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SECOND COHOMOLOGY SPACE OF sl(2) ACTING ON THE
SPACE OF BILINEAR BIDIFFERENTIAL OPERATORS

IMED BASDOURI, SARRA HAMMAMI, AND OLFA MESSAOUD

Abstract. We consider the sl(2)-module structure on the spaces of bilinear
bidifferential operators acting on the spaces of weighted densities. We compute
the second cohomology group of the Lie algebra sl(2) with coefficients in the
space of bilinear bidifferential operators that act on tensor densities Dλ,ν,µ.

1. Introduction

Let g be a Lie algebra and M a g-module. We shall associate a cochain complex
known as the Chevalley–Eilenberg differential. The n-th space of this complex will
be denoted by Cn(g,M).

For n > 0, it is the space of n-linear antisymmetric mappings of g into M :
they will be called n-cochains of g with coefficients in M . The space of 0-cochains
C0(g,M) reduces to M . The differential δn will be defined by the following formula:
for c ∈ Cn(g,M), the (n+ 1)-cochain δn(c) evaluated on g1, g2, . . . , gn+1 ∈ g gives:

δnc(g1, . . . , gn+1) =
∑

1≤s<t≤n+1
(−1)s+t−1c([gs, gt], g1, . . . , ĝs, . . . , ĝt, . . . , gq+1)

+
∑

1≤s≤n+1
(−1)sgsc(g1, . . . , ĝs, . . . , gn+1);

the notation ĝi indicates that the i-th term is omitted.
We check that δn+1 ◦ δn = 0, so we have a complex:

0→ C0(g,M)→ · · · → Cn−1(g,M) δ
n−1

→ Cn(g,M)→ · · ·
We denote by Hn(g,M) = ker dn/ Im dn−1 the quotient space. This space is called
the space of n-cohomology of g with coefficients in M . We denote by:
Zn(g,M) = ker δn: the space of n-cocycles;
Bn(g,M) = Im δn−1: the space of n-coboundaries.
For M = R (or C) considered as a trivial module, we denote the cohomologies,

in this case, by Hn(g).
We shall now recall classical interpretations of cohomology spaces of low degrees.
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• The space H0(g,M) ' Invg(M) := {m ∈M : ∀X ∈ g, X.m = 0}.
• The space H1(g,M) classifies derivations of g with values in M modulo inner

ones (see [1]). This result is particularly useful when M = g with the adjoint
representation. In this case, a derivation is a map % : g −→ g such that

%([X,Y ])− [%(X), Y ]− [X, %(Y )] = 0,
while an inner derivation is given by the adjoint action of some element Z ∈ g.
◦ If M = Hom(N ,M), the nontrivial extensions of g-modules are classified by

the first cohomology group H1(g,Hom(N ,M)) (see e.g. [4, 5]). Any 1-cocycle Υ
generates a new action onM⊕N as follows: for all g ∈ g and for all (φ, ϕ) ∈M⊕N ,
we define

g∗(φ, ϕ) := (g∗φ+ Υ(ϕ), g∗ϕ).
◦ Let ρ0 : g→ End(V ) be an action of a Lie algebra g on a vector space V . It is

well known that the first cohomology space H1(g; End(V )) determines and classi-
fies infinitesimal deformations up to equivalence. Thus, if dim H1(g; End(V )) = m,
then choose 1-cocycles Υ1, . . . ,Υm representing a basis of H1(g; End(V )) and con-
sider the infinitesimal deformation

ρ = ρ0 +
m∑
i=1

tiΥi,

where t1, . . . , tm are independent parameters.
• The space H2(g,M) classifies central extensions of g by M (see [8, 7]), i.e.

short exact sequences of Lie algebras
0→M → ĝ→ g→ 0

in which M is considered as an abelian Lie algebra. We shall mainly consider two
particular cases of this situation which will be extensively studied in the sequel:
◦ If M is a trivial g-module (typically M = R or C), H2(g,M) classifies central

extensions modulo trivial ones. Recall that a central extension of g by R produces
a new Lie bracket on ĝ = g⊕M by setting

