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LOCALIZATION OPERATORS AND SCALOGRAM ASSOCIATED
WITH THE GENERALIZED CONTINUOUS WAVELET

TRANSFORM ON Rd FOR THE HECKMAN–OPDAM THEORY

HATEM MEJJAOLI AND KHALIFA TRIMÈCHE

Abstract. We consider the generalized wavelet transform ΦW
h on Rd for the

Heckman–Opdam theory. We study the localization operators associated with
ΦW

h ; in particular, we prove that they are in the Schatten–von Neumann class.
Next we introduce some results on the scalogram for this transform.

1. Introduction

We consider the differential-difference operators Tj , j = 1, 2, . . . , d, associated
with a root system R and a multiplicity function k, introduced by Cherednik in [5],
and called the Cherednik operators in the literature. These operators were helpful
for the extension and simplification of the theory of Heckman–Opdam, which is a
generalization of the harmonic analysis on the symmetric spaces G/K ([33, 34, 37]).

The Cherednik and Heckman–Opdam theories are based on the Opdam–Chered-
nik hypergeometric function Gλ, λ ∈ Cd, which is the unique analytic solution of
the system

Tju(x) = −iλju(x), j = 1, 2, . . . , d,
satisfying the normalizing condition u(0) = 1, and the Heckman–Opdam kernel
Fλ, λ ∈ Cd, which is defined by

∀x ∈ Rd, Fλ(x) = 1
|W |

∑
w∈W

Gλ(wx),

where W is the Weyl group associated with the root system R ([33, 34]).
With the kernel Gλ Opdam and Cherednik have defined in [5, 33] the Opdam–

Cherednik transform H and have used the kernel Fλ to define the hypergeometric
Fourier transform HW on spaces of W -invariant functions, and have established
some of their properties (see also [34]).

Very recently, many authors have been investigating the behavior of the hyper-
geometric Fourier transform in several problems already studied for the Fourier
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transform; for instance, wavelet theory [19], real Paley–Wiener theorems [23, 26],
Roe’s theorem [25], boundedness and compactness of two-wavelet multipliers [28],
uncertainty principles [21, 24, 27], Ramanujan’s master theorem [32], the heat
equation [37], and so on.

In the classical setting, the notion of wavelets was first introduced by Morlet,
a French petroleum engineer at ELF-Aquitaine, in connection with his study of
seismic traces. The mathematical foundations were given by Grossmann and Morlet
in [18]. The harmonic analyst Meyer and many other mathematicians became aware
of this theory and they recognized many classical results inside it (see [6, 22, 30]).
Classical wavelets have wide applications, ranging from signal analysis in geophysics
and acoustics to quantum theory and pure mathematics (see [11, 16, 20] and the
references therein).

Recently in [19] Hassini et al., with the aid of the harmonic analysis associated
to the Heckman–Opdam theory, have defined and studied the generalized wavelet
transform, and they have proved Plancherel’s and inversion formulas for this trans-
form.

One of the applications of the continuous wavelet transform is time-frequency
analysis, which is a mathematical tool to define a restriction of functions to a region
in the time-frequency plane, that is compatible with the uncertainty principle, and
to extract time-frequency features. In this sense they have been introduced and
studied by Daubechies [8, 9, 10] and Ramanathan and Topiwala [35], and they are
now extensively investigated as an important mathematical tool in signal analysis
and other applications [7, 12, 13, 17, 35, 41].

As the harmonic analysis associated to the Heckman–Opdam theory has known
remarkable development, it is a natural question to ask whether there exists the
equivalent of the theory of time-frequency analysis for the generalized wavelet trans-
form introduced in [19].

In this paper we study only two subjects of the time-frequency analysis asso-
ciated with the generalized wavelet transform. The first subject is the theory of
localization operators. This theory has found many applications to time-frequency
analysis, the theory of differential equations, and quantum mechanics. Many works
have been written on localization operators from these points of view; we refer in
particular to the papers of Balazs et al. [3, 4]. The second subject is the scalogram.
We note that the scalogram has many applications; for example in [2], the au-
thors used Morlet wavelet scalograms to detect a previously unknown coordinated
contractility behavior of the atrium during ventricular fibrillation, a phenomenon
which is not captured in a normal electrocardiogram. Other applications can also
be found in [39], where the authors applied the scalogram to biomedical signals to
detect their short-lived temporal interactions. We mention that scalograms have
been studied in the context of the generalized wavelet transforms by many authors;
see for example [15, 29].

