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SECOND COHOMOLOGY SPACE OF sl((2) ACTING ON THE
SPACE OF BILINEAR BIDIFFERENTIAL OPERATORS

IMED BASDOURI, SARRA HAMMAMI, AND OLFA MESSAOUD

ABSTRACT. We consider the s[(2)-module structure on the spaces of bilinear
bidifferential operators acting on the spaces of weighted densities. We compute
the second cohomology group of the Lie algebra s[(2) with coefficients in the
space of bilinear bidifferential operators that act on tensor densities Dy .-

1. INTRODUCTION

Let g be a Lie algebra and M a g-module. We shall associate a cochain complex
known as the Chevalley—FEilenberg differential. The n-th space of this complex will
be denoted by C™(g, M).

For n > 0, it is the space of n-linear antisymmetric mappings of g into M:
they will be called n-cochains of g with coefficients in M. The space of 0-cochains
C%(g, M) reduces to M. The differential 6" will be defined by the following formula:
for ¢ € C™(g, M), the (n + 1)-cochain §™(c) evaluated on g1, ga, ..., gnt1 € g gives:

5nc(gla"'7gn+1): Z (_1)s+t_lc([gsagt]7glv'"7.@57'"agta"'vgq+1)
1<s<t<n+1
+ Z (_1)8980(917"‘7957"‘7gn+1);
1<s<n+1

the notation §; indicates that the i-th term is omitted.
We check that 6"1 o 6™ = 0, so we have a complex:

0= C%g, M) — - — C" (g, M) ° C™(g, M) = -+
We denote by H" (g, M) = ker d”/Im d™ ! the quotient space. This space is called
the space of n-cohomology of g with coefficients in M. We denote by:
Z™(g, M) = ker d,,: the space of n-cocycles;
B"(g, M) =1Imd,_1: the space of n-coboundaries.

For M =R (or C) considered as a trivial module, we denote the cohomologies,
in this case, by H"(g).
We shall now recall classical interpretations of cohomology spaces of low degrees.
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e The space H(g, M) ~ Invy(M) :={me M : VX € g, X.m = 0}.

e The space H!(g, M) classifies derivations of g with values in M modulo inner
ones (see [I]). This result is particularly useful when M = g with the adjoint
representation. In this case, a derivation is a map ¢ : ¢ — g such that

o([X, Y]) = [o(X), Y] = [X, o(Y)] = 0,

while an inner derivation is given by the adjoint action of some element Z € g.

o If M = Hom(N, M), the nontrivial extensions of g-modules are classified by
the first cohomology group H'(g, Hom(N, M)) (see e.g. [4, 5]). Any 1-cocycle T
generates a new action on M®N as follows: for all g € g and for all (¢, p) € MON,
we define

g (o, 0) == (970 + Y (p),9"¢).

o Let po : g = End(V') be an action of a Lie algebra g on a vector space V. It is
well known that the first cohomology space H!(g; End(V)) determines and classi-
fies infinitesimal deformations up to equivalence. Thus, if dim H!(g; End(V)) = m,
then choose 1-cocycles Y1, ..., T, representing a basis of H!(g; End(V)) and con-
sider the infinitesimal deformation

m
P =po+ Ztiria
i=1
where t1,...,t, are independent parameters.

e The space H?(g, M) classifies central extensions of g by M (see [8, [7]), i.e.
short exact sequences of Lie algebras

0-M-—-g—9g—0

in which M is considered as an abelian Lie algebra. We shall mainly consider two
particular cases of this situation which will be extensively studied in the sequel:

o If M is a trivial g-module (typically M = R or C), H?(g, M) classifies central
extensions modulo trivial ones. Recall that a central extension of g by R produces
a new Lie bracket on g = g ® M by setting

(X, A), (Y, )] = ([X, Y], e(X,Y)).
It is trivial if the cocycle ¢ = dl is a coboundary of a 1-cochain [, in which case
the map (X,\) — (X, A — (X)) yields a Lie isomorphism between § and g & M
considered as a direct sum of Lie algebras.

o If M = g with the adjoint representation, then H?(g, g) classifies infinitesimal
deformations modulo trivial ones. By definition, a (formal) series

