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ETA-RICCI SOLITONS ON LP-SASAKIAN MANIFOLDS

PRADIP MAJHI AND DEBABRATA KAR

Abstract. We consider η-Ricci solitons on Lorentzian para-Sasakian mani-
folds with Codazzi type of the Ricci tensor. Then we study η-Ricci solitons
on ϕ-conformally semi-symmetric, ϕ-Ricci symmetric, and conformally Ricci
semi-symmetric Lorentzian para-Sasakian manifolds. Finally, we construct
an example of a three dimensional Lorentzian para-Sasakian manifold which
admits η-Ricci solitons with non-constant scalar curvature.

1. Introduction

In 1982, R. S. Hamilton [18] introduced the notion of Ricci flow to find a canon-
ical metric on a smooth manifold. The Ricci flow is an evolution equation for
metrics on a Riemannian manifold M defined as follows:

∂

∂t
g = −2S, (1.1)

where S denotes the Ricci tensor. Ricci solitons are special solutions of the Ricci
flow equation (1.1) of the form g = σ(t)ψ∗

t g with the initial condition g(0) = g,
where ψt are diffeomorphisms of M and σ(t) is the scaling function. A Ricci soliton
is a generalization of an Einstein metric. We recall the notion of Ricci solitons
according to [6]. On the manifold M , a Ricci soliton is a triple (g, V, λ) with g a
Riemannian metric, V a vector field (called the potential vector field), and λ a real
scalar such that

Lξg + 2S + 2λg = 0, (1.2)
where L is the Lie derivative. Metrics satisfying (1.2) are interesting and useful in
physics and are often referred to as quasi-Einstein metrics ([8, 9]). Compact Ricci
solitons are the fixed points of the Ricci flow ∂

∂tg = −2S, projected from the space
of metrics onto its quotient modulo diffeomorphisms and scalings, and often arise
blow-up limits for the Ricci flow on compact manifolds. Theoretical physicists have
also been looking into the equation of Ricci solitons in relation with string theory.
The initial contribution in this direction is due to Friedan [16], who discusses some
of its aspects.
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Ricci solitons have been studied by many authors, such as [14, 15, 18, 19] and
several others.

As a generalization of Ricci solitons, the notion of η-Ricci solitons was intro-
duced by Cho and Kimura [11]. This notion has also been studied in [6], for Hopf
hypersurfaces in complex space forms. An η-Ricci soliton is a tuple (g, V, λ, µ),
where V is a vector field on M , λ and µ are real constants, and g is a Riemannian
(or pseudo-Riemannian) metric satisfying the equation

Lξg + 2S + 2λg + 2µη ⊗ η = 0.
In this connection we mention the works of Blaga [3, 2] and Prakasha et al. [25]
on η-Ricci solitons. In particular, if µ = 0, then the notion of η-Ricci solitons
(g, V, λ, µ) reduces to the notion of Ricci solitons (g, V, λ). If µ 6= 0, then the η-
Ricci solitons are called proper η-Ricci solitons. We refer to [1, 5, 23] and references
therein for a survey and further references on the geometry of Ricci solitons on
pseudo-Riemannian manifolds.

Gray [17] introduced the notion of Codazzi type of the Ricci tensor. A pseudo-
Riemannian manifold is said to satisfy Codazzi type of the Ricci tensor if its Ricci
tensor S of type (0, 2) is non-zero and satisfies the condition

(∇XS)(Y,Z) = (∇Y S)(X,Z),
which implies that divR = 0, where div denotes divergence and R is the Riemann-
ian curvature tensor of type (1, 3).

A Riemannian or pseudo-Riemannian manifold (M, g) is called locally symmetric
[7] if ∇R = 0, where R is the manifold’s Riemannian curvature tensor. A Riemann-
ian or pseudo-Riemannian manifold (M, g), n ≥ 3, is said to be semi-symmetric if
the curvature condition

R ·R = 0
holds, where R denotes the curvature tensor of the manifold. It is well known
that the class of semi-symmetric manifolds includes the set of locally symmetric
manifolds (∇R = 0) as a proper subset. Semi-symmetric Riemannian manifolds
were firstly studied by E. Cartan, A. Lichnerowich, R. S. Couty, and N. S. Sinjukov.
A fundamental study on Riemannian semi-symmetric manifolds was introduced by
Z. I. Szabó [26]. Later E. Boeckx et al. [4] and O. Kowalski [20] and many others
have studied semi-symmetric manifolds.