[(X,λ), (Y, µ)] = ([X,Y ], c(X,Y )).
It is trivial if the cocycle c = dl is a coboundary of a 1-cochain l, in which case

the map (X,λ) → (X,λ − l(X)) yields a Lie isomorphism between ĝ and g ⊕M
considered as a direct sum of Lie algebras.
◦ If M = g with the adjoint representation, then H2(g, g) classifies infinitesimal

deformations modulo trivial ones. By definition, a (formal) series
(X,Y )→ Φλ(X,Y ) := [X,Y ] + λf1(X,Y ) + λ2f2(X,Y ) + · · · (1.1)

is a deformation of Lie bracket [ , ] if Φλ is a Lie bracket for every λ, i.e. it is
an antisymmetric bilinear form in X,Y and satisfies Jacobi’s identity. If one sets
simply

[X,Y ]λ = [X,Y ] + λc(X,Y ), (1.2)
c being a 2-cochain with values in g and λ being a scalar, then this bracket satisfies
Jacobi’s identity modulo terms of order O(λ2) if and only if c is a 2-cocycle.
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Let Vect(R) be the Lie algebra of all vector fields Xh = h d
dx , where h ∈ C∞(R)

on R. Consider the 1-parameter deformation of the Vect(R) action on C∞(R):

LλXh
(f) = hf ′ + λh′f,

where f ′, h′ are respectively df
dx , dh

dx . Denote by Fλ the Vect(R)-module structure
on C∞(R) defined by Lλ for a fixed λ.

Each bilinear bidifferential operator A on R gives thus rise to a morphism from
Fλ ⊗Fν to Fµ, for any λ, ν, µ ∈ R, by fdxλ ⊗ gdxν 7→ A(f ⊗ g)dxµ,

A(fdxλ ⊗ gdxν) =
m∑
k=0

∑
i+j=k

ai,jf
igjdxµ,

where the coefficients ai,j are constants.
The Lie algebra Vect(R) acts on the space of bilinear bidifferential operators

Dλ,ν,µ as follows:
Xh.A = LµXh

◦A−A ◦ L(λ,ν)
Xh

, (1.3)

where L(λ,ν)
Xh

is the Lie derivative on Fλ ⊗Fν defined by the Leibniz rule:

L
(λ,ν)
Xh

(f ⊗ g) = LλXh
(f)⊗ g + f ⊗ LνXh

(g).

If we restrict ourselves to the Lie algebra sl(2), which is isomorphic to the Lie
subalgebra of Vect(R) spanned by

{X1, Xx, Xx2},

we have a family of infinite dimensional sl(2)-modules still denoted by Dλ,ν,µ.
Bouarroudj, in [5], computes the cohomology space H1

diff(sl(2),Dλ,ν,µ), where H1
diff

denotes the differential cohomology; that is, only cochains given by differential
operators are considered (see e.g. [6]). In this paper we compute the second co-
homology space H2

diff(sl(2),Dλ,ν,µ) of the Lie algebra sl(2) with coefficients in the
space of bilinear bidifferential operators Dλ,ν,µ. Moreover, we give explicit formulae
for non trivial 2-cocycles which generate these spaces.

2. Vect(R)-module structures on the space of bilinear
bidifferential operators

The Lie algebra sl(2) is realized as subalgebra of the Lie algebra Vect(R),

sl(2) = Span
(
X1 = d

dx
, Xx = x

d

dx
, Xx2 = x2 d

dx

)
, (2.1)

corresponding to the fraction-linear transformations

x 7→ ax+ b

cx+ d
, ad− bc = 1.

A projective structure on R (or S1) is given by an atlas with fraction-linear coordi-
nate transformations (in other words, by an atlas such that the sl(2)-action (2.1)
is well-defined).
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The commutation relations are

[X1, Xx] = X1, [Xx, Xx] = 0, [X1, X1] = 0,
[X1, Xx2 ] = 2Xx, [Xx, Xx2 ] = Xx2 , [Xx2 , Xx2 ] = 0.

