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LOCALIZATION OPERATORS AND SCALOGRAM ASSOCIATED
WITH THE GENERALIZED CONTINUOUS WAVELET
TRANSFORM ON R? FOR THE HECKMAN-OPDAM THEORY

HATEM MEJJAOLI AND KHALIFA TRIMECHE

ABSTRACT. We consider the generalized wavelet transform <I>XV on R? for the
Heckman—Opdam theory. We study the localization operators associated with
<I>hW; in particular, we prove that they are in the Schatten—von Neumann class.
Next we introduce some results on the scalogram for this transform.

1. INTRODUCTION

We consider the differential-difference operators 7}, j = 1,2,...,d, associated
with a root system R and a multiplicity function k, introduced by Cherednik in [5],
and called the Cherednik operators in the literature. These operators were helpful
for the extension and simplification of the theory of Heckman—Opdam, which is a
generalization of the harmonic analysis on the symmetric spaces G/ K ([33], 84}, 31]).

The Cherednik and Heckman—Opdam theories are based on the Opdam—Chered-
nik hypergeometric function Gy, A € C?, which is the unique analytic solution of
the system

Tju(z) = —iNju(z), j=1,2,...,d,
satisfying the normalizing condition u(0) = 1, and the Heckman—-Opdam kernel
F\, XA € C%, which is defined by

Ve eRY,  Fy(z) = ﬁ Z Gy (wz),
weWw
where W is the Weyl group associated with the root system R (|33, [34]).

With the kernel G, Opdam and Cherednik have defined in [5l B3] the Opdam-—
Cherednik transform H and have used the kernel F)\ to define the hypergeometric
Fourier transform H" on spaces of W-invariant functions, and have established
some of their properties (see also [34]).

Very recently, many authors have been investigating the behavior of the hyper-
geometric Fourier transform in several problems already studied for the Fourier
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transform; for instance, wavelet theory [19], real Paley—Wiener theorems [23] 2],
Roe’s theorem [25], boundedness and compactness of two-wavelet multipliers [28],
uncertainty principles [2T] [24] 27], Ramanujan’s master theorem [32], the heat
equation [37], and so on.

In the classical setting, the notion of wavelets was first introduced by Morlet,
a French petroleum engineer at ELF-Aquitaine, in connection with his study of
seismic traces. The mathematical foundations were given by Grossmann and Morlet
in [I8]. The harmonic analyst Meyer and many other mathematicians became aware
of this theory and they recognized many classical results inside it (see [6] 22] 30]).
Classical wavelets have wide applications, ranging from signal analysis in geophysics
and acoustics to quantum theory and pure mathematics (see [111, 16} [20] and the
references therein).

Recently in [19] Hassini et al., with the aid of the harmonic analysis associated
to the Heckman—Opdam theory, have defined and studied the generalized wavelet
transform, and they have proved Plancherel’s and inversion formulas for this trans-
form.

One of the applications of the continuous wavelet transform is time-frequency
analysis, which is a mathematical tool to define a restriction of functions to a region
in the time-frequency plane, that is compatible with the uncertainty principle, and
to extract time-frequency features. In this sense they have been introduced and
studied by Daubechies [8] [9, [10] and Ramanathan and Topiwala [35], and they are
now extensively investigated as an important mathematical tool in signal analysis
and other applications [7, (12} [13], 17, [35] 4T].

As the harmonic analysis associated to the Heckman—Opdam theory has known
remarkable development, it is a natural question to ask whether there exists the
equivalent of the theory of time-frequency analysis for the generalized wavelet trans-
form introduced in [19].

In this paper we study only two subjects of the time-frequency analysis asso-
ciated with the generalized wavelet transform. The first subject is the theory of
localization operators. This theory has found many applications to time-frequency
analysis, the theory of differential equations, and quantum mechanics. Many works
have been written on localization operators from these points of view; we refer in
particular to the papers of Balazs et al. [3,[4]. The second subject is the scalogram.
We note that the scalogram has many applications; for example in [2], the au-
thors used Morlet wavelet scalograms to detect a previously unknown coordinated
contractility behavior of the atrium during ventricular fibrillation, a phenomenon
which is not captured in a normal electrocardiogram. Other applications can also
be found in [39], where the authors applied the scalogram to biomedical signals to
detect their short-lived temporal interactions. We mention that scalograms have
been studied in the context of the generalized wavelet transforms by many authors;
see for example [I5] [29].

The remainder of the paper is organized as follows. In Section 2 we recall the
main results about the harmonic analysis associated with the Cherednik operators.
Section 3 is devoted to the study of boundedness and compactness properties of
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the localization operators for the generalized continuous wavelet transform @,‘;V;
we show that they are in the Schatten—von Neumann class. We also give a trace
formula. In the last section we study the eigenvalues and eigenfunctions of the
time-frequency localization operator. Next we study the scalogram associated with
the generalized continuous wavelet transform.

2. PRELIMINARIES

This section gives an introduction to the theory of Cherednik operators, hyper-
geometric Fourier transform, and hypergeometric convolution. The main references
are [5, 211, 31, 33], 34}, 37, 40].

2.1. Reflection groups, root systems, and multiplicity functions. The basic

ingredient in the theory of Cherednik operators are root systems and finite reflection

groups, acting on R? with the standard euclidean scalar product (-, -) for which the

basis {e;, i = 1,...,d} is orthogonal, and ||z| = \/{z,z). On C¢, || -|| denotes also
d

the standard Hermitian norm, while (z, w) = Z 2W;.
j=1

For a € R4\{0}, let ¥ = ﬁa be the coroot associated to a and let

ro(z) =1 — (¥, 2)a

be the reflection in the hyperplane H, C R% orthogonal to .
A finite set R C R?\{0} is called a root system if r,(R) = R for all a € R.
For a given root system R the reflections r,, @ € R, generate a finite group
W C O(d), called the reflection group associated with R.
We fix a positive root system Ry = {a € R : (a,3) > 0} for some § €

R7\ U H,. We denote by Rg the set of positive indivisible roots.

