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A CANONICAL DISTRIBUTION ON ISOPARAMETRIC
SUBMANIFOLDS I

CRISTIÁN U. SÁNCHEZ

Abstract. We show that on every compact, connected homogeneous isopara-
metric submanifold M of codimension h ≥ 2 in a Euclidean space, there exists
a canonical distribution which is bracket generating of step 2. An interesting
consequence of this fact is also indicated. In this first part we consider only
the case in which the system of restricted roots is reduced, reserving for a
second part the case of non-reduced restricted roots.

1. Introduction

This paper, of which we present here its first part, is devoted to indicating some
properties (that we think have not been previously studied) of compact, connected
homogeneous isoparametric submanifolds of Euclidean spaces of codimension h ≥ 2.

By a celebrated theorem due to G. Thorbergsson [7], all compact, connected,
isoparametric submanifolds of Euclidean spaces of codimension h ≥ 3 are homo-
geneous. On the other hand, in codimension h = 2 there are infinitely many
non-homogeneous examples and only a finite number of homogeneous ones. Homo-
geneous isoparametric submanifolds Mn of Rn+h are obtained as principal orbits of
the tangential representation (at a basic point) of a compact (or non compact dual)
symmetric space. A way to obtain these submanifolds explicitly is to consider a real
simple noncompact Lie algebra g0 with Cartan decomposition g0 = k0 ⊕ p0. Then
k0 is a maximal compactly embedded subalgebra of g0 [4, Pr. 7.4, p. 184]. Let K
be the analytic subgroup K of Int(g0) corresponding to the subalgebra adg0(k0) of
adg0 (g0) which is compact. The principal orbits of the representation of K on p0
are isoparametric submanifolds Mn of Rn+h = p0. The central objective of this
work is to present the following result:

Theorem 1.1. On any compact, connected, homogeneous isoparametric submani-
fold (for a real simple noncompact Lie algebra g0) there exist a smooth completely
non-integrable (i.e., bracket generating) step 2 distribution D ⊂ T (Mn), canoni-
cally associated to the manifold.
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114 CRISTIÁN U. SÁNCHEZ

Recall that a distribution D of r-planes (n > r ≥ 2) in a connected manifold
Mn is smooth [8, p. 41] if for any p ∈ Mn there is an open set A containing p
and r smooth vector fields {X1, . . . , Xr} defined on A such that Xj (q) ∈ D (q)
and D (q) = spanR {Xj (q)} (1 ≤ j ≤ r, ∀q ∈ A). The distribution D is said to
be completely non-integrable of step 2 if for every point p ∈Mn the above vector
fields defined in A satisfy (∀q ∈ A):

spanR {Xj(q), [Xk, Xj ] (q) : 1 ≤ k, j ≤ r} = Tq(M),

i.e., the generated real vector space coincides with the tangent space.
The presence in Mn of the distribution given by Theorem 1.1 has the following

consequence. Recall that, given the distribution D, a curve γ : [0, b]→Mn is said
to be horizontal for D if γ′(t) ∈ D (γ(t)) ∀t ∈ [0, b] and regular if γ′(t) 6= 0 ∀t.

Corollary 1.2. Let Mn be a compact, connected, homogeneous isoparametric sub-
manifold of Rn+h and consider in M the distribution D given by Theorem 1.1.
Then for any two points p, q in Mn there exists a horizontal C∞ regular curve
γ : [0, b]→Mn, such that γ (0) = p, γ (b) = q.

The proof of Theorem 1.1 is naturally divided into two parts by the nature of
the system of restricted roots associated to the above Cartan decomposition of the
corresponding real simple noncompact Lie algebra g0. The system of restricted
roots can be either the system of roots of a complex simple Lie algebra (reduced
case) or (BCq), in the non-reduced case [4, 3.25, p. 475]. In this first part we take
care of the proof of Theorem 1.1 when the system of restricted roots is the system
of roots of a complex simple Lie algebra (i.e., it is reduced), and reserve for part 2 of
this paper the proof for (BCq). Nevertheless, in the present part (up to Section 6)
we introduce the facts and tools needed for both parts.

Corollary 1.2 is somehow related to one of the results of the important paper [3].
We refer to Theorem D of that paper, which motivated Theorem 1.1. We do not
include a proof of Corollary 1.2 since it is a well known consequence of the fact
that the distribution D is completely non-integrable of step 2.

The rest of the paper contains the description of the distribution D and proof of
the fact that it is bracket generating of step 2. This is organized as follows. In the
next section we collect the necessary facts from Lie theory. The majority of them
are taken from the very interesting paper [5], from which we adopt much of the
notation and the important Proposition 2.1. The paper [5] has been very useful
to help us carry on the somewhat involved computations required. Other more
standard facts are recalled from the usual sources (such as [4, 2, 6]). In Section 3
we define our submanifolds and their tangent and normal spaces. Section 4 intro-
duces the basis from [5] and other notations required. In Section 5 we present the
distribution and study its local fields and their covariant derivatives and brackets.
In Section 6 we indicate some necessary lemmata about properties of the roots
of gC0 and their restricted counterpart. Finally, Section 7 contains the proof of
Theorem 1.1, where the computations of products and brackets performed in the
Appendix are extensively used.
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2. Facts from Lie theory

We shall use some of the notation and a result (Proposition 2.1 below) from the
paper [5], which plays an important part here.

Let g be a complex simple Lie algebra, h ⊂ g a Cartan subalgebra, and B the
Killing form of g. Let Φ(g, h) ⊂ h∗ (dual space) be the root system. Given α ∈
Φ(g, h), let gα ⊂ g be its root space. Basic properties are in [4, Th. 4.2]; in
particular, if α 6= ±β, gα is orthogonal to gβ by B. Let tα ∈ h be the root
vector corresponding to α defined by B (ta, h) = α (h), ∀h ∈ h. Let ∆(g, h) =
{α1, . . . , αn} ⊂ Φ(g, h) be a set of simple roots; we keep ∆(g, h) and the “order”
generated by it in Φ(g, h), fixed. Set hα = 2tα

B(tα,tα) , and hj = hαj , 1 ≤ j ≤ n. A
Chevalley basis of (g, h) is a basis C = {xα, hj : α ∈ Φ(g, h), 1 ≤ j ≤ n} of g with
the following properties:

(i) xα ∈ gα and [xα, x−α] = −hα ∀α ∈ Φ(g, h).
(ii) Let α, β ∈ Φ(g, h) be such that (α+β) ∈ Φ(g, h). Let cα,β ∈ C be determined

by [xα, xβ ] = cα,βx(α+β). Then cα,β = c−α,−β .