2.1. The space of tensor densities on R. Let Vect(R) be the Lie algebra of
vector fields on R. Consider the 1-parameter deformation of the Vect(R) action on
C∞(R):

LλXh
(f) = hf ′ + λh′f,

where f ′, h′ are respectively df
dx , dhdx . Denote by Fλ the Vect(R)-module structure on

C∞(R) defined by Lλ for a fixed λ. Geometrically, Fλ =
{
fdxλ : f ∈ C∞(R)

}
is the

space of weighted densities of weight λ ∈ R, so its elements can be represented as
f(x)dxλ, where f(x) is a function and dxλ is a formal (for the time being) symbol.
This space coincides with the space of vector fields, functions, and differential forms
for λ = −1, 0, and 1, respectively.

The space Fλ is a Vect(R)-module for the action defined by

Lλ
g d

dx
(fdxλ) = (gf ′ + λg′f)dxλ. (2.2)

2.2. The space of bilinear bidifferential operators as a Vect(R)-module.
We are interested in defining a cohomology of the Lie algebra Vect(R) with co-
efficients in the space of bilinear bidifferential operators Dλ,ν,µ. The counterpart
Vect(R)-modules of the space of linear differential operators is a classical object
(see e.g. [9]).

Consider bilinear bidifferential operators that act on tensor densities:

A : Fλ ⊗Fν −→ Fµ. (2.3)

The Lie algebra Vect(R) acts on the space of bilinear bidifferential operators as
follows. For all φ ∈ Fλ and for all ψ ∈ Fν ,

Lλ,ν,µX (A)(φ, ψ) = LµX ◦A(φ, ψ)−A(LλX(φ), ψ)−A(φ,LνX(ψ)), (2.4)

where LλX is the action (2.2). We denote by Dλ,ν,µ the space of bilinear bidifferential
operators (2.3) endowed with the defined Vect(R)-module structure (2.4).

3. The second differentiable cohomology space of sl(2)
acting on Dλ,υ,µ

In this section, we investigate the second space differentiable cohomology of the
Lie algebra sl(2) with coefficients in the space of bilinear bidifferential operators
that act on tensor densities Dλ,ν,µ. Following Sofiane Bouarroudj, we give explicit
expressions of the basis cocycles. Namely, we consider only cochains that are given
by differentiable maps.
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3.1. The main theorem.

Theorem 3.1. The second differentiable cohomology space of the sl(2)-module
Dλ,υ,µ has the following structure:

(1) If µ− λ− υ = 0, then
H2(sl(2),Dλ,ν,µ) = R.

(2) If µ− λ− υ = k, where k is a positive integer, then

H2(sl(2),Dλ,ν,µ) '
{
R4, if (λ, µ) = (− s2 ,−

t
2 ), where 0 ≤ s, k − s− 2 < t ≤ k − 1;

R, otherwise.

(3) If µ− λ− υ = k, where k is not a positive integer, then
H2(sl(2),Dλ,ν,µ) ' 0.

Before proving the theorem, we are required to prove the following two lemmas.

Lemma 3.2. Let C : Fλ⊗Fυ → Fµ be a bilinear bidifferential operator defined as
follows: for all φ ∈ Fλ and for all ψ ∈ Fυ,

C(φ⊗ ψ) =
∑
i+j=k

ai,j(XY ′ −X ′Y )φ(i)ψ(j) +
∑

i+j=k−1
bi,j(XY ′′ −X ′′Y )φ(i)ψ(j)

+
∑

i+j=k−2
ci,j(X ′Y ′′ −X ′′Y ′)φ(i)ψ(j),

where the superscript ′ stands for d
dx and ai,j, bi,j, and ci,j are constants, and let

the 2-cocycle condition read as follows: for all vector fields X d
dx , Y d

dx , and Z d
dx in

sl(2),

δC(φ⊗ ψ) =
(
Lλ,υ,µX C

(
X

d

dx
, Y

d

dx

)
− Lλ,υ,µY C

(
X

d

dx
,Z

d

dx

)

