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REAL HYPERSURFACES IN COMPLEX GRASSMANNIANS OF
RANK TWO WITH SEMI-PARALLEL STRUCTURE

JACOBI OPERATOR

AVIK DE, TEE-HOW LOO, AND CHANGHWA WOO

Abstract. We prove that there does not exist any real hypersurface in com-
plex Grassmannians of rank two with semi-parallel structure Jacobi operator.
With this result, the non-existence of real hypersurfaces in complex Grass-
mannians of rank two with recurrent structure Jacobi operator is proved.

1. Introduction

Let M̂m(c) be the compact complex Grassmannian SUm+2/S(U2Um) of rank two
(resp. noncompact complex Grassmannian SU2,m/S(U2Um) of rank two) for c > 0
(resp. c < 0), where c = max ‖K‖/8 is a scaling factor for the Riemannian metric
g and K is the sectional curvature for M̂m(c). It is an irreducible Riemannian
symmetric space equipped with a Kähler structure J and a quaternionic Kähler
structure J not containing J .

Let M be a connected, oriented real hypersurface isometrically immersed in
M̂m(c), m ≥ 2, and N be a unit normal vector field on M . Denote by the same
g the Riemannian metric on M . The Reeb vector field ξ is defined by ξ = −JN ,
and we define ξa = −JaN , a ∈ {1, 2, 3}, where {J1, J2, J3} is a canonical local
basis of J. Denote by D⊥ (resp. D⊥) the distribution on M spanned by ξ (resp.
{ξ1, ξ2, ξ3}). A real hypersurface M in a Kähler manifold is said to be Hopf if the
Reeb vector field is principal, that is, Aξ = αξ.

The study of real hypersurfaces in M̂m(c) was initiated by Berndt and Suh in
[1, 2]. They considered the invariance of D⊥ under the shape operator A of Hopf
hypersurfaces M in M̂m(c) and proved a classification of such Hopf hypersurfaces
in M̂m(c).

The structures J and J of the ambient space impose several restrictions on
the geometry of its real hypersurfaces; for example, there does not exist any semi-
parallel real hypersurface in SUm+2/S(U2Um) [13], while the non-existence problem
of Hopf hypersurfaces in M̂m(c) with parallel Ricci tensor was studied in [15, 16].
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Besides the shape operator and the Ricci tensor, there are particularly two
operators on a real hypersurface M which draw much attention, namely the normal
Jacobi operator RN and the structure Jacobi operator Rξ. Denote by R̂ and R

the curvature tensor on M̂m(c) and that induced on M , respectively. We define
RN (X) = R̂(X,N)N and Rξ(X) = R(X, ξ)ξ for any vector field X tangent to M .

A (1, s)-tensor field P is said to be semi-parallel if R ·P = 0, where the curvature
tensor R acts on P as a derivation. More precisely,

(R(X,Y ) · P )(X1, . . . , Xs)

= R(X,Y )P (X1, . . . , Xs)−
s∑
j=1

P (X1, . . . , R(X,Y )Xj , . . . , Xs).

The tensor field P is said to be recurrent if there exists a 1-form ω on M such that
(∇XP )(X1, . . . , Xs) = ω(X)P (X1, . . . , Xs).

Clearly, a vanishing ω leads to parallelism of P .
Recently, we proved the non-existence of real hypersurfaces in SUm+2/S(U2Um),

m ≥ 3, with pseudo-parallel normal Jacobi operator [5]. On the other hand, related
to the structure Jacobi operator Rξ, Jeong et al. proved that there does not exist
any Hopf hypersurface in SUm+2/S(U2Um), m ≥ 3, with parallel structure Ja-
cobi operator [10]. Also, the non-existence of Hopf hypersurfaces with D⊥-parallel
structure Jacobi operator is obtained under certain conditions [9]. Jeong et al.
considered Reeb-parallel structure Jacobi operator and proved the following:

Theorem 1.1 ([8]). Let M be a Hopf hypersurface in SUm+2/S(U2Um), m ≥ 3,
with Reeb parallel structure Jacobi operator. If the principal curvature of the
Reeb vector field ξ on M is non-vanishing and constant along the direction of
the Reeb vector field ξ, then M is an open part of a tube around a totally geodesic
SUm+1/S(U2Um−1) in SUm+2/S(U2Um) with radius r ∈ (0, π

4
√

2 ) ∪ ( π
4
√

2 ,
π√
8 ).

