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ON CLASSES OF FINITE RINGS

ALEKSANDR TSAREV

Abstract. A class of rings is a formation whenever it contains all homomor-
phic images of its members and if it is subdirect product closed. In the present
paper, it is shown that the lattice of all formations of finite rings is algebraic
and modular. Let R be a finite commutative ring with an identity element. It
is established that there is a one-to-one correspondence between the set of all
invariant fuzzy prime ideals of R and the set of all fuzzy prime ideals of each
ring of the formation generated by R.

1. Introduction

The concept of formation first appeared in the 1960s in connection with finite
solvable groups [13]. Further research showed that formations are of general al-
gebraic nature and can be applied to the study of not necessarily solvable finite
and infinite groups, Lie algebras, universal algebras and even of a general algebraic
system [20]. A well-known result in group theory states that any formation of
finite groups is saturated iff it is local (see Theorem 4.6 in the book [12]). In con-
trast to the group case, not every saturated formation of Lie and Leibniz algebras,
rings, etc. can be locally defined. However, these formations have found various
applications. Consider some examples.

Example 1.1 (Formations of monoids). There is a bijective correspondence
between formations of finite monoids and the formations of languages. This re-
sult enables to study classes of regular languages which do not form varieties of
languages [2]. Theorem 6 of the paper [3] confirms the existence of a bijective cor-
respondence between formations of monoids and formations of congruences. This
result does not require finiteness on monoids nor finite-index conditions on congru-
ences. Languages associated with saturated formations of groups are described in
[4], and in [22] it was shown that the mentioned result is applicable to the languages
corresponding to τ -closed saturated formations of finite groups.
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Example 1.2 (Formations of monounary algebras). The lattice of all for-
mations of finite monounary algebras is isomorphic to the lattice of all hereditary
subsets of a certain poset [16]. The lattice of all formations of finite monounary
algebras is distributive, but for the lattice of formations of at most countable mo-
nounary algebras this is not true; see [19].

Example 1.3 (Formations of lattice ordered groups). Jakubík [15] proved
that the set of all formations of lattice ordered groups is a complete Brouwerian
lattice, and the set of all formations of GMV-algebras is isomorphic to a principal
ideal of the lattice of all formations of lattice ordered groups.

Example 1.4 (Formations of solvable Lie and Leibniz algebras). The theory
of saturated formations of solvable Lie algebras is set out in Barnes and Gastineau-
Hills [5], and Barnes [6]. Over a field of nonzero characteristic, a saturated forma-
tion of solvable Lie algebras has at most one local definition, but a locally defined
saturated formation of solvable Leibniz algebras other than that of nilpotent alge-
bras has more than one local definition [7].

Example 1.5 (Formations of multirings). Christensen [10] showed that there
exist Frattini closed formations of finite rings that are not local. Shemetkov [20]
introduced the concept of formations of multirings, a special case of which is forma-
tions of finite rings. In the book [20] we can find various examples of applications
of these formations, as well as discussion of related problems.

Question [20, Problem 3.51]. Is it true that any one-generated n-multiply local
formation of rings has only a finite set of n-multiply local subformations?

Problem [20, Problem 22.8]. Describe finite non-one-generated formations of rings
for which all proper subformations are one-generated.

This short review gives the motivation to study formations of finite rings.

2. Statement of the result

Formations of finite rings were first introduced in [10] in order to obtain an
analog of Lubeseder’s theorem. We prove the following theorem.

Theorem 2.1. The lattice of all formations of finite rings is algebraic and modular.

An analogous result is already known for formations of finite groups [23, 21].
However, several ideas from the theory of formations of finite groups are of a
universal nature, and can be used in the investigations of various algebraic systems.
The term formation used in the theorem has a natural definition analogous to that
used in group theory (see Chapter II of the book [12]).

