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A CANONICAL DISTRIBUTION ON ISOPARAMETRIC
SUBMANIFOLDS I

CRISTIAN U. SANCHEZ

ABSTRACT. We show that on every compact, connected homogeneous isopara-
metric submanifold M of codimension h > 2 in a Euclidean space, there exists
a canonical distribution which is bracket generating of step 2. An interesting
consequence of this fact is also indicated. In this first part we consider only
the case in which the system of restricted roots is reduced, reserving for a
second part the case of non-reduced restricted roots.

1. INTRODUCTION

This paper, of which we present here its first part, is devoted to indicating some
properties (that we think have not been previously studied) of compact, connected
homogeneous isoparametric submanifolds of Euclidean spaces of codimension h > 2.

By a celebrated theorem due to G. Thorbergsson [7], all compact, connected,
isoparametric submanifolds of Euclidean spaces of codimension h > 3 are homo-
geneous. On the other hand, in codimension h = 2 there are infinitely many
non-homogeneous examples and only a finite number of homogeneous ones. Homo-
geneous isoparametric submanifolds M™ of R™*" are obtained as principal orbits of
the tangential representation (at a basic point) of a compact (or non compact dual)
symmetric space. A way to obtain these submanifolds explicitly is to consider a real
simple noncompact Lie algebra gg with Cartan decomposition go = €y & pg. Then
€ is a maximal compactly embedded subalgebra of gg [4, Pr. 7.4, p.184]. Let K
be the analytic subgroup K of Int(gg) corresponding to the subalgebra adg,(€y) of
adg, (go) which is compact. The principal orbits of the representation of K on pg
are isoparametric submanifolds M™ of R"*" = py. The central objective of this
work is to present the following result:

Theorem 1.1. On any compact, connected, homogeneous isoparametric submani-
fold (for a real simple noncompact Lie algebra go) there exist a smooth completely
non-integrable (i.e., bracket generating) step 2 distribution © C T (M™), canoni-
cally associated to the manifold.
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Recall that a distribution ® of r-planes (n > r > 2) in a connected manifold
M™ is smooth [8, p. 41] if for any p € M™ there is an open set A containing p
and r smooth vector fields {X,..., X, } defined on A such that X, (¢) € D (q)
and D (¢) = spang {X; (¢)} (1 < j < r, Vg € A). The distribution ® is said to
be completely non-integrable of step 2 if for every point p € M™ the above vector
fields defined in A satisfy (Vg € A):

spang {X;(q), [Xk, X;](q) : 1 <k, j <r} =Ty (M),

i.e., the generated real vector space coincides with the tangent space.

The presence in M™ of the distribution given by Theorem [I.I] has the following
consequence. Recall that, given the distribution ®, a curve v : [0,b] — M™ is said
to be horizontal for © if 4'(t) € ® (y(t)) ¥Vt € [0,b] and regular if v'(t) # 0 Vt.

Corollary 1.2. Let M™ be a compact, connected, homogeneous isoparametric sub-
manifold of R"*" and consider in M the distribution © given by Theorem .
Then for any two points p, q in M™ there exists a horizontal C*° regular curve
v :[0,b] = M™, such that v (0) = p, v (b) = gq.

The proof of Theorem is naturally divided into two parts by the nature of
the system of restricted roots associated to the above Cartan decomposition of the
corresponding real simple noncompact Lie algebra gy;. The system of restricted
roots can be either the system of roots of a complex simple Lie algebra (reduced
case) or (BCy), in the non-reduced case [4, 3.25, p.475]. In this first part we take
care of the proof of Theorem when the system of restricted roots is the system
of roots of a complex simple Lie algebra (i.e., it is reduced), and reserve for part 2 of
this paper the proof for (BC,). Nevertheless, in the present part (up to Section @
we introduce the facts and tools needed for both parts.

Corollary is somehow related to one of the results of the important paper [3].
We refer to Theorem D of that paper, which motivated Theorem We do not
include a proof of Corollary since it is a well known consequence of the fact
that the distribution ®© is completely non-integrable of step 2.

The rest of the paper contains the description of the distribution ® and proof of
the fact that it is bracket generating of step 2. This is organized as follows. In the
next section we collect the necessary facts from Lie theory. The majority of them
are taken from the very interesting paper [5], from which we adopt much of the
notation and the important Proposition The paper [5] has been very useful
to help us carry on the somewhat involved computations required. Other more
standard facts are recalled from the usual sources (such as [4} 2, [6]). In Section
we define our submanifolds and their tangent and normal spaces. Section [4] intro-
duces the basis from [5] and other notations required. In Section [b| we present the
distribution and study its local fields and their covariant derivatives and brackets.
In Section [6] we indicate some necessary lemmata about properties of the roots
of g§ and their restricted counterpart. Finally, Section [7| contains the proof of
Theorem [I.I] where the computations of products and brackets performed in the
Appendix are extensively used.

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



CANONICAL DISTRIBUTION ON ISOPARAMETRIC SUBMANIFOLDS I 115

2. FACTS FROM LIE THEORY

We shall use some of the notation and a result (Proposition below) from the
paper [B], which plays an important part here.