(X,Y) = &A(X,Y) = [X, Y]+ AMA(X,Y) + X fo(X,Y) + -+ (1.1)

is a deformation of Lie bracket [,] if ®) is a Lie bracket for every A, i.e. it is
an antisymmetric bilinear form in X,Y and satisfies Jacobi’s identity. If one sets
simply

(X, Y] =[X, Y]+ Xe(X,Y), (1.2)
¢ being a 2-cochain with values in g and A being a scalar, then this bracket satisfies
Jacobi’s identity modulo terms of order O(\?) if and only if ¢ is a 2-cocycle.
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Let Vect(R) be the Lie algebra of all vector fields X, = h%, where h € C*(R)
on R. Consider the 1-parameter deformation of the Vect(R) action on C*°(R):

L, (f) =hf + AW f,

where f’, h' are respectively %, %. Denote by Fy the Vect(R)-module structure
on C*(R) defined by L for a fixed \.
Each bilinear bidifferential operator A on R gives thus rise to a morphism from

Fr®F, to Fy, for any \,v, u € R, by fdz* ® gda” — A(f ® g)dz*,

m
A(fda* @ gdz¥) = Z Z ai;f'g’dz",
k=0i+j=k
where the coefficients a; ; are constants.
The Lie algebra Vect(R) acts on the space of bilinear bidifferential operators
Dy, as follows:

L AV
XpA=Lh oA—AoLQ™), (1.3)
where ng\:j) is the Lie derivative on F) ® F, defined by the Leibniz rule:

LS (fog) =LA, (f)®g+ f© L%, (9)-

If we restrict ourselves to the Lie algebra sl(2), which is isomorphic to the Lie
subalgebra of Vect(R) spanned by

{X17X.”1:7XI2}a

we have a family of infinite dimensional s[(2)-modules still denoted by Dy ...
Bouarroudj, in [5], computes the cohomology space H},4(s((2), Dy . ,.), where Hl
denotes the differential cohomology; that is, only cochains given by differential
operators are considered (see e.g. [6]). In this paper we compute the second co-
homology space H3,;(5[(2), Dy ,,,.) of the Lie algebra s((2) with coefficients in the
space of bilinear bidifferential operators Dy ,,,. Moreover, we give explicit formulae
for non trivial 2-cocycles which generate these spaces.

2. Vect(R)-MODULE STRUCTURES ON THE SPACE OF BILINEAR
BIDIFFERENTIAL OPERATORS

The Lie algebra sl(2) is realized as subalgebra of the Lie algebra Vect(R),

d d d
[(2)=S Xi=—, Xy=0—, X;2 =a°— |, 2.1
si(2) pan( T dr Yia ’ xdx) (2.1)
corresponding to the fraction-linear transformations
M, ad —bc=1.
cx+d

A projective structure on R (or S!) is given by an atlas with fraction-linear coordi-
nate transformations (in other words, by an atlas such that the sl(2)-action (2.1))
is well-defined).
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The commutation relations are

[X1, X.] = X4, (X, Xz] =0, [X1,X41] =0,
[X1,Xw2] =2X,, [X17Xx2] = X2, [X$27X$2] =0.

2.1. The space of tensor densities on R. Let Vect(R) be the Lie algebra of
vector fields on R. Consider the 1-parameter deformation of the Vect(R) action on
C>®(R):
Ly, (f) = hf" + \W'f,
where [/, b/ are respectively %, %. Denote by Fy the Vect(R)-module structure on
C>(R) defined by L* for a fixed X\. Geometrically, Fy = { fdz* : f € C*°(R)} is the
space of weighted densities of weight A € R, so its elements can be represented as
f(x)dxz?, where f(x) is a function and dz? is a formal (for the time being) symbol.
This space coincides with the space of vector fields, functions, and differential forms
for A = —1, 0, and 1, respectively.
The space F) is a Vect(R)-module for the action defined by

Ly o (fdz*) = (g + Ag' f)da?. (2.2)

2.2. The space of bilinear bidifferential operators as a Vect(R)-module.
We are interested in defining a cohomology of the Lie algebra Vect(R) with co-
efficients in the space of bilinear bidifferential operators Dy ,,,. The counterpart
Vect(R)-modules of the space of linear differential operators is a classical object
(see e.g. [9]).