− Lλ,υ,µ
Z d

dx

C

(
X

d

dx
, Y

d

dx

))
(φ⊗ ψ)

−

(
C

([
X

d

dx
, Y

d

dx

]
, Z

d

dx

)
+ C

([
X

d

dx
,Z

d

dx

]
, Y

d

dx

)

− C
([
Y
d

dx
, Y

d

dx

]
, Z

d

dx

))
(φ⊗ ψ)

= 0.
Then we have

δC(φ⊗ ψ) = 1
2

∑
i+j=k−1

(
X(Y ′′Z ′ − Y ′Z ′′) + Y (Z ′′X ′ − Z ′X ′′) + Z(X ′′Y ′ −X ′Y ′′)

×
(
(i+ 1)(i+ 2λ) ai+1,j + (j + 1)(j + 2υ) ai,j+1

)
+ (µ− λ− υ − i− j)bi,j

)
φ(i)ψ(j).

(3.1)

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



136 I. BASDOURI, S. HAMMAMI, AND O. MESSAOUD

Proof. Straightforward computation using the definition (2.2). �

Lemma 3.3. Let b : Fλ ⊗Fυ → Fµ be a bilinear bidifferential operator defined as
follows. For all φ ∈ Fλ and for all ψ ∈ Fυ:

b
(
X

d

dx

)
(φ⊗ ψ) =

∑
i+j=k

αi,jXφ
(i)ψ(j) +

∑
i+j=k−1

βi,jX
′φ(i)ψ(j), (3.2)

where αi,j, βi,j are constants. For all X d
dx , Y

d
dx ∈ sl(2), we have

δb(φ⊗ ψ) = 1
2
∑

i+j=k−1
(XY ′′ −X ′′Y )

×
(
(i+ 1)(i+ 2λ)αi+1,j + (j + 1)(j + 2υ)αi,j+1

)
φ(i)ψ(j)

+ 1
2
∑

i+j=k−2
(X ′Y ′′ −X ′′Y ′)

×
(
(i+ 1)(i+ 2λ)βi+1,j + (j + 1)(j + 2υ)βi,j+1

)
φ(i)ψ(j).

(3.3)

Proof. Straightforward computation using the definition (2.2). �

3.2. Proof of Theorem 3.1. Using Lemma 3.2, for all X d
dx , Y

d
dx ∈ sl(2), φ ∈ Fλ,

and ψ ∈ Fυ, we prove that the coefficient of the component φ(i)ψ(j) in the 2-cocycle
condition above is equal to

1
2
(
(i+1)(i+2λ)ai+1,j+(j+1)(j+2υ)ai,j+1 +(µ−λ−υ− i−j)bi,j

)
φ(i)ψ(j). (3.4)

The annihilation of the 2-cocycle condition requires the annihilation of the formula
(3.4). So we have

(i+ 1)(i+ 2λ)ai+1,j + (j + 1)(j + 2υ)ai,j+1 + (µ− λ− υ − i− j)bi,j = 0. (3.5)
We distinguish many cases:

• For µ− λ− υ = 0, the 2-cocycle on sl(2) has the following form:

C

(
X

d

dx
, Y

d

dx

)
(φ, ψ) = a(XY ′ −X ′Y )φψ,

where X d
dx ∈ sl(2), φ ∈ Fλ, ψ ∈ Fυ, and a is a constant. The 2-cocycle

condition is proved by a direct computation:

δC

(
X

d

dx
, Y

d

dx
, Z

d

dx

)
(φ, ψ) = 0.