Let g be a complex simple Lie algebra, h C g a Cartan subalgebra, and B the
Killing form of g. Let ®(g,h) C h* (dual space) be the root system. Given o €
®(g,h), let go C g be its root space. Basic properties are in [, Th. 4.2]; in
particular, if o # %8, go is orthogonal to gg by B. Let t, € bh be the root
vector corresponding to « defined by B (t,,h) = a(h), Vh € h. Let A(g,h) =
{a1,...,a,} C ®(g,h) be a set of simple roots; we keep A(g,h) and the “order”
generated by it in ®(g,h), fixed. Set h, = %, and hj = hq;, 1 <j<n. A
Chevalley basis of (g,bh) is a basis C = {zq,h; : v € ®(g,h), 1 < j < n} of g with
the following properties:

(i) zo € go and [z4,2_o] = —ha Ya € (g, h).
(ii) Let o, B € ®(g,b) be such that (a+ ) € ®(g,h). Let ¢35 € C be determined
by [Ta, 28] = Ca,pZ(a+p)- Then ca g =c_q _p.

The fundamental importance of this basis is that the structure constants are
integers. In fact their properties are:

(a) [hj,hg] =0for 1 <j,k<n.

(b) [hj,xza] = a(hj)ze for a € ®(g,h), 1 < j < n (= [h,za] = a(h)z, for
he€b).

(¢) [Ta,T—a) = —ho Ya € O(g,b) and hy, is a Z linear combination of {hy, ..., h,}.

(d) ca,p = £(r+1), where r is the largest integer such that 5 —ra € ®(g,bh).

Let go be a real simple Lie algebra, g‘g its complexification, and o the corre-
sponding conjugation with respect to go. The Killing forms of both algebras agree
on go [4, 6.1, p.180]; we shall use B for this form in both of them. If gy is not
complex and one of the algebras (go or g5) is simple then so is the other one.
A decomposition of g into a direct sum as go = € P po (8o subalgebra of gg and
po a subspace) is called a Cartan decomposition of go if there exists a compact
real form ug of g§ such that the following conditions are satisfied: o (1) C o,
to = go Nug, and po = go N (iup). Every semisimple Lie algebra gy over R has a
Cartan decomposition, unique up to conjugation by an inner automorphism of gg.
Clearly, ugp = & @ ipg. Let 7 be the conjugation of g5 = u§ with respect to ug.
Then ¢ and 7 commute on gg. Therefore § = o7 = 70 is an automorphism of gg.
Since 6 leaves go invariant, it is an automorphism called in [5] a Cartan involution,
and &y is a mazimal compactly embedded subalgebra of go [4, Pr.7.4, p. 184].

Let go be a real simple Lie algebra and go = € @ pg a Cartan decomposi-
tion with Cartan involution 6. Let hy C go be a 6 stable Cartan subalgebra
such that ag = hoNpg is a subspace of mazrimal dimension in py. Let us con-
sider the complexification (g,h) of (go, bo) ((hg) = b is a Cartan subalgebra of
(g(g) = g) and, as above, let ®(g,h) C h* be the root system. We have, of course,
ho = (ho N o) D (ho N po) and the roots of P(g,h) take imaginary values on (ho N £o)
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and real values on (hy N o). For a linear functional A in aff it is customary to define
gor=1{z €go:[h,z] =A(h)z, Vh € ap},
goo={xze€go:[hx] =0, Vheay}.

If A # 0 and go,» # {0} then X is called a restricted root of (go,ap) and go x
a restricted root space of (go,ap). Let ®(go,a0) be the set of restricted roots.
® (go,ap) is a system of roots but it may be non-reduced so ® (go,a0) is either
the system of roots corresponding to a simple complex Lie algebra or the system
(BC), M. 3.25, p.475]. Let us denote by ®*(go,ao) the set of positive roots for
some order in ® (gg, ag) to be determined below. We have the three involutions o, T
and 60 defined on the complex simple Lie algebra g = (gg). They act on « € ®(g, b)
as a’ (h) = a(a(h)), a”(h) = a(r(h)), and o’ (h) = a (0 (h)), for h € h. Then
a?, a”, and af are roots of (g, h). For each a € ® (g,h), we have o™ = —a ([4 3.1,
p-257], [B]). A root oo € ® (g, h) is called real if it takes only real values on by, that
is, if it vanishes on ho N €. On the other hand o € @ (g, h) is called imaginary if
it takes imaginary values on hg, that is, if it vanishes on ho N pg = ag. The root is
called complex otherwise ([0, p.390]). Then « € ®(g,bh) is imaginary if and only
if @ = —a and o = a. On the other hand, o € ® (g, h) is real if and only if
a’ = a. We set, as in [5], Pg for the set of real roots, ;g for the set of imaginary
roots, and ®c for the set of complex roots. Furthermore, set ¥ = &g U ¢ and
also, recalling that we have the set of simple roots A(g,h) C ®(g,h), we also set,
as in [5], Ao(g,h) = A(g,h) N P and Aq(g,h) = A(g,h) N X. We shall need the
following proposition ([5, Prop. 3.1]) which will be very important here.

Proposition 2.1. There ezists a Chevalley basis
C={za,hj:a€®(g,h), 1<j<n}

of (g,h) such that

(i) 7(xa) = Tar = T—_q for ecach a € (g, h).

ii) o )

(
(o) = Ex00 for each o € ®(g,h) and o (o) = +Tao for each a €
(q)i]R U Al (ga b))

We say, with Kammeyer [5], that the Chevalley basis given by this proposition
is 7 and o adapted. For the rest of the paper we assume that we have in our simple
complex Lie algebra (g,h) a fixed 7 and o adapted Chevalley basis. We use the
notation p : ® (g,h) — @ (go, ag) to indicate the restriction of the roots. It is clear
that p (®;r) = 0. Also, a” and « agree on ag, so p (a) = p (a”) [}, 3.3, p. 260]. Then
(see [, p.263, p.408], [5, p.3]) @ (go,a0) = p(X) and go » = (Zp(a)z/\ da) N go,
for A € ® (go, ap).

