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REAL HYPERSURFACES IN COMPLEX GRASSMANNIANS OF
RANK TWO WITH SEMI-PARALLEL STRUCTURE
JACOBI OPERATOR

AVIK DE, TEE-HOW LOO, AND CHANGHWA WOO

ABSTRACT. We prove that there does not exist any real hypersurface in com-
plex Grassmannians of rank two with semi-parallel structure Jacobi operator.
With this result, the non-existence of real hypersurfaces in complex Grass-
mannians of rank two with recurrent structure Jacobi operator is proved.

1. INTRODUCTION

Let M ™(c) be the compact complex Grassmannian SUp,+2/S(UsU,,) of rank two
(resp. noncompact complex Grassmannian SUs ., /S(UaUs,) of rank two) for ¢ > 0
(resp. ¢ < 0), where ¢ = max || K||/8 is a scaling factor for the Riemannian metric
g and K is the sectional curvature for N ™(c). It is an irreducible Riemannian
symmetric space equipped with a Kéhler structure J and a quaternionic Kéahler
structure J not containing J.

Let M be a connected, oriented real hypersurface isometrically immersed in
Z\Zm(c)7 m > 2, and N be a unit normal vector field on M. Denote by the same
g the Riemannian metric on M. The Reeb vector field ¢ is defined by £ = —JN,
and we define §, = —J,N, a € {1,2,3}, where {J1, Jo, J3} is a canonical local
basis of J. Denote by D+ (resp. ®1) the distribution on M spanned by ¢ (resp.
{&1,£2,&3}). A real hypersurface M in a Kédhler manifold is said to be Hopf if the
Reeb vector field is principal, that is, A = af.

The study of real hypersurfaces in M ™(c) was initiated by Berndt and Suh in
[T, 2]. They considered the invariance of ®* under the shape operator A of Hopf
hypersurfaces M in M ™(¢) and proved a classification of such Hopf hypersurfaces
in M™(c).

The structures J and J of the ambient space impose several restrictions on
the geometry of its real hypersurfaces; for example, there does not exist any semi-
parallel real hypersurface in SU,,2/S(U2U,,) [13], while the non-existence problem
of Hopf hypersurfaces in M™ (c) with parallel Ricci tensor was studied in [15} [16].
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Besides the shape operator and the Ricci tensor, there are particularly two
operators on a real hypersurface M which draw much attention, namely the normal
Jacobi operator Ry and the structure Jacobi operator R;. Denote by R and R
the curvature tensor on M ™(¢) and that induced on M, respectively. We define
Ry(X) = R(X,N)N and R¢(X) = R(X, €)¢ for any vector field X tangent to M.

A (1, s)-tensor field P is said to be semi-parallel if R- P = 0, where the curvature
tensor R acts on P as a derivation. More precisely,

(R(X7Y) .P)(le'“aXS)
— R(X,Y)P(X1,...,X,) — iP(Xl,...,R(X, V)X, .., X,).

The tensor field P is said to be recurrent if there exists a 1-form w on M such that
(VxP) (X1, o, Xo) = w(X)P(X1, .., Xo).

Clearly, a vanishing w leads to parallelism of P.

Recently, we proved the non-existence of real hypersurfaces in SU,,,12/S5(UxU,, ),
m > 3, with pseudo-parallel normal Jacobi operator [5]. On the other hand, related
to the structure Jacobi operator R¢, Jeong et al. proved that there does not exist
any Hopf hypersurface in SU,,42/S(UsU,,), m > 3, with parallel structure Ja-
cobi operator [I0]. Also, the non-existence of Hopf hypersurfaces with D--parallel
structure Jacobi operator is obtained under certain conditions [9]. Jeong et al.
considered Reeb-parallel structure Jacobi operator and proved the following;:

Theorem 1.1 ([8]). Let M be a Hopf hypersurface in SUp12/S(U2Up,), m > 3,
with Reeb parallel structure Jacobi operator. If the principal curvature of the
Reeb wvector field & on M is non-vanishing and constant along the direction of
the Reeb vector field &, then M is an open part of a tube around a totally geodesic

SUpm+1/S(UsUp—1) in SUpg2/S(UUy,) with radius r € (0, 4”%) U (4”%, %)

We say that a real hypersurface M has commuting structure Jacobi operator
if it commutes with any other Jacobi operator defined on M, that is, R¢ - Rx =
Rx - R¢ for any X tangent to M. Machado et al. proved the non-existence of Hopf
real hypersurfaces in SU,,12/S(UsUy,), m > 3, with commuting structure Jacobi
operator under certain conditions [I4]. They also classified real hypersurfaces in
SUp+2/S(UsUy,), m > 3, with Ry - Re = Re - Ry. In [11], Jeong et al. proved the
following:

Theorem 1.2 ([I1]). There does not exist any Hopf hypersurface in SUp,12/S(U2U,,),
m > 3, with recurrent structure Jacobi operator if the distribution ® or ®*-
component of the Reeb vector field is invariant under the shape operator.

