ules over Hg are given, and finite-dimensional Nichols algebras over Hg are
determined completely. It turns out that they are all of diagonal type. In fact,
they are of Cartan types A1, Ag, Ao X Ag, A1 X---X A1, and Ay X---X A1 X Ag,
respectively. By the way, we calculate Gelfand—Kirillov dimensions for some
Nichols algebras. As an application, we complete the classification of the
finite-dimensional Hopf algebras over Hg according to the lifting method.

1. INTRODUCTION

Let K be an algebraically closed field of characteristic zero. The question of
classification of all Hopf algebras over K of a given dimension up to isomorphism
was posed by Kaplansky in 1975 [40]. Some progress has been made but, in general,
it is a difficult question for lack of standard methods. One breakthrough is the so-
called lifting method introduced by Andruskiewitsch and Schneider in 1998 [3],
under the assumption that the coradical is a Hopf subalgebra.

We describe the procedure for the lifting method briefly. Let H be a Hopf algebra
whose coradical Hy is a Hopf subalgebra. The associated graded Hopf algebra of
H is isomorphic to R#H,, where R = @p,en,R(n) is a braided Hopf algebra in
the category gg YD of Yetter—Drinfel’d modules over Hy, # stands for the Radford
biproduct or bosonization of R with Hy. As explained in [I4], to classify finite-
dimensional Hopf algebras H whose coradical is isomorphic to Hy we have to deal
with the following questions:

(a) Determine all Yetter—Drinfel’d modules V over Hy such that the Nichols
algebra B(V) has finite dimension; find an efficient set of relations for B(V).
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(b) If R = ®nen, R(n) is a finite-dimensional Hopf algebra in ZgyD with V =
R(1), decide if R ~ B(V). Here V = R(1) is a braided vector space called
the infinitesimal braiding.

(¢) Given V as in @, classify all H such that gr H ~ B(V)#H, (lifting).

A lifting of V € YD is a Hopf algebra L such that gr L = B(V)#H, where gr L
is the graded Hopf algebra associated to the coradical filtration. In other words
[16, Proposition 2.4], L is a lifting of V' iff there is an epimorphism of Hopf algebras
¢:T(V)=T(V)#H — L such that ¢y = idy and

dlrev4n : H ®V#H — Ly is an isomorphism of Hopf bimodules. (1.1)

Such ¢ is called a lifting map. If emphasis on H is needed, then we say that L is a
lifting of V' over H.

The lifting method was extensively used in the classification of finite-dimensional
pointed Hopf algebras such as [15], [12], [25], [23], [2], [1], [9], [8] and so on. It is
also effective to study finite-dimensional copointed Hopf algebras ([16], [27], [22]).
We note that there are very few classification results on finite-dimensional Hopf
algebras whose coradical is neither a group algebra nor the dual of a group algebra,
some exceptions being [19], [26], [II]. It should be mentioned that [I1] constructed
Hopf algebras with the Chevalley property over a semisimple Hopf algebra H that
is Morita-equivalent to a group algebra KG (in the sense of gyp ~ Egy@ as
braided tensor categories). It doesn’t cover our case since Hg can be obtained from
a group algebra by a 2-pseudo-cocycle twist but not by a 2-cocycle twist [45].

Here we would like to initiate a project for the study of Hopf algebras whose
coradicals are low-dimensional neither commutative nor cocommutative semisim-
ple Hopf algebras by running procedures of the lifting method. One important
step is to study the Nichols algebras over those low-dimensional semisimple Hopf
algebras. Nichols algebras were studied first by Nichols [44]. These are connected
graded braided Hopf algebras [4] generated by primitive elements, and all primi-
tive elements are of degree one. In the past decades, the study of Nichols algebras
was mainly focused on categories of Yetter—Drinfel’d modules over group algebras.
Under the assumption that the base field has characteristic 0, the classification of
finite-dimensional Nichols algebras over abelian groups was completely solved in
[30, B1] by using Lie theoretic structures, and the result of the classification played
an important role later in the significant work [I5]. The problem of classifying
finite-dimensional Nichols algebras over non-abelian groups is difficult in general
for lack of systematic method; for related works please refer to [12], [24], [29], [32],
[33], [36], [35], etc.

In this paper, we mainly focus on the Kac-Paljutkin algebra Hg. The structure
of our paper is as follows. In Section [2] we recall the fundamental notions related
to Yetter—Drinfel’d modules, Nichols algebras and Gelfand—Kirillov dimension. In
section [3] we construct all the simple left Yetter-Drinfel’d modules over Hg accord-
ing to Radford’s method. In section [4 we get all the possible finite-dimensional
Nichols algebras from Yetter—Drinfel’d modules over Hg. It turns out that they
are of Cartan types Ay, Ag, Ay X Ay, Ay X ---x Ay, and Ay X --- x Ay X As. Here
is our first main result.
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Theorem A. Let M € gz YD. Then the Nichols algebra B(M) is finite-dimensional
iff M is isomorphic to one of the following Yetter—Drinfel’d modules:

(1) Ql(nla ng,ns, n4) = @jzl M<bj?gj>®nj with Z?:l n; Z 17 (b17gl) = (i,.]?),
(b2a92) = (—i,ZL'), (b3vg3) = (l,y) and (b4vg4) = (_ivy); the Znﬁnlte‘%mal
braiding is of type Ay X -+- X Aj.

~—— —
ni+nz+ns+nag
2) Qa(ni,n9) = M, z)9™ @ M{—i,2)%" & M{(zy,x)), n1 +no > 0, the

( y
infinitesimal braiding is of type A1 X - -+ x A X As.

~—— —
ni+nz

(3) Q3(n15n2) = M<i7y>®n1 D M<_iay>®n2 D M((yaajy)>7 ny +ng > 07 the
infinitesimal braiding is of type Ay X --- X Ay X As.

—_————
ni+ng

(4) Qq(ni,ng) = M(i,z)®™ & M3,y)®"2 @ Wh=1, ny +ny > 0, the infinites-
imal braiding is of type A1 X --- X Ay X As.

—_————
ni+na

(5) Qs(n1,n9) = M(—i,2)®™ @ M(—i,y)%" @ W71, ny +ny > 0, the
infinitesimal braiding is of type A1 X --- X A X As.

—_————
ni+nz
(6) Q6 = M{((zy,z))®M({(y,zy)), the infinitesimal braiding is of type Az x As.
(7) Q7 := WLt @ W—L=1 the infinitesimal braiding is of type Ay x As.

Remark 1.1. We point out which of the Yetter—Drinfel’d modules have a prin-
cipal realization and which not, since the liftings are known when there is a
principal realization and not otherwise [5, Subsection 2.2]. Let (h) and (dy) be
dual bases of Hg and Hg, and b € {£1,+i}. Define xp = 61 + gy + b2 (6, +
8y) + (02 4 Ozay) + 3(0:0 + 6.y) € Alg(Hs,K), then (g,xp) is a YD-pair [T]
iff KX* ~ M(b,g) is a one-dimensional Yetter—Drinfel’d module. M((g1,g2)) for
(g1,92) € {(zy,x), (y,2y)} and WP~ for b; = +1 don’t have a principal realiza-
tion. So only Q4 (ny,n2,ng,ny) has a principal realization.

In section [5} according to the lifting method, we give a classification for finite-
dimensional Hopf algebras over Hg. Here is the second main result.

Theorem B. Let H be a finite-dimensional Hopf algebra over Hg such that its
infinitesimal braiding is in ggyD. Then H is isomorphic to either of:

(1) Ay (ny,n2,n3,n4;11), see Definition [5.4];
(2) B[Q2(n1,n2)|#Hs, see Proposition|5.10;
(3) y(n1,n2; 1), see Definition[5.18;
(4) Ag(N), see Definition|5.11];
(5) U (I7), see Deﬁm’tion,
Ay (ny,n2,n3,n4; I1) comprises two 16-dimensional nonisomorphic nonpointed
self-dual Hopf algebras with coradical Hg described in [19] as special cases. Except

for the case , the remaining four families of Hopf algebras contain non-trivial
lifting relations.

3
4
)
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2. PRELIMINARIES

2.1. Conventions. Let H be a Hopf algebra over K, with antipode S. We will use
Sweedler’s notation A(h) = h(1) ® h(s) for the comultiplication ([43]). Let £YD
be the category of left Yetter—Drinfel’d modules over H. A left Yetter—Drinfel’d
module M over H is a left H-module (M, -) and a left H-comodule (M, p) satisfying

plh-m) = h(l)m(_l)S(h(g)) ® h(g) S M), VYme M, heH, (2.1)
where p(m) = m(_1) ® m(). The category #YD is a braided monoidal category.
The braiding ¢ € Endg (M ® M) of M is defined by c(v®w) = v(_1) - w @v(q), and
the inverse braiding is defined by ¢! (v ® w) = w() @ (S~ (w(_1)) - v).
Definition 2.1 ([T4, Definition 2.1]). Let H be a Hopf algebra and V € Z£yD.

A braided N-graded Hopf algebra R = @,-, R(n) € YD is called the Nichols
algebra of V if -

(i) K~ R(0), V ~ R(1) € £yD.
(ii) R(1)=PR)={reR|Ar(r)=r®1+1®r}.
(iii) R is generated as an algebra by R(1).
In this case, R is denoted by B(V) = ,,~, 8" (V).
Remark 2.2. The Nichols algebra B(V) is completely determined by the braiding.
More precisely, as proved in [49] and noted in [14],

B(V)=KoVaPVe"/ ke, =T(V)/ker &,

n=2
where S, 1 € Endg (V®(”+1)), S, € Endg (V&™),
6n,l =id + Cp+CnCp—1+ -+ CpCp—1---C1 = id + Cngn—l,h
61 = ld, 62 =id + c, Gn = (Gn_l X id)@n_m.

Lemma 2.3 ([28, Theorem 2.2], [6, Remark 1.4]). Let My, My € gyD be both
finite-dimensional and assume car, m,CMy My = idaea, . Then B(My & M) ~
B(M1)R@B(Ma) as graded vector spaces and GKdim B(M;®M3) = GKdim B(M;)+
GKdim B(M>).

Proposition 2.4 ([46, Radford biproduct]). Let H be a Hopf algebra and A € YD
be a braided Hopf algebra. Then A#H is a Hopf algebra with

Alagth) =Y [a@y#(a@) —1ha)] @ [(a@)o#he)] (2:2)
S(a#h) = Z (1#Su(h)Su(a-1))) (Salaw)#1) , (2.3)
(ath)(a'#1) = a(hqy - d)#he)lh!, a,d € A h W € H. (2.4)

The map ¢ : H — A#H given by «(h) = 14#h for all h € H is an injective Hopf
algebra map, and the map 7 : A#H — H given by w(a#h) = ea(a)h for all a € A,
h € H is a surjective Hopf algebra map such that = o+ = idy. Moreover, it holds
that A = (A#H)®°™.
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Conversely, let B be a Hopf algebra with bijective antipode and 7 : B — H a
Hopf algebra epimorphism admitting a Hopf algebra section ¢ : H — B such that
mor=1idy. Then A= B®7 is a braided Hopf algebra in YD and B ~ A#H as
Hopf algebras.

