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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO
DISTRIBUTIONAL DIFFERENTIAL EQUATIONS INVOLVING

HENSTOCK–KURZWEIL–STIELTJES INTEGRALS

GUOJU YE, MINGXIA ZHANG, WEI LIU, AND DAFANG ZHAO

Abstract. This paper is concerned with the existence and uniqueness of so-
lutions to the second order distributional differential equation with Neumann
boundary value problem via Henstock–Kurzweil–Stieltjes integrals.The exis-
tence of solutions is derived from Schauder’s fixed point theorem, and the
uniqueness of solutions is established by Banach’s contraction principle. Fi-
nally, two examples are given to demonstrate the main results.

1. Introduction

In this paper we apply the Henstock–Kurzweil–Stieltjes integral to establish the
existence and uniqueness of solutions to the second order distributional differential
equation (in short DDE)

−D2x = f(t, x) + g(t, x)Du, t ∈ [0, 1], (1.1)
subject to the Neumann boundary value condition

Dx(0) = Dx(1) = 0, (1.2)
where D, D2 stand for the first order and the second order distributional derivative,
respectively, x and u are regulated functions (see Definition 2.2) such that both
are left-continuous on (a, b] and right-continuous at a, the function f(·, x(·)) is
Henstock–Kurzweil integrable, and g(·, x(·)) is a function of bounded variation.

We know that regulated functions contain continuous functions and functions of
bounded variation as special cases. Especially, when u is an absolutely continuous
function, its distributional derivative is the usual derivative and we obtain the
ordinary differential equation (in short ODE); when u is a function of bounded
variation, Du can be identified with a Stieltjes measure, and (1.1) is called measure
differential equation (in short MDE). Results concerning existence, uniqueness and
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stability of solutions for MDEs have been extensively studied in many papers, see
[2, 11]. For example, in [2], the authors establish the existence of solutions for the
first order MDE

Dx = f(t, x) +G(t, x)Du.
Recently, in [8], authors obtained the existence result for the first order DDE of
the form

Dx = f(t, x)Du.
As far as we know, few papers are concerned with the second order DDE. The
purpose of this paper is to fill this gap, considering the second order DDE with the
Neumann boundary value problem.

Neumann boundary value problems have played an important role in mathemat-
ical physics, and hence have attracted the attention of many researchers. Under
suitable conditions, some existence and uniqueness results and the multiplicity of
positive solutions for the Neumann boundary value problem have been established.
For example, in [1], a Lyapunov-type inequality and Schauder’s fixed point theorem
were used to obtain existence and uniqueness results for the Neumann boundary
value problem as

− u′′(x) = f(x, u(x)), x ∈ [0, L], u′(0) = u′(L) = 0. (1.3)
In [13], by using a fixed point theorem in a cone, the authors established the
existence and multiplicity of the positive solutions to the second order Neumann
boundary value problem (1.3) with parameter. Particularly, problem (1.3) is a
special case of problem (1.1)-(1.2).

In order to deal with the problem (1.1)-(1.2), we apply the Henstock–Kurzweil–
Stieltjes integral, which is a powerful tool for the study of DDEs and contains
the Henstock–Kurzweil integral ([6, 12, 9, 10]), the regulated primitive integral
([14]), the Lebesgue–Stieltjes integral, and the Riemann–Stieltjes integral. With
the help of Henstock–Kurzweil–Stieltjes integrals, we establish the existence and
uniqueness of solutions for the second order DDE with Neumann boundary value
problem. Therefore, our results can be seen as a generalization of the results in
[1, 13].

This paper is organized as follows. In Section 2, we recall the definition and some
basic properties of Henstock–Kurzweil–Stieltjes integrals and regulated functions.
In Section 3, two results of the existence and uniqueness of solutions are established
by using Schauder’s fixed point theorem and Banach’s contraction principle. In
Section 4, we give two examples to illustrate Theorem 3.4 and Theorem 3.6.

2. Preliminaries

2.1. Regulated functions. In this subsection, we recall the definition and some
basic properties of regulated functions. First, we introduce functions of bounded
variation, which are a special case of regulated functions.

We consider a nondegenerate compact interval [a, b] ⊂ R, and denote by Da,b
the set of all divisions of the form

d = {t0, . . . , tm}, a = t0 < t1 < · · · < tm = b. (2.1)
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Definition 2.1 ([5]). For a given function g : [a, b] → R and a given division
d ∈ Da,b of the form (2.1), we define the total variation Var

[a,b]
g of g by

Var
[a,b]

g := sup
d∈Da,b

m∑
j=1
|g(tj)− g(tj−1)|.

The set of functions of bounded variation on [a, b] is denoted by
BV ([a, b];R) := {g : [a, b]→ R; Var

[a,b]
g <∞}.