aER
Let

Cy = {xERd :Va € Ry, (o, x) >0}
be the positive chamber. We denote by C its closure.
A function k : R — [0, 00) is called a multiplicity function if it is invariant under

the action of the associated reflection group W. For abbreviation, we introduce
the index

y=9k) = > k).

a€ER ¢

Moreover, let A, denote the weight function

k()
Ve eRY, Ap(z) = ‘sinh g,x ‘2 .
k QLL <2 >

We note that this function is W invariant and satisfies

Vo e Oy, Ag(z) <exp(2(o,z)),
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where

a€ER ¢

2.2. The eigenfunctions of the Cherednik operators. The Cherednik opera-
tors T, j =1,...,d, on R? associated with the finite reflection group W and the
multiplicity function k are given by

T31(0) = 5@+ Y f%{ﬂ )~ Frala))} — pyf ()

(a,x)
aER 4 ¢
with a; = (a,e;) and g; = 1 Z
aER 4
The operators T; can also be written in the form
0 1 1
Tif(@) = 5 f(@) +5 3 Ka)aycoth (5, 2) {(z) = F(ra(e))} - 55, (@)
Zj
aER
with
V-Z'ERd7 Z k(o a]f Ta(T)).

aER 4

In the case k(o) = 0, for all @ € Ry, the T;, j = 1,2,...,d, reduce to the
corresponding partial derivatives.

Example 2.1. For d = 1, the root systems are R = {—«,a}, R = {—2«, 2a}, or
R = {—2a, —a, a, 2a}, with « the positive root. We take the normalization a = 2.

e For Ry = {a}, we have the Cherednik operator

T f(@) = pa) + 2O ()~ ) - pf (),

with p = k(a). This operator can also be written in the form

T3 () = - fa) + b{a) coth(n){f(x) — f(~a)} ~ h(@)f(~2).  (21)
e For Ry = {2a}, we have the Cherednik operator

Ty 7 ) = - f @)+ 1o f(a) — f(-)) ~ pf ().

This operator can also be written in the form

T f(z) = %f(x)ﬂk(?a) coth(z) +k(2a) tanh(2)){ f (z) = f (=2) } —pf (=), (2.2)
with p = 2k(2a).
o For Ry = {a,2a}, we have the Cherednik operator

11f(0) = 00+ (oo + 1 ) 17(w) = S(-2)) = pf (o)
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with p = k(a) + 2k(2«). It can also be written as

Tif(z) = %f(fc)Jr((k(a)Jrk(?a))Coth(x)+k(20) tanh(z)){f(z)—f(—z)}—pf(—2).
(2.3)

The operators (2.1, (2.2) and (2.3) are particular cases of the differential-
difference operator

Mo £(2) = - 7(z) + (kcoth(z) + K tanb(2)) (£(x) — F(~2)} ~ pf(~2),

with k > k' > 0 and k # 0. This operator is called the Jacobi—-Cherednik operator

(cf. [14]).
The Heckman-Opdam Laplacian Ay, on R? is defined by

Ay f(x ZTQ Af(z) + Z k(a) (COth<%,x>) (Vf(x),a)+|pl?f(z)
a€Ry
- @ ﬂ 2 — e (x
a;ik( )4(sinh<%,x>>2{f( ) — f(ra(z)},

where /A and V are respectively the euclidean Laplacian and the gradient operator
on R%,

The Heckman—-Opdam Laplacian on W-invariant functions is denoted by AkW
and has the expression

A f(a) + " k(@) (coth (5,2)) (V@) @) + o) F ().

acRy

Example 2.2. For d =1, W =Zy and k > k' > 0, k # 0, the Heckman-Opdam
Laplacian is the Jacobi operator defined for even functions f of class C? on R by

d2 / d 2
with o = k + &'

We denote by Gy the eigenfunction of the operators 1}, j = 1,2,...,d. It is the
unique analytic function on R? that satisfies the differential-difference system

Tju(z) = —iNju(z), j=1,2,...,d, v € R4,
u(0) = 1.

G, is called the Opdam—Cherednik kernel.
We consider the function F) defined by

VzeRY  Fy(z) = |W| Z G (wz).
weWw
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This function is the unique analytic W-invariant function on R? that satisfies the
differential equation

p(Tu(z) = p(—iNu(z), z€RI \ecR?,

u(0) =1,

for all W-invariant complex polynomials p on R? and p(T) = p(T1, ..., Ty).
In particular, for all A € R? we have

A Fx(w) = = |IXI*Fa(2).

The function F) is called the Heckman-Opdam hypergeometric function.
The functions G and F possess the following properties:

i) For all x € RY, the functions G\(z) and F)(z) are entire on C¢.
ii) The functions G, and F) satisfy the estimate

VzeRY, VAERY, |Gi(x)| < VW],
and
VzeRY VAeRY, |Fy(z)| <1
iii) We have
VeeCy, Fo(z)=e (P H (1+ (o, 2)).
a€RY

iv) Let p and ¢ be polynomials of degree m and n, respectively. Then there
exists a positive constant M such that for all A € C? and for all z € R?,
we have

(2)o(2)o

v) The preceding estimate holds true for F too.