We say that a real hypersurface M has commuting structure Jacobi operator
if it commutes with any other Jacobi operator defined on M , that is, Rξ · RX =
RX ·Rξ for any X tangent to M . Machado et al. proved the non-existence of Hopf
real hypersurfaces in SUm+2/S(U2Um), m ≥ 3, with commuting structure Jacobi
operator under certain conditions [14]. They also classified real hypersurfaces in
SUm+2/S(U2Um), m ≥ 3, with R̂N ·Rξ = Rξ · R̂N . In [11], Jeong et al. proved the
following:

Theorem 1.2 ([11]). There does not exist any Hopf hypersurface in SUm+2/S(U2Um),
m ≥ 3, with recurrent structure Jacobi operator if the distribution D or D⊥-
component of the Reeb vector field is invariant under the shape operator.

On the other hand, under certain restrictions, Hwang et al. obtained the follow-
ing non-existence result.

Theorem 1.3 ([6]). There does not exist any Hopf hypersurface in SUm+2/S(U2Um),
m ≥ 3, with semi-parallel structure Jacobi operator if the smooth function α =
g(Aξ, ξ) is constant along the direction of ξ.
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Motivated from the above studies, a natural question arises:

Problem 1.1. Does there exist a real hypersurface in M̂m(c) with parallel, recur-
rent or semi-parallel structure Jacobi operator?

In the present paper we first prove the following:

Theorem 1.4. There does not exist any connected real hypersurface in M̂m(c),
m ≥ 3, with semi-parallel structure Jacobi operator.

The non-existence of real hypersurfaces with semi-parallel structure Jacobi op-
erator in a non flat complex space form has been proved in [3, 7]. We also remark
that Theorem 1.4 holds for non-Hopf real hypersurfaces as well and no further con-
ditions are imposed. By a result in [4], we learn that if a tensor field is recurrent,
it is always semi-parallel. Hence, as a corollary we obtain the following:

Corollary 1.1. There does not exist any real hypersurface in M̂m(c), m ≥ 3, with
parallel or recurrent structure Jacobi operator.

2. Preliminaries

In this section, we recall some fundamental identities for real hypersurfaces in
complex Grassmannians of rank two, which have been proven in [1, 2, 12, 13].

Let M be a connected, oriented real hypersurface isometrically immersed in
M̂m(c), m ≥ 3. The almost contact metric 3-structure (φa, ξa, ηa, g) on M is given
by

JaX = φaX + ηa(X)N, JaN = −ξa, ηa(X) = g(X, ξa),
for any X ∈ TM , where {J1, J2, J3} is a canonical local basis of J on M̂m(c). It
follows that

φaφa+1 − ξa ⊗ ηa+1 = φa+2

φaξa+1 = ξa+2 = −φa+1ξa

for a ∈ {1, 2, 3}. The indices in the preceding equations are taken modulo three.
The Kähler structure J induces on M an almost contact metric structure (φ, ξ,

η, g), namely,
JX = φX + η(X)N, JN = −ξ, η(X) = g(X, ξ).

Let D⊥ = JTM⊥, and D its orthogonal complement in TM . We define a local
(1, 1)-tensor field θa on M by

θa := φaφ− ξa ⊗ η.
Denote by ∇ the Levi-Civita connection on M . Then there exist local 1-forms qa,
a ∈ {1, 2, 3}, such that

∇Xξ = φAX

∇Xξa = φaAX + qa+2(X)ξa+1 − qa+1(X)ξa+2

∇Xφξa = θaAX + ηa(ξ)AX + qa+2(X)φξa+1 − qa+1(X)φξa+2.

 (2.1)

The following identities are known.
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Lemma 2.1 ([12]).
(a) θa is symmetric,
(b) φξa = φaξ,
(c) θaξ = −ξa, θaξa = −ξ, θaφξa = η(ξa)φξa,
(d) θaξa+1 = φξa+2 = −θa+1ξa,
(e) −θaφξa+1 + η(ξa+1)φξa = ξa+2 = θa+1φξa − η(ξa)φξa+1.

Lemma 2.2 ([12]). If ξ ∈ D everywhere, then Aφξa = 0 for a ∈ {1, 2, 3}.