On the other hand, under certain restrictions, Hwang et al. obtained the follow-
ing non-existence result.

Theorem 1.3 ([6]). There does not exist any Hopf hypersurface in SUp,42/S(U2Uy,),
m > 3, with semi-parallel structure Jacobi operator if the smooth function o =
g(AE, &) is constant along the direction of &.
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Motivated from the above studies, a natural question arises:

Problem 1.1. Does there exist a real hypersurface in Mm(c) with parallel, recur-
rent or semi-parallel structure Jacobi operator?

In the present paper we first prove the following:

Theorem 1.4. There does not exist any connected real hypersurface in Mm(c),
m > 3, with semi-parallel structure Jacobi operator.

The non-existence of real hypersurfaces with semi-parallel structure Jacobi op-
erator in a non flat complex space form has been proved in [3] [7]. We also remark
that Theorem holds for non-Hopf real hypersurfaces as well and no further con-
ditions are imposed. By a result in [4], we learn that if a tensor field is recurrent,
it is always semi-parallel. Hence, as a corollary we obtain the following:

Corollary 1.1. There does not exist any real hypersurface in Mm(c), m > 3, with
parallel or recurrent structure Jacobi operator.

2. PRELIMINARIES

In this section, we recall some fundamental identities for real hypersurfaces in
complex Grassmannians of rank two, which have been proven in [IJ, 2] 12} [T3].

Let M be a connected, oriented real hypersurface isometrically immersed in
M™(c), m > 3. The almost contact metric 3-structure (¢q, q,Ma,g) on M is given
by

JaX:¢aX+77a(X)N7 Jaszgaa na(X):g(Xaﬁa)a
for any X € TM, where {Jy,J5, J3} is a canonical local basis of J on M™(c). It
follows that
PaPat1 — Ea @ Nat1 = Pat2
Paat+1 = Cat2 = —Pat18a

for a € {1,2,3}. The indices in the preceding equations are taken modulo three.
The Kéhler structure J induces on M an almost contact metric structure (¢, &,

7,9), namely,
JX =X +n(X)N, JN=-¢ n(X)=yg(X,§).
Let ®1 = JT M+, and ® its orthogonal complement in 7M. We define a local
(1,1)-tensor field 6, on M by
Oa := Ga® — Ea @ 1.

Denote by V the Levi-Civita connection on M. Then there exist local 1-forms ¢,,
a € {1,2,3}, such that

Vx&=9AX
Vx€a = ¢aAX + qar2(X)at1 = Gat1(X)Eat2 (2.1)
Vx¢€a = 06AX +14(§) AX + qat2(X)Par1 — qat1(X)PEarta.

The following identities are known.
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Lemma 2.1 ([12]).
(a) 0, is symmetric,
) ¢€a = d)ag;
) 9(15 = _ga» eaga = _57 ea(bga = 77(5a)¢§a;
) HafaJrl = @lat2 = _9a+1§a7
e) —badat1 +M(Eat1)P€a = ot = bar10€ — N(Ea)PEat1-

Lemma 2.2 ([12]). If £ € D everywhere, then A¢¢, =0 for a € {1,2,3}.

(b
(c
(d
(

For each & € M, we define a subspace H+ of T, M by

HL = Span{§7 617 527 637 ¢§17 ¢§27 ¢€3}

Let H be the orthogonal complement of H+ in T, M. Then dim H = 4m — 4 (resp.
dimH = 4m—8) when ¢ € D+ (resp. £ ¢ D). Moreover, 0, has two eigenvalues:
1 and —1. Denote by H,(¢) the eigenspace corresponding to the eigenvalue e of
Oajp- Then dimH,(1) = dim Hy(—1) is even, and

dHa(e) = daHa(e) = 0. Ha(e) = Hale)

o Ha(e) = OHal(e) = Ho(—€), (a #Db).