A ring theoretical class or class of rings X is a set of rings with the property that
if R ∈ X, then every ring isomorphic to R belongs to X. We refer to a class of rings
as a homomorph whenever it contains all homomorphic images of its members and
as a formation if in addition it is subdirect product closed; i.e., a formation is a
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class of finite rings F which is both q-closed and r0-closed in the sense of [20] or
[12, 1, 9].

The smallest formation of finite rings containing a class of finite rings X is qr0 X,
composed of all rings that can be expressed as quotients of subdirect products of
a finite number of rings in X. When X = (R) consists only of the rings isomor-
phic to R, we obtain that the smallest formation containing R is qr0(R); such a
formation is called one-generated. Hence a class of finite rings F is a formation iff
F = qr0 F.

In the scope of groups, formations generalize some notions as solvability, super-
solvability and nilpotency of groups. Let us consider an example for formations of
rings.

Example 2.2 (Locally defined formations of finite rings [10]). For any ring
R, the intersection Φ(R) of its maximal ideals, when such exist, is called the Frattini
subring of R. For finite rings Φ(R) is contained in the Jacobson radical J(R) of R.
We are concerned with classes of rings that contain a ring R whenever they contain
its Frattini factor ring R/Φ(R). Such classes are said to be Frattini closed.

One of the most elementary nontrivial examples of a Frattini closed formation of
rings is the class N of all finite nilpotent rings. This class can be described locally
in the sense that R ∈ N iff the minimal ideals of its factor rings R/K are trivial
left R-modules.

Following [10] we refer to the minimal ideals of the factor rings of a finite ring
R as chief factors of R. Since each chief factor has prime characteristic it can be
classified, according to which prime p is involved, as a p-chief factor. Denote for
any chief factor H/K of R its left annihilator {r | r ∈ R and rH ⊆ K} in R by
AR(H/K). Given a set of primes π and a function f with domain π whose images
are formations of finite rings, the class F of π-rings whose p-chief factors H/K have
the property

R/AR(H/K) ∈ f(p) for each p ∈ π
is a formation. Such a formation is called the local formation defined by the for-
mation function f with support π.

In view of the primary decomposition of finite rings, we see that for any p ∈ π,
the class Fp of p-rings in F is a formation and is defined locally by the formation
function fp with support {p} and image {f(p)}. The most elementary nontrivial
local formations are the formations Np of finite nilpotent p-rings in the sense that
they contain no proper local formations.

Problem. Describe algebraic and modular lattices of local formations of finite
rings.

3. Lattice theoretical preliminaries

Let Θ be a set of formations. A formation in Θ is called a Θ-formation. If the
intersection of every set of Θ-formations belongs to Θ and there is a Θ-formation
F such that M ⊆ F for every other Θ-formation M, then Θ is called a complete
lattice of formations. Any complete lattice of formations is a complete lattice in the
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ordinary sense. We note that ∅ and (0) are formations and the set of all formations
of finite rings is the complete lattice of formations.

Let Θ be a complete lattice of formations of finite rings. If M,H ∈ Θ, then
M ∩ H is the greatest lower bound for {M,H} in Θ; and qr0(M ∪ H) is the least
upper bound for {M,H} in Θ.

An element a of a lattice Θ is compact [8] if a 6 ∨(xj | j ∈ S) holds for
a 6 ∨(xj | j ∈ J) and some finite subset S ⊂ J . A complete lattice is called
algebraic if each element of it is the union (i.e., the least upper bound) of some set
of compact elements.

4. The proof

All rings considered are finite. The notation J / R means that J is an ideal of
a ring R, and we use the notation R/I for a quotient ring of R modulo I if I / R.
We observe that a class of rings F is a formation iff it satisfies the following two
conditions:

(1) if R ∈ F and J / R, then R/J ∈ F; and
(2) if R/I1, R/I2 ∈ F, then R/I1 ∩ I2 ∈ F for any I1, I2 /R.

Proof of Theorem 2.1. Step 1 (algebraicity). We show first that each one-
generated formation F = qr0(R) is a compact element in the lattice of all forma-
tions of rings.