We have the systems of roots @ (g,h) and of restricted roots ® (go,ao) and in
® (g, h) the simple roots A(g,h) which, in view of the notation indicated above,
we may write as: A(g,h) = Ao(g,h) U Ai(g,h). We may take in ®(gg,a9) a
corresponding system of simple roots A (go, ag) in such a way that p (Ay(g,h)) =
A (go,a0). Each simple root A € A (go, ap) is image of either one or two roots of
A1(g, h), and those in Ag(g, h) go to zero by p. Fixing in @ (g,h) and P (go, ag) the
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orders defined by the respective systems of simple roots A(g,h) and A (go, ag), we
Clearly have p ((I)Jr(g’ h)) = q)+(903 aO)'

For the Killing form B of gy we have the associated positive definite, symmetric
bilinear form on gy defined by

BG (Iay) = <‘T7y>9 =-B (I’,Gy) . (21)

We can write gg as an orthogonal (with respect to By) direct sum of the common
eigenspaces of {adg, (h) : h € a}, that is,

g0 = 0,0 D Z 90,x,
AEP(go,a0)

and this is usually called the restricted root space decomposition of gy with respect
to ag. Since 0 (go,n) = go,(—x) (VA € ®(go,a0)) and 0 (go,0) = go,0, it follows
that dimgox = dimgy—x) = m(X) > 1, and m () is called the multiplicity
of A. We also have an orthogonal decomposition Zg, (ap) = go,0 = mg & ao,
where mg = Zg, (ag) is the centralizer of ag in €. It is usual to consider also, for
A € ®(go, ap), the subspaces

tor = {z € ¥ : (ad(h))’z = A*(h) z, Vh € ao},

por = {z € po: (ad(h))’z = N*(h)z, Vh € ap},
and obviously € x = £,(—x), Po,x = Po,(—x)- We also have orthogonal decomposi-
tions with respect to By:

to=mo® >  fa,  Po=0a0®d D Pox (2.2)
)\€<I>+(g[),uo) )\E‘I>+(go,ao)
and furthermore:
dimg £, = dimg po,x = dimg go,x = dimg go,(—r) = m (A).

If E € ag is a regular element, we see that ¢y g = {z € & : [z, E] = 0} = m,.

3. THE SUBMANIFOLDS

Let us continue considering our real simple Lie algebra gy with Cartan decom-
position gy = €y @ po and involution 6. Since €; is a mazimal compactly embedded
subalgebra of gg, the analytic subgroup K of Int(gg) corresponding to the subal-
gebra adg (€9) of ady(go) is compact. We take in gy the inner product . Then
the group K acts on (pg, By) by the adjoint representation (i.e., by isometries) and
we consider the principal orbits of this action usually called isoparametric subman-
ifolds. Then we fix a reqular element E € ay C pg and call

M = Ad(K) E C py;

also call K the isotropy subgroup of K at E. Since E is regular, the isotropy
subalgebra is €9 g = mg. Also by (2.2)) the tangent space at E € M is

Tp(M)=[0,El= >  [oxEl= Y pox (3.1)

AEDPT(go,a0) AeDT (go,a0)
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and, since both decompositions in are orthogonal, the normal space at F is
Té‘ (M) = 0ap.

It goes without saying that the split (normal) real form gs of g is included in
our considerations. But we need to include also the so called manifolds of complete
flags of compact connected simple Lie groups. To that end recall that our compact
Lie algebra uy is a compact real form of g, that is, ug @ iug = g&, and this is
a Cartan decomposition of the real Lie algebra g® [4, 7.5, p.185]. Here we may
take a compact connected Lie group G corresponding to uy (which we may take
without center) and consider the principal orbits of G by the adjoint action on the
complementary subspace (itg) or (suppressing the irrelevant factor i) the adjoint
action of G on ugy. In both cases (for gs and ug) using Proposition one has to
make the corresponding “simplifications”. For instance ® (go, a9) = ® (g, h) and p,
o are the identity.

4. BASIS FOR g
Using part (ii) of Proposition we may define k,, for each o € ® (g, h) by the
identity
0 (xq) = koo, ko =1 (4.1)
0 (20) = kaZae yields 2, = 0 (kaar) = ka0 (2q0) = kakaoo. Then kokoe =1
and so koo = kq.

Also recalling the effect of 7 ((i) of Proposition we may consider the action
of # on z, and .-, that is,

0 (o) =70 (20) =T (kaar) = kaT (Tae) = kaZ g0,

0 (xa0) =70 (Tao) = T (kaTa) = kaT (o) = kaT_q- (42)
Now, by the definition , we have o (x_,) = k_aZ_qo but also
0(x_0) =0 (T (20)) =7 (kaTar) = kaT (Xqe) = koo,
hence
k_o = kq. (4.3)

We shall need the basis constructed by Kammeyer in [5, Sec. 4]. Let us consider
the o and T adapted Chevalley basis for (g,h) from Proposition and set, for

a € ®(g,h),
Xo =xa +0(24), Y, =i(zq —0(x4)), Zoy =Xy +Y,.
These vectors are fized by o, so they belong to go. Now setting

Pa = (Xa+9Xa)7 Qa = (Ya+9Ya); Ra = (Za+9Za)7

4.4
U, = (Xoc - eXa) ’ Vo = (Ya - 0YO¢)7 Wo = (Za - 0Zo¢) , ( )

we see that the vectors in the first row of (4.4]) belong to £, and those in the second
one to pg.
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Now, using (4.2) and definitions, we observe that:

= (Xoa+0Xa) = (o + katac) + (kaT_ge +2_0o)

=(Xo —0Xa) = (2o + kaZar) — (kaZoar +2—0),
= (Yo +0Y,) =i(xa — kaac) +i(kaTege —T_q),
= (Yo = 0Ya) = i( ) - )

)

(o — kaZao) — 1 (kaZoqe — T_q

On the other hand, the vectors R, and W, shall be considered only for a real
(i.e., a° = a) and clearly Ry, = Py + Qu, Wy = U, + V,,. However, observe that,
for a real, we have the equalities:

Ry, =P,, Wo = U,, if ko, =

R, = Qou W, = Va, if k;a — _ (45)

Clearly, for a € ®¢ and § € Pr we have P,, Qq, Rg € £ and U,, Vi, W3 € po.
Now, for h € ag, (since o (h) = a(h)) we have:
[h,Pl=a(h) (e —x—0) + a7 (h) ko (oo — o)
=a(h)(Xa —0Xa) = a(h)Ua,
[h, [h, Po]] = [h, (a (h) (za = 2—a) + ko (Tar — 2—a-)))]
= a? (h) (Xa +60Xa) = a® (h) Pa,

(4.6)

and we conclude that P, is in £,(,). Setting p(a) = p(8) = A, similar computa-
tions for o € ®¢, S € Pr with the vectors in (4.4]) show that

Pa, Qo” Rﬁ S Eo)\ and [JC¥7 Vva7 WB € Pox- (47)

4.1. Basis for &, and po, A € D1 (go, ap). Consider now for A € T (go, ag) the
set p71(\) = {a € ®T(g,h) : p(a) = A} and split it separating the real roots from
the complex ones. So we set p~t(AN)r = p~t (A)N@g and p~* (X)) = p~1(A) N Pc.
For a root v in p~1(A)c we have a # a; then we define, as in [5], the set p~1 ()
where we place one of the two elements in {a, a”} for each a € p=* (\). Now for

A, i € Pt (go, ap) take the sets

Ee (>\) = {RmpéaQ'y ne pil ()\)R, 5”7 S Pfl (A)E} s
Ep (1) = {Wa,Us, Vo € p~ 1)y, By €p " (1)} -

By (7)), Ze(A) C €ox and Ey(u) C pou, and each set is linearly independent
over R. Since the equal cardinalities of Z¢ (\) and Z,(X) coincide with the di-
mensions of &y ) and pg x, we have a basis for each of these subspaces. Obviously,
there is a one to one correspondence between =¢ (A) and =, (A). As a consequence
of (4.6)), for the members of the bases Z¢(\) and Z,(A) we have:

[anE] :_W(E) Wna [P(%E] :_6(E) Us, [Q&v ] ( )V;;a (49)

(4.8)

which is coherent with their one to one correspondence.
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5. DISTRIBUTION

The roots of ®T(gg,ap) are written in terms of A (go,dp) as a Z linear com-
bination with non-negative coefficients. It is usual to define the height of a root
as the sum of these coefficients, and we may consider in ®*(gg, ag) the subsets
and T of roots of odd and even height respectively, ®* (go, ap) = QUT. We may
consider, associated to the set Q, a subspace D () C Tg(M) (see (3.1)) defined
by Dp(Q) = >, cqbox. This subspace is invariant by the action of the isotropy
subgroup at £. The union of the sets =, (\) with A € Q is a basis for D (). Since
Dg () is invariant by K, it defines a distribution © (Q) on the manifold M by
translation with the action of the group K. Then at each point ¢ = Ad(g) F € M
we have: D, =Dy (Q) = Ad(9) D (Q) C T, (M). It is clear that the distribution
D () is well defined. We have to show that it is smooth.

5.1. Smooth local fields. We have in go the inner product By defined in (2.1))
(denote its norm by ||*||) and in ¢ the orthogonal decomposition (2.2). Set
nyg = Z)\Eqﬁ(govao) €y,» and take in ny an open ball defined by

N©O,r)={W eng: |W| <r}.

By taking r > 0 sufficiently small, we may assume that the function f: N (0,r) — M
defined by f(W) = Ad (exp W) E is a diffeomorphism from N(0,r) onto the open
neighborhood A = Ad (N (0,7)) E of E contained in M ([4 pp. 123- 124]) Let
us consider inside N (0,r) the sphere S (0,%) = {W ENO,r): |[W|=4r}.

Let us take now A € Q and consider the bablb Ey(N) = {Wa, Us, V@} (p(a) =
p(B) = A) of po ». Let us take for instance Uz. We may define, on some open set
contained in Ap C M, a local vector field associated to Ug by

UL (Ad (exptL) E) := Ad (exptL)Us, VL €S (07 g) telo,1).  (5.1)
Proceeding similarly with the vectors Vg and W, we get the local fields
{UF Vi WE:pep ' (Ne a€p (Ve A€ Q). (5.2)

They are defined in the open set Np := f(N(0,r/2)) C Ag. At the point
E € M, they coincide with {W,, Ug, V3} of E,()\) and at any other point
q = Ad(exptL) E € Ng they generate Ad (exptL)pox C T,(M). Since we can
define these m () fields for each A € 2, we have a local basis for D () in the open
set Np containing F. It is also clear that these fields are smooth in Ng.

Now at any other point p € M there is a g € K such that p = Ad(g) E and
we may consider the open set Ad(g) Ng containing p. On such an open set we
have a local basis of smooth vector fields defined by translation of those on Ng by
Ad(g). Hence, by the usual definition (|8, 1.56, p.41]), the distribution D () on
M is smooth.