For each x ∈M , we define a subspace H⊥ of TxM by

H⊥ := span{ξ, ξ1, ξ2, ξ3, φξ1, φξ2, φξ3}.

Let H be the orthogonal complement of H⊥ in TxM . Then dimH = 4m− 4 (resp.
dimH = 4m−8) when ξ ∈ D⊥ (resp. ξ /∈ D⊥). Moreover, θa|H has two eigenvalues:
1 and −1. Denote by Ha(ε) the eigenspace corresponding to the eigenvalue ε of
θa|H. Then dimHa(1) = dimHa(−1) is even, and

φHa(ε) = φaHa(ε) = θaHa(ε) = Ha(ε)
φbHa(ε) = θbHa(ε) = Ha(−ε), (a 6= b).

We define the tensor fields θ, φ⊥, ξ⊥, and η⊥ on M as follows:

θ :=
3∑
a=1

ηa(ξ)θa, φ⊥ :=
3∑
a=1

ηa(ξ)φa, ξ⊥ :=
3∑
a=1

ηa(ξ)ξa, η⊥ :=
3∑
a=1

ηa(ξ)ηa.

Then for each x ∈ M with ξ⊥ 6= 0, θ|H has two eigenvalues ε‖ξ⊥‖, ε ∈ {1,−1}.
Let H(ε) be the eigenspace of θ|H corresponding to ε‖ξ⊥‖. Then

(a) φH(ε) = φ⊥H(ε) = H(ε),
(b) dimH(1) = dimH(−1) is even.

Moreover, we can take a canonical local basis of J on a neighborhood G ⊂ M of
such a point x such that

ξ1 = ξ⊥

‖ξ⊥‖
, 0 < η1(ξ) = ‖ξ⊥‖ ≤ 1, η2(ξ) = η3(ξ) = 0

H(ε) = H1(ε), θ = η1(ξ)θ1, φ⊥ = η1(ξ)φ1, η⊥ = η1(ξ)η1.

In particular, if ‖ξ⊥‖ = 1 at x, then

ξ1 = ξ = ξ⊥, ξ2 = θξ2 = φξ3, ξ3 = θξ3 = −φξ2.

Throughout this paper, we always consider such a local orthonormal frame {ξ1, ξ2, ξ3}
on D⊥ under these situations.

A straightforward calculation gives

(∇Xθ)Y = η⊥(φY )AX − g(AX,Y )φξ⊥ + 2
3∑
a=1

ηa(φAX)θaY. (2.2)
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The equations of Gauss and Codazzi are respectively given by
R(X,Y )Z = g(AY,Z)AX − g(AX,Z)AY + c{g(Y, Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}

+ c

3∑
a=1
{g(φaY,Z)φaX − g(φaX,Z)φaY − 2g(φaX,Y )φaZ

+ g(θaY,Z)θaX − g(θaX,Z)θaY },

(∇XA)Y − (∇YA)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}

+ c

3∑
a=1
{ηa(X)φaY − ηa(Y )φaX − 2g(φaX,Y )ξa

+ ηa(φX)θaY − ηa(φY )θaX}.

As M is a real hypersurface in M̂m(c), by the Gauss equation we have
RξX = αAY − η(AY )Aξ + c{X − η(X)ξ − θX}

− c
3∑
a=1
{ηa(X)ξa + 3ηa(φX)φξa}.

(2.3)

We end this section with the following general result.

Theorem 2.1. Let M be an almost contact metric manifold. The structure Jacobi
operator Rξ is semi-parallel if and only if Rξ = 0.

Proof. Suppose the structure Jacobi operator is semi-parallel. Then

R(X,Y )RξZ −RξR(X,Y )Z = (R(X,Y ) ·Rξ)Z = 0

for any X,Y, Z ∈ TM . In particular, for Y = Z = ξ, we obtain R2
ξX = 0. Since

Rξ is self-adjoint, Rξ = 0. The converse is trivial. �

3. Proof of Theorem 1.4

By virtue of Theorem 2.1, it suffices to show that the structure Jacobi operator
cannot be identically zero. Suppose to the contrary that Rξ = 0. Then by (2.3),
we have

αAY − η(AY )Aξ + c{Y − η(Y )ξ − θY }

− c
3∑
a=1
{ηa(Y )ξa + 3ηa(φY )φξa} = 0.