Let F ⊆ qr0(
⋃

i∈I Fi), where {Fi | i ∈ I} is a set of formations. Then R ∈
qr0(

⋃
i∈I Fi). Hence R ' T/J , where J / T ∈ r0(∪i∈IFi). Then there are some

Jk/T (k = 1, . . . , r) such that T/Jk ∈ ∪i∈IFi and J1∩· · ·∩Jr = {0}. Consequently,
T/J1 ∈ Fi1 , . . . , T/Jr ∈ Fir

for some i1, . . . , ir ∈ I.
Thus for any k ∈ {1, . . . , r}, we have T/Jk ∈ Fi1 ∪ · · · ∪ Fir

. Therefore T ∈
r0(Fi1 ∪ · · · ∪ Fir ). From R ' T/J and J / T , we have R ∈ qr0(Fi1 ∪ · · · ∪ Fir ),
and then

F = qr0(R) ⊆ qr0(Fi1 ∪ · · · ∪ Fir
).

We show next that any nonempty formation of ringsM is the union (in the lattice
of all formations of rings) of its one-generated subformations Ml = qr0(Rl), where
l ∈ L. Let Y = qr0(∪l∈LMl). We show now that M = Y. Let R ∈M. Then

R ∈ qr0(R) ⊆
⋃
i∈L

Mi ⊆ qr0(
⋃
i∈L

Mi) = Y.

Consequently,M ⊆ Y. The inverse inclusion is obvious; Mi ⊆M implies ∪i∈LMi ⊆
M, and, consequently, Y ⊆M.

Step 2 (modularity). We wish to show that the following equality holds, for
any formations of rings X ⊆ Y and F:

Y ∩ qr0(X ∪ F) = qr0(X ∪ (Y ∩ F)).

The inclusion “⊇” is trivial. Let A ∈ Y∩qr0(X∪F). Then A is a homomorphic
image of some ring R ∈ r0(X ∪ F), and we can find some ideals J1 and J2 of the
ring R such that R/J1 ∈ X and R/J2 ∈ F with J1 ∩ J2 = {0}.
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Let A ∼= R/I, where I / R. It is well known that the set of all ideals of a ring
forms a complete modular lattice with respect to set inclusion. Thus, by modular
law, we have J1 ∩ ((J1 ∩ I) + J2) = (J1 ∩ I) + (J1 ∩ J2) = J1 ∩ I. We note that

(R/(J1 ∩ I))/(J1/(J1 ∩ I)) ∼= R/J1 ∈ X, and
(R/(J1 ∩ I))/((J1 ∩ I) + J2/(J1 ∩ I)) ∼= R/(J1 ∩ I) + J2 ∈ F.

Hence, R/(J1 ∩ I) ∈ r0(X ∪ F). From R/I ∈ Y and X ⊆ Y, we conclude that
R/(J1 ∩ I) ∈ Y.

Consequently, R/(J1 ∩ I) ∈ r0(X∪ (Y∩F)) implies A ∈ qr0(X∪ (Y∩F)). This
proves the theorem. �

Let F and H be formations such that H ⊆ F. We denote by F/H the lattice
of all formations M such that H ⊆ M ⊆ F. As an immediate corollary from the
modularity of the lattice of all formations of rings, we obtain the following result.

Corollary 4.1. For any two formations M and F the lattices qr0(M∪F)/M and
F/(F ∩M) are isomorphic.

5. Lattice features

Let F be a nonempty class of rings, and J / R. We say that J is the F-residual
of R if R/J ∈ F, and R/I ∈ F always implies J ⊆ I. If a ring R possesses the
F-residual then we denote it by RF =

⋂
{J / R | R/J ∈ F}. Let X be a class of

finite rings, and Y be a formation of finite rings. We define the formation product
of X and Y as follows:

XY = (R | RY ∈ X).

Proposition 5.1. Let X and Y be nonempty formations of finite rings. Then
(1) XY is a formation of finite rings;
(2) RXY = (RY)X for all finite rings R.