To understand the nature of © (Q2) we compute the brackets of the fields con-
structed above by using the Levi-Civita connection on M which is torsion free.
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5.2. Covariant derivatives. We use the fact that M C po and (po, Bp) is a
Euclidean space. So we may compute the Fuclidean covariant derivative in g,
which we denote by V¥, of each field in in the direction of each wvector of
Ep (p) for p € Q. Since they are all similar, we compute only one of them. Let us
take v € p=1 (N), ¢ € p~! (1) (we may have A = u but in that case v # ).

To compute ng Uf, we need to know the field Uf restricted to a curve whose
tangent vector at E is Uy, and to obtain it let us consider first the curve on
M passing through E defined on an adequate interval (—e,e) C R by u(t) =
Ad(exp (t (FP,))) E, for t € (—e,e). Here F is the factor needed so that FP, €
S (0, g), it will be irrelevant at the end so we keep it as a non-zero undefined
constant associated to P,. By we have

a
dt
Then (since E is regular and ¢ € p~t (i), (E) = p(E)) we may write

0= (7o)

So U, is the tangent vector (at t = 0, i.e., at E) to the curve in M defined on
(—e,e) CR by

u(t) = [FP,, E| = F[P,,E) = ~F¢ (E)U,.

Ad (exp (tFP,)) E.

t=0

-1 -1
w(t) = (FH(E)> Ad (exp (tFP,)) E = Ad(exp (tFP,)) (FH(E)> E

Now we need the restriction of the field U to the curve w(t). By the defini-
tion (5.1) we see that this restriction U (w(t)) is

UF (w(t) = (FM_(IE)) Ad (exp (tFP,)) U,.

Then we may compute
d

Vo, Uy = 4

-1 d

Ul (w(t) = (FM(E)> 7 Ad (exp (tFP,)) U,

t=0

t=0
and get

vE U = (o ) Pt

Now we may obtain Vi, U,f by taking the tangential component of Va Uf . So
we have:

V0 = () TP, (5:3)

5.3. Brackets. The bracket of the fields Uf and Uf at E is now
UL, UF ) (E)=Vy Ul —Vy UL,
and using (5.3)), since v € p~' (A) and ¢ € p~(u), we have

U, U] (B) = (M;,;)) Ta [Py U,]) - (AZJ;) Ta(P,U).  (34)

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



122 CRISTIAN U. SANCHEZ

In we have brackets of fields on the left side and products in gy on the right
side. We use the words brackets for fields and products for vectors in gg. Recall
that for A, u € Q, we have bases =, () for pox and =, (p) for po,,, respectively. To
fix notation we set them as

(N ={U,, Vo, W5y ep " (N, §€p (Mg}
Zp (1) ={Up, Vo, Wy i o€ p~ (), m€ p (g}

Each of these tangent vectors at E generates a corresponding field around F
f{iUlg, V,YF, W;} and {Uf, Vf, WCSF} So we have nine possible brackets of these
elds.

6. SOME REQUIRED LEMMATA

It is convenient to introduce the following notation. For a root « contained
either in ® (g, b) or in ® (go, ag) we shall write

|Oé| _ «, if a S (I)+(ga h) (resp. q)+(90a ao));
-, if-ac ®*(g,h) (resp. DT (go,a0))-

Recall that A (go, ag) C ®*(go, ag) is a system of simple roots for ® (gg, ag). In
this Part 1, we are assuming that ® (go,ag) is the system of roots of a complex
simple Lie algebra (i.e., it is reduced).

In the following Lemma we assume that go # go, the real form of g5. The
case of gs is considered in Lemma below.

Lemma 6.1. For gg # g2, given v € I' C ®T(go, a0), we can find n and & in
Q C & (gg,ag) such that n £ 8, v =n+ 4, and |n — §| is not a root of ®*(gg, ag).

Proof. This lemma is obtained by inspection of the table of roots in [2, pp. 528
531]. The mentioned table contains the form of the positive roots for the four
types of classical algebras and the five exceptional ones. In the case of the classical
algebras, if we take v € ', it must have an even number of coefficients 1, therefore
it must contain a coefficient 1 at the left of the first obligatory filling 1 (first from
the left, underlined in the table in [2]). Therefore, eliminating from + the root
corresponding to the coefficient 1 at the extreme left position (corresponding to
some a; € A(go,ap)) we obtain a root £ in Q. Then we may write v = 8+ a; and
clearly |8 — ;| is not a root of ® (go, ap).

On the other hand, for the four exceptional algebras e(g, e‘?, e‘sc and f$ the tables
are ordered by increasing height (altitudes in [2]) so the roots of I', in each case,
are the ones contained in the rows in even position from the top while those in
are in the other rows. The roots in the 2k-th row are constructed from those in
the (2k — 1)-th row by adding one of the simple roots in the first row. Then we
see that any v € I' can be written as v = n + 4, with n,d € Q and |0 — 7| is not a
root. O

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



CANONICAL DISTRIBUTION ON ISOPARAMETRIC SUBMANIFOLDS I 123

Lemma 6.2. For g, giveny € I C ®1 (go, a), we can findn # § in Q C T (go, ag)
such that
either v =1+ 3 and |n — 6| is not a root of ®*(go, ap)
or v =|n—46| and n+§ is not a root of ®*(go, ap).