2.2. GK-dimension. Let A be a finitely generated algebra over a field K, and
assume aq,...,a,, generate A. Set V to be the span of aq,...,a,, and denote
V™ the span of all monomials in the a;’s of length n. As a;’s generate A one has
A =y Ak, where Ay =K+ V +V?+ .-+ V¥ The function dy(n) = dim 4,,
is the growth function of A. The Gelfand—-Kirillov dimension of a K-algebra A
is GKdim A = limlog, dy(n). GKdim A does not depend on the choice of V.
Suppose that GKdim A < co. We say that a finite-dimensional subspace V C A is
GK-deterministic if
GKdim A = lim log, dim > v
0<j<n
Clearly, if V is a GK-deterministic subspace of A, then any finite-dimensional
subspace of A containing V' is GK-deterministic. Let A and B be two algebras.
Then
GKdim(A ® B) < GKdim A + GKdim B,

but the equality does not hold in general. However, it does hold when A or B
has a GK-deterministic subspace, see [41], Proposition 3.11]. The Gelfand—Kirillov
dimension is a useful tool in ring theory and Hopf algebraic theories. We shall not
discuss in detail its importance but we refer the reader to [41] as a basic reference
and [511 50, [I8, [6] for additional information related with Hopf algebras.

3. SIMPLE YETTER—DRINFEL'D MODULES OF Hg

Recall that the neither commutative nor cocommutative semisimple 8-dimen-
sional Hopf algebra Hg in [42] is constructed as an extension of K[Cy x Cs] by
K[C5]. A basis for Hg is given by {1, z,y, xy = yx, z, 22, yz, zyz} with the relations

2

1
2?=y’=1, 2z zi(l—i—x—i—y—my), TY =yr, 2T =Yz, 2Y=IZ2.

The coalgebra structure and the antipode are defined by

Al@)=z@x, Aly)=yoy, c@)=cly)=1 Sk) ==z Sy =y,
1
Az) = 5(1®1+1®x+y®1—y®x)(z®z), e(z)=1, S(z)=-=
The automorphism group of Hg is the Klein four-group [48]. These automorphisms
are given in Table[I} they are going to be used in Corollary
Denote a set of central orthogonal idempotents of Hg as

er = 1(1 +x)(1+y)(1+2), ex= 1(1 +z)(1+y)(1-2),

8 8
5 = é@ —2)(1—y)(1+iz), es= é(l —z)(1-y)(1—iz),
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1z |y 1
mn=id||1l|x]|y z
To 1z |y TYZ
T3 Ly |z| i(z+zz+yz—ay2)
T4 1y |z|3(—24+22z+yz+zyz)

TABLE 1. Hopf algebra automorphisms of Hg.

1
= Qxy, ejer =0k, 4 k=1,...,5 1= v—1;

and denote idempotents e} = (1 — zy)(1 + z), e = (1 — 2y)(1 — 2). Then
Hs = Hgey @ Hges @ Hges & Hgeq © Hges
= Hge) @ Hgeo @ Hses @ Hgey @ (ngg + ngg)7

€5

where Hgel ~ Hgel as left Hg-modules, via ef — zel, zef — el.

Definition 3.1. Denote Vi(b) = K{v | z-v = b?v, y-v = b?v, 2-v = bv, b €
{%1, i}}, where v is a vector. Let Vo ~ Hgef as left Hg-modules; the actions of
the generators are given by

(01 (0 -1 (L0
71 0) YT\ o) P \o0 —1)

Proposition 3.2. All simple left modules of Hg are classified by Vi(b),Va,b €
{+£1, £i}.

Remark 3.3. The result was also obtained in [20] under a different basis (thanks
to referee for reminding us about this fact).

In the remaining part of the article, V4 (b) and Va always mean simple left Hg-
modules.

Lemma 3.4 ([47, Proposition 2]). Let H be a bialgebra over a field K and suppose
S is the antipode of H.

(1) If L € gM, then L ® H € gYD; the module and comodule actions are
given by

h-(l®a) = h(g) ~£®h(3)aS_1(h(1)), p(l®h) = (€®h(1))®h(2), Vh,a € H, £ € L.

Let M € gyD".

(2) Suppose that L € gM and p: M — L is a map of left H-modules. Then
the linear map f : M — L ® H defined by f(m) = p(m() @ mqy for
all m € M is a map of Yetter—Drinfel’d H-modules, where L ® H has the
structure described in part . Furthermore ker f is the largest Yetter—
Drinfel’d H-submodule, indeed the largest subcomodule, contained in ker p.

(3) M is isomorphic to a Yetter—Drinfel’d submodule of some L® H described
above.
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Similarly, according to Radford’s method, any simple left Yetter—Drinfel’d mod-
ule over Hg could be constructed by the submodule of the tensor product of a left
module V of Hg and Hg itself, where the module and comodule structures are given
by

h-({rg) = (he) ) Rh1)gS(h)),
p(l®h)=ha)® ((Rho)), Vh,ge Hg, LecV.
Here we use ® instead of ® to avoid confusion by using too many symbols of the
tensor product. We are going to construct all simple left Yetter—Drinfel’d modules
over Hg in this way. Keeping in mind that Hg is semisimple, it is possible to do
so. In fact, it is much easier than making use of the fact that ggyp ~ p( H;op)/\/l.

(3.1)

The following is a list of useful formulae for looking for simple objects of gz YD.

Lemma 3.5.

(1d®? © S)AP(z) = %[(1 +)2®202(1+2)+ (1 -y)2z@x2® 2(1 + )
+(14+y)zeyzz(1—2)+(y - 1)z@ryz® 2(1 — x)],
20 @ 50)S() = 2 (L+2)(1+9) + 020 (1 +2)(1 ) .
+yz@ (1 —2)(1+y)+ayz@ (1 -z)(1 -y)),
o) ® 2028 (a(w) = 312® (1 2)(L+y) +22.9 (14 2)(y — 1) -
+yz@ (1 —2)(1+y) +ayz @ (z —1)(1 -y)),
0 © 208 (agw) = 128 (14 2)(1 +9) +a28 (14 2)(1 —) ",
Tyz@ (-1 +y) +ayz® (z - 1)(1-y)],
0 © 208 (aw) = 128 (L4 2)(1 +9) +a2@ (L4 2)(y — 1) o5
+yz@ (=11 +y) +ayz@ (1 -z)(1 -y)),

) ® 70y25(x) = 52 ® (1 +9)2 + 7z @ aly — 1)7], (3.6)
2 ® 20)728(2) = e ® (1+9)2 + 7Yz ® (1 — y)2], (3.7)
20 ® 20y92S(2() = 31z @ 2(1+9)7 + oz @ (y — 1), (3.8)

o) ® 2Ty (e) = 3le @ (1 +9)7 +ayz © (1 p)2]. (3.9)

Definition 3.6. Define M(b,g) = K{vmg | v € V4(b)}, where b € {£1, +i} and
g €{l,z,y,zy}.

Lemma 3.7. There are eight pairwise non-isomorphic one dimensional Yetter—
Drinfel’d modules over Hs as M (b, g) with (b, g) € {(£1,1), (£1, zy), (£i, ), (£i,y)}.
The actions and coactions are given by

z-(vag)=b(vmyg), y-(vRg)=0b(vRyg), z-(vRg) =bvmyg),
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plvrg)=g®(vRg), vRgeMb,g), veVi(b)
Proof. Let v € V4(b). Then
b

z-(vm1) . ®([1+x+ b1 —2)|[1+y+ b1 —y), (3.10)
z-(lela:y)%Ux[1+:c+b2(x—1)][1+y+b2(y—1)]7 (3.11)
s wma) B Wal oy 20 -2ty + 2 - 1), (3.12)
s wmy) L appa 1@ i1y -0 -] (3.13)

SO

z-(vrl)=bvr1, 2z -(vRzy)=bvRxy, whenb==+l;
z-(vRz)=bvRz, z-(VRyY)=bvRy, whenb=+i.
Now it is easy to see that M (b,g) defined above is a one-dimensional Yetter—
Drinfel’d module by Radford’s method and the eight one-dimensional Yetter—

Drinfel’d modules are pairwise non-isomorphic by observations on their actions
and coactions. O

Definition 3.8. Let (g1,92) € {(1,v), (z,1), (zy,z), (y, zy)} and denote three vec-
tor spaces as

M{(1,zy)) =K{vel,vray | ve Vi(i)},
M{(z,y)) = E{vmz,vmy | v e (D},
M{((g1,92)) = K{(v1 +v2) ® g1, (v1 —v2) ®ga | v1,v2 € Va}.

Lemma 3.9. There are sixz pairwise non-isomorphic two-dimensional simple Yetter—
Drinfel’d modules over Hg as below, where the action and coaction are given by

formulae (3.1).
(1) M{(1,zy)), the actions of generators on (vR 1,vRxy) are given by

(-1 0 (-1 0 (0
* o -1) Y o —1)° 7 \i o)

(2) M{(z,y)), the actions of generators on (vRx,vRY) are given by

(L0 (L0 (01
=10 1) 0o 1) *7\1 o)

(3) M<(91,92)>, where (glaQQ) € {(Ly)v (J}, 1)7 (l‘y,I), (y,xy)}, the actions Of
generators on the row vector ((v1 +v9) ® g1, (v — v2) B g2) are given by

(10 (10 (01
=0 —1) Y o 1) 71 o)
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Proof. Since the coactions are easy to see, we can focus on their structures as left
Hg-modules. Parts (1) and (2) of the lemma can be checked by formulae (3.10) to
(3.13). Let v1,v9 € V4. Then

z~(v1x1)%[le(x—i—y)—i—vgx(x—y)],
2 (o) L Jnm (a4 y) om0 -y))
o mmey) L a4y tos(y o),

2+ (vy B xY) 63 ;[mﬂ( —y) +v2®(—x —y)],

z~(121|2|y) ;[le(l+xy)+v2®(l—zy)]

o (my) L o m (<14 ay) +epm (-1 - ay),

z- (v Rx) iR %[le(l—&-my)—kvgx(—l—i-xy)],

z-(vg R ) €3 ;[Ulg(lfl’y)+’02®( 1 —azy))].

So we have

z- (v +v2) 1] = (v1—vz)®y, z-[(1 —v2) By = (v1 +v2) ®
z-[(n1 +v2)®a] = (vy — 1) W z-[(v1 —v2) 1] = (01 +v2) W
z-[(v1 +v2) Ray] = (v —v2) ® z-[(nn —v)ma] = (v +’Uz)®xy,
z-[(v1+v)RyY] = (U1—02)®$y7 z-[(v1 —vy) Bay] = (v1 +v2) R Y.