(3.1)

Claim 3.1. ξ /∈ D on an open dense subset of M .

Proof. Suppose ξ ∈ D on an open subset G of M . For each x ∈ G, we have
θ = 0. It follows from Lemma 2.2 that φξ1 = 0 after putting Y = φξ1 in (3.1), a
contradiction. Hence we obtain the claim. �
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Consider a point x ∈ M on which ξ /∈ D on a neighborhood G of x in M . We
define subspaces F , F(1) and F(−1) of TxM by

F = {X ∈ H : η(AX) = 0}, F(1) = F ∩H(1), F(−1) = F ∩H(−1).

It is clear that
AY = λεY, αλε + c(1− ε‖ξ⊥‖) = 0

for any Y ∈ F(ε) and ε ∈ {1,−1}. By (3.1), we have

(Xα)AY + α(∇XA)Y − η(AY )
{

(∇XA)ξ +A∇Xξ
}

−
{
g(∇XA)Y, ξ) + g(AY,∇Xξ)

}
Aξ + c{−g(∇Xξ, Y )− η(Y )∇Xξ − (∇Xθ)Y }

− c
3∑
a=1
{g(∇Xξa, Y )ξa + ηa(Y )∇Xξa − 3g(∇Xφξa, Y )φξa + 3ηa(φY )∇Xφξa} = 0

for any X,Y ∈ TxM . By using (2.1) and (2.2), the preceding equation becomes

(Xα)AY + α(∇XA)Y − η(AY )
{

(∇XA)ξ +AφAX
}

−
{
g(∇XA)Y, ξ) + g(AφAX, Y )

}
Aξ

+ c{−g(φAX, Y )− η(Y )φAX + 4g(AX,Y )φξ⊥ − 4η⊥(φY )AX}

+ c

3∑
a=1
{−g(φaAX,Y )ξa − ηa(Y )φaAX

+ 3g(θaAX,Y )φξa − 3ηa(φY )θaAX − 2ηa(φAX)θaY } = 0.

By the preceding equation and the Codazzi equation, we have

(Xα)AY − (Y α)AX − η(AY )
{

(∇XA)ξ +AφAX
}

+ η(AX)
{

(∇YA)ξ +AφAY
}

+ c
{
η(X)(φAY + αφY )− η(Y )(φAX + αφX)− 4η⊥(φY )AX + 4η⊥(φX)AY

}
+ 2g(c(φ+ φ⊥)X −AφAX, Y )Aξ − cg(2αφX + (φA+Aφ)X,Y )ξ

+ c

3∑
a=1

{
ηa(X)(φaAY + αφaY )− ηa(Y )(φaAX + αφaX)

− αηa(φY )θaX + αηa(φX)θaY − 3ηa(φY )θaAX + 3ηa(φX)θaAY
+ 2ηa(φAY )θaX − 2ηa(φAX)θaY − 2ηa(X)ηa(φY )Aξ + 2ηa(Y )ηa(φX)Aξ
− g(2αφaX + (φaA+Aφa)X,Y )ξa + 3g((θaA−Aθa)X,Y )φξa

}
= 0

(3.2)

for any X,Y ∈ TxM . By putting X,Y ∈ F in (3.2), we have

(Xα)AY − (Y α)AX
+ 2g(c(φ+ φ⊥)X −AφAX, Y )Aξ − cg(2αφX + (φA+Aφ)X,Y )ξ

+ c

3∑
a=1

{
− g(2αφaX + (φaA+Aφa)X,Y )ξa + 3g((θaA−Aθa)X,Y )φξa

}
= 0.
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Since the first two terms are in H and the remaining are in H⊥, we have
2g(c(φ+ φ⊥)X −AφAX, Y )Aξ − cg(2αφX + (φA+Aφ)X,Y )ξ

+ c

3∑
a=1
{−g(2αφaX + (φaA+Aφa)X,Y )ξa

+ 3g((θaA−Aθa)X,Y )φξa} = 0

(3.3)

for any X,Y ∈ F . For any ε ∈ {1,−1}, we can further deduce from (3.3) that

0 = 2g(φX, Y ){c(1− ε‖ξ⊥‖)− λ2
ε}Aξ + g(φX, Y )c(2α+ 2λε)

{
−ξ + ε

‖ξ⊥‖
ξ⊥
}

= g(φX, Y )(α+ λε)
{
−λεAξ − c

(
ξ − ε

‖ξ⊥‖
ξ⊥
)}

(3.4)

for any X,Y ∈ F(ε); and

0 =
3∑
a=1
{−(2α+ λε + λ−ε)g(φaX,Y )ξa + 3(λε − λ−ε)g(θaX,Y )φξa} (3.5)

for any X ∈ F(ε) and Y ∈ F(−ε).