< ML+ Jal])™ (1 + X)" Fo(r)emxnew tmuwhia)),

Example 2.3. When d = 1, W = Zs, and k > k' > 0, k # 0, the Opdam-—
Cherednik kernel G (x) is given for all A € C and = € R by

(k—3,k'—1 1 d k—L k-1
Ga(r) =) @) oy eI (),

where @E\aﬁ )(x) is the Jacobi function of index («, 8) defined by

o (@) = o Fy (B(p+iX), §(p — iAo+ L —(sinhz)?)

with p = o+ f + 1 and o F} is the Gauss hypergeometric function.
In this case the Heckman-Opdam kernel F)(x) is given for all A € C and z € R
by

k—1k'—1
Fi(z) = 077" 72 (@),
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2.3. The hypergeometric Fourier transform on W-invariant functions.
Notation. We denote by

o E(RHW the space of C*®-functions on R? that are W-invariant;

o D(RHYW the space of C*°-functions on R? that are W-invariant and with
compact support;

o S(RHYW the Schwartz space of rapidly decreasing functions on R that are
W -invariant;

o So(RH)W the space of C>-functions on R? that are W-invariant and such
that for all /,n € N, we have

0 —
sup (1 + [l]))*Fy ()| D" f ()] < oo,

[p|<n
zeR?

where

olul 4
D“:m, = (p1,. .., pa) € NY

o PW(CHW the space of entire functions on C¢ that are W-invariant, rapidly
decreasing, and of exponential type;

. Lik (RHW 1 < p < oo, the space of measurable functions f on R? that
are W-invariant and satisfy

1/p
1l oy = ( [ @) dx) <oo, if1<p<oo
k Rd
||f||L;;° (rdy = esssup |f(z)] < oo;
k IERd’

o LY (RHYW 1 < p < 00, the space of measurable functions f on R? that are
W-invariant and satisfy

1/p
Izt e = ([ 1roPan) " <o w1<p<on,
R
I

L (re) = esssup [ f(z)] < oo,
rcRd
where
dvi (M) := Ci(\) dA

B L(—i(A, ") + k(o) + $k(
=< 1 T(—if\ a¥) + Sk(

NLGEN, ) + k() + $k(2))
NN, Y) + 1Kk(2))
with ¢ a normalizing constant and k(§) = 0if § ¢ R,. The measure dvy ()

is called the symmetric Plancherel measure or Harish-Chandra measure
(cf. [33], 137]).

d,

o
2
o
2

aER

Remark 2.4. The function Cj is positive, continuous on R, and satisfies the
estimate

YA ER?Y,  |CL(N)| < const. | A|RH (1 + A2 IR

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



176 HATEM MEJJAOLI AND KHALIFA TRIMECHE

Definition 2.5. The hypergeometric Fourier transform of a function f in D(R%)"
is given by

HY(HHN) = » f(z)F\(2)Ag(z)dz, for all A € RY.

Proposition 2.6. The transform H}¥ is a topological isomorphism from

iy DRHYY onto PW (CHW .

ii) So(RHYW onto S(RH)W.
The inverse transform is given by

Ve eRY  (HY)'(h)(2) = / h(N\)Fy (=) dvg(N).
Rd
Proposition 2.7. For f in L} (RYW the function H}¥ (f) is continuous on R?
and we have
HHZV(f)HLgi(Rd) < ||fHL}4k(Rd)~

Proposition 2.8. i)(Parseval’s formula) For all f, g in D(RY)W (resp. in So(RH)W)
we have
| 1@i@a d = [ #EOOHEEGR) .
ii) (Plancherel’s theorem) The transform H}' extends uniquely to an isomor-
phism from L3 (RY)W onto L2 (RH)W.

k

Proposition 2.9. For all f in L, (R))Y such that H}" (f) belongs to L, (RH)W,
we have the inversion formula

f@) = [ HY(POVF(—2) din(V), ae.z € RY
Rd
Definition 2.10. Let x be in R%. The generalized translation operator f + 7}V f
is defined on L% (RHW by
HY (1Y )N = Ea(@)H (/)(N), A eR% (2.4)

Using the generalized translation operator, we define the generalized convolution
product of functions as follows.

Definition 2.11. The generalized convolution product of f and g in L%, (RH)W is
the function f % g defined by

Frgl) = [ 2 fu Ay, o R (25)

Proposition 2.12. Let f and g be in L%k (RHYW. Then the function f ;g belongs
to Lik RYW if and only if the function H)Y (f).H}) () is in L?,k (RHYW, and we
have

HY (f 1 9) = HY (F)-HE (9)
in the L?-case.
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2.4. Basic generalized wavelet theory.

Definition 2.13. A generalized wavelet on R? is a measurable function A that is
W-invariant on R? and satisfies, for almost all A € R?, the condition

o<ch:/ |H,Zv(h)()\a)\2%<oo.
0

Example 2.14. Let E;, t > 0, be the heat kernel defined on R? by

veeRY Eye)= (M) (e IV)(@).

d
The function h(z) = —%Et(x) is a generalized wavelet on R? in So(R%)"W, and
1
Ch = —.
M s

Proposition 2.15. Let a > 0 and let h be a generalized wavelet in Li‘k (RHW,
Then there exists a function hg in L% (R®)W such that

VAERY,  H (ha)(A) = H}Y (h)(aN).
This function is given by the relation
1 _
ha =~ (M) o Dy-r o 1Y (1)
a2

and satisfies

s(a)

d
2

Hha”Lik(Rd) < HhHLﬁ‘k(Rd)a

a
where

Sla) = su |Ck()\)‘
A ATRES]

Let a > 0 and h be in L% (RY)"W. We consider the family hq ., © € R, of
functions on R? in L% (R?) defined by

k

and Du(f)@) = 2 £(%).

a

ha,(y) = LTW(hG)(_y)v yE Rd,

where 7V, x € R?, are the generalized translation operators given by (2.4).
We note that we have

Va>0,Vw€Rd, ||ha,z

|L3k(Rd) < ||h||L2Ak(]Rd)~ (2.6)

Notation. We denote by
. R‘fl ={(a,2) = (a,21,...,24) ERT 1 a>0};
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o P, (Rf‘l)w, p € [1, 00], the space of measurable functions f(a,x) on Rf‘l

that are W-invariant with respect to the variable & and satisfy

p
ey = ([, ol dintan)) <oe, 15p<o
+

11l 00 = esssup |f(a,2)| < oo,
(a,:c)E]RiJrl

where the measure py, is defined by
s(a)Ag(z) dx da
agtl .
Definition 2.16. Let h be a generalized wavelet on R in LQAk (RHYW. The gener-

alized continuous wavelet transform ®}" on R? is defined for suitable functions f
on R? by

V(a,z) € R dug(a,z) =

oY (f)(a,z) = SO has@Aw) dy, (a,2) € R (2.7)
The adjoint of @}V is (®}V)* : L2 (REAHW L3, (RH)W defined by
1
(@}:V)*(F)(t) = — F(a,x)hg 5 (t) dug(a,z), te R4,
Ch R+

Remark 2.17. i) The generalized continuous wavelet transform can also be written
in the form

.