Thus the space Z2(sl(2),Dλ,ν,µ) is one-dimensional. Now we are going to
study the triviality of the general cocycle (3.2). Every trivial 2-cocycle of
sl(2) in Dλ,υ,λ+υ must be of the form δQ, where Q is an element of Dλ,υ,λ+υ
defined as follows:

Q

(
X

d

dx

)
(φ, ψ) = Xαφψ +X ′βφψ,
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where α and β are constants. We have

δQ
(
X

d

dx
, Y

d

dx

)
(φ, ψ)

= Lλ,ν,λ+ν
X d

dx

Q

(
Y
d

dx

)
(φ, ψ)− Lλ,ν,λ+ν

Y d
dx

Q

(
X

d

dx

)
(φ, ψ)

−Q
([
X

d

dx
, Y

d

dx

])
(φ, ψ),

After a direct computation, the result will be δQ(X d
dx , Y

d
dx )(φ, ψ) = 0;

then δQ(X d
dx , Y

d
dx )(φ, ψ) 6= C(X d

dx , Y
d
dx )(φ, ψ) shows that the general

cocycle (3.2) cannot be ultimately trivial. Therefore the coboundary space
B2(sl(2),Dλ,ν,µ) vanishes. As a consequence,

H2(sl(2),Dλ,ν,λ+ν) = Z2(sl(2),Dλ,ν,λ+ν).

• For µ− λ− υ = k, where k is a positive integer:
(1) If λ 6= −s

2 and υ 6= −t
2 , where s, t ∈ {0, . . . , k − 1}, then the space

of solutions of the system (3.5) is one-dimensional, generated by a0,k.
Indeed, in that case (i + 1)(i + 2λ) 6= 0 and (j + 1)(j + 2υ) 6= 0;
therefore the system (3.4) is equivalent to

ai+1,j = − (j + 1)(j + 2υ)
(i+ 1)(i+ 2λ) ai,j+1,

where i+ j = k − 1. By iterations, we get

a1,k−1 = −k(k − 1 + 2υ)
2λ a0,k = −C1

k

(k − 1 + 2υ)
2λ a0,k,

a2,k−2 = − (k − 1)(k − 2 + 2υ)
1 + 2λ a1,k−1 = C2

k

(k − 1 + 2υ)(k − 2 + 2υ)
2λ(1 + 2λ) a0,k,

...
ai,k−i = (−1)i+1Ci+1

k

× (k − i+ 2υ)(k − i+ 1 + 2υ)(k − i+ 2 + 2υ) · · · (k − 1 + 2υ)
(i− 1 + 2λ)(i− 2 + 2λ) · · · 2λ a0,k.

Now, we show how the constants bi,j and ci,j can be eliminated from
our initial 2-cocycle (3.2). We add the coboundary δb of the equation
(3.3) of our 2-cocycle (3.1). The constants αi,j and βi,j are chosen
such that{
bi,j = − 1

2 ((i+ 1)(i+ 2λ)αi+1,j + (j + 1)(j + 2υ)αi,j+1),
ci,j = − 1

2 ((i+ 1)(i+ 2λ)βi+1,j + (j + 1)(j + 2υ)βi,j+1).
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Thus, the cohomology group in question is one-dimensional, generated
by the 2-cocycle

C

(
X

d

dx
, Y

d

dx

)
(φ, ψ)

= (XY ′ −X ′Y )φψ(k)

+
∑

i+j=k−1
(−1)(i+1)C

(i+1)
k (XY ′ −X ′Y )

× (k − i+ 2υ)(k − i+ 1 + 2υ)(k − i+ 2 + 2υ) · · · (k − 1 + 2υ)
(i− 1 + 2λ)(i− 2 + 2λ) · · · 2λ

× φ(i+1)ψ(j).

(2) If λ 6= −s
2 and υ = −t

2 , where s, t ∈ {0, . . . , k − 1}, then the constants
ak−t,k, ak−t+1,t−1, . . . , ak,0 are zero, and the space of solutions of the
system (3.5) is one-dimensional, generated by a0,k. Two cases should
be studied:

(a) If j ≤ t:
– For j = t, we have (j + 1)(j + 2υ) = 0. So,

(k − t)(k − t− 1 + 2υ)ak−t,t = 0.

We have λ 6= −s
2 , for all s ∈ {0, . . . , k−1}, then (i+2λ) 6= 0.

Thus ak−t,t = 0.
– For j ∈ {0, . . . , t− 1}, we have (j + 1)(j + 2υ) 6= 0.