In [29] Yildiz et al. studied ϕ-conformally semi-symmetric (k, µ)-contact man-
ifolds. A contact metric manifold is said to be ϕ-conformally semi-symmetric if
C ·ϕ = 0, where C is the conformal curvature tensor. Moreover, conformally Ricci
semi-symmetric manifolds, that is, C ·S = 0, have been studied by Verstraelen [28].
Motivated by the above studies, in the present paper we consider η-Ricci solitons
on Lorentzian para-Sasakian manifolds with the curvature conditions C ·ϕ = 0 and
C · S = 0.

The study of curvature properties is one of the main problems in differential
geometry. As S. S. Chern said in [10], “a fundamental notion is curvature in its
different forms”. Therefore, the determination of the Riemann curvature tensor con-
stitutes a very important topic. In this sense, in the present paper we characterize
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η-Ricci solitons on LP-Sasakian manifolds satisfying certain curvature conditions.
The paper is organized as follows:

After preliminaries in Section 3, we study η-Ricci solitons on Lorentzian para-
Sasakian manifolds (in short, LP-Sasakian manifolds). Section 4 is devoted to
study η-Ricci solitons on LP-Sasakian manifolds satisfying Codazzi type of the
Ricci tensor. In the next section, we study η-Ricci solitons on ϕ-conformally semi-
symmetric LP-Sasakian manifolds. In Section 6, we consider η-Ricci solitons on
ϕ-Ricci symmetric LP-Sasakian manifolds. Section 7 deals with the study of η-Ricci
solitons on conformally Ricci semi-symmetric LP-Sasakian manifolds. Finally, we
construct an example of a three dimensional LP-Sasakian manifold which admits
η-Ricci solitons with non-constant scalar curvature.

2. LP-Sasakian manifolds

In 1989, Matsumoto [21] introduced the notion of Lorentzian para-Sasakian
manifolds or, in short, LP-Sasakian manifolds. An example of a five dimensional
LP-Sasakian manifold was given by Matsumoto, Mihai and Rosaca [22].

Let M be an n-dimensional differential manifold endowed with a (1, 1) tensor
field ϕ, a vector field ξ, a 1-form η, and a Lorentzian metric g of type (0, 2) such
that for each point p ∈ M , the tensor gp : TpM × TpM → R is a non-degenerate
inner product of signature (−,+,+, . . . ,+), where TpM denotes the tangent space
of M at p and R is the real number space which satisfies

ϕ2(X) = X + η(X)ξ, η(ξ) = −1, (2.1)
g(X, ξ) = η(X), g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ), (2.2)

for all vector fields X,Y . Then, such a structure (ϕ, ξ, η, g) is termed as Lorentzian
almost paracontact structure and the manifold with the structure (ϕ, ξ, η, g) is
called a Lorentzian almost paracontact manifold. In the Lorentzian almost para-
contact manifold M , the following relations hold [21]:

ϕξ = 0, η(ϕX) = 0,
Φ(X,Y ) = Φ(Y,X),

where Φ(X,Y ) = g(X,ϕY ).
A Lorentzian almost paracontact manifold M equipped with the structure (ϕ, ξ,

η, g) is called an LP-Sasakian manifold if
(∇Xϕ)Y = g(ϕX,ϕY )ξ + η(Y )ϕ2X, (2.3)

where ∇ denotes the operator of covariant differentiation with respect to the
Lorentzian metric g. In an LP-Sasakian manifold M with the structure (ϕ, ξ, η, g),
it is easily seen that

∇Xξ = ϕX,

(∇Xη)(Y ) = g(ϕX, Y ) = (∇Y η)(X) (2.4)
R(ξ,X)Y = g(X,Y )ξ − η(Y )X,
R(X,Y )ξ = η(Y )X − η(X)Y, (2.5)

S(X, ξ) = (n− 1)η(X), (2.6)
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for all vector fields X,Y on M . LP-Sasakian manifolds have been studied by several
authors such as [12, 24, 27] and many others.

Notice that the Ricci tensor S and the scalar curvature r are defined by

S(X,Y ) =
n∑
i=1

εig(R(ei, X)Y, ei)

and

r =
n∑
i=1

εiS(ei, ei),

where {ei} is an orthonormal basis such that e1 = ξ and we put εi = g(ei, ei), that
is, ε1 = −1, ε2 = 1, . . . , εn = 1.