Part (3) is immediate to check. The six two-dimensional Yetter—Drinfel’d modules
are pairwise non-isomorphic since they are pairwise non-isomorphic as comodules.
|

Lemma 3.10. Let by, by € {£1} and v € V1(b2), and denote

bl ,bz bl 7b2
wy Wy

=v R (1+iby)z, =vRz(l —iby)z.

Then Whib2 = lefl’bQ @ ngl’b2 is a family of four pairwise non-isomorphic two-

dimensional simple Yetter—Drinfel’d modules over Hg with the actions of generators
by,b2  bi,ba . .

on the row vector (wy"”?,wy'""?) and coactions given by

0 —ib 0 —ib (=iba)bs - (1=ib1)bs
xH(ibl 0 > H(ib1 0 > 27 | zaiboe - aibb, |

p wl{1,b2) _ (1 + y)z b1,b2 (1 - y)z b1,b2

2 ®U}1 +T®w2 )
1 1-
) (wgl,bz) _ ;y)z pulit 4 o . Y2 g it
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Proof. 1t is straightforward by the definition of Yetter—Drinfel’d module. When
by # b, WP 2 WWP1be gince we will see that their braidings are different in
Proposition As explained in the following remark, %2 has another basis
{p1,p2} with py € Vi(by) and py € Vi (—bibai). So Whbz 2 Whib2 if py 20, o

Remark 3.11. (1) Let M = K{vrz, vRzz, vRyz, vRzyz | v € V1(b)}, b € {£1}.
z acts on elements of M as

B8 b
z-(v&z)%}&(l—x—&—y—kmy)z,
) b
z- (VR x2) B l&(l—kx—&—y—xy)z,

2
; b
s ays) B T m (-1 y ),

} b
)L D a o ytay)e

z- (VR ayz

Then M ~ Wt @ W—1? as Yetter-Drinfel’d modules over Hg.
(2) Let fijr = 1[1 4 (=1)72][1+ (=1)*y], j,k = 0, 1. Denote

b1,b2 b1,b2
1

s byyb bib
D1 = wy +ibjws'?, pa =w SO

— iblw

Then Wh1:b2 = Kp; @ Kp, with the actions of generators on the row vector
(p1,p2) and coactions given by

N 1 0 s 1 0 s by 0
o —1) Y7 \o 1) 7 0 —ibyby )’
p(p1) = [foo — ib1 f11] 2 ® p1 + [f10 + 1b1 fo1] 2 ® D2,

p(p2) = [foo +ib1 f11] 2 ® p2 + [f10 — ib1 fo1] 2 @ p1.

According to [42, Remark 2.14], Hg is presented by generators z, y, w, where the
expressions containing z are replaced by

w = (foo + Vifio + %fm +if11) z, w?

1+i 1—i
wr = yw, S(w)z( glx—l- 21y>u),

1

)

Aw) = <;(1+xy)®1+14+i(1xy)®x+141(1xy)®y) (w @ w).

Let a + 1 = 4+ /2. We define
wf) = (o +iavs) 8 5 [+ 9) + Vil —y)] w
+(avy —iw2) @ 5 (@ +y) — Vit —y)]w,
w) = (01 + favs) @ % (14 ) + V(L = ap)] w

~ (avy — iz m 3 [(1 -+ 2y) — Vi1~ )] w,
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( ) = (vg — 1av2)|2|% [(x—i—y)—&— \ﬁ(x—y)}w
+ (avy +iv2)|2|% [(ery) \/(xfy)} w,

wéz) = (v; —iavy) ® % [(1 + 2y) + Vi(l — xy)] w
— (avy + ivg) ® % [(1 +zy) — Vi(l - xy)} w

Lemma 3.12. Let a4+ 1 = ++/2. There are four pairwise non-isomorphic simple
Yetter—Drinfel’d modules Wi and W§ over Hg as follows:

(1) Let W = Ku)gl) & Kw(l). Then W{ is a two-dimensional simple Yetter—
Drinfel’d module over Hg with actions given by

xT- w(l) wgl), x-w(l) wél),
y-w§1>:w§1) Y- w(l) — D

9 — 2
z-wglf:%(l_ )(a+1)wg”,1 z- wg% 11 +1i)(a+ 1w,
wewl? = 5701 = Dla+Duy”, weul? = Y1+ i)+ ),

and coactions given by

p( (1)) 2( +y)w®w(1)+%(x—y)w®w§1),

1 i
p(wél)) = 5(1+xy)w®wgl) + 7\/(1 )w®w(1).

(2) Let W& = me & Kw(2). Then W$ is a two-dimensional simple Yetter—
Drinfel’d module over Hg with actions given by

(2) _ (2) (2) _ (2)

Tow =w,y T Wy —wy 7,
y.w(2) = 52)7 ywéz) wém, ,
N ) 2wy = 501+ + Du?,
w-wi® = (1 =)o+ Duw?, w wé’fw<1+1><a+1>w£%
and coactions given by
p(uf?) = 5 +y)w®w(2)+%(x—y)w®w£2’7

v

1
P (wéz)) =35 —(14+zy)we® w(2) 5 — (1 —-2y)we w(2).

Proof. 1t is straightforward to check by the definition of Yetter—Drinfel’d module.
Actually, M ~ P, ,_, 5 (W & W3) as Yetter-Drinfel’d modules over Hg, where

M =K{v; Rz, vjmxz v Byz,v; Bayz |v; € Vo, j =1,2}.
Slnce Vi=cosT 7 +isin 7, 2\/7\/(1*1) = 1. Denote a4+ 1 = b2, b = +1,
= \ﬁwgl) +w§1), pgl) = \/w(l) +w(1) then Wi = Kpgl)@Kp( ) with actions
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on the row vector (pgl), pé”) given by

xHG (1)) H(—01 01)’ ZH(S _Ob>- (3.14)

Let p§2) = wgz) + %ﬁwém, pég) = w§2) — %wf); then W§' = Kp§2) @ Kng) with

actions on the row vector (pgz) , péQ)) also given by (3.14). Now we can observe that
Wi V2 g isomorphic to W, '~ V2 as modules (or comodules) under a suitably
chosen base, but they are not isomorphic as modules and comodules simultaneously.
So Wt V2 g Wt V2 as Yetter-Drinfel’d modules. For the same reason, we have
Wy V2 2 Wyt V2 and W % WY O
Obviously, any module in Lemma[3.9]is not isomorphic to any one of modules in
Lemmas and as comodules. As Hg-modules, W°:%2 ~ V; (by) @V (—bybai),
and W ~ W¢ ~ V. So Yetter—Drinfel’d modules in Lemmas and
are pairwise non-isomorphic. Keeping in mind that Hg is semisimple, now we are
arriving at
Theorem 3.13. All the simple Yetter—Drinfel’d modules over Hg are classified by

e FEight pairwise non-isomorphic simple Yetter—Drinfel’d modules of one-
dimension:

M(b,g), (b,g) € {(ilv 1), (£1,2y), (£i, ), (:I:i,y)} :

o Fourteen pairwise non-isomorphic simple Yetter—Drinfel’d modules of two-
dimension:

M((l,xy)% M{(z,y)), M<(91»92)>7 thbzu wi, W,

where (91792) € {<1vy)7 (J), 1)’ (my,x), (y,xy)}, bi,b2 € {il}; atl== \/5

Remark 3.14. Jun Hu and Yinhuo Zhang investigated D(H )-modules in [37] and
[38] by using Radford’s construction [47]. In particular, they constructed all simple
modules of D(Hg) under a different basis of Hs.

4. NICHOLS ALGEBRAS IN ggyp

In this section, we try to determine all the finite-dimensional Nichols algebras
generated by Yetter—Drinfel’d modules over Hg. As a byproduct, we calculate
Gelfand—Kirillov dimensions for some Nichols algebras.

We begin by studying the Nichols algebras of simple Yetter—Drinfel’d modules.

Proposition 4.1. Given a simple Yetter—Drinfel’d module M over Hg, dim B(M)
(GKdim B(M) for some cases) is presented in Table @ Moreover,

[, i (b,9) € {(£1,1), (£1,29)},
(1) B(Mpg) = {K[p1/<p2> — AKp, i (bg) € {(+i,2), (£, )}
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(2) Both braidings of M((g1,92)) for (91,92) € {(xy,x), (y,xy)} and W~
for by = £1 are of Cartan type As, so their corresponding Nichols algebras
are isomorphic to an algebra which is generated by p1, pa satisfying relations

p1pep1p2 + pepipep1 = 0, p =p3 = 0.

M € YD condition dim B(M) | GKdim B(M)
Mib, g) (b,9) € {(£1,1),(£1,zy)} 00 1
(b,g) € {(£l,2), (+i, )} 2 0
M((1,zy)) o0 2
M((x,y)) s 2
(91,92) € {(1,9), (z,1)} o0 o0
Mo ) o) € fow o) e} |8 0
—_— by = +1, by = —1 8 0
by =41, by =1 o0 00

we, we a+1=++2 00

TABLE 2. Nichols algebras of simple Yetter-Drinfel’d modules over Hg.

p@p, if (bg) € {(£1,1),(+1,2y)}
-p ®pa if (b7 g) € {(ii7x)’ (ii7y)}
under the assumption that M (b, g) = Kp, part is obvious.
o As for part , we only give a proof for the case Wb—1 for by = +1. Let
p1 = wlfl’bz + iblwgl’b2 and ps = wlf"ln — iblwgl’bz; then the braiding of
Wbtz is given by

c(p1 ® p1) = bap1 @ pu, c(p2 ® p2) = bapa ® po,
c(p1 ® p2) = —bap2 @ p1, c(p2 @ p1) = bap1 @ pa.