We define the tensor fields 6, ¢+, ¢+, and n' on M as follows:

3 3 3 3
0:=> 0a(&0a, ¢ = na(ar & =D na(Oar 1= 0al&)a-
a=1 a=1 a=1 a=1

Then for each x € M with £+ # 0, 63 has two eigenvalues e[|¢*||, e € {1, —1}.
Let H(c) be the eigenspace of 63 corresponding to ¢[|{*||. Then

(a) ¢H(e) = o= H(e) = Hle),

(b) dimH(1) = dim H(—1) is even.
Moreover, we can take a canonical local basis of J on a neighborhood G C M of
such a point x such that

1
&zéL,0<m@:MW<L m(€) = ms(€) = 0

H(e) =Hi(e), 0=m (b, ¢ =mEe1, nt=m(Em.

In particular, if [|¢+] = 1 at @, then

Gi=E=¢, & =06 =98, & =08=—¢b.

Throughout this paper, we always consider such a local orthonormal frame {£1, €2, &3}
on ®+ under these situations.
A straightforward calculation gives

3
(Vx0)Y =1 (9Y)AX — g(AX,Y )¢ +2)  na(9AX)0,Y. (2.2)

a=1
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The equations of Gauss and Codazzi are respectively given by
R(X,Y)Z =g(AY, 2)AX — g(AX, Z2)AY + {g(Y, 2)X — g(X, 2)Y
+9(8Y, Z)¢ X — g(¢X, Z)9Y — 29(6X,Y)9Z}
3
+¢Y {9(6aY. 2)6aX — g($aX, Z)$aY — 29(6aX,Y)$aZ

a=1

+ g(an7 Z)eaX - g(eaXv Z)aay}a
(VxA)Y = (Vy A)X = c{n(X)9Y —n(Y)¢X —29(¢X,Y)E}

3
) {1a(X)daY = 1a(YV)paX — 29(6aX,Y)E,
a=1

+10a(¢X)0,Y — 14 (9Y )0 X }.
As M is a real hypersurface in M ™(c), by the Gauss equation we have

ReX = aAY —n(AY)AE + c{X —n(X)¢ - 0X}

3
(2.3)
— e {1a(X)&a + 300 (6 X)pEa}-
a=1
We end this section with the following general result.

Theorem 2.1. Let M be an almost contact metric manifold. The structure Jacobi
operator R¢ is semi-parallel if and only if R¢ = 0.

Proof. Suppose the structure Jacobi operator is semi-parallel. Then
R(X,Y)ReZ — ReR(X,Y)Z = (R(X,Y) - Re)Z =0
for any X,Y,Z € TM. In particular, for Y = Z = £, we obtain R?X = 0. Since
R is self-adjoint, B¢ = 0. The converse is trivial. O
3. PROOF OF THEOREM [L.4]

By virtue of Theorem [23] it suffices to show that the structure Jacobi operator
cannot be identically zero. Suppose to the contrary that R = 0. Then by (2.3)),
we have

aAY —n(AY)AE + Y —n(Y)E — 6Y'}
3 (3.1)
=D (Y )a + (0¥ )66, } = 0.
a=1
Claim 3.1. £ ¢ © on an open dense subset of M.

Proof. Suppose £ € ® on an open subset G of M. For each z € G, we have
0 = 0. It follows from Lemma that ¢&; = 0 after putting Y = ¢&; in (3.1), a
contradiction. Hence we obtain the claim. (]
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Consider a point x € M on which £ ¢ © on a neighborhood G of z in M. We
define subspaces F, F(1) and F(—1) of T, M by

F={XeH:nAX)=0}, FQ)=FnH(1), F(-1)=FnH(-1).
It is clear that
AY = \.Y, aX+c(l—cl¢t])=0
for any Y € F(g) and € € {1,—1}. By (3.1, we have
(X)AY + a(VxA)Y —n(AY){(VxA)E + AV}
—{9(VxAY, &) + g(AY, VxE) AL + c{—g(VxEY) = n(Y)VxE — (Vx0)Y'}

3
— Y {9(Vx€a, V) + 0a(Y)Vx&a — 39(Vxa, Y)dEa + 30a(¢Y)Vxdla} = 0
a=1

for any X, Y € T, M. By using and , the preceding equation becomes
(Xa)AY + a(VxA)Y — n(AY){(VXA)E + Ad)AX}
+e{=g(pAX,Y) = n(Y)PAX +4g(AX,Y)pe" — dn* (¢Y)AX}