The conformal curvature tensor C is defined by

C(X,Y )Z = R(X,Y )Z − 1
n− 2 [S(Y, Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ]

+ r

(n− 1)(n− 2) [g(Y,Z)X − g(X,Z)Y ],

(2.7)

where S is the Ricci tensor, Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ),
and r is the scalar curvature of the manifold M .

Definition 2.1. A pseudo-Riemannian manifold M of dimension n is said to be
an η-Einstein manifold if the Ricci tensor S of M satisfies the relation

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),
where a, b are smooth functions.

Definition 2.2. If (M,V, λ, µ) is an η-Ricci soliton, then the 1-form ξ is said to
be a potential vector field.

For η-Ricci solitons on LP-Sasakian manifolds, we observe the following.

Proposition 2.3. For an η-Ricci soliton on an LP-Sasakian manifold, the Ricci
tensor S is of the form

S(X,Y ) = −g(ϕX, Y )− λg(X,Y )− µη(X)η(Y ) (2.8)
and

− λ+ µ = n− 1. (2.9)

Remark 2.4. The above form of the Ricci tensor is also deduced by Blaga in [3,
p. 492].

Example 2.5. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3},
where (x, y, z) are the standard coordinates of R3.

The vector fields

E1 = ez
∂

∂y
, E2 = ez( ∂

∂x
+ ∂

∂y
), E3 = ∂

∂z

are linearly independent at each point of M .
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Let g be the Lorentzian metric defined by
g(E1, E1) = g(E2, E2) = 1, g(E3, E3) = −1,

g(E1, E2) = g(E1, E3) = g(E2, E3) = 0.
Let η be the 1-form defined by η(Z) = g(Z,E3) for any vector field Z ∈ χ(M). Let
φ be the (1, 1) tensor field defined by

φ(E1) = −E1, φ(E2) = −E2, φ(E3) = 0.
Then using the linearity of φ and g we have

η(E3) = −1,

φ2Z = Z + η(Z)E3,

g(φZ, φW ) = g(Z,W ) + η(Z)η(W ),
for any vector fields Z,W ∈ χ(M).

Then for E3 = ξ, the structure (φ, ξ, η, g) defines a Lorentzian paracontact
structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g
and R be the curvature tensor of g. Then we have

[E1, E2] = 0, [E1, E3] = −E1, [E2, E3] = −E2.

Taking E3 = ξ and using Koszul’s formula for the Lorentzian metric g, we can
easily calculate

∇E1E1 = −E3, ∇E1E2 = 0, ∇E1E3 = −E1,

∇E2E1 = 0, ∇E2E2 = −E3, ∇E2E3 = −E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

From the above it can be easily seen that M3(φ, ξ, η, g) is an LP-Sasakian man-
ifold. With the help of the above results we can easily obtain

R(E1, E2)E3 = 0, R(E2, E3)E3 = −E2, R(E1, E3)E3 = −E1,

R(E1, E2)E2 = E1, R(E2, E3)E2 = −E3, R(E1, E3)E2 = 0,
R(E1, E2)E1 = −E2, R(E2, E3)E1 = 0, R(E1, E3)E1 = −E3.

From the above expressions the Ricci tensor is given by
S(E1, E1) = g(R(E1, E2)E2, E1)− g(R(E1, E3)E3, E1)

= 2.
Similarly we have

S(E2, E2) = 2, S(E3, E3) = −2
and

S(Ei, Ej) = 0 (i 6= j). (2.10)
From (2.8) we obtain S(E1, E1) = 1−λ and S(E3, E3) = λ−µ, therefore λ = −1

and µ = 1. The data (g, ξ, λ, µ) defines an η-Ricci soliton on the LP-Sasakian
manifold.
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In view of the expressions of the Ricci tensor it is clear that the manifold is
φ-Ricci symmetric and r = S(E1, E1) + S(E2, E2)− S(E3, E3) = 6.

In view of (2.10) we have
QE1 = 2E1, QE2 = 2E2, QE3 = 2E3.

From the above results it can be easily seen that ϕ2(∇XQ)Y = 0 and ψ =
traceϕ = −2. Using the values n = 3 and ψ = −2, from Theorem 5.1, we get λ =
−1 and µ = 1, which are the same as we get in this example. Hence Theorem 5.1
is verified.