So, ak−t+1,t−1 = − t(t−1+2υ)
(k−t+1)(k−1+2λ)ak−t,t = 0.

Thus, ak−t+2,t−2 = − (t−1)(t−2+2υ)
(k−t+2)(k−2+2λ)ak−t+1,t−1 = 0.

...
Finally, ak,0 = 0.

(b) If j > t, then

ai+1,j = − (j + 1)(j + 2υ)
(i+ 1)(i+ 2λ) ai,j+1,

where i+ j = k − 1. By iterations, we get

a1,k−1 = −C1
k

(k − 1 + 2υ)
2λ a0,k,

a2,k−2 = C2
k

(k − 1 + 2υ)(k − 2 + 2υ)
2λ(1 + 2λ) a0,k,

...

ai,k−i = (−1)i+1Ci+1
k

(k − i+ 2υ)(k − i+ 1 + 2υ)(k − i+ 2 + 2υ) · · · (k − 1 + 2υ)
(i− 1 + 2λ)(i− 2 + 2λ) · · · 2λ a0,k.

The constants bi,j and ci,j can be eliminated by the same method as in
Part (1). We have just proved that the cohomology group in question
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is generated by the 2-cocycle

C

(
X

d

dx
, Y

d

dx

)
(φ, ψ) = (XY ′ −X ′Y )

(
φψ(k) +

∑
i+j=k−1

ai+1,jφ
i+1ψ(j)

)
,

where

ai+1,j '

{
0, if j ≤ t;
(−1)i+1Ci+1

k
(k−i+2υ)(k−i+1+2υ)(k−i+2+2υ)···(k−1+2υ)

(i−1+2λ)(i−2+2λ)···2λ , otherwise.

(3) If λ = −s
2 and υ 6= −t

2 , where s, t ∈ {0, . . . , k − 1}, then we follow the
same steps as in (2) (b). Thus, the cohomology group in question is
one-dimensional, generated by the 2-cocycle

C

(
X

d

dx
, Y

d

dx

)
(φ, ψ) = (XY ′ −X ′Y )

(
φψ(k) +

∑
i+j=k−1

ai,j+1φ
iψ(j+1)

)
,

where

ai,j+1 '

{
0, if j ≤ t;
(−1)k−iCi+1

k
(i+2λ)(i+1+2λ)···(k−1+2λ)

(j+2υ)(j−1+2υ)···2υ , otherwise.

(4) If λ = −s
2 and υ 6= −k−s−1

2 , where s ∈ {0, . . . , k − 1}, then the
space of solutions of the system (3.5) is two dimensional, generated
by as+1,k−s−1 and as,k−s.

(a) If i = s, j = k − s− 1, we have{
(i+ 1)(i+ 2λ) = 0,
(j + 1)(j + 2υ) = 0.

(b) If i 6= s, we have (i+ 1)(i+ 2λ) 6= 0.
The system (3.5) is equivalent to the system

ai+1,j = − (j + 1)(j + 2υ)
(i+ 1)(i+ 2λ) ai,j+1.

(i) If i+ j = k − 1 for all i ∈ {1, . . . , s− 1}: by iterations, we
get

a1,k−1 = −C1
k

(k − 1 + 2υ)
2λ a0,k

a2,k−2 = C2
k

(k − 1 + 2υ)(k − 2 + 2υ)
2λ(1 + 2λ) a0,k

...

ai,k−i = (−1)sCsk
(k − s+ 2υ)(k − s+ 1 + 2υ)(k − s+ 2 + 2υ) · · · (k − 1 + 2υ)

(s− 1 + 2λ)(s− 2 + 2λ) · · · 2λ a0,k.
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(ii) If i+ j = k − 1 for all i ≥ s+ 1: by iterations, we get

as+2,k−s−2 = −
(k − s− 1)(k − s− 2 + 2υ)

(s+ 2)(s+ 1 + 2λ)
as+1,k−s−1,

as+3,k−s−3 = −
(k − s− 2)(k − s− 1)(k − s− 3 + 2υ)(k − s− 2 + 2υ)