Proof. Let us take g5 {g = g} (g is short). The positive roots are
g

a1
{on, a2, (1 + az), (a1 + 202), (1 + 3az), (201 + 3a2) }

and I' = {(a1 + a2), (a1 + 3azg)}, while the other roots are in 2. We may write
(a1 + ag) = a1 + ag and (a1 — a3) is not a root. Now

v = (Oél =+ 3042) = (011 + 2042) + o,

but
[(a1 4+ 2a2) — an| = (a1 + @) is a root,
and there is no other way to write v as a sum of two roots in 2. However, we may
write
(a1 + 3ag) = |(2a1 + 3a) — ]|
and
(2a1 + 3ae) + a1 = 31 + 3as is not a root.

This completes the proof. O

For the rest of the present section we assume that gy # go.

Lemma 6.3. Given A € I' C ®*(go, ap), by Lemma there exist two roots n # 0
in Q C ®*(go,a9) such that \ =n+38 and |n — 6| is not a root of ®*(go,ap). Then
for any root v € p~1 (X\) C ®*(g,h) there exist roots o € p~* (n) and B € p~1(9)
such that v = a + 5.

Proof. This is proved by inspection in the pairs (®*(g,b), ®*(go,ap)). The table
indicating the pairs (®%(g,h), @ (go, a0)) is in [4, pp.532-534]; the ones to be
considered are those where all m(2X) = 0. O

7. PROOF OF THEOREM [
Here we use the results in Subsection [8.5.1] of the Appendix.

Let us observe that in order to prove Theorem it is enough to show that, for
each A € T', each vector of the basis Z, (A) of pox C Tg (M) may be computed as
a sum of brackets of local fields (defined around E) that belong to the distribution
D (Q). Let us take then A € I and recall the basis of pox given in (4.8).

We start considering v € p~ (A& for A € T' C &% (go, ap) and take U, V, for
our chosen . By Lemma there exist two roots 1 and 6 in Q C & (g, ag) such
that

n#9d, A=n+0d, |n—4|isnotarootof ®t(go,ap). (7.1)
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Furthermore, by Lemma for the root v € p~!(\) there exist roots a €
p~t(n) and B € p~'(§) such that v = a + B. Then we have U, = Uat8)
Vy = Via+p), and by (8.11) in the Appendix we have:

Oms.amUatp) + AwaTa(H) = [UF, U] (B) = [VJ, V5] (B),
Oms,0,8) Via+s) + AmayTa(Te) = [UL, Vi (E) + [V, UF] (E).

Let us study now the terms H; (8.4) and Ty (8.6). For the pair of roots («, ),
they are:

(7.2)

Hy = 2kacar,—p (T—artp = Taw—p) = 2ksCa,—po (Ta—pe = T-atpe),
Ty = 2ikocoe,—g (Tar—pg + Toqot8) — 2ikgca,—go (Ta—pe + T_atp7) -
In our present situation we have that
|8 — a’| and | — 87| are not roots of ®(g, bh). (7.3)

In fact we have that 1 and J satisfy anda € p~t(n), B € p~t(d). If|3 — a|
were a root of @ (g,h) then p (|3 —a’|) = |n — | would be a root of &+ (g, ap),
which is not the case by . Similarly |a — 39| is not a root of ®(g,h). This
clearly yields that H; = T5 = 0, and going back to we see that Uy = Uia4),
Vy = Via+p) are sums of brackets (evaluated on E) of local fields defined around E
that belong to the distribution D (£2).

It remains to consider the case of real roots. Let us take so ¢ € p~1(A)g for
A el C ®t(go,ap); then we have the vector W,,. Again there exist two roots 7
and ¢ in @ C ®*(go,ap) satisfying and roots £ € p~1(n), w € p~(d) such
that ¢ = £ + w. Then we have the following possibilities:

(i) € and w are both real roots of ®(g,h);

7.4
(ii) ¢ and w are both complex roots of ®(g,h). (7.4)

In fact, clearly we cannot have that one of them is real and the other complex.
But they can be both complex and in that case we also have ¢ = £% 4+ w?. Since
Ee€ept(n),wept(d), we have £7 € p=t (n), w? € p~1(J), and ¢ = €7 + WO is
another decomposition of ¢.

Considering first the case (i) in we see, by the argument above, that
holds in this case and it takes the form

(£ —w) and (w — &) are not roots of ® (g, h).

Now considering formulae (8.13) (for A=n, u =46, =6, 8 =w, and ¢ = £ +w)
we see, for the pair of roots (£,w), that formulae and yield Hy =T, =0
and therefore the vector W, is a bracket (evaluated at E) of local fields defined
around E that belong to the distribution D(€2). On the other hand, in case (ii)
of , we have that holds for the pair of complex roots (§,w), which again
yields H; = Tp = 0. Then by formulae (for \=n,u=96,£=9,0=w,
and ¢ = £ +w) again in this case W,, is a sum of brackets (evaluated at E) of local
fields that belong to the distribution D(f).
This completes the proof of Theorem when @ (go, ag) is reduced.
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7.1. Comment on the split cases. Since in the split cases ®* (g,h) = T (g, ao)
and p and o are the identity, Lemma [6.1] takes care of this case. In fact all roots
are real and Lemma indicates that given v € I' C ®* (go,a0) = @ (g, h), we
can find g and § in Q C ®T (go, ag) such that n # § and they satisfy v = n+ ¢ and
|n — 8| is not a root of ®* (go, ap). Considering formulae and (for the
roots 7 and §) we have (since n—§ and 0 —n are not roots) that Hy = T = 0. Then
we may consider formulae , for which we may write a shortened version:

OW, = OW,1s) = () (W WF(B),  ©%#0,

and therefore the vector W, is a bracket (evaluated at E) of local fields defined
around E that belong to the distribution D (2). This proves the theorem for the
split cases.