3. η-Ricci solitons on LP-Sasakian manifolds with constant scalar
curvature satisfying Codazzi type of the Ricci tensor

Taking covariant differentiation of (2.8) with respect to Z we get
(∇ZS)(X,Y ) = −g((∇Zϕ)X,Y )− µ[(∇Zη)(X)η(Y )

+ η(X)(∇Zη)(Y )].
(3.1)

Using (2.3) and (2.4) in (3.1) we get
(∇ZS)(X,Y ) = −g(g(ϕZ,ϕX)ξ + η(X)ϕ2Z, Y )

− µ[g(ϕZ,X)η(Y ) + g(ϕZ, Y )η(X)]
= −g(ϕZ,ϕX)η(Y )− g(ϕ2Z, Y )η(X)
− µ[g(ϕZ,X)η(Y ) + g(ϕZ, Y )η(X)].

(3.2)

Using the second term of (2.2) and the first term of (2.1) in (3.2) we have
(∇ZS)(X,Y ) = −g(X,Z)η(Y )− g(Y, Z)η(X)− 2η(X)η(Y )η(Z)

− µ[g(ϕZ,X)η(Y ) + g(ϕZ, Y )η(X)].
(3.3)

In view of (3.3) it follows that
(∇ZS)(X,Y )− (∇XS)(Y,Z)

= −g(X,Z)η(Y )− g(Y,Z)η(X)− 2η(X)η(Y )η(Z)
− µ[g(ϕZ,X)η(Y ) + g(ϕZ, Y )η(X)]
+ g(Z,X)η(Y ) + g(X,Y )η(Z) + 2η(X)η(Y )η(Z)
+ µ[g(ϕX,Z)η(Y ) + g(ϕX, Y )η(Z)]

= −g(Y, Z)η(X)− µg(ϕZ, Y )η(X)
+ g(X,Y )η(Z) + µg(ϕX, Y )η(Z).

(3.4)

Since, by hypothesis, the Ricci tensor is of Codazzi type, from (3.4) we get
− g(Y,Z)η(X)− µg(ϕZ, Y )η(X) + g(X,Y )η(Z) + µg(ϕX, Y )η(Z) = 0. (3.5)

Replacing X by ϕX in (3.5) yields
g(ϕX, Y )η(Z) + µg(ϕ2X,Y )η(Z) = 0. (3.6)

Using the first term of (2.1) in (3.6) we have
g(ϕX, Y )η(Z) + µ[g(X,Y ) + η(X)η(Y )]η(Z) = 0. (3.7)
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Putting Z = ξ in (3.7) we obtain

g(ϕX, Y ) + µ[g(X,Y ) + η(X)η(Y )] = 0.

Taking a frame field and contracting X and Y yields

µ = − ψ

n− 1 , (3.8)

where ψ = traceϕ.
Using Proposition 2.3 and (3.8) we get

λ = − ψ

n− 1 − n+ 1.

From (3.8) it follows that µ 6= 0.
Thus we can state the following:

Theorem 3.1. An LP-Sasakian manifold with constant scalar curvature whose
Ricci tensor is of Codazzi type admits a proper η-Ricci soliton with λ = − ψ

n−1 −
n+ 1, µ = − ψ

n−1 .

From the above theorem we get:

Corollary 3.2. An LP-Sasakian manifold with constant scalar curvature whose
Ricci tensor is of Codazzi type does not admit Ricci solitons with potential vector
field ξ.

4. η-Ricci solitons on ϕ-conformally semi-symmetric LP-Sasakian
manifolds with constant scalar curvature

This section is devoted to the study of ϕ-conformally semi-symmetric η-Ricci
solitons on LP-Sasakian manifolds. Then

C · ϕ = 0, (4.1)

from which it follows that

C(X,Y )ϕZ − ϕ(C(X,Y )Z) = 0. (4.2)

Putting Z = ξ in (4.2), we get

ϕ(C(X,Y )ξ) = 0. (4.3)

Putting Z = ξ in (2.7) and using (2.5), (2.6) and (2.8) we get

C(X,Y )ξ =
[

r

(n− 1)(n− 2) −
1

n− 2

]
{η(Y )X − η(X)Y }

− 1
n− 2 [η(Y ){−ϕX − λX} − η(X){−ϕY − λY }] .