O} (f)(a,z) = ﬁf 1, Fra (1),

where #, is the Heckman—Opdam convolution product given by (2.5).
ii) Let h be a generalized wavelet. Then for all f in L% (RY)™ we have

k
w
12 0 < 1122, @eylIPllzz ze)- (2.8)

Theorem 2.18 (Plancherel’s formula for ®}V). Let h be a generalized wavelet on
R in L (RYW. For all f in L4 (R*)Y we have
1
[ @Rt = [ el (Dol duo). (29
R4 Ch Rd+1
+

Corollary 2.19 (Parseval’s formula for ®}"). Let h be a generalized wavelet on
R® in L% (RYW and fi1, fo in L, (R")W. Then we have

k

f1(z) fo(z) Ar () dw:Ci L@ () (a,2) @) (f2)(a, 7) duk(a, @).
R h JREH

Theorem 2.20 (Inversion formula for ®}V). Let h be a generalized wavelet on R¢
in L3 (RYW. Forall f in LY (RNW (resp. L%, (RDYW) such that H}Y (f) belongs
to Ly (RHYW (resp. Ly (RHYW N LY (RY)) we have

=g [ [ oo, o), o,
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where for each y € R?, both the inner integral and the outer integral are absolutely
convergent, but possibly not the double integral.

3. LOCALIZATION OPERATORS FOR THE GENERALIZED CONTINUOUS
WAVELET TRANSFORM
3.1. Preliminaries.

Notation. We denote by:

e [P(N) the set of all infinite sequences of real (or complex) numbers z :=
(2j)jen such that

[ee]
|y := <Z|$j|p> <oo, ifl1<p<oo,
j=1

|z|loo := su;N) || < oo.

VIS

For p = 2, we provide this space (?(N) with the scalar product

o0
(z, y>quk(Rd) = Z 55 ;
j=1

e B(L%, (R%)) the space of bounded operators from L% (R?) into itself.
Definition 3.1. (i) The singular values (s,(A))nen of a compact operator A in
B(L3, (R9)) are the eigenvalues of the positive self-adjoint operator |A| = v/A*A.

(ii) For 1 < p < o0, the Schatten class S, is the space of all compact operators
whose singular values lie in {?(N). The space S, is equipped with the norm

1

|Alls, := (i(sn(m)p)p.

n=1
Remark 3.2. We note that the space Ss is the space of Hilbert—Schmidt operators,
and S7 is the space of trace class operators.

Definition 3.3. The trace of an operator A in 57 is defined by

o0

tr(A) = Z<Avn,vn>Lik(Rd), (3.1)

n=1
where (vy,)n is any orthonormal basis of L (R).
Remark 3.4. If A is positive, then
tr(A) = [|A]ls,.
Moreover, a compact operator A on the Hilbert space Lik (R%) is a Hilbert-Schmidt
operator if the positive operator A*A is in the space of trace class S;. Then

oo
[Allzrs = A%, = 147 Alls, = tr(A"4) = 3 || AvallZ; o)
n=1

for any orthonormal basis (v,), of L%, (RY).
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Definition 3.5. We define S, := B(L% (R?)), equipped with the norm

k
[Alls. = sup [Av]Lz (@)

ueLik(Rd);HvuLik ®dy=1

In this section, h will be a generalized wavelet on R? such that
||h||L?4k(Rd) =L

3.2. Boundedness. In this subsection we define the localization operators for the
generalized continuous wavelet transform and we show that they are bounded.

Definition 3.6. The localization operator with symbol ¢ associated with the gen-
eralized continuous wavelet transform, denoted by Ly (o), is defined on L% (RY)

by
1

= o . U(a,z)q)zv(f)(a,x)ha,x(y) dug(a,z), y e R
+

Ln(@)(f)(y)

Often it is more convenient to interpret the definition of £;(0) in a weak sense,
that is, for f,g in L%} (R?) we have

1 - @
(Ln(0)(f): 91z ra) = 5/ a(a,2)@} (f)(a,2)®} (9)(a, z) dur(a, ). (3.2)
k h Ri+1
In this section we prove that the linear operators
Ln(o): L%, (RY) — L% (RY)
are bounded for all symbols o in L (R‘f‘l)w, 1 < p < oo. We consider first this

problem for o in L, (R‘f‘l)w and next in L7° (R‘f‘l)w and we conclude by using
interpolation theory.

Proposition 3.7. Let o be in L, (REYYW. Then the localization operator Ly, (o)
18 in Sso and we have

1
[£r(0)ls, < ?HJH#MI'
h

Proof. For all functions f and g in L% (RY)", we have from the relations (3.2)
and ((2.8):

‘(Lh(a)(f)’ghgkmd) 1

<Gy g @) 18 (90,2 BT )0 2] (a2

1
< 07||<I>ZV(f)IIM,ooII@;VLV(Q)IIM,OOIIUIIMJ

1
< a||f||L3k(Rd)|\g\\L3k(Rd)||U||mm1~

Thus,
1
1£n(0) s < G llolun - O
h
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Proposition 3.8. Let o be in L7 (Rf‘l)w. Then the localization operator Ly, (o)
18 in Soo and we have

1£n(0) |50 < [0l ur00- (3-3)

Proof. For all functions f and ¢ in Lik (RHW | we have from Hélder’s inequality:

(Ln(@)(f),9) 12 ®e)| < 701 / |o(a, ) |2} (f)(a, )| @} (9)(a, )| dpr(a, z)
k h R++1
< 7(/} 0100 1R (Pl 2195 (9) a2
h