When by = 1, GKdim 8 (W"!) = oo according to [6, Lemma 2.8]. When
by = —1, the braiding is of type Ay. As discussed in [I0], the Nichols algebra
B (Wbl’*l) is generated by pi, pe with relations p;papips + p2p1p2p1 = 0,
p? =p3 =0. So dim (B (W'»~1)) =8.

o Let pr =vr1, pp =vRay € M((1,zy)); then c¢(p; ® pr) = pr @ pj, where
gk =1,2. If we view M{((1,zy)) = Kp; & Kpy as braided vector spaces,
then GKdim B (M{(1,zy))) = GKdim B(Kp;) + GKdim B(Kp2) = 2 by
Lemma Similarly, GKdim 8B (M ((z,y))) = 2.

o Let py = (v1+v2)®1, po = (v1 —v2) Ry € M{(1,y)). The braiding is given
by

Proof. © Because ¢(p®p) = g-p@p =

c(pr @ p1) =p1 @ p1, c(p1 ® p2) = p2 @ p1,
c(p2 ® p1) = —p1 @ pa, c(p2 ® p2) = p2 @ pa.
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By [0, Lemma 2.8], GKdim 8B (M{(1,y))) = co. For the same reason, we
obtain GKdim 8B (M{(z,1))) = oco.
o Let§=1(Gi—-1)(a+ 1). Then

c (wgl) ® wgl)) = —bw c

( (1)

1

c (w(l) ® w(l)) 9w2 ® wl , ¢ (wél) Q@ w ) Hw(l) (1),
(1w§1) (24 wgl) + wél) X wél)) —if (1 () X w§1) + wél) (24 wél)) s

. (_iwgl) w® + w0 @ wid ) 0 (i @ w® + v ® wgn) )
By induction,

~ 1 1)) & (1+0)[1 - (-6%)"] 1 1 ©n
s (o 00?) ) = L (o)),
San,1 ((w?) & wgl)) & wi”)

_ 104 (=" 40) <(w§1> eui") " @ wgl)> .

w ) Hw )®w(1)

1+62

®n
It means that ( (1) ® wél)) is an eigenvector of Sy, _1 and

M o MYE (1) : = , -
w, Qw ® w; "’ is an eigenvector of Sg, both with nonzero eigen-

value. So dim B (W{) = co. And dim B (W§) = oo is similar to prove. O

Proposition 4.2. (1) B[M(b,g) @MV, g")) ~ B(M(,g) @ B(M@¥,g))
for (b,g), (V,q') € {(£1,1), (£1,zy), (+i,x), (+i,y)}.
(2) When (b, g) € {(£1,1), (£1,2y)} the following holds:

B[M (b, g) © M{(1,zy))] = B (M(b, g)) @ B (M((1,2y))),
B[M(b,g) ® M((x,y))] ~ B (M(b, 9)) © B (M((z,y)))-
3) B [M<b, 9) © M((91,92))] = B (M(b,g)) @B (M((91,92))) for the following

b 9) = (+,2), (91,92) = (vy,z);
b,g) = (+,y), (91,92) = (y,2y);
b,g9) = (£1,1), (91,92) € {(zy,2), (y,2y)}.
(4) B [M(b,g) ® W'~ ~ B (M(b,g)) @ B (W~1) for the following cases:
b g) {(17 1)v (ny)}; by = £1
b,g) € {(i,2), (1, y)}, b1 =1;
b,g) € {(=1,2), (=1,y)}, br = —
x ((y,zy))] ~ B (M((zy,x))) @ B(M((y,zy)))-
1@W 171) N%(Wlil)@)%(W 171)
Kdim B [M (b, ) & M((g1,92))] = o0 for (b, 9) = (£i,2), (91,92) = (v, 7y)
or (bvg) = (iivy)} (glaQZ) = (:vy,x)

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)



HOPF ALGEBRAS OVER THE KAC-PALJUTKIN ALGEBRA Hg 279

(8) GKdim® [M(b,g) & W* '] = oo for (b,g) € {(i,2),(L.y)}, by = —1 or
(bv g) € {(_iax)a (_iay)}; bl =1

(9) dim B ((M{(g1,92)))) = 00 for (91,92) € {(ay,2), (3, 20)}.
(10) dim B (W=t o Wh—1) = oo for by = +1.

Proof. Parts f@ are direct results of Lemma We only prove some cases as
a byproduct in the following.

o Let p1 = (v1 +v2) B g1, p2 = (v1 — v2) B g2 € M{(91,92)), where (g1,92) €
{(zy,2), (y,2y)}. Let p=vwmg € M(b,g). Then

-p1®@p, ifge{y zy} —p2®@p, ifge{r,zy}
cp®p1) = : c(p®p2) = .
( ) { P1 ®p7 lfg S {1,$}, ( ) P2 ®pa lfg S {lay}a

c(pr ®p) = {b2p®pl’ %f n=y c(p2 ®p) = {b2p®p2’ %ng 7
p®p1, if g1 =uzy, p®p2, if g2 =wy.
o When (g1, 92) = (y,zy) and (b, g) = (i, ),
c(p@p1) =p1®p, c(p@p2) = —p2 @,
c(p1 ®p) = —pRp1, c(p2 ®p) = p @ pa.

The generalized Dynkin diagram is given by Figure According to
[31], dim B[M (£i, ) & M{(y, xzy))] = oo.

FIGURE 1

o When (g1,92) = (xy,z) and (b,g) = (&i,y), the generalized Dynkin
diagram associated to the braiding is given by Figure[I] According to
[31], dim B[M (i, y) ® M{(zy,z))] = co. We thus finish part (7).

o As for cases listed in part [M(b,g) ® M{(g1,92))] ~ B (M(b,g))®
B (M{(g1,92))) by Lemma

o Let p=v®mg € M(b,g), where (b,g) € {(£1,1),(£1,2y), (i, ), (£i,y)}.
Then
b17

c Wi = 1 ®p7 if (b,g) € {(1171)7@:1 xy)}
(Pow™ ) { bl @ p, if (bg) € {(H,2), (+i,1)),
by, )

ety Bl g it (bg) € {(£1,1), (£1,29)}
@ us) {—lblwbh Lop, if (bg) € {(%1, ), (+i,p)},
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b1y [ bp@wn Tl (b g) € {(£1,1), (+1,2y)}
et e {bpwbh L if (b,g) € {(H,2), (+i,)},
c(wh :{ bp@wy ™t if (b,g) € {(£1,1), (+1,2y)}

2 —bp@w Tt i (b,g) € {(H, ), (+i,9)}.

o In case (b, g) € {(1,1),(1,zy)}, according to Lemma [2.3] we have
B (M(b,g) @ W) ~ B (M(b,g)) ®B (Wr1).
o In case (b, g) € {(&i,z), (+i,y)}, if ibyb = —1, according to Lemma 2.3
we have B (M (b, g) & Wh=1) ~ B (M (b, g)) @ B (WP=1). If ib1b =
1, the generalized Dynkin diagram associated to the braiding of M (b, g)
@ W1 is given by Figure |I} Now we finish parts () and .
o As for (g1,92) € {(z9,2), (g, 2)}, dim B (M ((g1,92)))%*) = o0 by [31],

since the generalized Dynkin diagram associated to the braiding is given
by Figure

FIGURE 2

o As for VVl’l”leBVVbll’*1 with b; and b} in {:l:l}. Let p; = wlfl 71+1b1w31’
v,

)

po = Wit —ibf T ph = wl{ —|—1b1w2 Yand py = wi —1b’1w2 -
Then

c(p1 ® ph) = —pi @ p1, c(p2 ® py) = —ph @ p2,

c(p1 ® py) = ph @ p1, c(p2 ® p1) = —p) @ pa.

When b; = b)), the generalized Dynkin diagram associated to the braiding
is given by Figure By [31], dim B (WP~ @ Wb —1) = co. This finishes

(10)-
When b1 = —b), we have py = wll’l’_1+ib1w2 ,p1 = wl “ibw bl’ ,
ph = wll’ " + iblwgl’_l, Py = wll)l’_1 — iblwgl 1, and
c(ph ® p2) = —p2 @ ph, c(py @ p1) = —p1 @ pi,
c(ph @ p1) = p1 @ Py, c(p) ® p2) = —p2 @ pi.

By Lemma we have
W ltew o ) 8 (W ) o8 (Wt
This finishes @ O
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Proposition 4.3. The following equalities hold for by =
dim ® (M ((ry, 2)) & W) = o0 = dim B (M((y. z)) © W ).

Proof. We only prove dim B (M((xy, z)) ® Wbl”l) oo because the rest is similar

to prove. Let p} = wll’l’ + iblwé”ﬁl and pf = wlfl’ 1b1wb1’ . Then
c(p1 ® py) = p) @p1, c(p1 ® py) = py @1,
c(p2 ® py) = p| @2, c(p2 ® py) = —ph @ pa,
c(py ® p1) = p2 @ Py, c(py ® p2) = ibip1 @ ph,
c(py @ p1) = p2 @, c(py ® pa) = —ibip1 @ pi.

Suppose B (M ((zy,z)) & W) is finite-dimensional; then according to [34} The-
orem 7.2(3)], ad(M (zy, z)) (WP=1) = (id—c?) (M (zy, z) ® WP 1) is irreducible.
Denote

A= (id—c*)(p1 @ p}) = p1 @ p) — p2 @ ph;
B = (id - ¢*)(p1 ® p3) = p1 @ Py — p2 @ py;
C = (id — ) (p2 © ) = p2 ® P — ib1p1 @ phy;
D = (id — ¢*)(p2 ® ph) = p2 © ph + ib1p1 @ p}.

If a1 A+asB+a3CHasD = 0 for parametersa; € K, j = 1,...,4, then a1 A+asD =
0 and asB + a3C = 0. Hence a; = a4 =0, and as = a3 = 0. So A, B, C, D are
linearly independent. This is a contradiction since (id — ¢?) (M (zy, x) @ WP~1) is
irreducible and there aren’t any 4-dimensional irreducible Yetter—Drinfel’d modules
over Hg. |

Remark 4.4. According to Propositions and we calculate Nichols
algebras over direct sum of two simple objects of gg YD in Table

Proof of Theorem [A] Firstly, we recall the fact that for any submodule M; C
My € YD, B(M;) C B(Ms). Then dim B(Mz) = oo if dim B(M;) = oco. The
Nichols algebras B(M) associated with M listed in Theorem [A] are finite-dimen-
sional according to Lemmaand [31]. In fact, Q4 (n1,n2,n3,n4) is of Cartan type
Ay X - X Ar; Qp(ng,ng) for k = 2,3,4,5 is of Cartan type Ay X -+ X Ay X Ag;
Q. for k = 6,7 is of Cartan type Az x As. Solet M € gi)}D; then dim B(M) < oo
if and only if M is isomorphic to one of the modules in the list of Theorem [A]
according to Table [2] Table [3] Propositions [.1] &

5. HOPF ALGEBRAS OVER Hjyg

In this section, according to the lifting method, we determine the finite-dimen-
sional Hopf algebra H with coradical Hg such that its infinitesimal braiding is
isomorphic to a Yetter—Drinfel’d module M over Hg. We begin by proving that H
is generated by elements of degree one in Theorem That is, gr H ~ B(M)#Hs.
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M e yD condition dim B(M) | GKdim B(M)
(b1,91), (b2, 92) € o 9
{(£L,1), (1, 2y)}
M (b1, g1) (b1,91) € {(£1,1), (£1,zy)} - L
© M (b2, ga) (b2, g2) € {(&i, ), (+i, )}
(b1,91), (b2, 92) € 4 0
{(&i,2), (£, y)}
, Aj\j;é”’g;y» (b,g) € {(£1,1), (£1,zy)} %0 3
@Ajéib(’ngy» (b,g) € {(£1,1), (£1,zy)} %0 3
(91,92) = (91, 95) = 00
M{((g1,92)) (zy, ) or (y,zy)
S M((91.93)) (91, 92) = (zy,2), 64 0
(91.95) = (y, zy)
L1 @ bt bi=b = >
by=1,0, =— 64 0
br,—1 (91,92) = (’Iyyx) 0
M{(g1,92)) ® W or (y.25). by =
(b, g) = (£i, z), (91792) = (xyvx) 16 0
(b,g) = (£, 2), (91,92) = (Y, 2y) 00
M (b, g) (b,9) = (£i,9), (91,92) = (zy, ) o0
® M((g1,92)) (b,9) = (£i,9), (91,92) = (y,2y) 16 0
(b,9) € {(£1,1)} o )
(91,92) € {(zy,2), (y,zy)}
(b,g) € {(1,1),(1,2y)}, by = £1 0 1
(b,9) € {(i,2),(i,y)}, b1 =1 16 0
M{b, g) & W1 (b,g9) € {(i,z), (L,y)}, bp = — 00
(b,9) € {(-1,2), (-1, y)}, by = — 16 0
(b,9) € {(-1,2),(-1y)}, by =1 00

TABLE 3. Nichols algebras over the direct sum of two simple ob-

jects in 1 VD.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)




HOPF ALGEBRAS OVER THE KAC-PALJUTKIN ALGEBRA Hg 283

Theorem 5.1. Let H be a finite-dimensional Hopf algebra over Hg such that its
infinitesimal braiding is isomorphic to a Yetter—Drinfel’d module over Hg. Then
the diagram of H is a Nichols algebra, and consequently H is generated by the
elements of degree one with respect to the coradical filtration.