(4.4)
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In view of (4.3) and (4.4) we have

ϕ(C(X,Y )ξ) =
[

r

(n− 1)(n− 2) −
1

n− 2

]
{η(Y )ϕX − η(X)ϕY }

− 1
n− 2

[
η(Y ){−ϕ2X − λϕX} − η(X){−ϕ2Y − λϕY }

]
= 0.

(4.5)

Replacing X by ϕX in (4.5) we get[
r

(n− 1)(n− 2) −
1

n− 2

]
η(Y )ϕ2X − 1

n− 2
[
η(Y ){−ϕ3X − λϕ2X}

]
= 0, (4.6)

which implies that[
r

(n− 1)(n− 2) −
1

n− 2

]
{X+η(X)ξ}− 1

n− 2 [−ϕX − λX − λη(X)ξ] = 0. (4.7)

Again replacing X by ϕX in (4.7) we have[
r

(n− 1)(n− 2) −
1

n− 2

]
ϕX − 1

n− 2
[
−ϕ2X − λϕX

]
= 0. (4.8)

From (4.8) it follows that[
r

(n− 1)(n− 2) −
1

n− 2 + λ

n− 2

]
ϕX + 1

n− 2 [X + η(X)ξ] = 0. (4.9)

Taking inner product of (4.9) with respect to W yields[
r

(n− 1)(n− 2) −
1

n− 2 + λ

n− 2

]
g(ϕX,W ) + 1

n− 2 [g(X,W ) + η(X)η(W )] = 0.

(4.10)
Taking a frame field and contracting X and W in (4.10) yields[

r

(n− 1)(n− 2) −
1

n− 2 + λ

n− 2

]
ψ + n− 1

n− 2 = 0, (4.11)

where ψ = traceϕ.
From (4.11) we infer

λ = −n− 1
ψ
− r

n− 1 + 1. (4.12)

Using Proposition 2.3 and (4.12) we get

µ = −n− 1
ψ
− r

n− 1 + n.

In view of the above results we can state the following:

Theorem 4.1. A ϕ-conformally semi-symmetric LP-Sasakian manifold with con-
stant scalar curvature admits η-Ricci solitons with λ = −n−1

ψ − r
n−1 + 1 and

µ = −n−1
ψ −

r
n−1 + n.

As a corollary of this theorem we have:
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Corollary 4.2. On an LP-Sasakian manifold satisfying C ·ϕ = 0, there is no Ricci
soliton with the potential vector field ξ.

5. η-Ricci solitons on ϕ-Ricci symmetric LP-Sasakian manifolds with
constant scalar curvature

An LP-Sasakian manifold is said to be ϕ-Ricci symmetric if
ϕ2(∇XQ)Y = 0 (5.1)

holds for all smooth vector fields X, Y . It should be mentioned that ϕ-Ricci
symmetric Sasakian manifolds have been studied in [13].

With the help of (2.8) we have
QY = −ϕY − λY − µη(Y )ξ. (5.2)

Taking covariant derivative of (5.2) with respect to an arbitrary vector field X and
using (2.3), we get

(∇XQ)Y = ∇XQY −Q(∇XY )
= ∇X [−ϕY − λY − µη(Y )ξ] + ϕ(∇XY ) + λ(∇XY ) + µη(∇XY )ξ
= −ϕ(∇XY )− (∇Xϕ)Y − λ(∇XY )− µ[∇Xη(Y )ξ + η(Y )∇Xξ]

+ ϕ(∇XY ) + λ(∇XY ) + µη(∇XY )ξ
= −(∇Xϕ)Y − µ[∇Xη(Y )− η(∇XY )]ξ − µη(Y )∇Xξ
= −g(ϕX,ϕY )ξ − η(Y )ϕ2X − µ(∇Xη)(Y )ξ − µη(Y )ϕX
= −g(X,Y )ξ − 2η(X)η(Y )ξ − η(Y )X − µg(ϕX, Y )ξ − µη(Y )ϕX.