The fundamental importance of this basis is that the structure constants are
integers. In fact their properties are:

(a) [hj , hk] = 0 for 1 ≤ j, k ≤ n.
(b) [hj , xα] = α (hj)xα for α ∈ Φ(g, h), 1 ≤ j ≤ n (=⇒ [h, xα] = α (h)xα for

h ∈ h).
(c) [xα, x−α] = −hα ∀α ∈ Φ(g, h) and hα is a Z linear combination of {h1, . . . , hn}.
(d) cα,β = ±(r + 1), where r is the largest integer such that β − rα ∈ Φ(g, h).

Let g0 be a real simple Lie algebra, gC0 its complexification, and σ the corre-
sponding conjugation with respect to g0. The Killing forms of both algebras agree
on g0 [4, 6.1, p. 180]; we shall use B for this form in both of them. If g0 is not
complex and one of the algebras (g0 or gC0 ) is simple then so is the other one.
A decomposition of g0 into a direct sum as g0 = k0 ⊕ p0 (k0 subalgebra of g0 and
p0 a subspace) is called a Cartan decomposition of g0 if there exists a compact
real form u0 of gC0 such that the following conditions are satisfied: σ (u0) ⊂ u0,
k0 = g0 ∩ u0, and p0 = g0 ∩ (iu0). Every semisimple Lie algebra g0 over R has a
Cartan decomposition, unique up to conjugation by an inner automorphism of g0.
Clearly, u0 = k0 ⊕ ip0. Let τ be the conjugation of gC0 = uC0 with respect to u0.
Then σ and τ commute on gC0 . Therefore θ = στ = τσ is an automorphism of gC0 .
Since θ leaves g0 invariant, it is an automorphism called in [5] a Cartan involution,
and k0 is a maximal compactly embedded subalgebra of g0 [4, Pr. 7.4, p. 184].

Let g0 be a real simple Lie algebra and g0 = k0 ⊕ p0 a Cartan decomposi-
tion with Cartan involution θ. Let h0 ⊂ g0 be a θ stable Cartan subalgebra
such that a0 = h0 ∩ p0 is a subspace of maximal dimension in p0. Let us con-
sider the complexification (g, h) of (g0, h0) (

(
hC0
)

= h is a Cartan subalgebra of(
gC0
)

= g) and, as above, let Φ(g, h) ⊂ h∗ be the root system. We have, of course,
h0 = (h0 ∩ k0)⊕(h0 ∩ p0) and the roots of Φ(g, h) take imaginary values on (h0 ∩ k0)
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and real values on (h0 ∩ p0). For a linear functional λ in a∗0 it is customary to define

g0,λ = {x ∈ g0 : [h, x] = λ (h)x, ∀h ∈ a0} ,
g0,0 = {x ∈ g0 : [h, x] = 0, ∀h ∈ a0} .

If λ 6= 0 and g0,λ 6= {0} then λ is called a restricted root of (g0, a0) and g0,λ
a restricted root space of (g0, a0). Let Φ (g0, a0) be the set of restricted roots.
Φ (g0, a0) is a system of roots but it may be non-reduced so Φ (g0, a0) is either
the system of roots corresponding to a simple complex Lie algebra or the system
(BC)q [4, 3.25, p. 475]. Let us denote by Φ+(g0, a0) the set of positive roots for
some order in Φ (g0, a0) to be determined below. We have the three involutions σ, τ
and θ defined on the complex simple Lie algebra g =

(
gC0
)
. They act on α ∈ Φ(g, h)

as ασ (h) = α (σ(h)), ατ (h) = α (τ(h)), and αθ (h) = α (θ (h)), for h ∈ h. Then
ασ, ατ , and αθ are roots of (g, h). For each α ∈ Φ (g, h), we have ατ = −α ([4, 3.1,
p. 257], [5]). A root α ∈ Φ (g, h) is called real if it takes only real values on h0, that
is, if it vanishes on h0 ∩ k0. On the other hand α ∈ Φ (g, h) is called imaginary if
it takes imaginary values on h0, that is, if it vanishes on h0 ∩ p0 = a0. The root is
called complex otherwise ([6, p. 390]). Then α ∈ Φ (g, h) is imaginary if and only
if ασ = −α and αθ = α. On the other hand, α ∈ Φ (g, h) is real if and only if
ασ = α. We set, as in [5], ΦR for the set of real roots, ΦiR for the set of imaginary
roots, and ΦC for the set of complex roots. Furthermore, set Σ = ΦR ∪ ΦC and
also, recalling that we have the set of simple roots ∆(g, h) ⊂ Φ(g, h), we also set,
as in [5], ∆0(g, h) = ∆(g, h) ∩ ΦiR and ∆1(g, h) = ∆(g, h) ∩ Σ. We shall need the
following proposition ([5, Prop. 3.1]) which will be very important here.

Proposition 2.1. There exists a Chevalley basis

C = {xα, hj : α ∈ Φ(g, h), 1 ≤ j ≤ n }

of (g, h) such that
(i) τ (xα) = xατ = x−α for each α ∈ Φ (g, h).

(ii) σ (xα) = ±xασ for each α ∈ Φ (g, h) and σ (xα) = +xασ for each α ∈
(ΦiR ∪∆1(g, h)).

We say, with Kammeyer [5], that the Chevalley basis given by this proposition
is τ and σ adapted. For the rest of the paper we assume that we have in our simple
complex Lie algebra (g, h) a fixed τ and σ adapted Chevalley basis. We use the
notation ρ : Φ (g, h)→ Φ (g0, a0) to indicate the restriction of the roots. It is clear
that ρ (ΦiR) = 0. Also, ασ and α agree on a0, so ρ (α) = ρ (ασ) [4, 3.3, p. 260]. Then
(see [4, p. 263, p. 408], [5, p. 3]) Φ (g0, a0) = ρ (Σ) and g0,λ =

(∑
ρ(α)=λ gα

)
∩ g0,

for λ ∈ Φ (g0, a0).
We have the systems of roots Φ (g, h) and of restricted roots Φ (g0, a0) and in

Φ (g, h) the simple roots ∆(g, h) which, in view of the notation indicated above,
we may write as: ∆(g, h) = ∆0(g, h) ∪ ∆1(g, h). We may take in Φ (g0, a0) a
corresponding system of simple roots ∆ (g0, a0) in such a way that ρ (∆1(g, h)) =
∆ (g0, a0). Each simple root λ ∈ ∆ (g0, a0) is image of either one or two roots of
∆1(g, h), and those in ∆0(g, h) go to zero by ρ. Fixing in Φ (g, h) and Φ (g0, a0) the
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orders defined by the respective systems of simple roots ∆(g, h) and ∆ (g0, a0), we
clearly have ρ (Φ+(g, h)) = Φ+(g0, a0).