Definition 2.2 ([3]). A function f : [a, b] → R is called regulated on [a, b] if the
one sided-limits exist, more precisely:

lim
s→t−

f(s) =: f(t−), t ∈ (a, b] and lim
s→t+

f(s) =: f(t+), t ∈ [a, b),

exist, with the convention
f(a−) = f(a), f(b+) = f(b).

We denote by G([a, b];R) the set of all regulated functions f : [a, b]→ R and by
G−([a, b];R) the set of all left-continuous regulated functions on (a, b] and right-
continuous at a. The space G([a, b];R) endowed with the norm

‖f‖ = sup
t∈[a,b]

|f(t)|

is a Banach space, and G−([a, b];R) is a closed subspace of G([a, b];R).
We know that the function f is regulated if and only if it is a uniform limit of a

sequence of step functions, and we denote by S([a, b];R) the set of all step functions
w : [a, b]→ R.

We now list some basic properties of the above spaces which we will need later.

Lemma 2.3 ([5]).
(i) The sets S([a, b];R), BV ([a, b];R), and G([a, b];R) are vector spaces satis-

fying the inclusion
S([a, b];R) ⊂ BV ([a, b];R) ⊂ G([a, b];R).

(ii) For every f ∈ G([a, b];R) and ε > 0 there exists w ∈ S([a, b];R) such that
‖f − w‖ ≤ ε, w(t) ∈

⋃
τ∈[a,b]{f(τ)} for every t ∈ [a, b], Var

[a,b]
w ≤ Var

[a,b]
f .

The next result is important when investigating compactness in G([a, b];R).

Definition 2.4 ([3]). A set M ⊂ G([a, b];R) is said to be equiregulated if, for every
ε > 0 and t0 ∈ [a, b], there exists δ > 0 such that for every x ∈M and t ∈ [a, b] we
have

(i) if t0 − δ < t < t0, then |x(t0−)− x(t)| < ε;
(ii) if t0 < t < t0 + δ, then |x(t)− x(t0+)| < ε.

Lemma 2.5 ([3, Corollary 2.4]). A set M ⊂ G([a, b];R) is relatively compact if and
only if it is equiregulated and for every t ∈ [a, b] the set {x(t) : x ∈ M} is bounded
in R.
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2.2. The Henstock–Kurzweil–Stieltjes integral. In this subsection, we recall
some basic properties of the Henstock–Kurzweil–Stieltjes integral. We cite most
of the results without proof, and interested readers can find more information in
[6, 12, 7, 9, 10].

We consider a division d = {t0, . . . , tm} ∈ Da,b from (2.1), and define a partition
D as

D = {(τj , [tj−1, tj ]); j = 1, . . . ,m}; τj ∈ [tj−1, tj ], ∀j = 1, . . . ,m. (2.2)
The basic concept in the Henstock–Kurzweil–Stieltjes integration theory is a δ-fine
partition.

We define the set
Γ(a, b) := {δ : [a, b]→ R | δ(t) > 0 for every t ∈ [a, b]}.

An element δ ∈ Γ(a, b) is called a gauge.

Definition 2.6 ([7]). Let δ ∈ Γ(a, b) be a given gauge. A partition D of the form
(2.2) is said to be δ-fine if for every j = 1, . . . ,m we have

τj ∈ [tj−1, tj ] ⊂ (τj − δ(τj), τj + δ(τj)),
and τ1 = a, τm = b. The set of all δ-fine partitions is denoted by Fδ(a, b).

For given functions f, g : [a, b] → R and a partition D of the form (2.2), we
define the Henstock–Kurzweil–Stieltjes integral sum KD(f, g) by the formula

KD(f, g) =
m∑
j=1

f(ξj)(g(tj)− g(tj−1))

= f(b)g(b)− f(a)g(a)−
m∑
j=1

(f(ξj)− f(ξj−1))g(tj−1),

in which ξ0 = a, ξm = b.

Definition 2.7 ([7]). Let f, g : [a, b] → R be given. We say that J ∈ R is the
Henstock–Kurzweil–Stieltjes integral over [a, b] of f with respect to g and is denoted
by

J =
∫ b

a

f(t) dg(t) =
∫ b

a

f dg,

if for every ε > 0 there exists δ ∈ Γ(a, b) such that for every D ∈ Fδ(a, b), we have
|J −KD(f, g)| ≤ ε.

Particularly, if g(t) ≡ t, then Definition 2.7 is the definition of Henstock–
Kurzweil integrals (HK-integrals for short).

Remark 2.8. According to [7], we know that the Henstock–Kurzweil–Stieltjes inte-
gral is a generalization of the Lebesgue–Stieltjes integral and the Riemann–Stieltjes
integral. For example, when g is a regulated function, the function f is not
Lebesgue–Stieltjes integrable with respect to the function g. Also, the Riemann–
Stieltjes integral will not be appropriate when the function f and the function g
have a common point of discontinuity.
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Lemma 2.9 ([5, Corollary 3.10.]).
(i) If f ∈ G([a, b];R) and g ∈ BV ([a, b];R) then the integral

∫ b
a
f(t) dg(t) exists

and ∣∣∣∣∣
∫ b

a

f dg

∣∣∣∣∣ ≤ ‖f‖Var
[a,b]

g.