Claim 3.2. dimH ≥ 8.

Proof. Suppose dimH = 4. Since dimM = 4m − 1 ≥ 11, we have ξ /∈ D⊥ or
0 < ‖ξ⊥‖ < 1. Take a unit vector V ∈ F(1) such that H(1) = RV ⊕ Rφ1V and
H(−1) = Rφ2V ⊕ Rφ3V .

Substituting X = V and Y = φ2V in (3.5), we obtain
0 = −(2α+ λ1 + λ−1)ξ2 − 3(λ1 − λ−1)φξ3

for any Y ∈ F(1). Since {ξa, φξa}a∈{1,2,3} is linearly independent, −2cα−1‖ξ⊥‖ =
λ1 − λ−1 = 0, a contradiction. Hence, the claim is obtained. �

According to Claim 3.2, there exists X ∈ F(ε) such that X ⊥ φAξ. Taking such
a vector X and Y = φX in (3.4), we obtain

(α+ λε)
{
λεAξ + c

(
ξ − ε

‖ξ⊥‖
ξ⊥
)}

= 0 (3.6)

for any ε ∈ {1,−1}.

Claim 3.3. ‖ξ⊥‖ = 1 on M .

Proof. Suppose 0 < ‖ξ⊥‖ < 1 on the open subset G of M . It is clear that α + λ1
and α+ λ−1 cannot be both zero as λ1− λ−1 = −2cα−1‖ξ⊥‖ 6= 0. Fix ε ∈ {1,−1}
such that α+ λε 6= 0. It follows from (3.6) that

λεAξ + c

(
ξ − ε

‖ξ⊥‖
ξ⊥
)

= 0.

This implies that Aξ ⊥ H, so F(1) = H(1) and F (−1) = H(−1). Taking X ∈ H(1)
and Y = φ2X in (3.5), we can obtain a contradiction by using a similar method as
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in the proof of Claim 3.2. Hence, ‖ξ⊥‖ = 1 at the point x. By the connectedness
of M and the continuity of ‖ξ⊥‖, we conclude that ‖ξ⊥‖ = 1 on M . �

Since ‖ξ⊥‖ = 1 on M or ξ ∈ D⊥ everywhere, we have λ1 = 0 and λ−1 = −2c/α
(= λ, for simplicity). Moreover, we have

−
3∑
a=1

ηa(φY )φξ1 =
3∑
a=1

ηa(Y )ξa − η(Y )ξ. (3.7)

It follows from (3.1) and (3.7) that

αAY − η(AY )Aξ + c{Y − 4η(Y )ξ − θY }+ 2c
3∑
a=1

ηa(Y )ξa = 0. (3.8)

On the other hand, we have
3∑
a=1
{g(Y,∇Xφξa)φξa − ηa(φY )∇Xφξa}

=
3∑
a=1
{g(Y,∇Xξa)ξa + ηa(Y )∇Xξa} − g(Y,∇Xξ)ξ − η(Y )∇Xξ.

By using (2.1), we have
3∑
a=1
{g(Y, θaAX)φξa − ηa(φY )θaAX}

=
3∑
a=1
{g(Y, φaAX)ξa + ηa(Y )φaAX} − g(Y, φAX)ξ − η(Y )φAX.

(3.9)

Claim 3.4. λAξ + 2cξ 6= 0.

Proof. Suppose λAξ + 2cξ = 0. Then Aξ = αξ and αλ + 2c = 0. It follows from
(3.8) that

AY = − c
α

(Y − θY ) + α2 + 4c
α

η(Y ) ξ − 2c
α

3∑
a=1

ηa(Y ) ξa.