The remainder of the paper is organized as follows. In Section 2 we recall the
main results about the harmonic analysis associated with the Cherednik operators.
Section 3 is devoted to the study of boundedness and compactness properties of
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the localization operators for the generalized continuous wavelet transform ΦWh ;
we show that they are in the Schatten–von Neumann class. We also give a trace
formula. In the last section we study the eigenvalues and eigenfunctions of the
time-frequency localization operator. Next we study the scalogram associated with
the generalized continuous wavelet transform.

2. Preliminaries

This section gives an introduction to the theory of Cherednik operators, hyper-
geometric Fourier transform, and hypergeometric convolution. The main references
are [5, 21, 31, 33, 34, 37, 40].

2.1. Reflection groups, root systems, and multiplicity functions. The basic
ingredient in the theory of Cherednik operators are root systems and finite reflection
groups, acting on Rd with the standard euclidean scalar product 〈·, ·〉 for which the
basis {ei, i = 1, . . . , d} is orthogonal, and ‖x‖ =

√
〈x, x〉. On Cd, ‖ · ‖ denotes also

the standard Hermitian norm, while 〈z, w〉 =
d∑
j=1

zjwj .

For α ∈ Rd\{0}, let α∨ = 2
‖α‖α be the coroot associated to α and let

rα(x) = x− 〈α∨, x〉α

be the reflection in the hyperplane Hα ⊂ Rd orthogonal to α.
A finite set R ⊂ Rd\{0} is called a root system if rα(R) = R for all α ∈ R.
For a given root system R the reflections rα, α ∈ R, generate a finite group

W ⊂ O(d), called the reflection group associated with R.
We fix a positive root system R+ = {α ∈ R : 〈α, β〉 > 0} for some β ∈

Rd\
⋃
α∈R

Hα. We denote by R0
+ the set of positive indivisible roots.

Let
C+ =

{
x ∈ Rd : ∀α ∈ R+, 〈α, x〉 > 0

}
be the positive chamber. We denote by C+ its closure.

A function k : R → [0,∞) is called a multiplicity function if it is invariant under
the action of the associated reflection group W . For abbreviation, we introduce
the index

γ = γ(k) =
∑
α∈R+

k(α).

Moreover, let Ak denote the weight function

∀x ∈ Rd, Ak(x) =
∏
α∈R+

∣∣∣sinh
〈α

2 , x
〉∣∣∣2k(α)

.

We note that this function is W invariant and satisfies

∀x ∈ C+, Ak(x) ≤ exp(2〈%, x〉),
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where
ρ = 1

2
∑
α∈R+

k(α)α.

2.2. The eigenfunctions of the Cherednik operators. The Cherednik opera-
tors Tj , j = 1, . . . , d, on Rd associated with the finite reflection group W and the
multiplicity function k are given by

Tjf(x) = ∂

∂xj
f(x) +

∑
α∈R+

k(α)αj
1− e−〈α,x〉

{f(x)− f(rα(x))} − ρjf(x),

with αj = 〈α, ej〉 and %j = 1
2

∑
α∈R+

k(α)αj .

The operators Tj can also be written in the form

Tjf(x) = ∂

∂xj
f(x) + 1

2
∑
α∈R+

k(α)αj coth
〈α

2 , x
〉
{f(x)− f(rα(x))} − 1

2Sjf(x),

with
∀x ∈ Rd, Sjf(x) =

∑
α∈R+

k(α)αjf(rα(x)).

In the case k(α) = 0, for all α ∈ R+, the Tj , j = 1, 2, . . . , d, reduce to the
corresponding partial derivatives.

Example 2.1. For d = 1, the root systems are R = {−α, α}, R = {−2α, 2α}, or
R = {−2α,−α, α, 2α}, with α the positive root. We take the normalization α = 2.

• For R+ = {α}, we have the Cherednik operator

T1f(x) = d

dx
f(x) + 2k(α)

1− e−2x {f(x)− f(−x)} − ρf(x),

with ρ = k(α). This operator can also be written in the form

T1f(x) = d

dx
f(x) + k(α) coth(x){f(x)− f(−x)} − k(α)f(−x). (2.1)

• For R+ = {2α}, we have the Cherednik operator

T1f(x) = d

dx
f(x) + 4k(2α)

1− e−4x {f(x)− f(−x)} − ρf(x).