(ii) If f ∈ BV ([a, b];R) and g ∈ G([a, b];R) then the integral
∫ b
a
f(t) dg(t) exists

and ∣∣∣∣∣
∫ b

a

f dg

∣∣∣∣∣ ≤
(
|f(a)|+ |f(b)|+ Var

[a,b]
f

)
‖g‖.

The proof of the following proposition is similar to that for the Young integral
in [5, Proposition 3.12]; however, in order to make the paper self-contained we give
the proof here.

Proposition 2.10. Consider f, fn ∈ G([a, b];R), g, gn ∈ BV ([a, b];R) for n ∈ N
such that

lim
n→∞

‖f − fn‖ = 0, lim
n→∞

‖g − gn‖ = 0, sup
n∈N

Var
[a,b]

gn ≤ C <∞.

Then

lim
n→∞

∫ b

a

gn(t) dfn(t) =
∫ b

a

g(t) df(t).

Proof. For any ε > 0, there exists w ∈ S([a, b];R) ⊆ BV ([a, b];R), so Var
[a,b]

w = C1 <

∞, such that ‖f − w‖ < ε, and there exists N > 0 for which ‖f − fn‖ < ε and
‖g − gn‖ < ε when n > N . Then we obtain by Lemma 2.3 and Lemma 2.9 that∣∣∣∣∣
∫ b

a

g(t) df(t)−
∫ b

a

gn(t) dfn(t)

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

g(t) df(t)−
∫ b

a

g(t) dw(t) +
∫ b

a

g(t) dw(t)−
∫ b

a

gn(t) dw(t)

+
∫ b

a

gn(t) dw(t)−
∫ b

a

gn(t) df(t) +
∫ b

a

gn(t) df(t)−
∫ b

a

gn(t) dfn(t)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a

(g(t)− gn(t)) d(f(t)− w(t))

∣∣∣∣∣+

∣∣∣∣∣
∫ b

a

(g(t)− gn(t)) dw(t)

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

gn(t) d(f(t)− fn(t))

∣∣∣∣∣
≤
(
|g(a)− gn(a)|+ |g(b)− gn(b)|+ Var

[a,b]
(g − gn)

)
‖f − w‖+ ‖g − gn‖Var

[a,b]
w

+
(
|gn(a)|+ |gn(b)|+ Var

[a,b]
gn

)
‖f − fn‖
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≤ 2(‖g − gn‖+ C)‖f − w‖+ ‖g − gn‖Var
[a,b]

w + (2‖gn‖+ C)‖f − fn‖

≤ [2(ε+ C) + C1 + (2‖gn‖+ C)]ε.

Hence,

lim
n→∞

∫ b

a

gn(t) dfn(t) =
∫ b

a

g(t) df(t).

This completes the proof. �

For the HK-integral, we have the following controlled convergence theorem,
which will be used later.

Lemma 2.11 ([6, Theorem 7.1]). If the following conditions are established:
(i) fn (n = 1, 2, . . . ) is HK-integrable on [a, b] and fn(t) → f(t) a.e., for all

t ∈ [a, b];
(ii) g, h are HK-integrable on [a, b] and g(t) ≤ fn(t) ≤ h(t) for every n a.e.,

for all t ∈ [a, b];
then f is HK-integrable on [a, b] and

lim
n→∞

∫ b

a

fn(t) dt =
∫ b

a

f(t) dt.

3. Main results

In this section, let

Br = {x ∈ G−([0, 1];R) : ‖x‖ ≤ r}, r > 0.

We assume that the functions f, g in problem (1.1)-(1.2) satisfy the following as-
sumptions:

(C1) f(·, x(·)) is HK-integrable for all x ∈ Br;
(C2) f(t, ·) is continuous for all t ∈ [0, 1];
(C3) there exists q1, q2 ∈ HK such that q1(·) ≤ f(·, x(·)) + x(·) ≤ q2(·) for all

x ∈ Br;
(C4) g(·, x(·)) is a function of bounded variation with g(0, x(0)) = g0 ∈ R for all

x ∈ Br;
(C5) g(t, ·) is continuous on [0, 1], uniformly for all t ∈ [0, 1], i.e., for every ε > 0,

there exists δ > 0 such that if |s1 − s0| < δ then |g(t, s1)− g(t, s0)| < ε for
all t ∈ [0, 1];

(C6) there exists a constant g > 0 such that Var
[0,1]

g(·, x(·)) ≤ g for all x ∈ Br.