(5.3)

Operating ϕ2 on both sides of (5.3), we get
ϕ2(∇XQ)Y = −η(Y )ϕ2X − µη(Y )ϕ3X. (5.4)

Using the first term of (2.1) in (5.4) we obtain
ϕ2(∇XQ)Y = −η(Y )X − η(X)η(Y )ξ − µη(Y )ϕX. (5.5)

In view of (5.1), from (5.5) it follows that
X + η(X)ξ + µϕX = 0. (5.6)

Replacing X by ϕX in (5.6) we obtain
ϕX + µ[X + η(X)ξ] = 0. (5.7)

Taking inner product of (5.7) with respect to W we have
g(ϕX,W ) + µ[g(X,W ) + η(X)η(W )] = 0. (5.8)

Taking a frame field and contracting X and W in (5.8) yields

µ = − ψ

n− 1 , (5.9)

where ψ = traceϕ.
From (5.9) it follows that µ 6= 0.
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Using Proposition 2.3 and (5.9) we get

λ = − ψ

n− 1 − n+ 1.

Thus we are in a position to state the following:

Theorem 5.1. A ϕ-Ricci symmetric LP-Sasakian manifold with constant scalar
curvature admits a proper η-Ricci soliton with λ = − ψ

n−1 − n+ 1, µ = − ψ
n−1 .

From the above theorem we have the following:

Corollary 5.2. On a ϕ-Ricci symmetric LP-Sasakian manifold with constant
scalar curvature, there is no Ricci solitons with potential vector field ξ.

6. η-Ricci solitons on conformally Ricci semi-symmetric LP-Sasakian
manifolds

In this section we study η-Ricci solitons on conformally Ricci semi-symmetric
LP-Sasakian manifolds, that is,

C · S = 0, (6.1)
which implies

(C(X,Y ) · S)(Z,W ) = 0. (6.2)
From (6.2), we get

S(C(X,Y )Z,W ) + S(Z,C(X,Y )W ) = 0. (6.3)
Using (2.8) and by the symmetric property of ϕ, from (6.3) we get

− g(C(X,Y )Z,ϕW )− λg(C(X.Y )Z,W )
− µη(C(X,Y )Z)η(W )− g(ϕZ,C(X,Y )W )
− λg(C(X,Y )W,Z)− µη(C(X,Y )W )η(Z) = 0,

which implies that

g(C(X,Y )Z,ϕW ) + µη(C(X,Y )Z)η(W )
+ g(ϕZ,C(X,Y )W ) + µη(C(X,Y )W )η(Z) = 0. (6.4)

Putting X = W = ξ in (6.4) we obtain
g(ϕZ,C(ξ, Y )ξ)− µη(C(ξ, Y )Z) + µη(C(ξ, Y )ξ)η(Z) = 0. (6.5)

With the help of (4.4) we find
η(C(ξ, Y )Z) = g(C(ξ, Y )Z, ξ)

= −g(C(ξ, Y )ξ, Z)

= −
[

r

(n− 1)(n− 2) −
1

n− 2 + λ

n− 2

]
× {η(Y )η(Z) + g(Y,Z)} − 1

n− 2g(ϕY,Z).

(6.6)
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Also from (6.6) we get

η(C(ξ, Y )ξ) = 0. (6.7)

Using (6.6) and (6.7) in (6.5), it follows that{
r

(n− 1)(n− 2) −
1

n− 2 + λ

n− 2

}
g(ϕZ, η(Y )ξ + Y )

+ 1
n− 2g(ϕZ,ϕY )

+ µ

{
r

(n− 1)(n− 2) −
1

n− 2 + λ

n− 2

}
{η(Y )η(Z) + g(Y,Z)}

+ µ

n− 2g(ϕY,Z) = 0,

from which it follows that{
r

(n− 1)(n− 2) −
1

n− 2 + λ

n− 2 + µ

n− 2

}
g(ϕY,Z)

+
{

µr

(n− 1)(n− 2) −
µ

n− 2 + µλ

n− 2 + 1
n− 2

}
× {g(Y,Z) + η(Y )η(Z)} = 0. (6.8)

Using (2.8) in (6.8) yields[
r

(n− 1)(n− 2) −
1

n− 2 + λ

n− 2 + µ

n− 2

]
{−S(Y,Z)−λg(Y, Z)−µη(Y )η(Z)}

+
[

µr

(n− 1)(n− 2) −
µ

n− 2 + µλ

n− 2
1

n− 2

]
× {g(Y,Z) + η(Y )η(Z)} = 0. (6.9)

From (6.9) we obtain[
r

n− 1 + (λ+ µ− 1)
]
S(Y,Z) = (r + λ− nλ− λµ+ n)g(Y, Z)

+ (1− µ2)η(Y )η(Z),

from which it follows that

S(Y,Z) = ag(Y,Z) + bη(Y )η(Z),

where

a = (n− 1)(r + λ− nλ− λµ+ n)
r + (n− 1)(λ+ µ− 1) and b = (n− 1)(1− µ2)

r + (n− 1)(λ+ µ− 1) .