+c i{—g(%AX Y —na(Y)daAX
g0 AX. Y )06 — 3 (V)0 AX — 2 (GAX)OY} — 0.
By the preceding equation and the Codazzi equation, we have
(Xa)AY — (Ya)AX —n(AY){(VxA)¢ + ApAX } 4+ n(AX){(Vy A)E + ApAY }
+ e{n(X)(PAY + agY) — n(Y)(AX + apX) — dnt (¢Y)AX + dn'* (¢ X)AY '}
+2g(c(¢p + ¢H)X — APAX,Y)AE — cg(200X + (pA + Ap) X, Y)E

3
> {na(X)(GaAY + a¢aY) = 1a(Y)(¢aAX + agaX) (3.2)

- ana(QSY)GaX + ana(¢X)0aY - 377& (¢Y)0aAX + 377a(¢X)9aAY
+ 2na(¢AY)9aX - 277a(¢AX)0aY - 2na(X)"7a(¢Y)A£ + Qna(y)na(¢X)A£
— 9(2000X + (¢aA + Ada) X, Y )E0 + 39((0aA — ABy) X, Y )pEa} = 0

for any X, Y € T, M. By putting X,Y € F in (3.2)), we have
(Xa)AY — (Ya)AX
+2g(c(¢p 4+ ¢1)X — APAX,Y)AE — cg(2a0X + (pA+ Ap)X,Y)E

3
e {—920¢uX + (paA+ Apa)X,Y )0 + 39((0aA — ADL)X,Y )l } = 0.

a=1
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Since the first two terms are in # and the remaining are in H+, we have

2g(c(¢+ ¢1)X — APAX,Y) AL — cg(200X + (pA+ AP)X,Y )¢
3
+e) {-9(200.X + (A + Aga) X, Y )éa (3.3)

a=1

+ 39((61114 - Aea)Xa Y)¢§a} =0
for any X,Y € F. For any € € {1, —1}, we can further deduce from ([3.3) that

0= 20(6X, ¥ ){ell - <) — MPAE + 90X, Vetza+ 20 { ¢+ 15t

= g(6X,Y)(a+ \) {—AsAg —c (s -7 ;HH)} (3.4)

for any X,Y € F(e); and

3
0= {~(20+ A +A_)g(¢aX, V) + 3(Ae — A_o)g(0.X.Y)o&}  (3.5)

a=1

for any X € F(e) and Y € F(—¢).
Claim 3.2. dimH > 8.

Proof. Suppose dimH = 4. Since dimM = 4m — 1 > 11, we have £ ¢ D+ or
0 < [|€+]] < 1. Take a unit vector V € F(1) such that H(1) = RV @ R¢1V and
H(—1) = RV @ RepsV.

Substituting X =V and Y = ¢oV in , we obtain

0=—2a+ M+ A1) —3(M — A_1)ds

for any Y € F(1). Since {4, #a taeq1,2,3} is linearly independent, —2ca |t =
A1 — A1 =0, a contradiction. Hence, the claim is obtained. O

According to Claim there exists X € F(e) such that X 1 ¢A¢. Taking such
a vector X and Y = ¢X in (3.4, we obtain

CEDW {/\EAE—FC(f— ”;”&)} —0 (3.6)

for any € € {1, —1}.
Claim 3.3. (Y] =1 on M.

Proof. Suppose 0 < ||¢1]| < 1 on the open subset G of M. It is clear that o + \;
and a4+ A_; cannot be both zero as \; —A_; = —2ca~!||¢1]| # 0. Fix e € {1, -1}
such that o + Az # 0. It follows from (3.6]) that

AAE £ ¢ <§ - ”;”&) —0.

This implies that A L H, so F(1) = H(1) and F(—1) = H(—1). Taking X € H(1)
and Y = ¢ X in (3.5, we can obtain a contradiction by using a similar method as
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in the proof of Claim Hence, ||¢+]| = 1 at the point . By the connectedness
of M and the continuity of ||¢1]|, we conclude that ||€1] =1 on M. O

Since ||€1]| =1 on M or £ € D+ everywhere, we have A\; = 0 and A\_; = —2¢/«
(= A, for simplicity). Moreover, we have

- Zna PY )€1 = Zna €a —n(YV)E. (3.7)
It follows from (3.1]) and ( . that
3
aAY — n(AY)AE +c{Y —An(Y)E — 0V} +2¢ > na(Y)& =0.  (3.8)

a=1

On the other hand, we have

3
> {9(Y, Vxdta)pba — na(Y)Vx $a}
a=1

3
= {9V, Vx€a)ba +1a(Y)VxEa} — g(Y, VxE)E — n(Y)VE.
a=1
By using , we have

3
> {9V 0.AX)¢€0 — na(6Y )0, AX}
o=t (3.9)

9(Y, 0aAX)Ea + 1a(Y)pa AX} — g(V, 9AX)E — n(Y)pAX.