Lemma 3.1. Let the functions f, g satisfy the assumptions (C1)–(C6). A function
x : [0, 1]→ R is a solution of problem (1.1)-(1.2) on [0, 1] if and only if x satisfies
the integral equation

x(t) =
∫ 1

0
K(t, s)(f(s, x(s)) + x(s)) ds+

∫ 1

0
K(t, s)g(s, x(s)) du(s), (3.1)
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where

K(t, s) =


(e2−(t+s) + e2−(t−s) + et+s + et−s)

2(e2 − 1) , 0 ≤ s ≤ t ≤ 1;

(e2−(s+t) + e2−(s−t) + es+t + es−t)
2(e2 − 1) , 0 ≤ t ≤ s ≤ 1.

(3.2)

Proof. Assume first that x : [0, 1]→ R is a solution of problem (1.1)-(1.2). Then
−D2x+Dx−Dx+ x = f(t, x(t)) + g(t, x(t))Du+ x, t ∈ [0, 1]. (3.3)

Multiplying both sides of (3.3) by e−t and integrating, we obtain

−e−t(Dx+ x) =
∫ t

0
e−s(f(s, x(s)) + x(s)) ds+

∫ t

0
e−sg(s, x(s)) du(s) + c (3.4)

for some constant c, and so

Dx =
∫ t

0
−et−s(f(s, x(s)) + x(s)) ds+

∫ t

0
−et−sg(s, x(s)) du(s)− cet − x. (3.5)

By the boundary condition Dx(0) = 0, we have that c = −x(0). Now, multiplying
both sides of (3.4) by e2t, we get

− et(Dx+ x) + e2tx(0) =
∫ t

0
e2t−s(f(s, x(s)) + x(s)) ds+

∫ t

0
e2t−sg(s, x(s)) du(s).

(3.6)
Integrating (3.6) from 0 to τ , we obtain

− eτx(τ) + 1
2(e2τ + 1)x(0)

=
∫ τ

0

∫ t

0
e2t−s(f(s, x(s)) + x(s)) ds dt+

∫ τ

0

∫ t

0
e2t−sg(s, x(s)) du(s) dt. (3.7)

Therefore, by the Tonelli and the Fubini theorems, we have that

− eτx(τ) + 1
2(e2τ + 1)x(0)

=
∫ τ

0

1
2(e2τ−s − es)(f(s, x(s)) + x(s)) ds+

∫ τ

0

1
2(e2τ−s − es)g(s, x(s)) du(s).

(3.8)
Moreover, substituting t = 1 into (3.5) and τ = 1 into (3.8), one has

− ex(1) + e2x(0) =
∫ 1

0
e2−s(f(s, x(s)) + x(s)) ds+

∫ 1

0
e2−sg(s, x(s)) du(s) (3.9)

and

− ex(1) + 1
2(e2 + 1)x(0)

=
∫ 1

0

1
2(e2−s − es)(f(s, x(s)) + x(s)) ds+

∫ 1

0

1
2(e2−s − es)g(s, x(s)) du(s).

(3.10)
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According to (3.9) and (3.10), one has

x(0) =
∫ 1

0

e2−s + es

e2 − 1 (f(s, x(s)) + x(s)) ds+
∫ 1

0

e2−s + es

e2 − 1 g(s, x(s)) du(s). (3.11)

Substitute (3.11) into (3.8), we have

x(t) =
∫ 1

0

(e2t + 1)(e2−s + es)
2(e2 − 1)et (f(s, x(s)) + x(s)) ds

+
∫ t

0

es − e2t−s

2et (f(s, x(s)) + x(s)) ds

+
∫ 1

0

(e2t + 1)(e2−s + es)
2(e2 − 1)et g(s, x(s)) du(s)

+
∫ t

0

es − e2t−s

2et g(s, x(s)) du(s).

(3.12)

This shows that (3.1) holds.
Conversely, it is not difficult to calculate that (1.1)-(1.2) hold by taking the

derivative of both sides of (3.12). This completes the proof. �

Remark 3.2. The function K : [0, 1]×[0, 1]→ R given in (3.2) is positive continuous
and of bounded variation. Moreover, we have

2e
e2 − 1 = m ≤ K(t, s) ≤M = e2 + 1

e2 − 1 . (3.13)

The following statement is the well-known Schauder’s fixed point theorem.

Lemma 3.3. Let M be a nonempty closed convex subset of a normal vector space R.
Let T be a continuous map of M into a compact subset K of M. Then T has a
fixed point.

With the help of Lemma 3.1 and Lemma 3.3, we can now prove the existence of
solutions for the problem (1.1)-(1.2).

Theorem 3.4. Under the assumptions (C1)–(C6), there exists at least one solution
of the problem (1.1)-(1.2).

Proof. By (C3), there exist q1, q2 ∈ HK such that their primitives are continuous
and bounded on [0, 1].