This operator can also be written in the form

T1f(x) = d

dx
f(x)+(k(2α) coth(x)+k(2α) tanh(x)){f(x)−f(−x)}−ρf(−x), (2.2)

with ρ = 2k(2α).
• For R+ = {α, 2α}, we have the Cherednik operator

T1f(x) = d

dx
f(x) +

(
2k(α)

1− e−2x + 4k(2α)
1− e−4x

)
{f(x)− f(−x)} − ρf(x),
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with ρ = k(α) + 2k(2α). It can also be written as

T1f(x) = d

dx
f(x)+((k(α)+k(2α)) coth(x)+k(2α) tanh(x)){f(x)−f(−x)}−ρf(−x).

(2.3)
The operators (2.1), (2.2) and (2.3) are particular cases of the differential-

difference operator

Λk,k′f(x) = d

dx
f(x) + (k coth(x) + k′ tanh(x)){f(x)− f(−x)} − ρf(−x),

with k ≥ k′ ≥ 0 and k 6= 0. This operator is called the Jacobi–Cherednik operator
(cf. [14]).

The Heckman–Opdam Laplacian 4k on Rd is defined by

4kf(x) :=
d∑
j=1

T 2
j f(x) = 4f(x) +

∑
α∈R+

k(α)
(

coth
〈α

2 , x
〉)
〈∇f(x), α〉+ ‖ρ‖2f(x)

−
∑
α∈R+

k(α) ‖α‖2

4(sinh〈α2 , x〉)2 {f(x)− f(rα(x))},

where 4 and ∇ are respectively the euclidean Laplacian and the gradient operator
on Rd.

The Heckman–Opdam Laplacian on W -invariant functions is denoted by 4Wk
and has the expression

4Wk f(x) = 4f(x) +
∑
α∈R+

k(α)
(

coth
〈α

2 , x
〉)
〈∇f(x), α〉+ ‖ρ‖2f(x).

Example 2.2. For d = 1, W = Z2 and k ≥ k′ ≥ 0, k 6= 0, the Heckman–Opdam
Laplacian is the Jacobi operator defined for even functions f of class C2 on R by

4Wk,k′f(x) = d2

dx2 f(x) + (2k coth x+ 2k′ tanh x) d
dx
f(x) + %2f(x),

with % = k + k′.

We denote by Gλ the eigenfunction of the operators Tj , j = 1, 2, . . . , d. It is the
unique analytic function on Rd that satisfies the differential-difference system{

Tju(x) = −iλju(x), j = 1, 2, . . . , d, x ∈ Rd,
u(0) = 1.

Gλ is called the Opdam–Cherednik kernel.
We consider the function Fλ defined by

∀x ∈ Rd, Fλ(x) = 1
|W |

∑
w∈W

Gλ(wx).
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This function is the unique analytic W -invariant function on Rd that satisfies the
differential equation{

p(T )u(x) = p(−iλ)u(x), x ∈ Rd, λ ∈ Rd,
u(0) = 1,

for all W -invariant complex polynomials p on Rd and p(T ) = p(T1, . . . , Td).
In particular, for all λ ∈ Rd we have

4Wk Fλ(x) = −‖λ‖2Fλ(x).

The function Fλ is called the Heckman–Opdam hypergeometric function.
The functions Gλ and Fλ possess the following properties:

i) For all x ∈ Rd, the functions Gλ(x) and Fλ(x) are entire on Cd.
ii) The functions Gλ and Fλ satisfy the estimate

∀x ∈ Rd, ∀λ ∈ Rd, |Gλ(x)| ≤
√
|W |,

and
∀x ∈ Rd, ∀λ ∈ Rd, |Fλ(x)| ≤ 1.

iii) We have

∀x ∈ C+, F0(x) � e−〈ρ,x〉
∏
α∈R0

+

(1 + 〈α, x〉).

iv) Let p and q be polynomials of degree m and n, respectively. Then there
exists a positive constant M such that for all λ ∈ Cd and for all x ∈ Rd,
we have∣∣∣∣p( ∂

∂λ

)
q

(
∂

∂x

)
Gλ(x)

∣∣∣∣ ≤M(1 + ‖x‖)m(1 + ‖λ‖)nF0(x)emaxw∈W (Im〈wλ,x〉).

v) The preceding estimate holds true for Fλ too.

Example 2.3. When d = 1, W = Z2, and k ≥ k′ ≥ 0, k 6= 0, the Opdam–
Cherednik kernel Gλ(x) is given for all λ ∈ C and x ∈ R by

Gλ(x) = ϕ
(k− 1

2 ,k
′− 1

2 )
λ (x)− 1

ρ− iλ
d

dx
ϕ(k− 1

2 ,k
′− 1

2 )(x),

where ϕ(α,β)
λ (x) is the Jacobi function of index (α, β) defined by

ϕ
(α,β)
λ (x) = 2F1

( 1
2 (ρ+ iλ), 1

2 (ρ− iλ);α+ 1;−(sinh x)2) ,
with ρ = α+ β + 1 and 2F1 is the Gauss hypergeometric function.