For the Killing form B of g0 we have the associated positive definite, symmetric
bilinear form on g0 defined by

Bθ (x, y) := 〈x, y〉θ = −B (x, θy) . (2.1)

We can write g0 as an orthogonal (with respect to Bθ) direct sum of the common
eigenspaces of {adg0 (h) : h ∈ a}, that is,

g0 = g0,0 ⊕
∑

λ∈Φ(g0,a0)

g0,λ,

and this is usually called the restricted root space decomposition of g0 with respect
to a0. Since θ (g0,λ) = g0,(−λ) (∀λ ∈ Φ (g0, a0)) and θ (g0,0) = g0,0, it follows
that dim g0,λ = dim g0,(−λ) = m (λ) ≥ 1, and m (λ) is called the multiplicity
of λ. We also have an orthogonal decomposition Zg0 (a0) = g0,0 = m0 ⊕ a0,
where m0 = Zk0 (a0) is the centralizer of a0 in k0. It is usual to consider also, for
λ ∈ Φ (g0, a0), the subspaces

k0,λ =
{
x ∈ k0 : (ad(h))2

x = λ2 (h)x, ∀h ∈ a0
}
,

p0,λ =
{
x ∈ p0 : (ad(h))2

x = λ2 (h)x, ∀h ∈ a0
}
,

and obviously k0,λ = k0,(−λ), p0,λ = p0,(−λ). We also have orthogonal decomposi-
tions with respect to Bθ:

k0 = m0 ⊕
∑

λ∈Φ+(g0,a0)

k0,λ, p0 = a0 ⊕
∑

λ∈Φ+(g0,a0)

p0,λ, (2.2)

and furthermore:

dimR k0,λ = dimR p0,λ = dimR g0,λ = dimR g0,(−λ) = m (λ) .

If E ∈ a0 is a regular element, we see that k0,E = {x ∈ k0 : [x,E] = 0} = m0.

3. The submanifolds

Let us continue considering our real simple Lie algebra g0 with Cartan decom-
position g0 = k0 ⊕ p0 and involution θ. Since k0 is a maximal compactly embedded
subalgebra of g0, the analytic subgroup K of Int(g0) corresponding to the subal-
gebra adg (k0) of adg(g0) is compact. We take in g0 the inner product (2.1). Then
the group K acts on (p0, Bθ) by the adjoint representation (i.e., by isometries) and
we consider the principal orbits of this action usually called isoparametric subman-
ifolds. Then we fix a regular element E ∈ a0 ⊂ p0 and call

M = Ad (K)E ⊂ p0;

also call KE the isotropy subgroup of K at E. Since E is regular, the isotropy
subalgebra is k0,E = m0. Also by (2.2) the tangent space at E ∈M is

TE (M) = [k0, E] =
∑

λ∈Φ+(g0,a0)

[k0,λ, E] =
∑

λ∈Φ+(g0,a0)

p0,λ (3.1)
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and, since both decompositions in (2.2) are orthogonal, the normal space at E is
T⊥E (M) = a0.

It goes without saying that the split (normal) real form gS of g is included in
our considerations. But we need to include also the so called manifolds of complete
flags of compact connected simple Lie groups. To that end recall that our compact
Lie algebra u0 is a compact real form of g, that is, u0 ⊕ iu0 = gR, and this is
a Cartan decomposition of the real Lie algebra gR [4, 7.5, p. 185]. Here we may
take a compact connected Lie group G corresponding to u0 (which we may take
without center) and consider the principal orbits of G by the adjoint action on the
complementary subspace (iu0) or (suppressing the irrelevant factor i) the adjoint
action of G on u0. In both cases (for gS and u0) using Proposition 2.1 one has to
make the corresponding “simplifications”. For instance Φ (g0, a0) = Φ (g, h) and ρ,
σ are the identity.

4. Basis for g0

Using part (ii) of Proposition 2.1, we may define kα for each α ∈ Φ (g, h) by the
identity

σ (xα) = kαxασ , kα = ±1 (4.1)

σ (xα) = kαxασ yields xα = σ (kαxασ ) = kασ (xασ ) = kαkασxα. Then kαkασ = 1
and so kασ = kα.

Also recalling the effect of τ ((i) of Proposition 2.1) we may consider the action
of θ on xα and xασ , that is,

θ (xα) = τσ (xα) = τ (kαxασ ) = kατ (xασ ) = kαx−ασ ,

θ (xασ ) = τσ (xασ ) = τ (kαxα) = kατ (xα) = kαx−α.
(4.2)

Now, by the definition (4.1), we have σ (x−α) = k−αx−ασ but also

σ (x−α) = σ (τ (xα)) = τ (kαxασ ) = kατ (xασ ) = kαx−ασ ,

hence
k−α = kα. (4.3)

We shall need the basis constructed by Kammeyer in [5, Sec. 4]. Let us consider
the σ and τ adapted Chevalley basis for (g, h) from Proposition 2.1 and set, for
α ∈ Φ(g, h),

Xα = xα + σ (xα) , Yα = i (xα − σ (xα)) , Zα = Xα + Yα.

These vectors are fixed by σ, so they belong to g0. Now setting

Pα = (Xα + θXα) , Qα = (Yα + θYα) , Rα = (Zα + θZα) ,
Uα = (Xα − θXα) , Vα = (Yα − θYα) , Wα = (Zα − θZα) ,

(4.4)

we see that the vectors in the first row of (4.4) belong to k0 and those in the second
one to p0.
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Now, using (4.2) and definitions, we observe that:

Pα = (Xα + θXα) = (xα + kαxασ ) + (kαx−ασ + x−α) ,
Uα = (Xα − θXα) = (xα + kαxασ )− (kαx−ασ + x−α) ,
Qα = (Yα + θYα) = i (xα − kαxασ ) + i (kαx−ασ − x−α) ,
Vα = (Yα − θYα) = i (xα − kαxασ )− i (kαx−ασ − x−α) .

On the other hand, the vectors Rα and Wα shall be considered only for α real
(i.e., ασ = α) and clearly Rα = Pα +Qα, Wα = Uα + Vα. However, observe that,
for α real, we have the equalities:

Rα = Pα, Wα = Uα, if kα = 1,
Rα = Qα, Wα = Vα, if kα = −1. (4.5)

Clearly, for α ∈ ΦC and β ∈ ΦR we have Pα, Qα, Rβ ∈ k0 and Uα, Vα, Wβ ∈ p0.
Now, for h ∈ a0, (since ασ (h) = α (h)) we have:

[h, Pα] = α (h) (xα − x−α) + ασ (h) kα (xασ − x−ασ )
= α (h) (Xα − θXα) = α (h)Uα,

[h, [h, Pα]] = [h, (α (h) ((xα − x−α) + kα (xασ − x−ασ )))]
= α2 (h) (Xα + θXα) = α2 (h)Pα,