Let
Q := max

t∈[0,1]

{∣∣∣∣∫ t

0
q1(s) ds

∣∣∣∣+
∣∣∣∣∫ t

0
q2(s) ds

∣∣∣∣} .
Then, for every t ∈ [0, 1], we have by (3.13) that

−MQ ≤
∫ t

0
K(t, s)(f(s, x(s)) + x(s)) ds ≤MQ. (3.14)

We define an operator A : G−([0, 1];R)→ G−([0, 1];R) satisfying

Ax(t) =
∫ 1

0
K(t, s)(f(s, x(s)) + x(s)) ds+

∫ 1

0
K(t, s)g(s, x(s)) du(s). (3.15)
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Now we prove this theorem in three steps.

Step 1. There exists r > 0 such that A(Br) ⊆ Br.
Let

r := MQ+ (4M − 2m)(|g0|+ g)‖u‖.
For all x ∈ Br, by (3.14) and (3.15), we have

|Ax(t)| ≤
∣∣∣∣∫ 1

0
K(t, s)(f(s, x(s)) + x(s)) ds

∣∣∣∣+
∣∣∣∣∫ 1

0
K(t, s)g(s, x(s)) du(s)

∣∣∣∣
≤MQ+

∣∣∣∣∫ 1

0
K(t, s)g(s, x(s)) du(s)

∣∣∣∣ . (3.16)

By the Hölder inequality (Lemma 2.9), one has∣∣∣∣∫ 1

0
K(t, s)g(s, x(s)) du(s)

∣∣∣∣
≤
(
|K(t, 0)g(0, x(0))|+ |K(t, 1)g(1, x(1))|+ Var

[0,1]
K(t, s)g(s, x(s))

)
‖u‖

≤
(
M |g0|+M

(
|g0|+ Var

[0,1]
g(s, x(s))

)
+
(
|g0|+ Var

[0,1]
g(s, x(s))

)
Var
[0,1]

K(t, s)

+M Var
[0,1]

g(s, x(s))
)
‖u‖

≤ (4M − 2m)(|g0|+ g)‖u‖.

(3.17)

In view of (3.16) and (3.17), one has

|Ax(t)| ≤MQ+ (4M − 2m)(|g0|+ g)‖u‖ = r.

Therefore, A(Br) ⊆ Br.

Step 2. A(Br) is equiregulated.
For every t0 ∈ [0, 1), t ∈ [t0, 1], and x ∈ Br, we have

|Ax(t)−Ax(t0+)|

≤
∣∣∣∣∫ 1

0

(e2t + 1)(e2−s + es)
2(e2 − 1)et (f(s, x(s)) + x(s)) ds

−
∫ 1

0

(e2t0+ + 1)(e2−s + es)
2(e2 − 1)et0+ (f(s, x(s)) + x(s)) ds

∣∣∣∣
+
∣∣∣∣∫ 1

0

(e2t + 1)(e2−s + es)
2(e2 − 1)et g(s, x(s)) du(s)

−
∫ 1

0

(e2t0+ + 1)(e2−s + es)
2(e2 − 1)et0+ g(s, x(s)) du(s)

∣∣∣∣
+
∣∣∣∣∫ t

0

es − e2t−s

2et (f(s, x(s)) + x(s)) ds
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−
∫ t0+

0

es − e2(t0+)−s

2et0+ (f(s, x(s)) + x(s)) ds
∣∣∣∣

+
∣∣∣∣∫ t

0

es − e2t−s

2et g(s, x(s)) du(s)−
∫ t0+

0

es − e2(t0+)−s

2et0+ g(s, x(s)) du(s)
∣∣∣∣

≤
∣∣∣∣∫ 1

0

(et+(t0+) − 1)(et − et0+)(e2−s + es)
2(e2 − 1)et+(t0+) (f(s, x(s)) + x(s)) ds

∣∣∣∣
+
∣∣∣∣∫ 1

0

(et+(t0+) − 1)(et − et0+)(e2−s + es)
2(e2 − 1)et+(t0+) g(s, x) du(s)

∣∣∣∣
+
∣∣∣∣∫ t

0

es − e2t−s

2et (f(s, x(s)) + x(s)) ds

−
∫ t0+

0

es − e2t−s

2et (f(s, x(s)) + x(s)) ds

+
∫ t0+

0

es − e2t−s

2et (f(s, x(s)) + x(s)) ds

−
∫ t0+

0

es − e2(t0+)−s

2et0+ (f(s, x(s)) + x(s)) ds
∣∣∣∣

+
∣∣∣∣∫ t

0

es − e2t−s

2et g(s, x(s)) du(s)−
∫ t0+

0

es − e2t−s

2et g(s, x(s)) du(s)