In this case the Heckman–Opdam kernel Fλ(x) is given for all λ ∈ C and x ∈ R
by

Fλ(x) = ϕ
(k− 1

2 ,k
′− 1

2 )
λ (x).
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2.3. The hypergeometric Fourier transform on W -invariant functions.
Notation. We denote by
• E(Rd)W the space of C∞-functions on Rd that are W -invariant;
• D(Rd)W the space of C∞-functions on Rd that are W -invariant and with

compact support;
• S(Rd)W the Schwartz space of rapidly decreasing functions on Rd that are
W -invariant;
• S2(Rd)W the space of C∞-functions on Rd that are W -invariant and such

that for all `, n ∈ N, we have

sup
|µ|≤n
x∈Rd

(1 + ‖x‖)`F−1
0 (x)|Dµf(x)| <∞,

where

Dµ = ∂|µ|

∂xµ1
1 . . . ∂xµdd

, µ = (µ1, . . . , µd) ∈ Nd;

• PW (Cd)W the space of entire functions on Cd that are W -invariant, rapidly
decreasing, and of exponential type;
• LpAk(Rd)W , 1 ≤ p ≤ ∞, the space of measurable functions f on Rd that

are W -invariant and satisfy

‖f‖Lp
Ak

(Rd) =
(∫

Rd
|f(x)|pAk(x) dx

)1/p
<∞, if 1 ≤ p <∞,

‖f‖L∞
Ak

(Rd) = ess sup
x∈Rd

|f(x)| <∞;

• Lpνk(Rd)W , 1 ≤ p ≤ ∞, the space of measurable functions f on Rd that are
W -invariant and satisfy

‖f‖Lpνk (Rd) =
(∫

Rd
|f(x)|pdνk(x)

)1/p
<∞, if 1 ≤ p <∞,

‖f‖L∞νk (Rd) = ess sup
x∈Rd

|f(x)| <∞,

where
dνk(λ) := Ck(λ) dλ

= c
∏
α∈R+

Γ(−i〈λ, α∨〉+ k(α) + 1
2k(α2 ))Γ(i〈λ, α∨〉+ k(α) + 1

2k(α2 ))
Γ(−i〈λ, α∨〉+ 1

2k(α2 ))Γ(i〈λ, α∨〉+ 1
2k(α2 ))

dλ,

with c a normalizing constant and k(α2 ) = 0 if α2 /∈ R+. The measure dνk(λ)
is called the symmetric Plancherel measure or Harish-Chandra measure
(cf. [33, 37]).

Remark 2.4. The function Ck is positive, continuous on Rd, and satisfies the
estimate

∀λ ∈ Rd, |Ck(λ)| ≤ const. ‖λ‖|R
0
+|(1 + ‖λ‖)2γ−|R0

+|.
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Definition 2.5. The hypergeometric Fourier transform of a function f in D(Rd)W
is given by

HWk (f)(λ) =
∫
Rd
f(x)Fλ(x)Ak(x) dx, for all λ ∈ Rd.

Proposition 2.6. The transform HWk is a topological isomorphism from
i) D(Rd)W onto PW (Cd)W .

ii) S2(Rd)W onto S(Rd)W .
The inverse transform is given by

∀x ∈ Rd, (HWk )−1(h)(x) =
∫
Rd
h(λ)Fλ(−x) dνk(λ).

Proposition 2.7. For f in L1
Ak

(Rd)W the function HWk (f) is continuous on Rd
and we have

‖HWk (f)‖L∞νk (Rd) ≤ ‖f‖L1
Ak

(Rd).

Proposition 2.8. i)(Parseval’s formula) For all f, g in D(Rd)W (resp. in S2(Rd)W )
we have ∫

Rd
f(x)g(x)Ak(x) dx =

∫
Rd
HWk (f)(λ)HWk (g)(λ) dνk(λ).

ii) (Plancherel’s theorem) The transform HWk extends uniquely to an isomor-
phism from L2

Ak
(Rd)W onto L2

νk
(Rd)W .

Proposition 2.9. For all f in L2
Ak

(Rd)W such that HWk (f) belongs to L1
νk

(Rd)W ,
we have the inversion formula

f(x) =
∫
Rd
HWk (f)(λ)Fλ(−x) dνk(λ), a.e. x ∈ Rd.