(4.6)

and we conclude that Pα is in k0ρ(α). Setting ρ (α) = ρ(β) = λ, similar computa-
tions for α ∈ ΦC, β ∈ ΦR with the vectors in (4.4) show that

Pα, Qα, Rβ ∈ k0λ and Uα, Vα, Wβ ∈ p0λ. (4.7)

4.1. Basis for k0,λ and p0,λ, λ ∈ Φ+(g0, a0). Consider now for λ ∈ Φ+(g0, a0) the
set ρ−1(λ) = {α ∈ Φ+(g, h) : ρ (α) = λ} and split it separating the real roots from
the complex ones. So we set ρ−1(λ)R = ρ−1 (λ) ∩ΦR and ρ−1 (λ)C = ρ−1(λ) ∩ΦC.
For a root α in ρ−1(λ)C we have ασ 6= α; then we define, as in [5], the set ρ−1(λ)∗C
where we place one of the two elements in {α, ασ} for each α ∈ ρ−1 (λ)C. Now for
λ, µ ∈ Φ+(g0, a0) take the sets

Ξk (λ) =
{
Rη, Pδ, Qγ : η ∈ ρ−1 (λ)R , δ, γ ∈ ρ

−1 (λ)∗C
}
,

Ξp (µ) =
{
Wα, Uβ , Vϕ : α ∈ ρ−1 (µ)R , β, ϕ ∈ ρ

−1 (µ)∗C
}
.

(4.8)

By (4.7), Ξk(λ) ⊂ k0λ and Ξp(µ) ⊂ p0µ, and each set is linearly independent
over R. Since the equal cardinalities of Ξk (λ) and Ξp(λ) coincide with the di-
mensions of k0,λ and p0,λ, we have a basis for each of these subspaces. Obviously,
there is a one to one correspondence between Ξk (λ) and Ξp (λ). As a consequence
of (4.6), for the members of the bases Ξk(λ) and Ξp(λ) we have:

[Rη, E] = −η (E)Wη, [Pδ, E] = −δ (E)Uδ, [Qδ, E] = −δ (E)Vδ, (4.9)

which is coherent with their one to one correspondence.

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



120 CRISTIÁN U. SÁNCHEZ

5. Distribution

The roots of Φ+(g0, a0) are written in terms of ∆ (g0, a0) as a Z linear com-
bination with non-negative coefficients. It is usual to define the height of a root
as the sum of these coefficients, and we may consider in Φ+(g0, a0) the subsets Ω
and Γ of roots of odd and even height respectively, Φ+ (g0, a0) = Ω ∪ Γ. We may
consider, associated to the set Ω, a subspace DE (Ω) ⊂ TE(M) (see (3.1)) defined
by DE(Ω) =

∑
λ∈Ω p0λ. This subspace is invariant by the action of the isotropy

subgroup at E. The union of the sets Ξp(λ) with λ ∈ Ω is a basis for DE (Ω). Since
DE (Ω) is invariant by KE , it defines a distribution D (Ω) on the manifold M by
translation with the action of the group K. Then at each point q = Ad (g)E ∈M
we have: Dq = Dq (Ω) = Ad (g)DE(Ω) ⊂ Tq (M). It is clear that the distribution
D (Ω) is well defined. We have to show that it is smooth.

5.1. Smooth local fields. We have in g0 the inner product Bθ defined in (2.1)
(denote its norm by ‖∗‖) and in k0 the orthogonal decomposition (2.2). Set
n0 =

∑
λ∈Φ+(g0,a0) k0,λ and take in n0 an open ball defined by

N (0, r) = {W ∈ n0 : ‖W‖ < r} .

By taking r > 0 sufficiently small, we may assume that the function f :N (0, r)→M
defined by f(W ) = Ad (expW )E is a diffeomorphism from N(0, r) onto the open
neighborhood AE = Ad (N (0, r))E of E contained in M ([4, pp. 123–124]). Let
us consider inside N (0, r) the sphere S

(
0, r2
)

=
{
W ∈ N (0, r) : ‖W‖ = 1

2r
}

.
Let us take now λ ∈ Ω and consider the basis Ξp (λ) = {Wα, Uβ , Vβ} (ρ (α) =

ρ (β) = λ) of p0,λ. Let us take for instance Uβ . We may define, on some open set
contained in AE ⊂M , a local vector field associated to Uβ by

UFβ (Ad (exp tL)E) := Ad (exp tL)Uβ , ∀L ∈ S
(

0, r2

)
, t ∈ [0, 1). (5.1)

Proceeding similarly with the vectors Vβ and Wα, we get the local fields{
UFβ , V

F
β ,W

F
α : β ∈ ρ−1(λ)∗C, α ∈ ρ−1(λ)R, λ ∈ Ω

}
. (5.2)

They are defined in the open set NE := f (N (0, r/2)) ⊂ AE . At the point
E ∈ M , they coincide with {Wα, Uβ , Vβ} of Ξp (λ) and at any other point
q = Ad (exp tL)E ∈ NE they generate Ad (exp tL) p0λ ⊂ Tq(M). Since we can
define these m (λ) fields for each λ ∈ Ω, we have a local basis for D (Ω) in the open
set NE containing E. It is also clear that these fields are smooth in NE .

Now at any other point p ∈ M there is a g ∈ K such that p = Ad (g)E and
we may consider the open set Ad (g)NE containing p. On such an open set we
have a local basis of smooth vector fields defined by translation of those on NE by
Ad (g). Hence, by the usual definition ([8, 1.56, p. 41]), the distribution D (Ω) on
M is smooth.

To understand the nature of D (Ω) we compute the brackets of the fields con-
structed above by using the Levi-Civita connection on M which is torsion free.
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5.2. Covariant derivatives. We use the fact that M ⊂ p0 and (p0, Bθ) is a
Euclidean space. So we may compute the Euclidean covariant derivative in p0,
which we denote by ∇E , of each field in (5.2) in the direction of each vector of
Ξp (µ) for µ ∈ Ω. Since they are all similar, we compute only one of them. Let us
take γ ∈ ρ−1 (λ), ϕ ∈ ρ−1 (µ) (we may have λ = µ but in that case γ 6= ϕ).

To compute ∇EUϕU
F
γ , we need to know the field UFγ restricted to a curve whose

tangent vector at E is Uϕ, and to obtain it let us consider first the curve on
M passing through E defined on an adequate interval (−ε, ε) ⊂ R by u (t) =
Ad (exp (t (FPϕ)))E, for t ∈ (−ε, ε). Here F is the factor needed so that FPϕ ∈
S
(
0, r2
)
; it will be irrelevant at the end so we keep it as a non-zero undefined

constant associated to Pϕ. By (4.9) we have
d

dt

∣∣∣∣
t=0

u(t) = [FPϕ, E] = F [Pϕ, E] = −Fϕ (E)Uϕ.