+
∫ t0+

0

es − e2t−s

2et g(s, x(s)) du(s)−
∫ t0+

0

es − e2(t0+)−s

2et0+ g(s, x(s)) du(s)
∣∣∣∣

≤
∣∣∣∣∫ 1

0

(et+(t0+) − 1)(et − et0+)(e2−s + es)
2(e2 − 1)et+(t0+) (f(s, x(s)) + x(s)) ds

∣∣∣∣
+
∣∣∣∣∫ 1

0

(et+(t0+) − 1)(et − et0+)(e2−s + es)
2(e2 − 1)et+(t0+) g(s, x(s)) du(s)

∣∣∣∣
+
∣∣∣∣∫ t0+

0

(et+(t0+)−s + es)(et − et0+)
2et+(t0+) (f(s, x(s)) + x(s)) ds

∣∣∣∣
+
∣∣∣∣∫ t0+

t

es − e2t−s

2et (f(s, x(s)) + x(s)) ds
∣∣∣∣

+
∣∣∣∣∫ t0+

0

(et+(t0+)−s + es)(et − et0+)
2et+(t0+) g(s, x(s)) du(s)

∣∣∣∣
+
∣∣∣∣∫ t0+

t

es − e2t−s

2et g(s, x(s)) du(s)
∣∣∣∣ .
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By (C3), we obtain∣∣∣∣∫ 1

0

(et+(t0+) − 1)(et − et0+)(e2−s + es)
2(e2 − 1)et+(t0+) (f(s, x(s)) + x(s)) ds

∣∣∣∣
≤
∣∣∣∣ (et − et0+)(et+(t0+) − 1)

2(e2 − 1)et+(t0+)

∣∣∣∣ (∣∣∣∣∫ 1

0
(e2−s + es)q1(s) ds

∣∣∣∣
+
∣∣∣∣∫ 1

0
(e2−s + es)q2(s) ds

∣∣∣∣)
→ 0, as t→ t0+;

∣∣∣∣∫ t0+

0

(et+(t0+)−s + es)(et − et0+)
2et+(t0+) (f(s, x(s)) + x(s)) ds

∣∣∣∣
≤
∣∣∣∣et − et0+

2et+(t0+)

∣∣∣∣ (∣∣∣∣∫ 1

0
(et+(t0+)−s + es)q1(s) ds

∣∣∣∣
+
∣∣∣∣∫ 1

0
(et+(t0+)−s + es)q2(s) ds

∣∣∣∣)
→ 0, as t→ t0+;

and ∣∣∣∣∫ t0+

t

es − e2t−s

e2t (f(s, x(s)) + x(s)) ds
∣∣∣∣

≤
∣∣∣∣∫ t0+

t

es − e2t−s

e2t q1(s) ds
∣∣∣∣+
∣∣∣∣∫ t0+

t

es − e2t−s

e2t q2(s) ds
∣∣∣∣

→ 0, as t→ t0+.

By (C4), (C6) and the Hölder inequality (Lemma 2.9), we get∣∣∣∣∫ 1

0

(et+(t0+) − 1)(et − et0+)(e2−s + es)
2(e2 − 1)et+(t0+) g(s, x(s)) du(s)

∣∣∣∣
≤
∣∣∣∣ (et − et0+)(et+(t0+) − 1)

(e2 − 1)et+(t0+)

∣∣∣∣ (e2 + 1)(|g0|+ g)‖u‖

→ 0, as t→ t0+

and ∣∣∣∣∫ t0+

0

(et+(t0+)−s + es)(et − et0+)
2et+(t0+) g(s, x(s)) du(s)

∣∣∣∣
≤
∣∣∣∣et − et0+

et+(t0+)

∣∣∣∣ (et+(t0+) + 1)(|g0|+ g)‖u‖

→ 0, as t→ t0+.
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Moreover,∣∣∣∣∣
m∑
i=1

eξi − e2t−ξi

2et g(ξi, x(ξi))(u(ti)− u(ti−1))

∣∣∣∣∣
=
∣∣∣∣et − e2t−t

2et g(t, x(t))u(t)− et0+ − e2t−(t0+)

2et g(t0+, x(t0+))u(t0+)

−
m∑
i=1

(
eξi − e2t−ξi

2et g(ξi, x(ξi))−
eξi−1 − e2t−ξi−1

2et g(ξi−1, x(ξi−1))
)
u(ti−1)

∣∣∣∣∣
=
∣∣∣∣(et − e2t−t

2et g(t, x(t))− et0+ − e2t−(t0+)

2et g(t0+, x(t0+))
)
u(t0+)

−
m∑
i=1

(
eξi − e2t−ξi

2et g(ξi, x(ξi))−
eξi−1 − e2t−ξi−1

2et g(ξi−1, x(ξi−1))
)
u(ti−1)

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

(
eξi − e2t−ξi

2et g(ξi, x(ξi))

−e
ξi−1 − e2t−ξi−1

2et g(ξi−1, x(ξi−1))
)