(s+ 3)(s+ 2)(s+ 2 + 2λ)(s+ 1 + 2λ)
as+1,k−s−1,

a2,k−2 = C2
k

(k − 1 + 2υ)(k − 2 + 2υ)
2λ(1 + 2λ)

a0,k,

...

ai,k−i = (−1)i−s+1

×
(k − i+ 1)(k − i+ 2) · · · (k − s− 1)(k − i+ 2υ)(k − i+ 1 + 2υ) · · · (k − s− 2 + 2υ)

i(i− 1) · · · (s+ 2)(i− 1 + 2λ)(i− 2 + 2λ) · · · (s+ 1 + 2λ)
× as+1,k−s−1.

Now we will explain how the constants bi,j and ci,j can be elim-
inated except constants bs,k−s−1 and cs,k−s−1 because the com-
ponent in (3.3) is zero.
The H2(sl(2),Dλ,ν,λ+ν) is generated by a family of cocycles de-
pending on four free parameters: a0,k, as+1,k−s−1, bs,k−s−1,
and cs,k−s−1. Thus, the cohomology group in question is four-
dimensional, generated by the 2-cocycle

C

(
X

d

dx
, Y

d

dx

)
(φ, ψ)

= bs,k−s−1(XY ′′ −X ′′Y )φ(s)ψ(k−s−1)

+ cs,k−s−1(X ′Y ′′ −X ′′Y ′)φ(s)ψ(k−s−1)

+
(
a0,kφψ

(k) + as+1,k−s−1φ
(s+1)ψ(k−s−1)

+
∑
i+j=k

i6=(0,s+1)

ai,jφ
(i)ψ(j)

)
(XY ′ −X ′Y ),

where ai,j equals

(−1)sCsk
(k − s+ 2υ)(k − s+ 1 + 2υ)(k − s+ 2 + 2υ) · · · (k − 1 + 2υ)

(s− 1 + 2λ)(s− 2 + 2λ) · · · 2λ a0,k,

if i ≤ s, and equals

(−1)i−s+1

× (k − i+ 1)(k − i+ 2) · · · (k − s− 1)(k − i+ 2υ)(k − i+ 1 + 2υ) · · · (k − s− 2 + 2υ)
i(i− 1) · · · (s+ 2)(i− 1 + 2λ)(i− 2 + 2λ) · · · (s+ 1 + 2λ)

× as+1,k−s−1,

if i ≥ s+ 1.
(5) If λ = −s

2 and υ = −t
2 , where s, t ∈ {0, . . . , k − 1} and i + j = k − 1,

we distinguish many cases:
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(a) For t ≤ k − s − 2, the space of solutions of the system (3.5) is
one-dimensional, generated by as+1,k−s−1. In fact, there are six
cases:

(i) If i = s, we have (k − s)(k − s + 2υ)as,k−s = 0; then,
as,k−s = 0.

(ii) If i < s, we have

ai,j = (−1)iCik
(j + 2υ)(j + 1 + 2υ) · · · (k − 1 + 2υ)

(i− 1 + 2λ)(i− 2 + 2λ) · · · 2λ a0,k,

since as,k−s = 0.
(iii) If i = k − t− 1 and j = t, then we have

(k − t)(k − 1− t+ 2λ)ak−t,t = 0,

and and as the condition t ≤ k−s−2 involves s < k− t−1
and (i+ 2λ) does not vanish only if i = s, so (3.5) implies
(k − t)(k − t− 1 + 2υ)ak−t,t = 0; so ak−t,t = 0.

(iv) If i 6= s and j 6= t, the system (3.5) implies

ai+1,j = − (j + 1)(j + 2υ)
(i+ 1)(i+ 2λ) ai,j+1,

and this last equality allows us to obtain

ai,j = (−1)i−s+1 (j + 1)(j + 2) · · · (k − s− 1)
i(i− 1) · · · (i+ 2)

× (j + 2υ)(j + 1 + 2υ) · · · (k − s− 2 + 2υ)
(i− 1 + 2λ)(i− 2 + 2λ) · · · (s+ 1 + 2λ) as+1,k−s−1.