Using Plancherel’s formula for ®}V, given by the relation (2.9), we get
() (f)s 912 @) S Mool Fllzz @nlglley (me)-
Thus,
[1£n(0)]l$0 < llol]jas 00- U
We can now associate a localization operator
Li(o): L%, (RHY — L4 (RHYW
to every function o in Lf (Rf‘l)w, 1 < p < oo, and prove that L5, (0) is in Se.
The precise result is the following theorem.
Theorem 3.9. Let o be in Lﬁk (Riﬂ)w, 1 < p < o0. Then there exists a unique
bounded linear operator Ly (o) : L%, RHYW — L, (RHWY such that
1.1
1£n (o)l 5. < (a)P o]l as.p-
Proof. Let f be in L} (RY)"W. We consider the operator
T:L, RTHY N L2 RYHY — LE(RHYWY,
given by
T (o) := Ln(o)(f)-
Then, by Proposition [3.7] and Proposition [3.8]

1
1Tz, @) < allflngk(Rd>|\0|\uk,1 (3.4)
and
1703, et < 102, o)1 (35)

Therefore, by (3.4), (3.5)), and the Riesz—Thorin interpolation theorem (see [38,
Theorem 2] and [41, Theorem 2.11]), 7 may be uniquely extended to a linear
transformation on L, (REHW | and we have

N\
IEn(@) iz, ) = 1Tz, w0 = () Iolas, ol (30

Since (3.6) is true for arbitrary functions f in L% (RY)", we obtain the desired
result. g
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3.3. Schatten—von Neumann properties for £;,(0). In this subsection we will
prove that the localization operator

Li(o) : L, (RDY — L3, (R)Y

is in the Schatten class S,. The first result on the Schatten property of localization
operators is given in the following theorem.

Theorem 3.10. Let o be in Ly, (REYW. Then the bounded localization operator
Li(o): L4, (RHYY — L3 (RHW

is in S1 and we have
4
[Ln(o)ls, < a||0||uk,1-

Proof. First let us assume that o is a nonnegative real-valued symbol, thus the
localization operator Lp,(o) is positive. Let {uj, j = 1,2,...} be any orthonor-
mal basis for L4 (Rd)w Then from Fubini’s theorem, the Parseval identity, and

relations and , we get
Z<£h( (i), u)) L2, | (RY) —Zch /H1 a(a, )|} (u;)(a, 2)|? dux(a, )

=1
_ 1 oW 2
= /Rd+1 a(aw)(z |®; (uj)(a, )] ) dug(a, ).
+ Jj=1
Thus we get
3 (Ea()u) s, = 5 L olaalbadly, o ditac).  (37)
j= +
Using now the relation ([2.6)), we deduce that
- 1
S Cnous) ez, mn < s Wl o Il
j=1 (a,a:)E]RJr
1
= g, ol

Then, by [41}, Proposition 2.4], the operator Ly (o) is in 5.

We have \/Ly(0)"Ly(0) = Li(0), so if we consider {u;, j = 1,2,...} an or-

thonormal basis for Lik (RHW consisting of eigenvectors of the positive compact

operator \/Ly(c)"Ly(c) and let s;, 7 = 1,2,..., be the eigenvalues of |Lp(c)]
corresponding to u;, then

o0 o0

12n(@)ls, = Z< Y Ln(o) )y,

Jj=1

1
= > ALn(0)(u7),u7) 1, (g < Gy 1ol

8

<.
=
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For o a real-valued function, we write ¢ = 04 — o_, with
o+ = max(c,0), o_ = —min(o,0);
then £y (o) is in S7 and we have

2
1€ (@)lsy < ILn(or)llsy + [[Ln(o-)lls, < allalluk,1~

Finally, when o = o1 + i02 is a complex-valued function with o7 and oy the real
and imaginary parts of o, we have that £5,(o) is in S; and

4
1£n(@)llsy < [ Ln(o1)lls, + [ En(o2)lls, < thllalluk,l' U

Corollary 3.11. For o in L}Lk (R‘fl)w, we have the trace formula

1
(@) = g [, ola D)ol o din(a o)
+

Proof. From the previous theorem, the localization operator £, (o) belongs to Sy;
then by the definition of trace given by the relation (3.1)), we have

tr(Ln(0)) = Z;(ﬁh(a)(uj)aujhz,k(wy
i=
The result is obtained by the relation (3.7)). O

Proposition 3.12. Let o be a symbol in LY, (Ri"’l)w, 1 < p < oo. Then the
localization operator L (o) is compact.

Proof. Let o be in L (R‘f‘l)w and let (0,,)nen be a sequence of functions in
L}Lk(R‘iﬂ)WﬂLﬁk (R‘f‘l)w such that ¢, — o in Lﬁk(Riﬂ)W as n — o0o. Then
by Theorem [3.9]

12
Intan) = Lol < () 10w = ol
h

Hence Lp,(0y,) = Lp(0) in Se as n — oo. On the other hand, as by Theorem
Lp(0y) is in S7, hence compact, it follows that £5,(o) is compact. O

In the following theorem we improve the constant given in Theorem [3.10} First,
we begin by investigating the case o in L}Lk (Riﬂ)w and we give, in addition, a
lower bound of the norm [|£,(0)||s, -

Theorem 3.13. Let o be in L, (REHW. Then,
1 - 1
s < 1n(o)ls, < gl

where o is given by

5(&,%) = <‘Ch(0—)(ha,z)a ha,m>L?4 (R4)> (aa SU) € Ri+l'

k
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Proof. Since o is in Lj, (Ri“)w, by Theorem Lp(o) is in S;. Using [T,
Theorem 2.2], there exists an orthonormal basis {u;, j =1,2,...} for N(Ls (o))",
the orthogonal complement of the kernel of £} (o), consisting of eigenvectors of
|Li(0)], and {v;, j =1,2,...} an orthonormal set in L3 (R?)", such that

Li(o)(f) = s(f, Uj) L, (R4)Vjs (3.8)
j=1
where s;, j = 1,2,..., are the positive singular values of L (o) corresponding

to uj. Then we get
1Ln(o)s, = ZSJ = Z (@)(uy),v5) L3, (®e)-
Jj=1

Thus, by Fubini’s theorem, Schwarz’s inequality, Bessel’s inequality, and the rela-
tions (2.6) and (2.7), we get

8

[Ln(o)lls, = Z Uj>ij(]Rd)

Jj=1

= & [, ola@)®) w)(a. o) B (oo, 2) din(a.)