Then (since E is regular and ϕ ∈ ρ−1 (µ), ϕ(E) = µ(E)) we may write

Uϕ =
(
−1

Fµ (E)

)
d

dt

∣∣∣∣
t=0

Ad (exp (tFPϕ))E.

So Uϕ is the tangent vector (at t = 0, i.e., at E) to the curve in M defined on
(−ε, ε) ⊂ R by

ω(t) =
(
−1

Fµ (E)

)
Ad (exp (tFPϕ))E = Ad (exp (tFPϕ))

(
−1

Fµ (E)

)
E.

Now we need the restriction of the field UFγ to the curve ω(t). By the defini-
tion (5.1) we see that this restriction UFγ (ω(t)) is

UFγ (ω(t)) =
(
−1

Fµ (E)

)
Ad (exp (tFPϕ))Uγ .

Then we may compute

∇EUϕU
F
γ = d

dt

∣∣∣∣
t=0

UFγ (ω(t)) =
(
−1

Fµ (E)

)
d

dt

∣∣∣∣
t=0

Ad (exp (tFPϕ))Uγ

and get

∇EUϕU
F
γ =

(
−1
µ (E)

)
[Pϕ, Uγ ] .

Now we may obtain ∇UϕUFγ by taking the tangential component of ∇EUϕU
F
γ . So

we have:
∇UϕUFγ =

(
−1
µ (E)

)
Ta ([Pϕ, Uγ ]) . (5.3)

5.3. Brackets. The bracket of the fields UFϕ and UFγ at E is now[
UFϕ , U

F
γ

]
(E) = ∇UϕUFγ −∇UγUFϕ ,

and using (5.3), since γ ∈ ρ−1 (λ) and ϕ ∈ ρ−1(µ), we have[
UFϕ , U

F
γ

]
(E) =

(
−1
µ (E)

)
Ta ([Pϕ, Uγ ])−

(
−1
λ (E)

)
Ta ([Pγ , Uϕ]) . (5.4)
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In (5.4) we have brackets of fields on the left side and products in g0 on the right
side. We use the words brackets for fields and products for vectors in g0. Recall
that for λ, µ ∈ Ω, we have bases Ξp (λ) for p0λ and Ξp (µ) for p0µ, respectively. To
fix notation we set them as

Ξp (λ) =
{
Uγ , Vγ ,Wδ : γ ∈ ρ−1 (λ)∗C , δ ∈ ρ

−1 (λ)R
}
,

Ξp (µ) =
{
Uϕ, Vϕ,Wη : ϕ ∈ ρ−1 (µ)∗C , η ∈ ρ

−1 (µ)R
}
.

Each of these tangent vectors at E generates a corresponding field around E{
UFγ , V

F
γ , W

F
β

}
and

{
UFϕ , V

F
ϕ , W

F
δ

}
. So we have nine possible brackets of these

fields.

6. Some required lemmata

It is convenient to introduce the following notation. For a root α contained
either in Φ (g, h) or in Φ (g0, a0) we shall write

|α| =
{
α, if α ∈ Φ+(g, h) (resp. Φ+(g0, a0));
−α, if −α ∈ Φ+(g, h) (resp. Φ+(g0, a0)).

Recall that ∆ (g0, a0) ⊂ Φ+(g0, a0) is a system of simple roots for Φ (g0, a0). In
this Part 1, we are assuming that Φ (g0, a0) is the system of roots of a complex
simple Lie algebra (i.e., it is reduced).

In the following Lemma 6.1 we assume that g0 6= g2, the real form of gC2 . The
case of g2 is considered in Lemma 6.2 below.

Lemma 6.1. For g0 6= g2, given γ ∈ Γ ⊂ Φ+(g0, a0), we can find η and δ in
Ω ⊂ Φ+(g0, a0) such that η 6= δ, γ = η + δ, and |η − δ| is not a root of Φ+(g0, a0).

Proof. This lemma is obtained by inspection of the table of roots in [2, pp. 528–
531]. The mentioned table contains the form of the positive roots for the four
types of classical algebras and the five exceptional ones. In the case of the classical
algebras, if we take γ ∈ Γ, it must have an even number of coefficients 1, therefore
it must contain a coefficient 1 at the left of the first obligatory filling 1 (first from
the left, underlined in the table in [2]). Therefore, eliminating from γ the root
corresponding to the coefficient 1 at the extreme left position (corresponding to
some αj ∈ ∆ (g0, a0)) we obtain a root β in Ω. Then we may write γ = β+αj and
clearly |β − αj | is not a root of Φ (g0, a0).

On the other hand, for the four exceptional algebras eC6 , eC7 , eC8 and fC4 the tables
are ordered by increasing height (altitudes in [2]) so the roots of Γ, in each case,
are the ones contained in the rows in even position from the top while those in Ω
are in the other rows. The roots in the 2k-th row are constructed from those in
the (2k − 1)-th row by adding one of the simple roots in the first row. Then we
see that any γ ∈ Γ can be written as γ = η + δ, with η, δ ∈ Ω and |δ − η| is not a
root. �
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Lemma 6.2. For g2, given γ ∈ Γ ⊂ Φ+ (g2, a), we can find η 6= δ in Ω ⊂ Φ+(g0, a0)
such that

either γ = η + δ and |η − δ| is not a root of Φ+(g0, a0)
or γ = |η − δ| and η + δ is not a root of Φ+(g0, a0).

Proof. Let us take gC2

[
2◦
α1
V

3◦
α2

]
(α2 is short). The positive roots are

{α1, α2, (α1 + α2), (α1 + 2α2), (α1 + 3α2), (2α1 + 3α2)}

and Γ = {(α1 + α2) , (α1 + 3α2)}, while the other roots are in Ω. We may write
(α1 + α2) = α1 + α2 and (α1 − α2) is not a root. Now

γ = (α1 + 3α2) = (α1 + 2α2) + α2,

but
|(α1 + 2α2)− α2| = (α1 + α2) is a root,

and there is no other way to write γ as a sum of two roots in Ω. However, we may
write

(α1 + 3α2) = |(2α1 + 3α2)− α1|
and

(2α1 + 3α2) + α1 = 3α1 + 3α2 is not a root.
This completes the proof. �

For the rest of the present section we assume that g0 6= g2.

Lemma 6.3. Given λ ∈ Γ ⊂ Φ+(g0, a0), by Lemma 6.1 there exist two roots η 6= δ
in Ω ⊂ Φ+(g0, a0) such that λ = η+ δ and |η − δ| is not a root of Φ+(g0, a0). Then
for any root γ ∈ ρ−1 (λ) ⊂ Φ+(g, h) there exist roots α ∈ ρ−1 (η) and β ∈ ρ−1(δ)
such that γ = α+ β.