By [12, Theorem 6.1], we obtain

α2 + 4c = 0 (3.10)

and so c < 0. Furthermore, we have either
−c
α

=
√
−2c tanh(

√
−2cr)

2 ,
−2c
α

=
√
−2c coth(

√
−2cr), r > 0

or
−c
α

=
√
−2c
2 ,

−2c
α

=
√
−2c.

However, both cases contradict (3.10). Accordingly, we obtain the claim. �
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By using Claim 3.4, (3.6) and (3.8), there exists a unit vector field U tangent to
H(−1)⊕ (D⊥ 	 Rξ) and functions τ , β (β 6= 0) on M such that

Aξ = αξ + βU

AU = βξ + τU

AY = λY (Y ∈ F(−1))
AX = 0 (X ∈ H(1))
ατ + α2 = β2

λ+ α = 0, α2 = 2c.


(3.11)

By using (3.9) and (3.11), (3.2) is simplified as

− η(AY )
{
αφAX + (Xβ)U + β∇XU

}
+ η(AX)

{
αφAY + (Y β)U + β∇Y U

}
+ c
{
η(X)(4φAY + αφY )− η(Y )(4φAX + αφX)

}
+ 2g(c(φ+ φ⊥)X −AφAX, Y )Aξ − cg(2αφX + 4(φA+Aφ)X,Y )ξ

+ c

3∑
a=1

{
ηa(X)(−2φaAY + αφaY )− ηa(Y )(−2φaAX + αφaX)

− αηa(φY )θaX + αηa(φX)θaY + 2ηa(φAY )θaX − 2ηa(φAX)θaY
− 2ηa(X)ηa(φY )Aξ + 2ηa(Y )ηa(φX)Aξ
+ g(−2αφaX + (φaA+Aφa)X,Y )ξa

}
= 0.

(3.12)

On the other hand, by the Codazzi equation, we obtain

cg((φ+ φ⊥)Y, Z)− 2c
3∑
a=1

ηa(Y )ηa(φZ) = g((∇ξA)Y − (∇YA)ξ, Z). (3.13)

Substituting Z = ξ in (3.13) gives

(ξβ)g(U, Y ) + βg(∇ξU, Y ) + 4βαg(φU, Y ).

Letting Y = U in the preceding equation gives

ξβ = 0 (3.14)
∇ξU + 4αφU = 0 (3.15)

Next, with the help of (3.11), after putting Y ∈ H(1) and Z = U in (3.13) gives

Y β = 0 (3.16)

for any Y ∈ H(1). By putting X = ξ and Y ⊥ ξ in (3.12), we have

Y β + (α2 + 2β2)g(Y, φU) + 3cg(Y, φU − φ⊥U) +
3∑
a=1
{−2αηa(φAY )ηa(U)

− αβg(φaY,U)ηa(U)− αβg(θaY, U)ηa(φU)− 2cαηa(U)ηa(φU)} = 0
(3.17)
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for any Y ⊥ ξ. In particular, for Y ∈ H(1), with the help of (3.16) we obtain

0 = −
3∑
a=1
{g(φaY,U)ηa(U)− g(θaY,U)ηa(φU)} = 2

3∑
a=1

ηa(U)g(φaU, Y )

for any Y ∈ H(1).
Denote by U− the H(−1)-component of U . If U is tangent to D⊥ on an open

subset G of M . Then for each x ∈ G, F(−1) = H(−1) and so AD⊥ ⊂ D⊥. By
virtue of [12, Theorem 3.6], ξ is principal on G. This contradicts Claim 3.4. Hence,
we assume that U− 6= 0. By putting Y = φbU

−, b ∈ {2, 3} in the preceding
equation, we obtain η2(U) = η3(U) = 0. Consequently, U = U− ∈ H(−1) and
φU = φ⊥U . These, together with (3.14) and (3.17), give

Y β = −(α2 + 2β2)g(Y, φU)

for any vector field Y tangent to M . It follows that

(XY −∇XY )β = (α2 + 2β2){4βg(X,φU)g(Y, φU)− g(Y,∇XφU)}.

Hence
g(Y,∇XφU)− g(X,∇Y U) = 0.

By virtue of (3.11) and (3.15), after substituting X = ξ and Y = U in the preceding
equation we get 4α+ τ = 0. But then β2 = ατ +α2 = −3α2, a contradiction. This
completes the proof.
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