<G foo ota. ) 1o ) ) (1o )te ) dhato

j=1 j=1

S Cn

1

< gl

. lo(as @)lhaallzz (za)din(a,z)
¥

It is easy to see that & belongs to LY, (R?), and using formula (3.8) we obtain

F(a,2)] = | (£4(0)(hae)s hae) 12,

o0

sjlhaz,uj) Lz @) (V) haa) Lz @)

Jj=

o0
ZSJ arauj L% (]Rd| Jr|< amaUJ>L2 ]Rd)| )
j=1

L\D\H
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Then using Plancherel’s identity for q>hW and Fubini’s theorem, we get

- 1 )
[ el =53 ( [ Whous)is, ol dista.)
+ j=1 +
) 2
# [ Wiz, oo din(a.))
<Cn Y sj = CulLa(o)lls,-
j=1
The proof is complete. O

In the following theorem we give the main result of this section.

Theorem 3.14. Let o be in L, (R‘f‘l)w, 1 < p < . Then the localization
operator

Li(o): L%, (RHY — L4 (RHYW

is in Sp and we have

1
1 P
Iew@ls, < (5 ) 1ol
Moreover, L1, (o) satisfies the relation (3.2)).

Proof. The result follows from Proposition [3.8] Theorem [3.13] and by interpolation
(see 41l Theorem 2.10 and Theorem 2.11}). O

4. GENERALIZED WAVELET SCALOGRAMS

4.1. The range of the wavelet transform. We denote by
o P: L2, REHW — L2, (RET)W the orthogonal projection from
L2, (RE)W onto @I (L3, (RY)W);
o Py: L2 REHW — L2, (RE)W the orthogonal projection from
Lik_ (Rflﬁl)w onto the subspace of functions supported in the subset
U C Rfrl. In other words, we can write

PyF =x,F, FelL’ (RTHY,

where X, denotes the characteristic function of the subset U of R‘f‘l.

Let h be a generalized wavelet on R? in L} (R)W N L% (RY)W. In this section
we shall keep our focus on localization operators £, (o) with symbol o = x,, where
U is a subset of R‘frl with finite measure ux(U) given by

(U = /U dyix(a, 7).

In what follows, such operator will be denoted L (U) for the sake of simplicity.
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Proposition 4.1. The space ®}" (L,24k (RHYWY) is a reproducing kernel Hilbert space
with kernel

1
ula,a's0,0) 1= G [ o ) Auy) d,
h JRd

which satisfies
1hIZ g
V(a',2'), (a,1) € Rf‘l, IKn(a',2';5a,2)| < %
h

Proof. Let f be in L% (RH)W. We have

k

B (@) = [ S Ay, (a0) € RE
Using the relation , we obtain
1 - 0 =
B () = 5 [ O ) @) die ).

On the other hand, by using Proposition [2.12] one can see that for every a,a’ > 0,
x, 2’ € R? the function
1 N
z’ (I)hw(ha,x)(a,vxl) =0 hat 2 (Y) a2 (y) Ak (y) dy
h Jrd

belongs to L%, (RHW. Therefore, we obtain the result. O
Remark 4.2. i) We note that

Nl

HPUPh”HS = </ ‘XU(CL,IL’)P \ICh(a',w';a,x)\zduk(a',x’) duk(aax))
RIT xR

Hh”Lik (RH)W

ST A

Hence, Py Py, is a Hilbert—Schmidt operator and therefore it is a compact operator.
ii) We note that P, = ®}V(®!V)*. Explicitly, Py is the integral operator

U) < .

PuF(z) = F(a,2)Kp(z;a,x) dug(a, @), 2= (d,2') € RETY,

RIF
with integral kernel Kp,.
iii) As Ky, is the integral kernel of an orthogonal projection, it satisfies
Kn(z;2') = Kn(2/;2), forall 2,2 € RIH,
and
Kn(z;2") = Kn(z 2 )Kn(2"52') dpg(2"), 2,2 € REFL (4.1)
R4
iv) If {v, : n € N} is an orthonormal basis of ®}V (L3 (RHW), ) can be
expanded as

Kn(z;2') = Zvn(z)vn(z’), 2,7 € RO
n=1
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Definition 4.3. Let h be a generalized wavelet on R? in L% (RY)"W. We define
the generalized wavelet scalogram of f as

1
Sy (f)(a,z) = thl‘b;‘iv(f)(a,x)la (a,x) € REH.
Remark 4.4. From the Plancherel formula of @ZV, we have
L S V02 ) = 171, e

It justifies the interpretation of a scalogram as a time-frequency energy density.
Note that also by (3.2)) we have

@V D)1s, ey = [, oIS (Pla,) i),

R
Definition 4.5. We define the Calderén—Toeplitz operator
Tho = @ (L3, (RDY) — @ (L7, (R)™)
by
Thy F = P,PyF.

Proposition 4.6. The operator Tj, y : L%, (RDYW — L% (RYW is trace class and
satisfies

0<Thy <Py<1I (4.2)
and

Thu =@} Lu(U)(@})". (4.3)
Proof. For all F € ®}V (L% (RH)W),

(Tos Py = (e (PUF). Py = (PUF. Py = [ 1P (0 0) dinfa o)

Thus we deduce (4.2)), and T}, is bounded and positive.
Now, we want to prove (4.3). Indeed, using ®}" and (®}")*, the time-frequency
localization operator

Ly(U) : LG, (RDY — L3, (R)Y
can be written as
Lu(U)(f) = (@) (Pu®} f), fe L RHY.
Therefore
(@) Lr(U)(@)))F = PiPyF =Ty F,  F € ®) (L%, (RD").