Proof. The proof of the assertion repeats the finite group case; see [12, p. 338]. �

Lemma 5.2. Let F1 and F2 be nonempty formations of rings and A ∈ qr0(F1∪F2).
Then there exist rings A1 ∈ F1 and A1 ∈ F1 such that

A ∈ qr0(qr0(A1) ∪ qr0(A2)).

Proof. We see that A ∼= R/J , where R ∈ r0(F1 ∪ F2). Then R possesses ideals J1,
. . . , Jt (t > 2) such that ∩t

i=1Ji = {0} and R/Ji ∈ F1 ∪ F2 for i = 1, . . . , t. We
note that RF1 ∩ RF2 = {0}. Hence R ∈ r0(R/RF1 , R/RF2). Set A1 = R/RF1 and
A2 = R/RF2 . We have finally
A ∼= R/J ∈ qr0(R/RF1 , R/RF2) = qr0(qr0(A1) ∪ qr0(A2)) ⊆ qr0(F1 ∪ F2).

�

The concept of a separated lattice of formations of finite groups was proposed
in the book [21]. We introduce a similar definition for formations of finite rings.
Let X be a nonempty class of rings. We say that a complete lattice of formations
Θ is X-separated if for
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• any term ξ(x1, . . . , xm) of signature {∩,qr0},
• any Θ-formations F1, . . . ,Fm, and
• any ring A ∈ X ∩ ξ(F1, . . . ,Fm),

there exist X-rings A1 ∈ F1, . . . , Am ∈ Fm such that A ∈ ξ(qr0(A1), . . . ,qr0(Am)).
Denote by R the class of all formations of finite rings.

Proposition 5.3. The lattice of all formations of finite rings formations is R-
separated.

Proof. Let ξ(x1, . . . , xm) be a term of signature {∩,qr0}, and F1, . . . ,Fm be for-
mations of rings. Suppose that A ∈ ξ(F1, . . . ,Fm).

We proceed by induction on the number r of occurences of the symbols in
{∩,qr0} into the term ξ. We show that there exist rings Ai ∈ Fi (i = 1, . . . ,m)
such that A ∈ ξ(qr0(A1), . . . ,qr0(Am)).

Let r = 0. It is clear that A ∈ qr0(A).
Let r = 1. Then we have only two cases: either A ∈ F1∩F2 or A ∈ qr0(F1∪F2).

In the first case, we have A ∈ qr0(A)∩qr0(A). In the second case, by Lemma 5.2,
there exist rings A1 ∈ F1 and A2 ∈ F2 such that A ∈ qr0(qr0(A1) ∪ qr0(A2)).
Thus, the assertion for r = 1 is true.

Let a term ξ have r > 1 occurrences of the symbols in {∩,qr0}. We suppose
that the assertion holds for terms with less than r occurrences. Assume that ξ is
of the form

ξ1(xi1 , . . . , xia
)4ξ2(xj1 , . . . , xjb

),

where 4 ∈ {∩,qr0} and {xi1 , . . . , xia
} ∪ {xj1 , . . . , xjb

} = {x1, . . . , xm}.
By H1 we denote the formation ξ1(Fi1 , . . . ,Fia

), and by H2 we denote the for-
mation ξ2(Fj1 , . . . ,Fjb

). There exist rings A1 ∈ H1 and A2 ∈ H2 such that

A ∈ qr0(A1)4qr0(A2).

On the other hand, by induction, there exist rings B1, . . . , Ba; C1, . . . , Cb such that
Bk ∈ Fik

, Ck ∈ Fjk
,

A1 ∈ ξ1(qr0(B1), . . . ,qr0(Ba)) and A2 ∈ ξ2(qr0(C1), . . . ,qr0(Cb)).

Suppose that xi1 , . . . , xit
are not contained in ξ2, and xit+1 , . . . , xia

are contained
in ξ2. Let Dik

= Bk if k < t+ 1, Dik
= Bk ×Cq, where q satisfies xik

= xjq for all
k > t+ 1k > t+ 1. Let Djk

= Ck if xjk
6∈ {xit+1 , . . . , xia}.