(u(ti−1)− u(t0+))
∣∣∣∣

≤ Var
[t0+,t]

es − e2t−s

2et g(s, x(s)) sup
s∈[t0+,t]

|u(s)− u(t0+)|

≤
[

Var
[t0+,t]

es − e2t−s

2et

(
|g0|+ Var

[t0+,t]
g(s, x(s))

)
+ e2t−t0+ − et0+

2et Var
[t0+,t]

g(s, x(s))
]

× sup
s∈[t0+,t]

|u(s)− u(t0+)|

≤ e2 − 1
2e

(
|g0|+ 2 Var

[t0+,t]
g(s, x(s))

)
sup

s∈[t0+,t]
|u(s)− u(t0+)|

≤ e2 − 1
2e (|g0|+ 2g) sup

s∈[t0+,t]
|u(s)− u(t0+)|

→ 0, as t→ t0+.
By Definition 2.7, we get∣∣∣∣∫ t0+

t

es − e2t−s

2et g(s, x(s)) du(s)
∣∣∣∣→ 0, as t→ t0+.

Hence,
|Ax(t)−Ax(t0+)| → 0, as t→ t0+,

independently of x. Similarly, for t0 ∈ (0, 1], we can prove that
|Ax(t0−)−Ax(t)| → 0, as t→ t0−.

Therefore, A(Br) is equiregulated on [0, 1] in terms of Definition 2.4.
As a consequence of Steps 1 and 2 together with Lemma 2.5, we can conclude

that the set A(Br) is relatively compact in G−([0, 1];R).
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Step 3. A is continuous on Br.
Let {xn}∞n=1 be a convergent sequence on Br and xn → x as n→∞.
By (C2) and (C5), we have

f(·, xn(·))→ f(·, x(·)) pointwise, as n→∞,

g(·, xn(·))→ g(·, x(·)) uniformly, as n→∞.

According to (C3) and the controlled convergence theorem of Lemma 2.11, we
have

lim
n→∞

∫ 1

0
K(t, s)f(s, xn(s)) ds =

∫ 1

0
K(t, s)f(s, x(s)) ds,

independently of t ∈ [0, 1]. Furthermore, according to (C6) and the convergence
theorem of Proposition 2.10, we have

lim
n→∞

∫ 1

0
K(t, s)g(s, xn(s)) du(s) =

∫ 1

0
K(t, s)g(s, x(s)) du(s), t ∈ [0, 1].

Therefore, limn→∞Axn(·) = Ax(·). This shows that A is continuous.
Thus, A satisfies the hypotheses of Lemma 3.3, and the application of Schauder’s

fixed point theorem shows that A has at least a fixed point which is a solution of
the problem (1.1)-(1.2). This completes the proof. �

Let us replace (C2) and (C5) by:

(C′2) There exists a constant L1 > 0 such that

|(f(·, x(·)) + x(·))− (f(·, y(·)) + y(·))| ≤ L1|x(·)− y(·)|, ∀x, y ∈ G−([0, 1];R).

(C′5) There exists a constant L2 > 0 such that

Var
[0,1]

[g(·, x(·))− g(·, y(·))] ≤ L2‖x− y‖, ∀x, y ∈ G−([0, 1];R).

Then we have the following uniqueness result.
The statement below is Banach’s contraction principle.

Lemma 3.5. Let (M, d) be a nonempty complete metric space. If T : M → M
is a contraction mapping, i.e., d(T x, T y) ≤ qd(x, y) for some 0 < q < 1 and all
x, y ∈M, then exists a unique ξ ∈M such that T ξ = ξ.

With the help of this lemma we can now prove the uniqueness of solutions of
problem (1.1)-(1.2).

Theorem 3.6. Under the assumptions (C1), (C ′2), (C4), and (C ′5), if

ML1 + (4M − 2m)L2‖u‖ < 1, (3.18)

then the problem (1.1)-(1.2) has a unique solution on [0, 1].
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Proof. We shall show that A defined by (3.15) is a contraction. Indeed, let x1, x2 ∈
G−([0, 1];R). Then, for each t ∈ [0, 1], we have

|Ax1(t)−Ax2(t)|

≤
∣∣∣∣∫ 1

0
K(t, s)[(f(s, x1(s)) + x1(s))− (f(s, x2(s)) + x2(s))] ds

∣∣∣∣
+
∣∣∣∣∫ 1

0
K(t, s)(g(s, x1(s))− g(s, x2(s))) du(s)

∣∣∣∣
≤
∣∣∣∣∫ 1

0
K(t, s)L1|x1(s)− x2(s)| ds

∣∣∣∣+
[
|K(t, 0)(g(0, x1(0))− g(0, x2(0)))|

+ |K(t, 1)(g(1, x1(1))− g(1, x2(1)))|

+ Var
[0,1]

K(t, s)(g(s, x1(s))− g(s, x2(s)))
]
‖u‖

≤
∫ 1

0
|K(t, s)|L1|x1(s)− x2(s)| ds+

[
|K(t, 1)|Var

[0,1]
(g(s, x1(s))− g(s, x2(s)))