8. APPENDIX

8.1. Basic identities. We need to mention some basic identities that are used
in the required computations. Since o (2(a15)) = Ko+ T(arp) and [Tq, 28] =
Ca, 8T (a+p) With real coefficients c,, g, we have

0 [2a,25] = 0 (Ca,pTatp) = Ca,p0 (Tatp) = Ca,pk(atp)(a+p)7s
0 [2a, 28] = [02a,028] = [kaZas, karge] = kakgCar go T (ar 4 0)-
By repeating this computation for [z.,z_g], [t_a,zs], and [r_4,x_g] (using
(c—a,—p = ca,p) and (|{.3))) we get the four identities
kakgcaoﬁaxao+ﬁa = Caﬁk(a_;,_@)lﬂ(a_;,_g)a,
kakgcar,—grTar—pr = Ca,—pk(a—p)T(a—p)7; (8.1)
kakgc,aaﬁul’,au+ﬁa = C,a’gk(_a_;,_ﬁ)x(_a_;,_@)v, '
kakpC—ar,—prT—ar—pgr = Ca,pk(at)T—(atp)-
8.2. Products. By (5.4), to get the brackets of tangent fields we take the bases
4.8

Ze(A) and Zp(p) in (4.8), for £ and po , respectively. There are nine possible
products, namely:

(1) [Ry,Wa],  (2) [Ry,Ugl,  (3) [By, Vo),
(4) [Ps,Wal,  (5) [Bs5,Upl,  (6) [Pa, s (82)
(7) [Q'yaWa]v (8) [Q’Y’Uﬁ]v (9) [Qw ]
(6

However, we shall need only (1) (for n, « real) and (5), (6), (8), and (9) for complex
roots. Now we compute the products (5), (6), (8), and (9) in . For reasons of
space, we will not perform all these computations explicitly. We take (5) [Ps, Ug]
and compute the product:

Ps = (x5 + kswso) + (ksx—se +x_5),

Ug = (xp + kppe) — (kgz_po +1_35),
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(5) [P5, Upl = 5. p251p + ks peTsypo + KsCoo 5o 45 + kskpcse po s 1 po

— kﬁcts,,ga.’[:g,ga — C§,—BTs5—B — k(;kgc(sa’,ﬁaxga,ga — k(;Cga’,g.’L'ga,ﬁ

+ ksc_5o gT_s5048 + kskgc_so ge X _so480 + C_53T 548

+ /{350,5,501},5+3a — k[skﬁcfgo’,gcx,gafga — k(scfgv’,gx,ga,ﬁ

— k50_57_ﬁax_5_5a —C_§5,—BT—§5—p-

There are four terms with kskg which can be replaced using the above identi-
ties . Now we observe that
c5.5Us+8) = o8 (T(545) T k646)T(548)7 — ka18)T—(3+8)7 = T-(5+8))

(=1) ¢5,-pUs-p) = —C5,-5 (2(6-p) + k(5-5)T(6-8)" — k(e-p)T—(3-p)7 — T-(5-)) »
and we see that these eight terms are present in the product (5), so we may replace

them in the previous expressions (recalling that cs 5 = c_5 5 and kis_gy = k(g_s))-
Then the product (5) can be written as

(5) [Ps,Ug]
= ¢5.5Us4)
+ kgcs goTs+0 + kscso gxso g — ksC_gso,_3T_50_g — kgC_s,_goT_5_go
+ (—1)¢5,-pUs-p)
— kscso,—gxso—p + ksC_g5o gT_s5048 — kgcs,—goT5—pgo + kgc_s58°T_51 7.

Computing now the product (9) [@.,V,] but taking the same roots of the pre-
vious calculation v = § and ¢ = 3, we have

(9) [@s, Vsl
= (=Des,sUgs+)
+ kgcs,geTs4ge + ksCso gTso 43 — ksC_so _px_50_g — kgc_s5 _goT_5_po
+ (=Des,—sUs-p)
+ kscso,—gTso—g — ksC—qo gT—qo48 + kgCa,—goTa—pge — kgC_a,geT_atp.

Then by computing the difference of the two obtained expressions we get:
(5) =9 2¢55Us4p) + Hi = [F5,Up] = (@5, V5] (8.3)

In fact, the respective second lines in (5) and (9) are equal so they cancel, while the
two last ones are opposite so they add to twice that line, which can be simplified to

Hy =2 (kscsor,—p (x50 15 — x50 —p) — kgcs,—po (Ts—po — T_5157)). (8.4)

Proceeding similarly with the products (6) and (8) taking the same pair of roots
in each of them, namely § = v and 8 = ¢, one obtains

(6) + (8) 20y, Viy+e) + 1o = [Py, Vo] + (@4, Uy, (8.5)

TQ = 2i(kvcn,o7_4p (x"/”—w —+ Jf_’ya_i,_go) — ktpc’y,—tpg (x7_¢a + x_’Y"F‘PU) ) (86)
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8.3. Brackets of fields. Recalling (8.2)) and the definitions (4.4]) we take bases of
po,x and pg,, respectively. That is,

Ep(N) = {Wy, Us, Vo i€ p7 (Mg, 8,7 €07 (NS

Ep(1) = {Wa U, Vi : v € p~ " (1), Brp € p~ " ()i} -

With these two basis we may form the corresponding local fields and with them
nine brackets. However, we shall need only those contained in the following table.
Using (5.4) (for n, o real and ~, §, 8 and ¢ complex) they are:

(1) [WFwE] = (@) Ta ([Ry, Wal) - (NE;)) Ta ([Ra. W),

© W) = (5o ) To s s - (o5 ) TaP2. 3.