Consequently, the time-frequency operator L5, (U) and the Calderén—Toeplitz op-
erator T, iy are related by

Thy = @) La(U)(@})" -

Remark 4.7. From the above proposition we deduce that Tj, 7 and £, (U) enjoy
the same spectral properties; in particular, we have the following proposition.
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Proposition 4.8. The Calderén—Toeplitz operator Ty, 7 is compact and even trace
class with
tr(Thu) = tr(Ly(U)) = Mi(h,U),

1
My (h,U) := @/U | ha,
h

Proof. We know that the operator Ty : @)V (L3 (RHW) — &V (L3 (RH)W)
is bounded and positive. Now, let {¢,}>2; be an arbitrary orthonormal basis
for ®V(L% (RY)W). If we denote by ¢, = /Ch(®}))*(¢n), then {@,}52, is an
orthonormal basis for L (Rd)

Thus by (3.2) and Fubml s theorem,

where

2 2 (Rd)d‘uk(a, IZ?)

o0

Z_‘: T (60): dn) 0 = 2_:1<ch<U)(<I>ZV)*<¢n),<<I>hW>*<¢n)>L3k<Rd>
_ C}}Lﬁ_’f [ 1o (eu)a o) dinta
-/ gw (on)(@,2)? dpn(a, )
_ %/{J§|<¢n,hmx>%(m 1% dy(a, )

1
= q%/Uha,:c“iik(Rd) dlu,k(U,?x)

= My(h,U).
Therefore, by Definition [3.3] and Remark [3.4} the operator T}, iy is trace class with
1Thu s, = tr(Th,v) = Mk(h,U). a

Let Viu @ L2 (REHW — L2 (RYT)W be the operator defined by Vi, =
P, PyPy,. The advantage of V3 compared to Tj y is that it is defined on
Lik (Ri"’l)w and consequently its spectral properties can be easily related to its
integral kernel.

Since T}, is positive and trace class, using the decomposition

1
Ly, REHY = oV (L5, RDY) @ (9 (L, RDY))
we deduce that V), 7 is also positive and trace class with
tr(Vi,u) = tr(Thy) = Mi(h,U).
In addition, we have the following result.

Proposition 4.9. The trace of T,f U s given by

(ThU //|1Ch a,z;a ') dug(a, ©) dux(a’, o).
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Proof. As V), iy is positive, we have
tr(Th ) = tr(Vi, )

On the other hand, using the fact that the space ®}' (L%, (R%)") is a reproducing
kernel Hilbert space with kernel IC, we get that, for F' € Lik (]Rff_“)w,

Vi uvF(a,x)
- /Rd“ F(d,a") /]jor+1 Xo (0, 9)Kn(a, 250, y)Kr(b,y;a’, 2") dug (b, y) dug (a’, x').
That is, Vj, v has integral kernel
Ny,v(a,x;d ,2') = /Rd“ Xo (0, 9)Kn(a, x;b,y)Kn (b, y; ', 2") dug (b, y).
+
Therefore,

tr(Viu) = /Rd+1 /IRcHl INwv(a,z;a,2")? dux(a, ©) du(a’, 2')
/ / (a,z;a',2" )Ny v(a,z;a,2") dug(a, z) dug(a’, z")
Rd+1 Rd+1

- / / Xo (21)x0 (22K (215 22) diai (21) dpn (22),
Ri+1 Ri+1

where by using the properties of the kernel of the reproducing kernel Hilbert space
Kh(Zl; 22) = Kh(ZQ; zl)ICh(zl; 22).

Using (4.1)), we get
K (215 22) = [Kn (215 22) %,
and we conclude the proof. O

4.2. Eigenvalues and eigenfunctions. Since the localization operator L, (U) =
(@}’LV)*XUCI)}:V that we consider is a compact and self-adjoint operator, the spectral
theorem gives the following spectral representation:

an <f790n L2 (Rd) @n? fGL (Rd)w

where {s,(U)}22, are the positive eigenvalues arranged in a nonincreasing manner
and {p7}°°, is the corresponding orthonormal set of eigenfunctions. Note that
5,(U) \, 0 and by (3.3)) we have, for all n > 1,

sn(U) <s1(U) < 1.
By using this, together with (4.3]), we can deduce that the Toeplitz operator
Thy = @) (L4, (RDY) = @) (L%, (RD™Y)
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can be diagonalized as

Ty F=Cny sn(U)(F o), oY, Fed (L3 RYY),

HE,2 7
n=1

where ¢l = \/1074)};‘/‘/(907[{)

Lemma 4.10. For all z = (a,z) € R, we have

O:) = [, o @)lh(o:2) dinfe chzsn W (V) (2).

Proof. From Proposition we have that for all z = (a,z) € R‘f‘l the function
Kn(;2) is in @)V (L% (RY)"). Therefore using the properties of the kernel of the
reproducing kernel Hilbert space, we get

(Th,u KCn (5 2), i (.5 2 )>uk2 (PUKhL(:52), Kn(:52)) 1, 0

:/Rdﬂ Xo (@) Kn(w; 2) Kn(w; 2) dpg(w)

= [ @ i) din(w).
R+

Let {w}p2, € @}V (L3, (R)W) be an orthonormal basis of Ker(Ty,) (possibly
empty). Hence, {¢5}p2; U{wY}32, is an orthonormal basis of ®}¥ (L% (RH)"W)
and therefore the reproducing kernel K}, can be written as

Kn(a,z;d',2") = Ku(a’, 2'; 2) Z¢U Vo (da) + Y wll () wl (o, 7).

n=1

Using this, we compute again

M8

(Thu Kn(52),Kn(52),, o

Il
/\

Tw S 50@6Y. S U E6Y >
k Pk s2

n=1 =1

oY (2)oH (2) (Thu 85, 8Y)

Hike,2

Ea

ni

Cn Y sa(U) 69 (2)]7,

and the conclusion follows. d
Let € € (0,1) and define the quantity
n(e,U) :=card{n:s,(U) > 1—¢€}.
Then by an easy adaptation of the proof of Lemma 3.3 in [I] we obtain the following

estimate for the eigenvalue distribution.
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Proposition 4.11. Let e € (0,1). We have
n(e, U) — My (h, U)|

{1 1 }
< maxJ —,
e l—e

4.3. Scalogram of a subspace. Given an N-dimensional subspace V' of Lik (R%),
Py is the orthogonal projection onto V' with projection kernel Gy, i.e.,

Prf() = [ GvC0F0 A ar

/ / K (25 2)[2 dpue(2)dpie(2') — Mi(h, U)|
UJU

Recall that if {v,}._, is an orthonormal basis of V, then

N
Gy (x,t) = Z U () v (1).