Consider bilinear bidifferential operators that act on tensor densities:

A:F\®F, — Fo. (2.3)

The Lie algebra Vect(R) acts on the space of bilinear bidifferential operators as
follows. For all ¢ € Fy and for all ¢ € F,,

LYY H(A)(h,0) = LK o A(d,p) — A(Lx(9),0) — A(p, L% (1)), (2.4)

where L3\( is the action (2.2]). We denote by Dy, ,, the space of bilinear bidifferential
operators ([2.3) endowed with the defined Vect(R)-module structure (2.4)).

3. THE SECOND DIFFERENTIABLE COHOMOLOGY SPACE OF sl(2)
ACTING ON Dy, ,,

In this section, we investigate the second space differentiable cohomology of the
Lie algebra sl(2) with coefficients in the space of bilinear bidifferential operators
that act on tensor densities Dy, ,. Following Sofiane Bouarroudj, we give explicit
expressions of the basis cocycles. Namely, we consider only cochains that are given
by differentiable maps.
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SECOND COHOMOLOGY SPACE OF sl(2) 135

3.1. The main theorem.

Theorem 3.1. The second differentiable cohomology space of the sl(2)-module
Dy, has the following structure:

(1) If u—X—v =0, then
H?(s((2), D) = R.
(2) If u — XA — v =k, where k is a positive integer, then
HQ(E[(2)7D,\,V,M) - {R4, if ()\,u). =(—-%,-%), where 0 < s, k—s—2<t<k-1;
R, otherwise.
(3) If u — A — v =k, where k is not a positive integer, then
H?(s1(2), Dx ) = 0.

Before proving the theorem, we are required to prove the following two lemmas.

Lemma 3.2. Let C : F\® F, — F, be a bilinear bidifferential operator defined as
follows: for all ¢ € Fy and for all Y € F,,,

Cle@v)= > a (XY =X'V)pDpD + Y™ b (XY = X"Y)g D)

i+j=k i+j=k—1
+ Z Cij (X/Yu _ X//Y,)qﬁ(i)@/}(j),
it+j=k—2

where the superscript ' stands for d‘i and a; j, b; j, and c; ; are constants, and let

the 2-cocycle condition read as follows: for all vector fields Xd‘i, Yddm, and Z% n
sl(2),
d d d d
Av,/t X* Y — L)\vvnu' X— 77—
Cloey) = ( O( dx dx) Y C( dx’ " dx
d d
— L (X —,Y —
v C( =, dm) ><¢®w>

d d d d d d
- (o (Favalzg) ve([xizs] ve)

Then we have

0C(p@Y) = % Z (X(Y"Z' -Y'Z")+Y(Z"X' - Z'X") + Z(X"Y' - X'Y")
itj=k—1
X (G4 1) +2X) aig1; + (G + 1) +20) aij41) (3.1)
+ (= A —v—i—j)bi;)eDpt).
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Proof. Straightforward computation using the definition (2.2]). O

Lemma 3.3. Let b: F) ® F, — F, be a bilinear bidifferential operator defined as
follows. For all (i) € Fy and for allp € F:

(X DY pew) = Y ayXoWy® 1 3 pXe000,  (32)
i+j=k i+j=k—1
where a; j, B;; are constants. For all X%,Y% € s5l(2), we have

Sb(p @) = % > (XY -X"Y)

i+j=k—1

x (i + )i + 2015+ (F + D+ 20)ai 1) oY)
1 1" UAVd)
5 Z X'y"— X"y
+i=k—
x ((z + 1)@+ 20)Bir + (G + D+ 20)Bi541) V90,
(3.3)
Proof. Straightforward computation using the definition . O

3.2. Proof of Theorem. Using Lemma|3.2| for all Xdz , Y— € sl(2), ¢ € Fa,

and ¢ € F,,, we prove that the coefficient of the component ¢ w in the 2-cocycle
condition above is equal to

%((i+1)(i+2)‘)ai+l,j+(]+1)(]+2v)aw+1+(ﬂ A—v—i—j)b; ;)P (3.4)

The annihilation of the 2-cocycle condition requires the annihilation of the formula

(13.4). So we have
(i + 1)(Z + 2)\)ai+1,j + (] + 1)(] + 2v)ai,j+1 + (M —A—v—1i— j)bl,] =0. (35)
We distinguish many cases:

e For yn — A — v =0, the 2-cocycle on sl(2) has the following form:

1, .
€ (XY 4 ) (000) = alXY" = X'V )ou,

where X% € sl(2), ¢ € Fa, v € Fy, and a is a constant. The 2-cocycle
condition is proved by a direct computation:

d d d

Thus the space Z?(s[(2), Dx,,,) is one-dimensional. Now we are going to
study the triviality of the general cocycle . Every trivial 2-cocycle of
$1(2) in Dy a4 must be of the form 6Q, where Q is an element of Dy ,, x4v
defined as follows:

@ (x4 ) (0.) = Xaow + X'gou,
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SECOND COHOMOLOGY SPACE OF sl(2) 137

where a and [ are constants. We have

sQ(X v L) (60)
d

T AU A “ T A VAtY i
—nyp (v ) e - pp e (x4 ) (6w

o([xgrg]) e

After a direct computation, the result will be 6Q(X%,Y%)(¢, ) = 0;
then 0Q(X-L.Y L) (¢,9)) # C(XL,YL)(¢,¢) shows that the general
cocycle cannot be ultimately trivial. Therefore the coboundary space
B2(s(2), Dy ) vanishes. As a consequence,

H(s1(2), Daynss) = Z2(51(2), Dayris)-

e For 4y — A\ — v = k, where k is a positive integer:

(1) If A # 5% and v # St where s,t € {0,...,k — 1}, then the space
of solutions of the system is one-dimensional, generated by ag .
Indeed, in that case (i + 1)(i + 2X) # 0 and (5 + 1)(j + 2v) # 0;
therefore the system is equivalent to

w = UADG+20)
g G+ 1)@ +2x) 0

where ¢ + 7 = k — 1. By iterations, we get

k(k—142v k—14+2v
al k-1 = —#ao,k = —Cé%ao,k,
a __(k—l)(k—2+2v)a _Cg(k—1+2v)(k—2+2v)a
2,k—2 = 112 1,k—1 = Cj N1 + 2\ 0,k>

air—i = (-1)T
U= i 20)(k =i+ 14 20)(k— i +2+20) -+ (k= 1+ 20)
G- 11200 —2+20)--2x

aQ,k-

Now, we show how the constants b; ; and c¢; ; can be eliminated from
our initial 2-cocycle (3.2). We add the coboundary ¢b of the equation
of our 2-cocycle (3.1). The constants a;; and §;; are chosen
such that

bij =~
Cijj =~

((E+ 1)+ 2N aiq1,5 + (G + 1) + 20) a4 541),
(A + 1) +2M)Biv1,; + (G + 1)+ 20)Bi j+1)-

N—= N

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



138 I. BASDOURI, S. HAMMAMI, AND O. MESSAOUD

Thus, the cohomology group in question is one-dimensional, generated
by the 2-cocycle

d d

= (XY = X'Y)pp®)
+ > (nENCTI(XY - XTY)
i+j=k—1
ki 20)(k— i 14 20)(k—i 424 20) - (k= 1+ 20)
(i —142X)(i —2+2X)--- 2\

x ¢t ),

(2) fX# 35 and v = %t, where s,t € {0,...,k — 1}, then the constants

Qk—t ), Ok—t+1,6—1, - - - » @k,0 are zero, and the space of solutions of the
system is one-dimensional, generated by ag ;. Two cases should
be studied:

(a) If j < t:

— For j =t, we have (j + 1)(j + 2v) = 0. So,
(k - t)(k —t—14 2’[})ak,t)t =0.
We have A # 52, forall s € {0,...,k—1}, then (i+2X) # 0.

Thus ag—¢ = 0.
— For j €{0,...,t — 1}, we have (j + 1)(j + 2v) # 0.
t(t—1+2v)
S0, ag—t+1,4-1 = Tt D (k—142x) Tk—t,t = = 0.

(t=1)(t—2+2v)

Thus, ag—ti2t-2 = Tt (k—2t2x) Gk—t+1t—1 = 0.