© [0 = () To R~ (5 ) Taliu Ui,

® V0] = (5 ) 7@ U — (s ) Ta P Vi),

O ) = (55 ) T @0 - (5 ) Tali@n D

Now we consider the following quantities for § € p=! (A\)¢ and ¢ € p~! (u)¢

D) = (07, U] () - [V V1) ), o
S(6,¢) = [USVE](B)+ [V, UL] (B). '

We have

D(G.g) = (@)) {Ta[Ps,U,] - Ta[Qs,V,]}
—1
— (,u(E)) {Ta[P,,Us| —TalQ,, Vs]},

S (6,¢) = (@) {Ta[P5,V,] +Ta[Qs5,Uy,]}

_ (ué)) {Ta[Qyu,Us] + Ta[P,, Vs]} .

8.4. Study of D(d, ). By we have
{Ta[Ps,Uy] — Ta|Qs, Vy]} = 2¢5,Us4p) + Ta(Hy),
{Ta[P,,Us] = Ta|Qy, Vs]} = 2¢4 5Us44) + Ta (HY),
where HY is just H; in but with § and ¢ interchanged. That is,
H =2 (kycpo,—5 (X_pots5 — Tpo—5) — ksCp —s50 (Tp—50 — T_pys57)) -
Now we observe that the equalities

“Ca,—p7 = Copa = Cp—as “Cp,—a7 = C-ap = Ca,—p
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clearly yield Hy = Hf. Since ¢q,, = —Cy.q, We have that D (4, ¢) is

D (8,¢) = (Aé)) (2¢5,oU(s 44y + Ta (Hy))

— (M(E)> (QCw,gU(5+¢) +Ta (HT))

= 25.5Us 1) ((@) N ( ﬁé) ))
’ ((AZ;Q - (;&;)) (Ta (Hy)),

and setting now, for the involved functions of (A, u, d, @) and (A, u), the notations

AE E
O b)) = (2¢5,0) (}E(L)?)_tjzé))) 70

8.8
o = (AEL=2E) o
" MNE)p(E) )
we have for D (4, ¢) the expression
D ((5, (p) = @(A’H’5’¢)U(5+<p) + A(A,H) (Ta (Hl)) . (8.9)

8.5. Study of S(4, ). Let us consider now S (d, ¢) in (8.7), for which we have to
use (8.5) and (with § instead of 7).

Ta[Ps,Vy] +Ta[Qs,Uy] = 2¢5,Vis4e) + Ta(T2),
Ta[Qy,Us| +Ta[P,, V5] = 2¢y5 (V(5+sa)) +Ta(Ty).
As above, Ty is just T5 (8.6) (with § and ¢ interchanged). That is,
T2* = 2ik¢6¢07_5 (xwo_g + .T(s_gga) - Qik‘gc%_(so ($¢_5a + l‘(so_w) .

Now we observe that cs,_po = —C_go s = —Cpo,—5 and cso,—p = —C_y 50 =
—Cy,—s7, which clearly yield b = T, and in turn S (9, ¢) becomes

S (8,¢) = (Az;)) (2650 Vis 1) + Ta(T2))

= 25, V(54¢) <()\z]15)> + <Mz;3)>)
+ ((AZ)E)) - (ué))) ——

which, using again notation (8.8]), is

S (5, (p) = @()\,M,(;’(/,)V((;_;,_@) + A(,\,M)Ta (Tg) . (8.10)
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8.5.1. Resulting formulae. We write formulae . and - for the roots A, pu €
QC @t (go,a0), 0 € p~" (Mg, and ¢ € p~! (u):
@()\7u75,ga)U(5+<p) + A()\7M) (Ta (Hl)) = [Uépa U«,fjl (E) - [‘/6F7 VLijI (E)y
@(/\,H,J,ga)‘/(é-‘rw) + A(/\,u) (Ta (Tz)) = [Uf‘v V@F:I (E) + [VzSFa Ug] (E)
We have to add also the case in which (0 + ¢) is real and both § and ¢ complex.
Again \, p € Q C " (go,a0), 6 € p~* (M), and ¢ € p~! (). In this case
from (8.11) and having (4.5) in mind we have:
k@+e) =1,
S 4% + Aoy (Ta(H)) = [USUE](B) - [Vi5, VE] (B)
(As1,0,0) YV (5+¢) (M) 1 [ 5§V ’
k((S-HP) = (71)7
Onndir) Wiste) T Ao (Ta(T2)) = [U5 VI (B) + [Vi, US| (B).
We need to consider also the case in which both é and ¢ are real. That is, A,
peQC P (go,a0), d € pt (g, and ¢ € p~ ' (u)g. Furthermore, the first line

in (8.1) in the present case clearly yields ksk, = k(51) and then formulae (8.12)
become:

(8.11)

(8.12)

ko) =1, ks =ky =1,

O 5.0 Wise) + Aoy (Ta (Hr)) = Wi, W] (B),
Koy =1, ks =ky =

Or 5.0 Wis o) + Aa) (Ta(Hy)) = — Wi, WL (E),
korey = (1), ks=1, ko =—1,

@(x\,uﬁ,w)W(Hso) + A(/\,u (Ta(T: )) [ ’WF] (E),
ko) = (=1), ks=-1, kg

O (x50 Wis o) + Aa) (Ta(T: >) [Ws W(E).

(8.13)
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