Theorem 6.1. If a conformally Ricci semi-symmetric LP-Sasakian manifold ad-
mits an η-Ricci soliton, then the manifold is an η-Einstein manifold, provided
r 6= −(n− 1)(λ+ µ− 1).
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7. Example

We consider a 3-dimensional Lorentzian manifold M = {(x, y, z) ∈ R3}, where
(x, y, z) are the standard coordinates of R3. Let {e1, e2, e3} be a linearly indepen-
dent global frame on M given by

e1 = ez
∂

∂x
, e2 = ez−ax ∂

∂y
, e3 = ∂

∂z
,

where a is a non-zero constant.
Let g be the Lorentzian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1.
Let η be the 1-form defined by

η(X) = g(X, e3)

for X ∈ χ(M). Let ϕ be the (1, 1) tensor field defined by

ϕe1 = −e1, ϕe2 = −e2, ϕe3 = 0.

Then using the linearity of ϕ and g we have

η(e3) = −1, ϕ2X = X + η(X)e3,

and
g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ),

for any X,Y ∈ χ(M). Thus for e3 = ξ, the structure (ϕ, ξ, η, g) defines a Lorentzian
paracontact structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g
and let R be the curvature tensor of g. Then we have

[e1, e2] = −aeze2, [e1, e3] = −e1, [e2, e3] = −e2.

Taking e3 = ξ and using Koszul’s formula for the Lorentzian metric g, we have

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = −e1,

∇e2e1 = aeze2, ∇e2e2 = −aeze1 − e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.
From the above expressions, we see that the manifold under consideration satisfies
η(ξ) = −1 and (∇Xϕ)Y = g(ϕX,ϕY )ξ + η(Y )ϕ2X. Now we verify the above
condition for X = ei and Y = ej , for i, j = 1, 2, 3.

(∇e1ϕ)e1 = ∇e1ϕe1 − ϕ(∇e1e1)
= −∇e1e1 + ϕe3

= e3.

g(ϕe1, ϕe1)ξ + η(e1)ϕ2e1 = g(e1, e1)e3 + 0.ϕ2e1

= e3.
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Therefore (∇e1ϕ)e1 = g(ϕe1, ϕe1)ξ + η(e1)ϕ2e1.
(∇e1ϕ)e3 = ∇e1ϕe3 − ϕ(∇e1e3)

= 0 + ϕe1

= −e1.

g(ϕe1, ϕe3)ξ + η(e3)ϕ2e1 = 0.e3 − ϕ2e1

= ϕe1

= −e1.

Therefore (∇e1ϕ)e3 = g(ϕe1, ϕe3)ξ + η(e3)ϕ2e1.
(∇e2ϕ)e3 = ∇e2ϕe3 − ϕ(∇e2e3)

= −ϕ(∇e2e3)
= ϕe2

= −e2.

g(ϕe2, ϕe3)ξ + η(e3)ϕ2e2 = 0.e3 − e2

= −e2.

Hence (∇e2ϕ)e3 = g(ϕe2, ϕe3)ξ + η(e3)ϕ2e2.
Similarly we can check for the others ei, ej . Hence, M3(ϕ, ξ, η, g) is an LP-

Sasakian manifold.
Using the above relations, we can easily calculate the nonvanishing components

of the curvature tensor R as follows:
R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1, R(e1, e1)e2 = (1− a2e2z)e1,

R(e2, e3)e2 = −aeze1 − e3, R(e1, e3)e1 = −e3, R(e1, e2)e1 = −(1− a2e2z)e2,

and the components which can be obtained from these by the symmetry properties.
From the above, we can easily calculate the non-vanishing components of the Ricci
tensor S as follows:

S(e1, e1) = −a2e2z, S(e2, e2) = −a2e2z, S(e3, e3) = −2.
Again from (2.9) we obtain S(e1, e1) = 1− λ, S(e2, e2) = 1− λ, S(e3, e3) = λ− µ.
Therefore λ = a2e2z − 1 and µ = a2e2z + 1. The data (ϕ, ξ, η, g) defines an
η-Ricci soliton on the LP-Sasakian manifold with non-constant scalar curvature
r = −2(a2e2z + 1).
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