Finally, ag,0 = 0.
(b) If j > t, then

DG +2)
(i +1)(i +2x) D

where ¢ + 5 = k — 1. By iterations, we get

Q41,5 =

k—1+2
a1,k—1 = _Cé#ao,lm
ok —1420)(k -2+ 20)
az k-2 = Ck 2/\(1 T 2)\) Qao,k,

k (i— 14+ 2X\)(i — 2+ 2X\)---2X 0k
The constants b; ; and ¢; ; can be eliminated by the same method as in
Part (1). We have just proved that the cohomology group in question

i k—i = (*
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SECOND COHOMOLOGY SPACE OF sl(2) 139

is generated by the 2-cocycle

d d . )
C (X v g ) (0 = XV =XV (0P 4 T anyotiol).

dx -
i+j=k—1

where

{& ifj <t
Ait1,5 = i i1 (k—i+20) (k—i+1+42v) (k—i+2+20)- (k—1+2v) .
(-1)*+o; S EE Sy IR F vy , otherwise.
(3) f A= 5% and v # _{7 where s,t € {0,...,k — 1}, then we follow the
same steps as in (2) (b). Thus, the cohomology group in question is
one-dimensional, generated by the 2-cocycle

d d o
¢ (de’ydx> (¢,9) = (XY’ - X'Y) (Qw(k) + ) ai,j+1¢l¢(]+l)>7

itj=k—1
where
0, ifj <t
Gij+1 = {(_l)kicli-i-l (1+%])\_)~_(213)1(J+2‘l_21(}’§*12$2)‘), otherwise.

(4) If A = 5 and v # =25*=L where s € {0,...,k — 1}, then the

space of solutions of the system (3.5 is two dimensional, generated
by Us41,k—s—1 and Us k—s-
(a) Ifi=s,j =k —s—1, we have

(i+1)(i+2)) =0,
G+1D(G+2v)=0.

(b) If i # s, we have (i 4+ 1)(i + 2X) # 0.
The system ([3.5) is equivalent to the system

wnn = WD +20)
g G+ 1D)(i+2n)

(i) fi+j=k—1forallie{l,...,s—1}: by iterations, we

get
k—1+4+2
alk—1 = _Cé#ao,k
. 2 (k—=1+2v)(k—242v)
as,g—2 = C A1+ 2N ao,k

_ __(_1)Scs(k—s+2v)(k—s+1+2v)(k—s+2+2v)~~-(k—1+2v)
k=i = k (s—1+2\)(5—2+2\) - -2X

ao,k-
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(ii) If i + 7 = k — 1 for all ¢ > s + 1: by iterations, we get
(k—s—1)(k—s—2+42v)
(s+2)(s+1+2x)
(k—s—2)(k—s—1)(k—s—3+2v)(k—s—2+2v)
(5+3)(5+2)(s+2+2)\)(s + 1+ 2))

k—1+42v)(k—242v
wasn— 2 )( )

As42 k—s—2 — — As41,k—s—1>

As43 k—s—3 = — Gs41,k—s—1>

ag k,

2A(1 4 2))
aj i = (=1
it k=it 2) (ks = (ki 20)(k =i+ 1420) - (k=5 =24 20)
i(i—1) (s+2)G—1+2N)(i—2+2\) - (s+ 1+ 2X)
X Gs41,k—s—1-
Now we will explain how the constants b; ; and ¢; ; can be elim-
inated except constants bs ;—s—1 and ¢ ;—s—1 because the com-
ponent in (3.3) is zero.
The H?(s1(2), Dy 1210 is generated by a family of cocycles de-
pending on four free parameters: ag g, Gs+1,k—s—1, s k—s—1,
and ¢ ;—s—1. Thus, the cohomology group in question is four-
dimensional, generated by the 2-cocycle
d d
ClX—,Y— ,
(x5 )ow)
_ bs,kfsfl(XY” _ XIIY)¢(S)¢(k_S_1)
+ Cs,k—s—l(X/YN _ X//y/)d)(s)w(kfsfl)
+ (ao,kfbi/)(k) + as+1,k—s—1¢(8+1)¢(k7571)
+ ) ai,jq%w) (XY’ - X'Y),
i+ji=k
i#(0,5+1)
where a; ; equals
ssE—s+20)(k—s+1+2v)(k—s+2+4+2v)---(k—142v)
<_1) Ci A0,k
(s=14+2N)(s—2+2X\) -2\
if 1 < s, and equals
(71)75754»1

y k—it+)(k—i+2) - (k—s—1)(k—i+20)(k—i+1+20)-- - (k—s—2+42v)
i(i—1) - (5+2)(i—1+20) (i —2+2N) - (s +1+2X\)
X As4+1,k—s—1,
ifi >s+1.
(5) If A= 5 and v = 3£, where s,t € {0,...,k— 1} and i+ j = k — 1,
we distinguish many cases:
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(a) For t < k — s — 2, the space of solutions of the system (3.5) is
one-dimensional, generated by as41,5—s—1. In fact, there are six
cases:

(i) If i = s, we have (k — s)(k — s + 2v)as k—s = 0; then,
Us k—s = 0.
(if) If i < s, we have
(+20)G+1+2v) (k= 1+2v)
(i—T+20)(—2+2))---2x 0
since ag k—s = 0.
(iii) If i =k — ¢t — 1 and j = ¢, then we have
(k - t)(k —1—-t+ 2)\)ak_t7t = O,
and and as the condition t < k—s—2 involves s < k—t—1
and (¢ + 2)\) does not vanish only if i = s, so (3.5)) implies
(k—t)(k—t—1+2v)ag_¢s = 0; 50 ag_s = 0.
v 1 # s and j # t, the system (|3.5]) implies
iv) If i # d j #t, th (3.5) impli
G+DG+2v)
T o A+
i+ 1)@+ 2N
and this last equality allows us to obtain
o yims1 DG +2) (ks — 1)
a;; = (—1) = -
’ i(i—1)---(i+2)
(+20)( +1+20) - (k—5—242)
(i— L1420 —2+42N) - (s+ L42x) *Thrms—l

Since as ;—s = 0, we obtain

a;; = (-1)'C}

Qjy1,5 = —

Aok = Q1k—1 =+ = Qg k—s = 0.
(v) If s+1<i<k—1t—1, we obtain
o 1i—s+1(j+1)(j+2)"'(k‘—8—1)
ai; = (=1) T -
i(i—1)---(14+2)
(+20)(G+1+20)(k—s—2+20)
(=120 —2+20) - (s+ 14 2x) FHrst
V1 t>k—t—1, we have a; ; =0, since ap—s = 0.
i) Ifi >k —t— 1, we have a;; = 0, si =0

We conclude that

0, if 1 < s;

0, ifj <t

Qq5 = . ; ; voi(k—s5— 3
J (_1)z—s+1 (J+1i)<(iaj2>?“(§i2> 1) , otherwise.

(74+2v)(j+1+42v)---(k—s—2+2v)
(i—1t2))(i—2+2n) - (stitax) dstlk—s-1

The constants b; ; and ¢; ; are eliminated as explained in the
other cases.
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Thus, the cohomology group in question is one-dimensional, gen-
erated by the 2-cocycles

d d

= (XY' - X'Y) <¢(s+l)w(ksl) + Z ai,j¢><i)w(j)>.
i+ji=k
iFs+1
(b) If t > k — s — 2, then the space of solutions of the system

is two-dimensional, generated by as41 x—s—1 and ax—¢—1,¢41-
Secondly, the constants b; ; and c; ; are eliminated as explained
in the other cases, except by—;—1,+ and cr—i—1,.
The HZ%(sl(2),Dr 1) is generated by a family of cocycles
depending on four free parameters aok, @s4+1,k—s—1, bs k—s—1,
and c; ;—s—1. Thus, the cohomology group in question is four-
dimensional, generated by the 2-cocycle

d
X—Y—
c( ot )<¢ %)
_ bk—t—l,t(XYN - X”Y)(ﬁ(k_t_l)ipt
+ Ck—t—l,t(XlY" 7 X//Y/)¢(k—t—1)wt

+ (ao,kqﬁw(k) + ak,0¢(s+1>¢<k7371)

+ ) ai,j¢><%<ﬂ'>>(xy’—x’y),

itj=k

1,770
where
k—ij i (G+20)(+142v0) (j+242v) - (k—1+2v) ap - .
(D)9 (Jz 1+2)\)(]i 2F2X)2A aok, ifj=>t+1;

by = Ji vi (20 (i41420) - (k= 1422)
(=1) Ci G-1+20)(G—2+20)20  Ok,0

Jif i > s+ 1.

e For 4 — A — v = k, where k is not a positive integer, every 2-cocycle on
s[(2) retains the following general from:

d
il E E (n)y (m) 4 (@)
0<n,m<2 4,j

The 2-cocycle condition is equivalent to a; jnm = 0, V4,j,n,m € N. So
the operator C (X %, Y%) is identically the zero map.
Thus,

H? (5[(2)a D)\,V,)\—i-l/) ~ 0.
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