Proof. Since gr H ~ R#Hg, with R = €,,., R(n) the diagram of H, we need
to prove that R is a Nichols algebra. Actually we only need to prove that R ~
B(M) for some M in the list of Theorem [A| since R is finite-dimensional. Let
J = @,,>0 R(n)* be the graded dual of R; then J is a graded Hopf algebra in
’;gyD with J(0) = K1. According to [I3} Lemma 5.5], R(1) = P(R) if and only if
J is generated as an algebra by J(1), that is, if J is itself a Nichols algebra.

Considering B(M) € ggyp for M in the list of Theorem since B(M) =
T(M)/Z, in order to show that P(J) = J(1) it is enough to prove that the
relations that generate the ideal Z hold in J. This can be done by a case-by-case
computation. We perform here three cases, and leave the rest to the reader.

Suppose M = Q1(ny,n2,n3,n4). A direct computation shows that the elements
r in J representing the quadratic relations are primitive and they satisfy c(r®r) =
r®r. As dimJ < oo, it must be r = 0 in J and hence there exists a projective
algebra map B(M) — J, which implies that P(J) = J(1).

Suppose M = {g; then M is generated by elements p; = (v1 + v2) R zy, ps =
(v1 —vg) Rz, p| = (v1 +v2) Ry, ph = (v1 — v2) By and the ideal defining the
Nichols algebra is generated by the elements p?, p3, p’12, p’22, P1p2p1P2 + Papipapi,
P1PoPI Py + PapiPapY, P1P) + P1P1, P1Py + Pab1, P2py — PiD2, P2ps + Pap2. We can
check directly that all those generators of the defining ideal of B(M) are primitive
elements, or by using [2I, Theorem 6]. It is enough to show that c(r ® r) =
r @ r for all generators given above for the defining ideal. Since p(p1) = zy ® p1,
p(p2) = @ pa, p(py) = y @ P, we have p(p?) = 1 @ p3, p(prpaprp2 + P2p1P2p1) =
1 ® (p1pap1p2 +pap1p2ap1), p(p1py +P1p1) = @ (p1p} +pip1). It is easy to see that
c(r@r) =r@r holds for r = p}, p1pap1p2 + pap1pap1, and p1py + pip1. We leave
the rest to the reader.

Suppose M = Q4(n1,n2). Then M is generated by elements p; = w%’71 —Hw;’*l,
po = wy = iwy T {X =1 s {Yethet,.me with KX; ~ M(i,z), KY; ~
M({i,y) and the ideal defining the Nichols algebra is generated by the elements
Pt p3, pipepip2 + papipepr, X7, X5 Xp, + X X hi<ii<ia<nns Vi3 Y Yio +
Y, Vi, M<ky <ko<ng, P1Yr — Yip1, p2Ye + Yipe, p1 X; — Xjp1, p2 X + Xjpa. We can
check directly that all those generators of the defining ideal of B(M) are primitive
elements, or by using [2I], Theorem 6]. It is enough to show that ¢(r®r) = r&r for
all generators given above for the defining ideal. Since p(p1) = (foo —if11)z2 ®p1 +
(fi0 +1fo1)z ® pa, p(p2) = (foo +if11)z @ p2 + (fi0 — ifo1)z ® p1, p(X;) = 2 ® X,

p(p1p2p1p2 + pap1pap1) = [(foo — if11)2(foo +1f11)2]* @ p1pepipe
+ [(foo +if11)2(foo — if11)2]* ® papip2p1
+ [(f10 +1ifo1)2(fi0 — ifo1)2]* ® papipap
) )z)?

+ [(f10 — ifor)2(fi0 +1fo1)z]” @ p1papip2
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= 2y ® (p1p2p1P2 + P2p1P2P1),
P(p1X; — Xjp1) = (foo +1f11)2 @ (11X — Xjp1) + (fro — 1fo1)2 @ (p2X; + X;jp2).
Because
(fio —ifo1)z - (11X, — Xjp1)
= 0 gz e X — (0 -9z X))z )
= (=1)(f10 — ifo1) - (M X; — X;p1) =0,
(foo +if11)z - (P X — Xjp1) = (i) (foo +1f11) - (11X — Xjp1) = p1 Xj — X;p1,
zy - (P1p2p1P2 + P2P1P2P1) = P1P2P1P2 + P2P1P2P1,
c(r®r) =r®r holds for r = p1papip2 + pap1p2p1 and p1X; — X;p1. We leave the
rest to the reader. O

Lemma 5.2 ([I3, Lemma 6.1]). Let H be a Hopf algebra, ¢ : H — H an auto-
morphism of Hopf algebras, V., W Yetter—Drinfel’d modules over H.

(1) Let V¥ be the same space underlying V but with action and coaction
heyv=1ph)-v, p¥)= @ "'®id)pv), heH veV.

Then V¥ is also a Yetter-Drinfel’d module over H. If T : V. — W is a
morphism in IP}'J)D, then TV : V¥ — WY also is. Moreover, the braiding
c: VYWY = WY VY coincides with the braidingc: VW — WV,
(2) If R is an algebra (resp., a coalgebra, a Hopf algebra) in YD, then RY
also is, with the same structural maps.
(3) Let R be a Hopf algebra in gyD. Then the map ¥ : RV#H — R#H given
by W(r#h) = r#y(h) is an isomorphism of Hopf algebras.

Corollary 5.3. (1) [M(bi,z)]™ ~ M({-bi,y), b= +1.
(2) [M{(zy,2))]™ ~ M((y,zy)),
(Wblv_l) P Wbl yith by = 1.
(3) B (Qa(n1,n2)) #Hs ~ B (Q3(n2,n1)) #Hs,
B (Qu(n1,n2)) #Hs ~ B (Qs(n2, 1)) #Hs.

Let H be a lifting of B (Q1(n1,ne,n3,n4)) #Hs. Then there exists an epimor-
phism of Hopf algebras ¢ : T (1 (n1,n2,n3,n4)) #Hs — H [16, Proposition 2.4].
Denote

X;=@wRra)#l, vrexe M{iz), j=1,...,n,
(vrx)#1, vRz e M(—i,z), k=1,...,n,
ps:(vgy)#l’ UEyEMi7y>7 8217"'7n37
(vey)

(5.1)
(
@ =@wRry)#1l, vRye M(—iy), t=1,...,n4.

Definition 5.4. For ni,no,ns, ns € N20 with nq +ng +n3 +n4 > 1, and I; =
{(N\j.s)naxnss (Ok,t)nyxn, b With entries in K, we denote by Uy (n1,ng, ng, na; I1) the
algebra [T (1 (n1, ne,n3,ng)) #Hg] /Z(I1), where Z(I;) is the ideal generated by

X7=0, Y7=0, pi=0, ¢ =0, (5.2)
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Xin X, +X;,X;, =0, ji,jo€e{l,...,n},
Yi,Yio + Yi, Vi, =0, ki, ke € {1,...,n2},
PsiPsy T PsaPs; =0, 51,82 € {1,...,n3},
Q. Gty + Giqe, =0,  t1,t2 € {1,... 4},
XY + Y X; =0, psq+qps =0,
Xjqe +@X; =0, Yips +psYy =0,
Yiqe + @tYe = Ot (1 —2y),  Xjps +psXj = Ajs(1 —zy).

SN N N N N N N
© 0 N o v W
SN RN R AN AN N2

Remark 5.5. Tt is easy to see that Z(I) is a Hopf ideal, hence Uy (n1, ne, n3, ng; I
is a Hopf algebra. In particular, when parameters in I; are all equal to zero, then
Ay (n1,n2,n3, 145 11) ~ B (Qq(n1,n2,n3,n4)) #Hs.

Proposition 5.6. (1) Let H be a finite-dimensional Hopf algebra with coradi-
cal Hg such that its infinitesimal braiding is isomorphic to Q1 (n1,ng,ng, ng).
Then H ~ Wy (nq,no,ng,ng; I1).