“M“

Claim 3.4. )\Af +2¢€ # 0.
Proof. Suppose AAE + 2¢£ = 0. Then A¢ = af and a\ + 2¢ = 0. It follows from

(3.8) that

c a2—|—4c
AY = ——(Y - 0Y - —
S —0Y) + — Y)¢ E Na(Y

By [12, Theorem 6.1], we obtain
a®+4c=0 (3.10)

and so ¢ < 0. Furthermore, we have either

— v —2ctanh(y/—2 -2
- c an2( CT), =y —2ccoth(v/—2cr), r>0
« @
or
= _20, ;26 =V —2c.
«a 2 o
However, both cases contradict (3.10]). Accordingly, we obtain the claim. O
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By using Claim (3.6) and (3.8)), there exists a unit vector field U tangent to
H(—1) @ (DL ©RE) and functions 7, 8 (B # 0) on M such that

A =al+ BU

AU = B€ +7U

AY = )Y (Y € F(-1))
AX =0 (X € H(1))

ar +ao? =52

(3.11)

Aa=0, o®=2c.
By using and (3.11)), is simplified as
—n(AY){apAX + (XB)U + BV xU} + n(AX){apAY + (YB)U + BVyU}
+ c{n(X)(40AY + agY) — n(Y)(40AX + apX)}
+2g(c(¢p + ¢H)X — APAX,Y) AE — cg(200X + 4(pA + AP)X,Y)E

3
> {na(X) (=204 AY + agaY) = na(Y)(—20aAX + 0 X) (3.12)
a=1

- ana(qu)HaX + 047]a(¢X)9aY + Qna(d)AY)eaX - 277a(¢AX)9aY
= 200 (X)1a (Y ) AE + 210 (Y )na (6X) AE
+ 9(—200, X + (oA + Ada) X, Y )&} = 0.

On the other hand, by the Codazzi equation, we obtain

3
cg((0+ )Y, 2) = 20> 0a(Y)na(6Z) = g(VeA)Y — (VyA)E, Z).  (3.13)

a=1

Substituting Z = ¢ in gives
(€R)g(U.Y) + Bg(VeU,Y) + 4Bag(oU,Y).

Letting Y = U in the preceding equation gives

=0 (3.14)
VeU +4dagU =0 (3.15)

Next, with the help of (3.11)), after putting Y € H(1) and Z = U in (3.13)) gives
YB3=0 (3.16)

for any Y € H(1). By putting X =& and Y L £ in (3.12)), we have

3
YB+ (o +26%)g(Y,0U) + 3eg(Y, ¢U — ¢7U) + Y _{—2ama(¢AY )1a(U)

a=1

—afg(9aY,U)na(U) — aBg(0aY, U)na(dU) — 2cana(U)n.(¢U)} = 0

(3.17)
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for any Y L &. In particular, for Y € H(1), with the help of (3.16) we obtain
3

3
0=— {9(6aY, U)na(U) — g(0.Y,U)na(0U)} = 2> 0a(U)g(¢aU, Y)

a=1 a=1

for any Y € H(1).

Denote by U~ the H(—1)-component of U. If U is tangent to ®* on an open
subset G of M. Then for each z € G, F(—1) = H(—1) and so AD+ C D+. By
virtue of [I2, Theorem 3.6], £ is principal on G. This contradicts Claim Hence,
we assume that U~ # 0. By putting Y = ¢,U~, b € {2,3} in the preceding
equation, we obtain 72(U) = n3(U) = 0. Consequently, U = U~ € H(—1) and
¢U = ¢+ U. These, together with and , give

Y3 =—(a®+26%)g(Y,¢U)
for any vector field Y tangent to M. It follows that
(XY = VxY)B = (o +26%){489(X, oU)g(Y, ¢U) — g(Y, VxdU)}.

Hence

By virtue of (3.11]) and (3.15)), after substituting X = £ and Y = U in the preceding
equation we get 4a+7 = 0. But then 32 = ar +a? = —3a?2, a contradiction. This
completes the proof.
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