Proof. This is proved by inspection in the pairs (Φ+(g, h),Φ+(g0, a0)). The table
indicating the pairs (Φ+(g, h),Φ+(g0, a0)) is in [4, pp. 532–534]; the ones to be
considered are those where all m(2λ) = 0. �

7. Proof of Theorem 1.1

Here we use the results in Subsection 8.5.1 of the Appendix.

Let us observe that in order to prove Theorem 1.1, it is enough to show that, for
each λ ∈ Γ, each vector of the basis Ξp (λ) of p0λ ⊂ TE (M) may be computed as
a sum of brackets of local fields (defined around E) that belong to the distribution
D (Ω). Let us take then λ ∈ Γ and recall the basis of p0λ given in (4.8).

We start considering γ ∈ ρ−1(λ)∗C for λ ∈ Γ ⊂ Φ+ (g0, a0) and take Uγ , Vγ for
our chosen γ. By Lemma 6.1, there exist two roots η and δ in Ω ⊂ Φ+(g0, a0) such
that

η 6= δ, λ = η + δ, |η − δ| is not a root of Φ+(g0, a0). (7.1)
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Furthermore, by Lemma 6.3, for the root γ ∈ ρ−1 (λ) there exist roots α ∈
ρ−1 (η) and β ∈ ρ−1 (δ) such that γ = α + β. Then we have Uγ = U(α+β),
Vγ = V(α+β), and by (8.11) in the Appendix we have:

Θ(η,δ,α,β)U(α+β) + Λ(η,δ)Ta (H1) =
[
UFα , U

F
β

]
(E)−

[
V Fα , V

F
β

]
(E) ,

Θ(η,δ,α,β)V(α+β) + Λ(η,δ)Ta (T2) =
[
UFα , V

F
β

]
(E) +

[
V Fα , U

F
β

]
(E) .

(7.2)

Let us study now the terms H1 (8.4) and T2 (8.6). For the pair of roots (α, β),
they are:

H1 = 2kαcασ,−β (x−ασ+β − xασ−β)− 2kβcα,−βσ (xα−βσ − x−α+βσ ) ,
T2 = 2ikαcασ,−β (xασ−β + x−ασ+β)− 2ikβcα,−βσ (xα−βσ + x−α+βσ ) .

In our present situation we have that

|β − ασ| and |α− βσ| are not roots of Φ(g, h). (7.3)

In fact we have that η and δ satisfy (7.1) and α ∈ ρ−1 (η), β ∈ ρ−1 (δ). If |β − ασ|
were a root of Φ (g, h) then ρ (|β − ασ|) = |η − δ| would be a root of Φ+(g0, a0),
which is not the case by (7.1). Similarly |α− βσ| is not a root of Φ(g, h). This
clearly yields that H1 = T2 = 0, and going back to (7.2) we see that Uγ = U(α+β),
Vγ = V(α+β) are sums of brackets (evaluated on E) of local fields defined around E
that belong to the distribution D (Ω).

It remains to consider the case of real roots. Let us take so ϕ ∈ ρ−1(λ)R for
λ ∈ Γ ⊂ Φ+(g0, a0); then we have the vector Wϕ. Again there exist two roots η
and δ in Ω ⊂ Φ+(g0, a0) satisfying (7.1) and roots ξ ∈ ρ−1(η), ω ∈ ρ−1(δ) such
that ϕ = ξ + ω. Then we have the following possibilities:

(i) ξ and ω are both real roots of Φ(g, h);
(ii) ξ and ω are both complex roots of Φ(g, h).

(7.4)

In fact, clearly we cannot have that one of them is real and the other complex.
But they can be both complex and in that case we also have ϕ = ξσ + ωσ. Since
ξ ∈ ρ−1 (η), ω ∈ ρ−1 (δ), we have ξσ ∈ ρ−1 (η), ωσ ∈ ρ−1 (δ), and ϕ = ξσ + ωσ is
another decomposition of ϕ.

Considering first the case (i) in (7.4) we see, by the argument above, that (7.3)
holds in this case and it takes the form

(ξ − ω) and (ω − ξ) are not roots of Φ (g, h).

Now considering formulae (8.13) (for λ = η, µ = δ, ξ = δ, β = ω, and ϕ = ξ + ω)
we see, for the pair of roots (ξ, ω), that formulae (8.4) and (8.6) yield H1 = T2 = 0
and therefore the vector Wϕ is a bracket (evaluated at E) of local fields defined
around E that belong to the distribution D(Ω). On the other hand, in case (ii)
of (7.4), we have that (7.3) holds for the pair of complex roots (ξ, ω), which again
yields H1 = T2 = 0. Then by formulae (8.12) (for λ = η, µ = δ, ξ = δ, β = ω,
and ϕ = ξ+ω) again in this case Wϕ is a sum of brackets (evaluated at E) of local
fields that belong to the distribution D(Ω).

This completes the proof of Theorem 1.1 when Φ (g0, a0) is reduced.
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7.1. Comment on the split cases. Since in the split cases Φ+ (g, h) = Φ+ (g0, a0)
and ρ and σ are the identity, Lemma 6.1 takes care of this case. In fact all roots
are real and Lemma 6.1 indicates that given γ ∈ Γ ⊂ Φ+ (g0, a0) = Φ+ (g, h), we
can find η and δ in Ω ⊂ Φ+ (g0, a0) such that η 6= δ and they satisfy γ = η+ δ and
|η − δ| is not a root of Φ+ (g0, a0). Considering formulae (8.4) and (8.6) (for the
roots η and δ) we have (since η−δ and δ−η are not roots) that H1 = T2 = 0. Then
we may consider formulae (8.13), for which we may write a shortened version:

ΘWγ = ΘW(η+δ) = (±)
[
WF
η ,W

F
δ

]
(E) , Θ 6= 0,

and therefore the vector Wγ is a bracket (evaluated at E) of local fields defined
around E that belong to the distribution D (Ω). This proves the theorem for the
split cases.

8. Appendix

8.1. Basic identities. We need to mention some basic identities that are used
in the required computations. Since σ

(
x(α+β)

)
= k(α+β)x(α+β)σ and [xα, xβ ] =

cα,βx(α+β) with real coefficients cα,β , we have

σ [xα, xβ ] = σ (cα,βxα+β) = cα,βσ (xα+β) = cα,βk(α+β)x(α+β)σ ,

σ [xα, xβ ] = [σxα, σxβ ] = [kαxασ , kβxβσ ] = kαkβcασ,βσx(ασ+βσ).

By repeating this computation for [xα, x−β ], [x−α, xβ ], and [x−α, x−β ] (using
(c−α,−β = cα,β) and (4.3)) we get the four identities

kαkβcασ,βσxασ+βσ = cα,βk(α+β)x(α+β)σ ,

kαkβcασ,−βσxασ−βσ = cα,−βk(α−β)x(α−β)σ ,

kαkβc−ασ,βσx−ασ+βσ = c−α,βk(−α+β)x(−α+β)σ ,

kαkβc−ασ,−βσx−ασ−βσ = cα,βk(α+β)x−(α+β)σ .