The kernel Gy is independent of the choice of orthonormal basis for V.

Definition 4.12. The scalogram of the space V with generalized wavelet h is
defined as

SCALLV (0,2) i= [ [ Gult) s @hous () A0 Ac(y) didy,
Rd JRd
Then we have the following result.
Lemma 4.13. The scalogram SCALZV is given by

N
SCAL;V =C), Y S} (vn).

n=1

Proof. We have

N
SCALEV (a,2) = / d / d g Vn(8)0n () e (B P () A (£) A (1) dlt dy

I
E

<Una ha,m>Lik (Rd) <Una ha,m>Lik (Rd)

3
I
—

@} (va)(a, 2) @} (vn)(a, 2)

I
NE

3
I
—

|1 (va)(a, ). O

I
WE

3
Il
-

Definition 4.14. We define the time-frequency concentration of a subspace V in U

as
1
on(V) = N/ SCAL}V (a,z) dug(a, ).
U
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Then, from Lemma [1.13]
o XN
on(V) = —h / ShW(vn)(a,x) dug(a,x).
N n=1 U

Theorem 4.15. The N-dimensional signal space Vy = span{pY }N_| consisting
of the first N eigenfunctions of Ly, (U) corresponding to the N largest eigenvalues
{sn(U)}N_, mazimize the regional concentration &y (V) and

Eun(VN) _ G an

Proof. We have

Eun(Vv) Z/ SV (#Y)(a,z) dug(a,z).
Moreover, the min-max lemma for self-adjoint operators states that (cf. [36])
) = [ S (o) (2) (o)

= max { (L (U)(), Pisy gty 1Flaz oy = 1 F Lo ool |

So the eigenvalues of £;,(U) determine the number of orthogonal functions that
have a well-concentrated scalogram in U. Thus,

Eon(VN) = G Z sn(U

The min-max characterization of the eigenvalues of compact operators implies
that the first N eigenfunctions of the time-frequency operator L (U) have optimal
cumulative time-frequency concentration inside U, in the sense that

U
nz::l Lh <pn @n>Lik (R4)

N
= max { Z (Lp(U) vy, UH>L?4 ®?) | {v 0, orthonormal}.
k

n=1

Therefore no N-dimensional subset V' of Lik (R9) can be better concentrated in U
than Vy, i.e.,

Eun(V) <&un(Vn).
The proof is complete. i

Remark 4.16. The time-frequency concentration of a subspace Vi in U satisfies

sn(U) < Oy eun(V) < s1(U) < 1.
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4.4. Accumulated scalogram. Let p, ,, = SCALfLVNk(h,U), called the accu-
mulated scalogram, where we assume that Ny (h,U) = [My(h,U)] is the smallest
integer greater than or equal to My(h,U) and

Vi (o) = span{vl } {0,
Then
Ny (h,U) Ny (h,U)
Py (@z)= D (@ ) (a,2)P = > |85 (a,2)
n=1 n=1
Note that

1P o 11, = CuNk(h, U) = CMy(h,U) + O(1).

Moreover, since
Ny (h,U)

> sa(U) < te(La(U)) = Mi(h,U)

n=1
then we can define the quantity

EhU):=1- S —
which satisfies
0<E(U)<1.
More precisely, we have the following result.

Lemma 4.17. Let e € (0,1). We have

0< E(hU)<1—(1—¢)min (1}\%)

Proof. Let € € (0,1) and define I (e, U) = min(Ng(h,U),n(e,U)). It follows that
sn(U)>1—¢, 1<n<leU).
As Ni(h,U) > li(h,U), we get

Nk(h,U) lk(E,U)

Z sp(U) > Z sn(U) > (1 —e)lk(e,U).

n=1 n=1
Therefore (e )

E\E,
0<EMRU)<1-(1—-¢&)—/———~.
As Ni(e,U) > My(h,U), we obtain the desired result. O
n(e,U)

Consequently, when the eigenvalues {s, (U)},,= "’ are close to 1, E(h,U) — 0.

Moreover, we have the following result bounding the error between p, ., and ©.
Proposition 4.18. We have

1 Ch,
—_— -0 < —— +2CL,E(h,U). 4.4
Mk(h, U) ||p(h,U) ||1’l’fk — Mk(h7 U) + h ( ’ ) ( )
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Proof. From Lemma we have, for all z = (a,z) € U,

o0

P (2) = O(2) = Y (tn — sn (V)]0 (2)]*,

n=1

where ¢, = 1 if n < Ng(h,U) and 0 otherwise. As

165 Pl = Cn and Y s, (U) = Mg (h,U),

n=1

we get

1P gy = Ol < Ch Y ltn = 5 (U))]
n=1
Ny (h,U)
=Ch Y (=5 U)+Ch Y. sa(U)
n=1 n>Ng (h,U)
0o N (h,U)
= CpNp(h,U)+ Cp Y _sa(U) =2C, > sa(U)
n=1 n=1
Ny (h,U)
= ChNk(h,U) + Cth(h,U) —2C), Z Sn(U)
n=1
Ny (h,U)
—Cp (Nk(h, U) — My(h, U)) + 20, (Mk(h, Y sn(U)>
n=1
Ny (h,U)
< Ch +20, (Mk(h, - Y sn(U)),

n=1

and the estimate (4.4) follows. O
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