+ Var
[0,1]

K(t, s) Var
[0,1]

(g(s, x1(s))− g(s, x2(s)))

+M Var
[0,1]

(g(s, x1(s))− g(s, x2(s)))
]
‖u‖

≤ L1M‖x1 − x2‖+
[(

2M + Var
[0,1]

K(t, s)
)

Var
[0,1]

(g(s, x1(s))− g(s, x2(s)))
]
‖u‖

≤ L1M‖x1 − x2‖+ (4M − 2m)L2‖x1 − x2‖‖u‖
≤ [ML1 + (4M − 2m)L2‖u‖] ‖x1 − x2‖.

Let
L := ML1 + (4M − 2m)L2‖u‖.

Thus, by (3.18), for 0 < L < 1, we obtain

‖Ax1 −Ax2‖ ≤ L‖x1 − x2‖.

This implies that A is a contraction. We deduce by Banach’s contraction principle
that A has a unique fixed point which is a unique solution of the problem (1.1)-
(1.2). This completes the proof. �

4. Examples

In this section, we give two examples to illustrate Theorem 3.4 and Theorem 3.6.

Example 4.1. Consider the boundary value problem: −D
2x = sin(x)− x+H(t− 1

2)Du, t ∈ [0, 1],

Dx(0) = Dx(1) = 0,
(4.1)
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where

u(t) =
{
W (t), 0 ≤ t < 1

4 ;

H(t− 1
2 ), 1

4 ≤ t ≤ 1.
W (t) is the Weierstrass function W (t) =

∑∞
n=1

sin 7nπt
2n (see [4]), and H(t) is the

Heaviside function, i.e.,

H(t) =
{

1, t ≥ 0;
0, t < 0.

(4.2)

It is well known that W (t) is continuous but pointwise differentiable nowhere on
[0, 1] and H(t) is of bounded variation but not continuous on [0, 1], hence u(t) is
only a regulated function.

Let
f(t, x) = sin(x)− x, g(t, x) = H(t− 1

2 ), t ∈ [0, 1].
Since g0 = 0, g = 1 and q1 ≡ −1, q2 ≡ 1, t ∈ [0, 1], we have that assumptions (C1)–
(C6) are satisfied. Moreover, ‖H‖ = 1, ‖W‖ ≤

∑∞
n=1

1
2n = 1 and thus ‖u‖ ≤ 1.

Hence,

r = MQ+ (4M − 2m)(|g0|+ g)‖u‖ ≤ 6M − 2m = 2(3e2 + 3− 2e)
e2 − 1 .

Therefore, the existence of a solution of problem (4.1) is guaranteed by Theo-
rem 3.4.

Example 4.2. Consider the boundary value problem: −D
2x = 1

3 sin(x)− x+ 2t sin(t−2)− 2
t

cos(t−2) +H(t− 2
3 )DH(t− 2

3 ),

Dx(0) = Dx(1) = 0, t ∈ [0, 1],
(4.3)

where H(t) is the Heaviside function (4.2).
Let

f(t, x) = 1
3 sin(x)− x+ 2t sin(t−2)− 2

t
cos(t−2),

g(t, x) = u(t) = H(t− 2
3 ), t ∈ [0, 1].

If L1 = 1
3 , then f satisfies (C1), (C′2).

On the other hand, since g0 = 0, L2 = 1
4e2 + 4− 4e , and g = 1, we have that g

satisfies (C4) and (C′5). Moreover, ‖u‖ = ‖H‖ = 1. Hence,

L = ML1 + (4M − 2m)L2‖u‖ = e2 + 4
3(e2 − 1) < 1.

Therefore, the uniqueness of solution of problem (4.3) is guaranteed by Theo-
rem 3.6.

Remark 4.3. In Example 4.1, u(t) is neither continuous nor of bounded variation
but it is regulated, so H(t − 1

2 ) is not Lebesgue–Stieltjes or Riemann–Stieltjes
integrable with respect to the regulated function u(t). In Example 4.2, f(t, x)
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is a highly oscillating function, which is not Lebesgue integrable. The function
g(t, x) = u(t) = H(t− 2

3 ) is of bounded variation but not continuous; g(t, x) and u(t)
have a common point of discontinuity at t = 2

3 , so g(t, x) is not Riemann–Stieltjes
integrable with respect to u(t). However, in the two examples, the Henstock–
Kurzweil–Stieltjes integral is valid. This implies that our results are more extensive.
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[3] D. Fraňková, Regulated functions. Math. Bohem. 116 (1991), no. 1, 20–59. MR 1100424.
[4] G.H. Hardy, Weierstrass’s non-differentiable function. Trans. Amer. Math. Soc. 17 (1916),

no. 3, 301–325. MR 1501044.
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