(2) Wy(ny,n9,n3,nq4; 1) = Wy (n1, na, ng, ng; 1) iff there exist invertible matri-
ces (Oz]] )m Xny s (ﬁkk’)nz XN2 s (%s )n3><n37 (ntt’)m xny Such that

ni ni

ni
Z Z Qg0 Bkk’ - 0 Z Z QM = 0 Z Z Qg ’Yss’)\ )\j,sa

J'=1k'=1 j=1t'=1 j'=1s'=1
no ns ns ng no
/
E E Bk vsst = 0, § E Vss'Metr = 0, E E Bkk’ntt’ek’t = 9k,t§
k'=1s'=1 s'=1t'=1 k'=1t'=1
(5.10)
or n1 = ng, no = ng and there exist invertible matrices (a;j,)nlxnl,
! / /
(Brs Inaxnas (Vopr Inaxnas (Utj/)nl xny such that
ni ng ni
E E :a]t,/BkS = 07 E E :’ysk’ntj - § E ajt’P)/sk’)‘ )‘j,57
t'=1s'=1 k=1j=1 t'=1k'=1
(5.11)
ni no no no ni
/ ! / / /
E E a]t’ntj’ = 0 E E Bks”ysk’ = 0, E E 5ks/77tj/9k’t = Hk: t
t'=15'=1 s'=1k'=1 s'=1j'=1

Proof. (1) According to (5.1]), the extra relations of generators in T'(21(n1, ne2, ns,
n4))# Hg besides Hg are given by

zX; = - Xz, yX; = —X,y, 2X; =iXjxz,
zY, = —Yix, yYr = =Yy, 2Y, = —iYyxz,
TPs = —PsT, Yprs = —Dsy, 2ps = ipstz,
Tqr = — G, Yqe = —qtYy, z2qr = —iqrrz,

and their coproducts are given by
A(Xj):Xj®1+I®Xj, A(Yk):Yk®1+I®Yk,
Alps) =ps@1+y@ps, Alg) =a®@1+y®q.
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Let p = (vmg)#1 € [M(b, g)|#1, p' = (v ® g")#1 € [M(V', g')|#1; then A[p(pp’ +
p'p)] = d(pp’ +p'p) ® 1+ g9’ @ d(pp’ +p'p). So ¢(pp’ +p'p) = 0 (When gg’ = 1) or
o(pp’ + p'p) = M1 — gg') (when gg’ # 1) for some X € K related with p and p’. So
¢ keeps relations f and there exist ()\j75)nlxn3, (15,6 )n1 xnas (Chys)naxng
(0k,t)ng xny With entries in K such that ¢ keeps relations (5.9) and ¢(X,; ¢+ ¢ X;) =
wit(1 — zy), ¢(Yips + psYr) = Cr,s(1 — zy). Since z(l —zy) = (1 — 2y)z, so
ol2(Xjq + 0 X;)]) = ol(Xjq + ¢:X;)z]. By direct calculation, we have ¢[z(X;q: +
@X;)] = —o[(Xjq + ¢ X;)z], so pj; = 0. Similarly, (5, = 0. Now we have
Z(I1) C ker ¢. So there is a surjective Hopf algebra map from %y (ny, ng, n3, ng; I1)
to H. We can observe that any element of Uy (n1,na,ns,ng; I1) can be expressed
by a linear sum of {X ... X, Yl’81 . ~Y7§,82"2p'Yl Pt gt xy?z€} for all
parameters ai,...,Qny, Biy--vy Bngs Viy- s Tngs Kly---sbny, 6 dy, e in {0,1}. In
fact, the set is a basis of Ay (ny1,n2,n3,n4; [1) according to the Diamond Lemma
[I7]. By the Diamond Lemma, it suffices to show that all overlap ambiguities are
resolvable. That is, the ambiguities can be reduced to the same expression by
different substitution rules. Calculating the ambiguities and showing that these
are resoluble is a tedious but straightforward computation. By Theorem we
have gI‘H ~ %(Ql(nl,ng,ng,ml))#Hs. That is to say that ?Il(nl,ng,ng,n4;11)
has the same dimension as H. So ;(n1,na, ng, ng; I1) is a lifting for all ny, na, ns,
ng.

(2) Suppose that ® : Ay (ny, na, ng, ng; I1) = Ay (ng, na, n3, nyg; I5) is an isomor-
phism of Hopf algebras, where I1 = {(\; {)nyxng, (0) 1)naxn, } and Wi (ng,n2,ns,
n4; I7) is generated by z, y, 2, X}, Y}, p;, q;.

When |y = id or 71, ®(Xj) is (z, 1)-skew primitive, so ®(X;) € &F_ KX}, @7,
KY, @ K(1 —z). X; = —X,x implies that ®(X;) doesn’t contain the term of
1 —2. And zX; = iXjzz, 2Y)/, = —iV/, 2z implies that ®(X;) doesn’t contain
the terms of @}'?_KY},. So there exists an invertible matrix (c;;7)n, xn, such that
o(X;) = Z;lfl 1 Q5 §/~ Similarly, ®(Yy) = 37, B Vi, ®(ps) = D00, Vsl
(I)(Qt) = Zt’:l ntt’qt/ with (Bkk’)ngxnzv (’Yss )n3><n3? (M¢¢ )nyxn, invertible. In this
case, ® is an isomorphism of Hopf algebras if and only if the relations - ) hold.

When @| g, = 73 or 74, ®(X}) is (y, 1)-skew primitive, so ®(X,) € @72 Kpl, &)L,
Kq;, ®K(1—y). Since ®(zX,;) = —®(X;z), ®(X;) doesn’t contain the term of 1—y.
And ®(X;) doesn’t contain the terms of @ Kp!, because of ®(2X;) = i®(X;zz2).
So n1 = ng4, and there exists an invertible matrix (a; )n, xn, such that ®(X;) =
>opty &gy Similarly, we have ng = ng and ®(Yy) = Y0%, Bl P, @(ps) =
Zk’ VYo Yors @) = 2?11:1 nzltj’X]/" With (Big ) naxnas (Yers Jnaxnas (néjf)m xny D=
vertible. In this case, ® is an isomorphism of Hopf algebras if and only if the

relations (5.11]) hold. O

Lemma 5.7. Suppose H is a finite-dimensional Hopf algebra with coradical Hg
such that its infinitesimal braiding is isomorphic to M{(y,xy)). Then

H ~ B[M((y, zy))|#Hs.

Proof. Let H be a lifting of B (Q2(n1,n2)) #Hs. Then there exists an epimorphism
of Hopf algebras ¢ : T (M {(y,zy))) #Hs — H [16], Proposition 2.4]. Denote p; =
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[(v1 +v2) ®y[#1 € M((y,zy))]#1 and p2 = [(v1 — v2) Rayl#1 € M((y, zy))|#1;
then B[M{(y, zy))] is generated by pi, p2 satisfying the relations
pi=0, p3=0, pipapip2 + paprpepr = 0.

It is easy to see that p?, p3, and p1pap1p2+pap1Pep1 are primitive, so those elements
are in ker ¢ since H is finite-dimensional. Hence there is a surjective map from
B[M{(y,zy))|#Hs to H. By Theorem gr H ~ B[M((y,xy))]|#Hs, so H ~
grH. O

Lemma 5.8. Suppose H is a finite-dimensional Hopf algebra with coradical Hg
such that its infinitesimal braiding is isomorphic to M{(xzy,x)). Then
H =~ B[M{(wy, )] #Hs.

Remark 5.9. Let py = [(v1 + v2) B ay]#1, ps = [(v1 — v2) B z]#1 be a basis of

M {(zy,x))]#1. Tt is easy to see that p?, p3, and pypap1p2 + p2p1p2p1 are primitive.
The proof of the lemma is similar to that of Lemma In fact, B[M ((zy, z))]#Hs
is isomorphic to B[M{(y, xy))]# Hs by Corollary

Proposition 5.10. Suppose H is a finite-dimensional Hopf algebra with coradical
Hg such that its infinitesimal braiding is isomorphic to Qa(ny,n2). Then H ~

B[Qa(n1,n9)|#Hs.
Proof. Let H be a lifting of B (Q2(n1,n2)) #Hs. Then there exists an epimorphism
of Hopf algebras ¢ : T (2(n1,n2)) #Hs — H [16], Proposition 2.4]. Denote
p1 = [(v1 +v2) Ray|#l, po = [(v1 —ve) Ra]#1, vy, V2 € Vo,
X; = (vrx)#l, veVi(i), i=1,...,n1,
Y, = (W' ro)#l, o e Vi(-i), k=1,...,n
Let Z be the ideal of relations of B [Qa(n1,n2)] #Hs; then Z is generated by the
relations
P =0, p3=0, pipapip2+ papipapr =0,
X X, + X5, X5, =0, ji,j2€{l,...,nm},
Vi, Yio + Vi, Vi, =0, ki, ke € {1,...,n2},
X7=0, Y?=0, X;Vi+YiX;=0,
p2X; + Xjpa =0, poYy + Yips =0,
p1X; —X;pr =0, p1Yy—Yip =0.
We have the following formulae by direct calculation:
z(p1X; — ijl) =—(mX; — Xjp1)z, z(p1Ye —Yip1) = —(p1Yk — Yip1),
Alp(p1 X — Xjp1)] = ¢(m1X; — Xjp1) @ 1 +y ® ¢(p1X; — Xjp1),
Alp(p1Yy — Ykpl) O(p1Ye — Yep1) ® 1+ y @ ¢(p1Yy — Yipr),
Alp(p2Xj + Xjp2)] = ¢(p2Xj + Xjp2) @ 1 +1® ¢(p2 X + Xjp2),
Alp(p2Yi + Yip2)] = o(02Yr + Yip2) ® 1+ 1@ ¢(p2Yi + Yipz).

]
]
]
J=
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Together with Lemma [5.8] and Proposition [5.6, we can see Z C ker ¢, so there
is a surjective map from B[Qa(ni,n2)]#Hs to H. By Theorem [5.1) gr H ~
B[Qa(n1,n9)|#Hs, so H~grH. ]

Definition 5.11. For A € K, denote Ag(\) by the algebra [T'(Q6)# Hs]/Z()), where
Z(A) is the ideal generated by the relations

pi =0, p5=0, pipapip2 + pap1pep1 =0, (5.12)
=0, $=0, qeqae+enea =0, (5.13)
p1q1+qipr = M1 — ),  p2g2 + qap2 = A(1 —y),
P1g2 — @2p1 =0, p2g1 + q1p2 = 0.

Remark 5.12. In fact, Z(\) is a Hopf ideal, so Ag(A) is a Hopf algebra. In particular,
when A =0, Ag(0) ~ B(Qg)# Hs.

Proposition 5.13. (1) Suppose H is a finite-dimensional Hopf algebra with
coradical Hg such that its infinitesimal braiding is isomorphic to Q. Then

(2) Wg(N) =~ Ug(1) for A# 0, and (1) # Ag(0).

Proof. (1) Let H be a lifting of B (Q6) #Hs. Then there exists an epimorphism of
Hopf algebras ¢ : T (Q6) #Hs — H. Denote p1 = [(v1 +v2)Ry|#1, p2 = [(v1—v2)®
xy|#1, @1 = [(v1+v2)Ray|#]1, ¢o = [(v1—v2)Rz]#1 in [M{(y, 2y)) S M {(zy, x))]#1.

By Lemmas and the map ¢ keeps relations (5.12)) and ([5.13]).
Since gr H ~ B(6)# Hg and

Alp(prqr + qip1)] = d(p1qs + @up1) @ 1+ 2 @ d(p1g1 + qipr),
Alp(p2g2 + q2p2)] = ¢(p2q2 + @2p2) @ 1 +y @ d(p2q2 + q2p2),
Alp(p1g2 — q2p1)] = ¢(P1g2 — @2p1) @ 1+ 2y @ G(P1g2 — G2p1),
Alp(p2q1 + qip2)] = d(p2q1 + @1p2) ® 1+ 1 ® ¢(p2q1 + q1p2),

we have ¢(p1q1 + q1p1) = M (1 — 2), ¢(p2g2 + gop2) = A2(1 —y), d(p1g2 — g2p1) =
As(1 —xy), d(p2q1 + q1p2) = 0 for some A1, Az and A3 in K. Since z(p1¢1 +q1p1) =
(p2g2 + q2p2)z and z(p1ga — g2p1) = (p2q1 + q1p2)xz, we have Ay = Ag and A3 = 0.
That is to say Z(A\) C ker ¢. So there is a surjective map from Ug(A) to H. Now we
only need to prove that dim Wg(A) = dim H. In fact, Ag(N) ~ B(Qs) ® Hs as vector
space by the Diamond Lemma. It suffices to show that all overlap ambiguities are
resolvable. Calculating the ambiguities and showing that these are resoluble is a

tedious but straightforward computation.