(8.1)

8.2. Products. By (5.4), to get the brackets of tangent fields we take the bases
Ξk(λ) and Ξp(µ) in (4.8), for k0,λ and p0,µ respectively. There are nine possible
products, namely:

(1) [Rη,Wα], (2) [Rη, Uβ ], (3) [Rη, Vϕ],

(4) [Pδ,Wα], (5) [Pδ, Uβ ], (6) [Pδ, Vϕ],

(7) [Qγ ,Wα], (8) [Qγ , Uβ ], (9) [Qγ , Vϕ].

(8.2)

However, we shall need only (1) (for η, α real) and (5), (6), (8), and (9) for complex
roots. Now we compute the products (5), (6), (8), and (9) in (8.2). For reasons of
space, we will not perform all these computations explicitly. We take (5) [Pδ, Uβ ]
and compute the product:

Pδ = (xδ + kδxδσ ) + (kδx−δσ + x−δ) ,
Uβ = (xβ + kβxβσ )− (kβx−βσ + x−β) ,
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(5) [Pδ, Uβ ] = cδ,βxδ+β + kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β + kδkβcδσ,βσxδσ+βσ

− kβcδ,−βσxδ−βσ − cδ,−βxδ−β − kδkβcδσ,−βσxδσ−βσ − kδcδσ,−βxδσ−β
+ kδc−δσ,βx−δσ+β + kδkβc−δσ,βσx−δσ+βσ + c−δ,βx−δ+β

+ kβc−δ,βσx−δ+βσ − kδkβc−δσ,−βσx−δσ−βσ − kδc−δσ,−βx−δσ−β
− kβc−δ,−βσx−δ−βσ − c−δ,−βx−δ−β .

There are four terms with kδkβ which can be replaced using the above identi-
ties (8.1). Now we observe that

cδ,βU(δ+β) = cδ,β
(
x(δ+β) + k(δ+β)x(δ+β)σ − k(δ+β)x−(δ+β)σ − x−(δ+β)

)
,

(−1) cδ,−βU(δ−β) = −cδ,−β
(
x(δ−β) + k(δ−β)x(δ−β)σ − k(δ−β)x−(δ−β)σ − x−(δ−β)

)
,

and we see that these eight terms are present in the product (5), so we may replace
them in the previous expressions (recalling that cδ,β = c−δ,−β and k(δ−β) = k(β−δ)).
Then the product (5) can be written as

(5) [Pδ, Uβ ]
= cδ,βU(δ+β)

+ kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β − kδc−δσ,−βx−δσ−β − kβc−δ,−βσx−δ−βσ
+ (−1)cδ,−βU(δ−β)

− kδcδσ,−βxδσ−β + kδc−δσ,βx−δσ+β − kβcδ,−βσxδ−βσ + kβc−δ,βσx−δ+βσ .

Computing now the product (9) [Qγ , Vϕ] but taking the same roots of the pre-
vious calculation γ = δ and ϕ = β, we have

(9) [Qδ, Vβ ]
= (−1)cδ,βU(δ+β)

+ kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β − kδc−δσ,−βx−δσ−β − kβc−δ,−βσx−δ−βσ
+ (−1)cδ,−βU(δ−β)

+ kδcδσ,−βxδσ−β − kδc−ασ,βx−ασ+β + kβcα,−βσxα−βσ − kβc−α,βσx−α+βσ .

Then by computing the difference of the two obtained expressions we get:

(5)− (9) 2cδ,βU(δ+β) +H1 = [Pδ, Uβ ]− [Qδ, Vβ ] . (8.3)

In fact, the respective second lines in (5) and (9) are equal so they cancel, while the
two last ones are opposite so they add to twice that line, which can be simplified to

H1 = 2 (kδcδσ,−β (x−δσ+β − xδσ−β)− kβcδ,−βσ (xδ−βσ − x−δ+βσ )) . (8.4)

Proceeding similarly with the products (6) and (8) taking the same pair of roots
in each of them, namely δ = γ and β = ϕ, one obtains

(6) + (8) 2cγ,ϕV(γ+ϕ) + T2 = [Pγ , Vϕ] + [Qγ , Uϕ] , (8.5)

T2 = 2i
(
kγcγσ,−ϕ (xγσ−ϕ + x−γσ+ϕ)− kϕcγ,−ϕσ (xγ−ϕσ + x−γ+ϕσ )

)
. (8.6)
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8.3. Brackets of fields. Recalling (8.2) and the definitions (4.4) we take bases of
p0,λ and p0,µ respectively. That is,

Ξp(λ) =
{
Wη, Uδ, Vγ : η ∈ ρ−1 (λ)R , δ, γ ∈ ρ

−1 (λ)∗C
}
,

Ξp(µ) =
{
Wα, Uβ , Vϕ : α ∈ ρ−1 (µ)R , β, ϕ ∈ ρ

−1 (µ)∗C
}
.

With these two basis we may form the corresponding local fields and with them
nine brackets. However, we shall need only those contained in the following table.
Using (5.4) (for η, α real and γ, δ, β and ϕ complex) they are:

(1)
[
WF
η ,W

F
α

]
=
(
−1
λ (E)

)
Ta ([Rη,Wα])−

(
−1
µ (E)

)
Ta ([Rα,Wη]) ,

(5)
[
UFδ , U

F
β

]
=
(
−1
λ (E)

)
Ta ([Pδ, Uβ ])−

(
−1
µ (E)

)
Ta ([Pβ , Uδ]) ,

(6)
[
UFδ , V

F
ϕ

]
=
(
−1
λ (E)

)
Ta ([Pδ, Vϕ])−

(
−1
µ (E)

)
Ta ([Qϕ, Uδ]) ,

(8)
[
V Fγ , U

F
β

]
=
(
−1
λ (E)

)
Ta ([Qγ , Uβ ])−

(
−1
µ (E)

)
Ta ([Pβ , Vγ ]) ,

(9)
[
V Fγ , V

F
ϕ

]
=
(
−1
λ (E)

)
Ta ([Qγ , Vϕ])−

(
−1
µ (E)

)
Ta ([Qϕ, Vγ ]) .

Now we consider the following quantities for δ ∈ ρ−1 (λ)∗C and ϕ ∈ ρ−1 (µ)∗C:

D (δ, ϕ) =
[
UFδ , U

F
ϕ

]
(E)−

[
V Fδ , V

F
ϕ

]
(E),

S (δ, ϕ) =
[
UFδ , V

F
ϕ

]
(E) +

[
V Fδ , U

F
ϕ

]
(E) .