Since as,k−s = 0, we obtain

a0,k = a1,k−1 = · · · = as,k−s = 0.

(v) If s+ 1 ≤ i < k − t− 1, we obtain

ai,j = (−1)i−s+1 (j + 1)(j + 2) · · · (k − s− 1)
i(i− 1) · · · (i+ 2)

× (j + 2υ)(j + 1 + 2υ) · · · (k − s− 2 + 2υ)
(i− 1 + 2λ)(i− 2 + 2λ) · · · (s+ 1 + 2λ) as+1,k−s−1.

(vi) If i > k − t− 1, we have ai,j = 0, since ak−t,t = 0.
We conclude that

ai,j '


0, if i ≤ s;
0, if j ≤ t;
(−1)i−s+1 (j+1)(j+2)···(k−s−1)

i(i−1)···(i+2)
(j+2υ)(j+1+2υ)···(k−s−2+2υ)
(i−1+2λ)(i−2+2λ)···(s+1+2λ) as+1,k−s−1

, otherwise.

The constants bi,j and ci,j are eliminated as explained in the
other cases.

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



142 I. BASDOURI, S. HAMMAMI, AND O. MESSAOUD

Thus, the cohomology group in question is one-dimensional, gen-
erated by the 2-cocycles

C

(
X

d

dx
, Y

d

dx

)
(φ, ψ)

= (XY ′ −X ′Y )
(
φ(s+1)ψ(k−s−1) +

∑
i+j=k
i 6=s+1

ai,jφ
(i)ψ(j)

)
.

(b) If t > k − s− 2, then the space of solutions of the system (3.5)
is two-dimensional, generated by as+1,k−s−1 and ak−t−1,t+1.
Secondly, the constants bi,j and ci,j are eliminated as explained
in the other cases, except bk−t−1,t and ck−t−1,t.
The H2(sl(2),Dλ,ν,λ+ν) is generated by a family of cocycles
depending on four free parameters a0,k, as+1,k−s−1, bs,k−s−1,
and cs,k−s−1. Thus, the cohomology group in question is four-
dimensional, generated by the 2-cocycle

C

(
X

d

dx
, Y

d

dx

)
(φ, ψ)

= bk−t−1,t(XY ′′ −X ′′Y )φ(k−t−1)ψt

+ ck−t−1,t(X ′Y ′′ −X ′′Y ′)φ(k−t−1)ψt

+
(
a0,kφψ

(k) + ak,0φ
(s+1)ψ(k−s−1)

+
∑
i+j=k
i,j 6=0

ai,jφ
(i)ψ(j)

)
(XY ′ −X ′Y ),

where

ai,j '

(−1)k−jCjk
(j+2υ)(j+1+2υ)(j+2+2υ)···(k−1+2υ)

(i−1+2λ)(i−2+2λ)···2λ a0,k, if j ≥ t+ 1;

(−1)k−iCik
(i+2λ)(i+1+2λ)···(k−1+2λ)

(j−1+2υ)(j−2+2υ)···2υ ak,0 , if i ≥ s+ 1.

• For µ − λ − υ = k, where k is not a positive integer, every 2-cocycle on
sl(2) retains the following general from:

C

(
X

d

dx
, Y

d

dx

)
(φ⊗ ψ) =

∑
0≤n,m≤2

∑
i,j

ai,j,n,mX
(n)Y (m)φ(i)ψ(j).

The 2-cocycle condition is equivalent to ai,j,n,m = 0, ∀ i, j, n,m ∈ N. So
the operator C

(
X d
dx , Y

d
dx

)
is identically the zero map.

Thus,
H2(sl(2),Dλ,ν,λ+ν) ' 0.
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Département de Mathématiques, Faculté des Sciences de Sfax, BP 802, 3038 Sfax, Tunisie
sarra.hammemi@hotmail.com

Olfa Messaoud
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