We denote by Tp the formation of rings qr0(Dip
), and by Xc we denote the

formation qr0(Djc
), p = 1, . . . , a; c = 1, . . . , b.

It follows that A1 ∈ ξ1(T1, . . . ,Ta), and A2 ∈ ξ2(X1, . . . ,Xb). There exist for-
mations H1, . . . ,Hm such that

A ∈ ξ1(Hi1 , . . . ,Hia)4ξ2(Hj1 , . . . ,Hjb
) = ξ(H1, . . . ,Hm),

where Hi = qr0(Ki), and Ki ∈ Fi. This proves the assertion. �
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6. Some applications

Fuzzy sets introduced by Zadeh [24] and Klaua [17] became applied in fields
such as pattern recognition, machine learning and data mining [14, 25]. Focusing
on the structure of ring, Liu [18] introduced and studied the notions of fuzzy
subrings and fuzzy ideals, and showed that the images and preimages under onto
homomorphisms of fuzzy ideals are fuzzy ideals. Many authors have developed the
fuzzy ring theory, but we see that not all the results on rings can be fuzzified. For
instance, Dixit, Kumar, and Ajmal [11] discussed the conditions under which a
given fuzzy ideal can or cannot be expressed as a union of two proper fuzzy ideals.

Recall that a fuzzy subset of a set X is a function from X into the closed interval
[0, 1]. Let X and X ′ be any two sets, and f : X → X ′ be any function. A fuzzy
subset µ of X is called f -invariant if f(x) = f(y) implies µ(x) = µ(y), where
x, y ∈ X.

Let ‘·’ be a binary composition in a set X, and µ and µ′ be any two fuzzy subsets
of X. The product µµ′ is defined by

µµ′(z) =


sup(min{µ(x), µ′(y)}), for x, y ∈ X and z = x · y;
0, if z is not expressible as z = x · y

for all x, y ∈ X.

Clearly, µµ′ is a fuzzy subset of X.
A fuzzy subset µ of a ring R is called a fuzzy ideal of R if it has the following

two properties:
(1) µ(x− y) > min{µ(x), µ(y)} for any x, y ∈ R; and
(2) µ(xy) > max{µ(x), µ(y)} for any x, y ∈ R.
In the sequel, by a ring we shall always mean a finite commutative ring with

identity. A fuzzy ideal µ of a ring R is called fuzzy prime if for any fuzzy ideals µ
and µ′ of R, the condition µµ′ ⊆ µ implies that either µ ⊆ µ′ or µ′ ⊆ µ.

We shall write formR instead of qr0(R) for the formation generated by R.

Lemma 6.1. Let R be a ring and F = formR. Then the following two conditions
hold:

(1) Any invariant fuzzy prime ideal of R corresponds in a natural way to a
fuzzy prime ideal of each member of F.

(2) Any fuzzy prime ideal of each member of F corresponds in a natural way
to a fuzzy prime ideal of R.

Proof. We note that the formation F consists of all quotients of subdirect products
of copies of R. Let f be any homomorphism from the ring R onto a ring A ∈ formR.
Then f(R) = A.

(1) Let µ be an f -invariant fuzzy prime ideal of R. Then by [11, Theorem 4.4],
f(µ) (see [11, Lemma 4.1]) is a fuzzy prime ideal of A.

(2) Let ν be a fuzzy prime ideal of A. Then f−1(ν) (see [11, Lemma 4.1]) is a
fuzzy prime ideal of R by [11, Theorem 4.5]. �

An immediate consequence of this lemma is the following result.
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Proposition 6.2. Let R be a ring and F = formR. Then there is a one-to-one
correspondence between the set of all invariant fuzzy prime ideals of R and the set
of all fuzzy prime ideals of each ring of F.

Finally, we note that by Theorem 2.1 every formation of finite rings is the join
of some one-generated formations.
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