(8.7)

We have

D (δ, ϕ) =
(
−1
λ (E)

)
{Ta [Pδ, Uϕ]− Ta [Qδ, Vϕ]}

−
(
−1
µ (E)

)
{Ta [Pϕ, Uδ]− Ta [Qϕ, Vδ]} ,

S (δ, ϕ) =
(
−1
λ (E)

)
{Ta [Pδ, Vϕ] + Ta [Qδ, Uϕ]}

−
(
−1
µ (E)

)
{Ta [Qϕ, Uδ] + Ta [Pϕ, Vδ]} .

8.4. Study of D(δ, ϕ). By (8.3) we have
{Ta [Pδ, Uϕ]− Ta [Qδ, Vϕ]} = 2cδ,ϕU(δ+ϕ) + Ta (H1) ,
{Ta [Pϕ, Uδ]− Ta [Qϕ, Vδ]} = 2cϕ,δU(δ+ϕ) + Ta (H∗1 ) ,

where H∗1 is just H1 in (8.4) but with δ and ϕ interchanged. That is,
H∗1 = 2 (kϕcϕσ,−δ (x−ϕσ+δ − xϕσ−δ)− kδcϕ,−δσ (xϕ−δσ − x−ϕ+δσ )) .

Now we observe that the equalities
−cα,−ϕσ = c−ϕσ,α = cϕσ,−α, −cϕ,−ασ = c−ασ,ϕ = cασ,−ϕ
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clearly yield H1 = H∗1 . Since cα,ϕ = −cϕ,α, we have that D (δ, ϕ) is

D (δ, ϕ) =
(
−1
λ (E)

)(
2cδ,ϕU(δ+ϕ) + Ta (H1)

)
−
(
−1
µ (E)

)(
2cϕ,δU(δ+ϕ) + Ta (H∗1 )

)
= 2cδ,ϕU(δ+ϕ)

((
−1
λ (E)

)
+
(
−1
µ (E)

))
+
((

−1
λ (E)

)
−
(
−1
µ (E)

))
(Ta (H1)) ,

and setting now, for the involved functions of (λ, µ, δ, ϕ) and (λ, µ), the notations

Θ(λ,µ,δ,ϕ) = (2cδ,ϕ)
(
λ (E) + µ (E)
λ (E)µ (E)

)
6= 0,

Λ(λ,µ) =
(
λ (E)− µ (E)
λ (E)µ (E)

)
,

(8.8)

we have for D (δ, ϕ) the expression

D (δ, ϕ) = Θ(λ,µ,δ,ϕ)U(δ+ϕ) + Λ(λ,µ) (Ta (H1)) . (8.9)

8.5. Study of S(δ, ϕ). Let us consider now S (δ, ϕ) in (8.7), for which we have to
use (8.5) and (8.6) (with δ instead of γ).

Ta [Pδ, Vϕ] + Ta [Qδ, Uϕ] = 2cδ,ϕV(δ+ϕ) + Ta (T2) ,
Ta [Qϕ, Uδ] + Ta [Pϕ, Vδ] = 2cϕ,δ

(
V(δ+ϕ)

)
+ Ta (T ∗2 ) .

As above, T ∗2 is just T2 (8.6) (with δ and ϕ interchanged). That is,

T ∗2 = 2ikϕcϕσ,−δ (xϕσ−δ + xδ−ϕσ )− 2ikδcϕ,−δσ (xϕ−δσ + xδσ−ϕ) .

Now we observe that cδ,−ϕσ = −c−ϕσ,δ = −cϕσ,−δ and cδσ,−ϕ = −c−ϕ,δσ =
−cϕ,−δσ , which clearly yield T2 = T ∗2 , and in turn S (δ, ϕ) becomes

S (δ, ϕ) =
(
−1
λ (E)

)(
2cδ,ϕV(δ+ϕ) + Ta (T2)

)
−
(
−1
µ (E)

)(
2cϕ,δV(δ+ϕ) + Ta (T2)

)
= 2cδ,ϕV(δ+ϕ)

((
−1
λ (E)

)
+
(
−1
µ (E)

))
+
((

−1
λ (E)

)
−
(
−1
µ (E)

))
(Ta (T2)) ,

which, using again notation (8.8), is

S (δ, ϕ) = Θ(λ,µ,δ,ϕ)V(δ+ϕ) + Λ(λ,µ)Ta (T2) . (8.10)
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8.5.1. Resulting formulae. We write formulae (8.9) and (8.10) for the roots λ, µ ∈
Ω ⊂ Φ+ (g0, a0), δ ∈ ρ−1 (λ)∗C, and ϕ ∈ ρ−1 (µ)∗C:

Θ(λ,µ,δ,ϕ)U(δ+ϕ) + Λ(λ,µ) (Ta (H1)) =
[
UFδ , U

F
ϕ

]
(E)−

[
V Fδ , V

F
ϕ

]
(E),

Θ(λ,µ,δ,ϕ)V(δ+ϕ) + Λ(λ,µ) (Ta (T2)) =
[
UFδ , V

F
ϕ

]
(E) +

[
V Fδ , U

F
ϕ

]
(E).

(8.11)

We have to add also the case in which (δ + ϕ) is real and both δ and ϕ complex.
Again λ, µ ∈ Ω ⊂ Φ+ (g0, a0), δ ∈ ρ−1 (λ)∗C, and ϕ ∈ ρ−1 (µ)∗C. In this case
from (8.11) and having (4.5) in mind we have:

k(δ+ϕ) = 1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (H1)) =

[
UFδ , U

F
ϕ

]
(E)−

[
V Fδ , V

F
ϕ

]
(E),

k(δ+ϕ) = (−1) ,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (T2)) =

[
UFδ , V

F
ϕ

]
(E) +

[
V Fδ , U

F
ϕ

]
(E).

(8.12)

We need to consider also the case in which both δ and ϕ are real. That is, λ,
µ ∈ Ω ⊂ Φ+ (g0, a0), δ ∈ ρ−1 (λ)R, and ϕ ∈ ρ−1 (µ)R. Furthermore, the first line
in (8.1) in the present case clearly yields kδkϕ = k(δ+ϕ) and then formulae (8.12)
become:

k(δ+ϕ) = 1, kδ = kϕ = 1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (H1)) =

[
WF
δ ,W

F
ϕ

]
(E) ,

k(δ+ϕ) = 1, kδ = kϕ = −1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (H1)) = −

[
WF
δ ,W

F
ϕ

]
(E) ,

k(δ+ϕ) = (−1) , kδ = 1, kϕ = −1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (T2)) =

[
WF
δ ,W

F
ϕ

]
(E) ,

k(δ+ϕ) = (−1) , kδ = −1, kϕ = 1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (T2)) =

[
WF
δ ,W

F
ϕ

]
(E) .

(8.13)
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