(2) When X\ # 0, @ : Ag(A) ~ Ug(1), by @|gy, = id, p; — %, q; — \% for
i =1,2. (1) # A(0) can be proved similarly to the proof of the second part of
Proposition [5.17 m]

Lemma 5.14. Suppose H is a finite-dimensional Hopf algebra with coradical Hg
such that its infinitesimal braiding is isomorphic to W1, where by = £1. Then

H ~ [T (Wbl’_1> #HS] /I(/\l,)\g), A, A €K,
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where T(A\1, A2) is a Hopf ideal generated by the relations
pi=M1—=zy), p3=itM(1—zy), pipep1p2+papipapr = Aa(1—zy). (5.14)
Proof. Let H be a lifting of B (Wbl’_l) #Hg. Then there exists an epimorphism
of Hopf algebras ¢ : T (Wbl’*l) #Hg — H. p; = (wll’l’_l +ib1wgl’_1) #1, py =
(wi’“fl — iblwgl’fl) #1,
A(p1) = [foo —ib1 fi1] 2 @ p1 + [fi0 + ib1 fo1] 2 @ p2 + p1 ® 1, (5.15)
A(p2) = [foo +1b1 fi1] 2 ® p2 + [fi0 — b1 for1] 2 @ p1 + p2 @ 1. (5.16)

By a straightforward computation, we have

A = (1 + 2y) © 62) + L (1 - 29) © B(02) + 6(7) @ 1,

2 2
Al3(3)) = (14 2) © 6(3) — 2 (1~ ) © 6(63) + p(R) © 1

So there exists a parameter A\; € K such that ¢(p?) = A\ (1 — zy) and ¢(p3) =
lbl)\l(]. — l'y)

AlB(p)] = 3 +9) © Blpip2) + ot (2~ ) @ pap1) + Blpap) 1

+ ¢(p2) [foo — ib1f11] 2 ® d(p1) + é(p2) [f10 + ib1fo1] 2 ® O(p2)
+ ¢(p1) [foo +ib1f11] 2 ® @(p2) + (1) [f10 — ib1fo1] 2 ® ¢(p1),

Alopap1)] = (& +9) © 6(pa1) + (3~ ) @ Blpipa) + Dlpap) © 1

+ [foo + b1 f11] 26(p1) ® ¢(p2) + [fr0 — ib1 for] z6(p1) ® G (p1)
+ ¢(p2) [foo — b1 f11] 2 ® ¢(p1) + d(p2) [f10 + ib1 fo1] 2 @ B(p2).
Denote Alp(p1p2)] = B — A+ Eq and A[¢(pap1)] = B + A + Es, where
A = [foo + b1 f11] 20(p1) @ B(p2) + [f10 — ib1 fo1] 20(p1) @ H(p1),
B = ¢(p2) [foo — ib1 f11] 2 @ ¢(p1) + &(p2) [f10 + ib1 fo1] 2 ® ¢(p2),

By = l(x + 1) @ d(papr) + ib—l(y —z) ® ¢(p1p2) + ¢(p2p1) ® 1,

9 2
ib
E, = %(x +y) @ ¢(p1p2) + 171(% — ) @ ¢(p2p1) + P(p1p2) ® 1.

We can obtain A2 + B? = 0, since

A2 = 7%(35 +y)6(p3) ® H(p2) + i%1(1 —zy)o(p}) ® H(p)

=ib A} (1 — 2y) ® (1 — 2y),

B2 = —%(w +y)0(p3) ® 6(p?) + i%1(1 —2y)o(p3) ® 6(p3)

= —ib A (1 — 2y) @ (1 — xy).
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Keeping in mind that

p1(p1p2 + pap1) = (P21 + p1p2)p1,  P2(P1p2 + pap1) = (P2p1 + P1p2)p2;
p1(p1p2 — pap1) = (p2p1 — p1p2)p1,  P2(p1p2 — p2p1) = (P2p1 — P1P2)P2;
x +y)p2(foo —ib1f11)z = —p2(foo — ib1f11)2(x + y),
x —y)p2(foo — b1 f11)z = p2(foo — ib1 f11)2(x — y),
T+ y)pa(fio +1ib1 for)z = —p2(fio +ib1for)2(z +y),
x —y)p2(fio +1ib1 for)z = p2(fio + b1 for)z(x — y),
p1p2 + p2p1)p2(foo — b1 f11)2 = —pa(foo — ib1f11)2(P1p2 + p2p1),

(p1p2 + pap1)p2(fio + b1 fo1)z = —pa(fio + ib1 for)z(p1p2 + P2p1),
we deduce B(Ey + E2) + (Ey + E2)B = 0. Similarly, we have A(Ey — Ey) + (B2 —
En)A = 0.

Alp(prp2p1p2 + pepipep1)) = (B — A+ E1)* + (B+ A+ Ey)?
=2(A* + B?) + B(Ey + Es) + (E, + E2)B
+ A(Ey — Ey) + (By — B1)A+ B} + E3
= E} + E3

PR

—

= (34 ® 6l + = 1) @ 0l + 0o 1)

+ (3l 40 © 6lpap) + 0 - )8 6up2) + 6o 1)

= %(1 +2y) @ [p(p1p2)]” — %(1 — ay) ® [¢(p2p1))” + [B(p1p2))” ® 1

S +a9) ® )] — 51— 2) © D)) + [p(pap ) ©1

=ry®d [(p1p2)2 + (p2p1)2] + ¢ [(plpz)2 + (mm)ﬂ ® 1.

So there exists a parameter Ag € K such that ¢(p1pap1p2 +papip2ep1) = A2(1 —zy).
Hence the map ¢ keeps relations (5.14]), so there exists a surjective map from

[T(WP—1)#Hj| /I()q7 A2) to H. Now we only need to prove that

+

dim [T(W" 1) #Hs] [T(\,A2) = dim H.

In fact, [T(Wbl’_l)#Hg] /I()\l,)\g) ~ B(WP~1) ® Hg as vector space by the
Diamond Lemma. By the Diamond Lemma, it suffices to show that all overlap
ambiguities are resolvable. Calculating the ambiguities and showing that these are
resoluble is a tedious but straightforward computation. O
Definition 5.15. Let Iy = (A\,...,A5) with \; € K (¢ = 1,...,5). Denote by
A7 (I7) the algebra [T (27) # Hg| /I(I7)7 where Z(I7) is the ideal generated by the

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)



HOPF ALGEBRAS OVER THE KAC-PALJUTKIN ALGEBRA Hg 291

relations

pi=XM(1—-my), p3=iM(1—2y), pipepip2 + pap1pep1 = Ao(1l — zy), (5.17)
i =XM1—-2y), ¢ =-A1-2y), Qeae+enea =(1-—1y)

(5.18)
p1g2 + @2p1 =0,  poqi + q1p2 = 0, (5.19)
Piq1+@pr = As(x+y —2),  page — qep2 = —iXs(xz —y). (5.20)

Remark 5.16. In fact, Z(I7) is a Hopf ideal, so A;(I7) is a Hopf algebra. In par-
ticular, when \; = 0 for i = 1,2,...,5, A;(I7) ~ B(Q7)#Hg ~ [BWH 1) ®
B(W 11| #Hg.

Proposition 5.17. (1) Suppose H is a finite-dimensional Hopf algebra with
coradical Hg such that its infinitesimal braiding is isomorphic to Q7. Then
H ~ QI7(I7)

(2) Ur(A1,...,A5) = Az (N, ..o, A) iff there exist nonzero parameters a, b, «,
B in K such that

ANy =X, VN =M1, a®bPNy = Na,  aa)l = ), (5.21)

PNy =g, BEIN; =g, 282N = Ay, BBAL = s '

or there exist nonzero parameters oy, 81 in K such that
ANy =1, BN =X, —afNi=Xo, —BIN =M, arBiNs =N (5.22)

Proof. (1) Let H be a lifting of B (Q7) #Hs. Then there exists an epimorphism
of Hopf algebras ¢ : T (27) #Hs — H. Denote p; = (w%’_l —|—iw;’_1) #1, py =

(b =iy ™) 1, @ = (o =y ) #L g = (w T i)
The coproducts of p1, p2, q1, g2 are given by (5.15) and (5.16). The relations of
generators in T (Q7) #Hg are given by

Irp1 = p1x, Yp1 =p1y, IP2= —p2T, Yp2 = —pP2Y,

rTqr = @1,  Yq1 = q1y, 22 = —Qq2T, Yq2 = —q2Y,

Zp1 = —p1z, z2p2 = ip2wzZ, 2q1 = —q1%, 2Q2 = —igerZ.
By Lemma [5.14] the map ¢ keeps relations (5.17) and (5.18]). It is only possible

for ¢(p1g2 + q2p1) = 0, P(P2q1 + q1p2) = 0, since x(p1g2 + q2p1) = —(P1G2 + @2p1)7,
z(p2qi + q1p2) = —(p2q1 + q1p2)z, and

Alp(p1g2 + q2p1)] = % (14 2y) +i(1 — 2y)] ® ¢(p1g2 + @2p1) + G(P1g2 + @2p1) ® 1,
1

Alp(paqr + qip2)] = 5 [(1 +2y) —i(1 — 2y)] ® d(p2q1 + q1p2) + d(p2q1 + q1p2) ® 1.

2
Similarly, the map ¢ keeps relation (5.20)), since

2(prqr + @ip1) = (Piqn + up1)z, 2(P2q2 — q2p2) = —(P2g2 — q2p2) %,
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xr +
Alp(prgr + @1p1)] = IV d(pra1 + aip1) + d(p1gr + up1) ® 1

2
+ i 2_ y) ® ¢(p2g2 — q2p2),
r+y
Alp(p2q2 — q2p2)] = — ® G(p2g2 — q2p2) + P(P2q2 — q2p2) ® 1
i(z —y)

5 ® ¢(p1g1 + q1p1)-

That is to say Z(I7) C ker ¢, so there exists a surjective map from A7 (I7) to H. By
Theorem gr H ~ B(Qy)#Hs. Now we only need to prove that dim %7(I7) =
dim H. In fact, Az(I7) ~ BWH1) @ B(W~L~1) ® Hg as vector spaces by the
Diamond Lemma. By the Diamond Lemma, it suffices to show that all overlap
ambiguities are resolvable. Calculating the ambiguities and showing that these are
resoluble is a tedious but straightforward computation.

(2) Let A =UAz(I7), and ® € AutpoprA; then ®|p, is given by Table[l] Denote
Ay =KleKeaKydKry, A = Kz@Kez®Kyz®Kreyz, and A = p1 Hs Sp2Hg B
q1Hs ® g2 Hg. Then the first two terms of coradical filtration of A are Ayg = Hg and
Al = All @ Hg.

AD(p1) = @ ((foo —if11)2z) @ ®(p1) + @ ((fi0 +1f01)2) @ D(p2) + P(p1) ® 1,
€ A @ [®(p1) + P(p2)] + 2(p1) ® 1;
A®(py) = @ ((foo +if11)2) ® ®(p2) + @ ((f10 —ifo1)2) ® ®(p1) + P(p2) ® 1,
€ Af @ [®(p1) + ®(p2)] + P(p2) ® 1.
Denote ®(p1) = ag+ai+ag, P(p2) = bo+b1+be, where ag, by € A, a1, by € Ajj, and
as, bs € A}. Then A(ag) = ag ® 1, which implies ag € K1, and similarly by € K1.
Hence A(al) =0 ((f()o — if11)2)®(a0+a1)+<1> ((f10 —+ 1f01)2’)®(b0+b1)+¢(a1)®1,
which implies
a1 = —ao® ((foo — if11)2) — bo® ((f10 +1fo1)2) -
And similarly, by = —bo® ((foo +1if11)2) — ao® ((fr0 — ifo1)2).
@(xpl) = (I)(pll‘) = <I>(x)a1 = alé(x) = byd ((f10 4+ if()l)Z) =0= by = 0,
(I)(Zpl) = 7@(])12) = <I>(z)a1 = 70,1‘1)(2) = aofl) (foo =+ ifll) =0= ag = 0.
So a3 = by =0, hence ®(p1) = az € A} and P(py) = by € Af.

Now suppose @ : U7(A1,...,A5) — Az(A], ..., AL) is an isomorphism. When
®| g, = id, then by and ®(p1) = ap} + cgb for some a, ¢ € K and
O (p2) = bph +dg; for some b, d € K, where pi, etc. are generators of Wz (A}, ..., AL).
(zp1) = w(ap) + cqz) = (apy — cgz)z = S(p1z) = (ap) + cgy)w, so ¢ = 0 and
similarly d = 0. Similarly, we have ®(¢1) = aq}, ®(¢2) = 8¢5 for some nonzero
parameters o and . In this case, ® is an isomorphism of Hopf algebras if and only
if the relations hold.

When ®|, = 72, suppose ®(p1) = a1p] + aoph + asq) + aagh; then as = a4 =0
since ®(zp1) = ®(p1z). By and (5.16), we can obtain as = 0 and ®(py) =
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—ayph. Similarly, ®(¢1) = S1¢}, ®(g2) = —51¢5 for some parameter 3. P respects
relations of A;y.
According to the defining relations of Z(I7), we have
AN =X, afdy =X, BEIN; =3, BN =i, a1 = s
This is just a special case of .

When @[y, = 73, then ®(p1) € Kqi, ®(p2) € Kgs, ®(q1) € Kpj, (g2) € Kph.
According to and , O(p1) = a1q), P(p2) = —ia1gh, (1) = Bipl,
®(qy) = iB1ph for nonzero parameters o and B1. ® respects relations of A;. In
this case, ® is an isomorphism of Hopf algebras if and only if the relations (5.22))
hold.

When ®[g, = 74, then ®(p1) = aiq}, ®(p2) = iugs, ®(q1) = Bip), P(g2) =
—ifph for nonzero parameters oy and B;. ® respects relations of A;. According
to the defining relations of Z(I7), we obtain relations of parameters which exactly

coincide with ([5.22]). i

Definition 5.18. For a set of parameters Iy = {A1, A2, (Aj £)nyxn, ), denote by
Ay (n1,ne2;1y) the algebra T[Qy(n1, ne)|#Hs/Z(14), where Z(I4) is the ideal gener-
ated by the relations

pi=M(1—2y), p3=i\(1—ay), pipapip2 + pepipep1 = A2(1l —zy), (5.23)
X7 =0, X;,Xj,+X;,X;, =0, ji,ja€{l,...,m}, (5.24)

V2 =0, YV, +Ye,Yi =0, ki ks €{l,...,no}, (5.25)

XY + Y X, = A\ u(1 — 2y), (5.26)

p1Yr —Yep1 =0, poYp +Yip2 =0, p1X; — Xjp1 =0, p2X; + Xjpa :(50-27)

Remark 5.19. In fact, Z(I4) is a Hopf ideal, so Wy(n1,n9;14) is a Hopf alge-
bra. In particular, when all the parameters in Iy are zero, then €y(ny,ng;Iy) ~
B[Q4(n1,n2)]# Hs.

Proposition 5.20. (1) Suppose H is a finite-dimensional Hopf algebra with
coradical Hg such that its infinitesimal braiding is isomorphic to Qq(ny, na).
Then H ~ 914(77/1, no; 14)
(2) Wy(na,ne;Ly) ~ Wy(na, no; I)) iff there exist two invertible matrices (s )ny xny s
(Bkt)nyxn, and two nonzero parameters a, b, such that

ny N2

QBN =XNjgs JE{L ... .m}, ke {l,... ,na}k;
2 2 oo = 1 : (5.28)

a®X, = A1, BN = A1, a2\, = Ao

Proof. (1) Let H be a lifting of B (Q4(n1,n2)) #Hg. Then there exists an epimor-
phism of Hopf algebras ¢ : T'(Q24(n1,n2)) #Hs — H. Denote

p1 = (w%’fl + iwé’fl) #1, p2= (w}ﬁl — iw%fl) #1,
X;=@wrz)#l, Y,=@wry#l, velVi(),je{l,....m}, ke{l,....,n2}.
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Then the relations of generators in T'[Q4(n1, ng)]# Hg are given by

Ip1 = P1e, yp1 = p1Yy, Ip2 = —P2x, Yyp2 = —p2y,
- X5y, 2Xj =iXjxz,

zZp1 = —p1%, 2 X; = —X;x, yX;
zpo = ipoxz, zY, = —Yia, yYr = =Yy, 2Y = iYyxz,
and the coproducts of generators are given by
AX)=X;01+20X,, AYR)=Yi®1l+y®Y,
A(p1) = (foo —if11)z @ p1 + (fro +ifor)z @ p2 + 1 ® 1,
A(p2) = (foo +1if11)z @ p2 + (fio —ifo1)z2 @ p1 +p2 @ 1.

As similarly proved in Proposition [5.6] and Lemma the map ¢ keeps rela-

tions (5.23))—(5.26). Since r = 0 in gr H for r = ¢(p1Yr — Yip1) and ¢(p2Yy + Yipa),
r is an element of at most degree one. It is only possible for

¢(p1Ye — Yip1) = —pk (= fro +ifor) 2, ¢(p2Ye + Yip2) = —px (foo — if11) z + pxl,
because of the following relations:
r(p1Yr —Yip1) = —(01Ye — Yap1) w, 2 (p1Ye — Yip1) = —1(p1Ye — Yap1) 22,
z (p2Yk + Yip2) = (p2Yi + Yip2) x, 2 (p2Yk + Yip2) = (p2Yi + Yip2) 2,
Ap1Ye = Yip1) = (p1Ye — Yip1) @ L+ (foo +1f11)2 @ (m1Yk — Yip1)
+ (= fio +ifo1)z ® (p2Yr + Yip2),
A(p2Yy + Yip2) = (p2Yr + Yip2) @ 1+ (foo — if11)2 @ (p2Yk + Yip2)
— (f1o +1fo1)2 @ (p1 Yk — Yip1)-
Similarly, we get
o1 X — Xjp1) = —p; (fro —ifor) 2, d(paXj + Xjp2) = =4 (foo — ifir) 2 + 11,
from the following formulae:
z(pX; — Xjp1) = — (mX; — Xjp1)z,  z(p1X; — Xjp) = —i(pX; — Xjp1) 2z,
T (p2Xj + Xjp2) = (p2X; + Xjpa)z, 2 (p2Xj + X;jp2) = (p2X; + X;p2) 2,
A (p1X; — Xjp1) = (foo +1f11)2 ® (mX; — Xjp1) + (01X — Xjp1) ®@ 1
+ (fio —ifo1)z ® (p2X; + X;p2),
A (p2Xj + X;jp2) = (foo — 1f11)2 ® (p2Xj + Xjp2) + (p2X; + Xjp2) ® 1
+ (fio +ifo1)z @ (1 X; — Xjp1) -

Since (;S(ijk—FYka) = /\j7k(1—$y), ¢[p1(Xij +Yka)] = ¢[(X]Yk +Yka)p1] =
Wy = . = 0. So ¢ keeps relations . Now we have Z(I7) C ker¢, so
there exists a surjective map from y(n1,n9;14) to H. By Theorem gr H ~
B[Qy(n1,n92)|# Hs. Now we only need to prove that dimWy(ny,ne;ly) = dim H.
In fact, Ay (n1,n9; Iy) ~ BWHH @B(M (i, )™ @ B(M (i, y))®"2 @ Hg as vector
spaces by the Diamond Lemma. By the Diamond Lemma, it suffices to show that
all overlap ambiguities are resolvable. Calculating the ambiguities and showing
that these are resoluble is a tedious but straightforward computation.
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(2) Suppose @ : y(n1,n9;Iy) — Wy(ny,n9; 1) is an isomorphism of Hopf alge-
bras. Similarly to the proof of Proposition |[5.17] it is easy to see that ®|g, € {id, 72}
and ®(p1) = ap}, ®(p2) = bp,. Since X; is (z, 1)-skew primitive and 2X; = — Xz,

ni
®(X,) € @™ ,KX/. Similarly, we have ®(Y;) € &2, KY/. Let ®(X;) = > aj X,
s=1

no
O(Yy) = . BrY/, where the matrices (ajs)n, xn, and (Bit)n,xn, are invertible.
t=1

Then ® is an isomorphism of Hopf algebras if and only if the relations (|5.28))
hold. ]

Proof of Theorem Let H be a finite-dimensional Hopf algebra over Hg such
that its infinitesimal braiding M € ggyp; then M is in the list of Theorem
We need to give a construction for any finite-dimensional Hopf algebra H over Hg
up to isomorphism such that its infinitesimal braiding is isomorphic to M. By
Theorem m gr H ~ B(M)#Hjg. According to Corollary up to isomorphism,
gr H ~ B(M)#Hs for M = Qq(n1,na,n3,n4), Qa(ni,na), Qu(ni,na), s, Q7.
Propositions [6.10 [5.20], [5.13] and [5.17] finish the proof.
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