Definition 2.10. Let x be in Rd. The generalized translation operator f 7→ τWx f
is defined on L2

Ak
(Rd)W by

HWk (τWx f)(λ) = Fλ(x)HWk (f)(λ), λ ∈ Rd. (2.4)

Using the generalized translation operator, we define the generalized convolution
product of functions as follows.

Definition 2.11. The generalized convolution product of f and g in L2
Ak

(Rd)W is
the function f ∗k g defined by

f ∗k g(x) =
∫
Rd
τWx f(−y)g(y)Ak(y) dy, x ∈ Rd. (2.5)

Proposition 2.12. Let f and g be in L2
Ak

(Rd)W . Then the function f ∗k g belongs
to L2

Ak
(Rd)W if and only if the function HWk (f).HWk (g) is in L2

νk
(Rd)W , and we

have
HWk (f ∗k g) = HWk (f).HWk (g)

in the L2-case.
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2.4. Basic generalized wavelet theory.

Definition 2.13. A generalized wavelet on Rd is a measurable function h that is
W -invariant on Rd and satisfies, for almost all λ ∈ Rd, the condition

0 < Ch =
∫ ∞

0
|HWk (h)(λa)|2 da

a
<∞.

Example 2.14. Let Et, t > 0, be the heat kernel defined on Rd by

∀x ∈ Rd, Et(x) =
(
HWk

)−1 (e−t‖λ‖
2
)(x).

The function h(x) = − d

dt
Et(x) is a generalized wavelet on Rd in S2(Rd)W , and

Ch = 1
8t2 .

Proposition 2.15. Let a > 0 and let h be a generalized wavelet in L2
Ak

(Rd)W .
Then there exists a function ha in L2

Ak
(Rd)W such that

∀λ ∈ Rd, HWk (ha)(λ) = HWk (h)(aλ).

This function is given by the relation

ha = 1
a
d
2

(
HWk

)−1 ◦Da−1 ◦ HWk (h)

and satisfies

‖ha‖L2
Ak

(Rd) ≤
s(a)
a
d
2
‖h‖L2

Ak
(Rd),

where

s(a) = sup
λ∈Rd

|Ck(λ)|
|Ck(λa )|

and Da(f)(x) = 1
a
d
2
f
(x
a

)
.

Let a > 0 and h be in L2
Ak

(Rd)W . We consider the family ha,x, x ∈ Rd, of
functions on Rd in L2

Ak
(Rd) defined by

ha,x(y) = a
d
2

s(a)τ
W
x (ha)(−y), y ∈ Rd,

where τWx , x ∈ Rd, are the generalized translation operators given by (2.4).
We note that we have

∀ a > 0, ∀x ∈ Rd, ‖ha,x‖L2
Ak

(Rd) ≤ ‖h‖L2
Ak

(Rd). (2.6)

Notation. We denote by
• Rd+1

+ =
{

(a, x) = (a, x1, . . . , xd) ∈ Rd+1 : a > 0
}

;
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• Lpµk(Rd+1
+ )W , p ∈ [1,∞], the space of measurable functions f(a, x) on Rd+1

+
that are W -invariant with respect to the variable x and satisfy

‖f‖µk,p :=
(∫

Rd+1
+

|f(a, x)|p dµk(a, x)
) 1
p

<∞, 1 ≤ p <∞,

‖f‖µk,∞ := ess sup
(a,x)∈Rd+1

+

|f(a, x)| <∞,

where the measure µk is defined by

∀ (a, x) ∈ Rd+1
+ , dµk(a, x) = s(a)Ak(x) dx da

a
d
2 +1

.

Definition 2.16. Let h be a generalized wavelet on Rd in L2
Ak

(Rd)W . The gener-
alized continuous wavelet transform ΦWh on Rd is defined for suitable functions f
on Rd by

ΦWh (f)(a, x) =
∫
Rd
f(y)ha,x(y)Ak(y) dy, (a, x) ∈ Rd+1

+ . (2.7)

The adjoint of ΦWh is (ΦWh )∗ : L2
µk

(Rd+1
+ )W → L2

Ak
(Rd)W defined by

(ΦWh )∗(F )(t) = 1
Ch

∫
Rd+1

+

F (a, x)ha,x(t) dµk(a, x), t ∈ Rd.

Remark 2.17. i) The generalized continuous wavelet transform can also be written
in the form

ΦWh (f)(a, x) = a
d
2

s(a)f ∗k ha(x),

where ∗k is the Heckman–Opdam convolution product given by (2.5).
ii) Let h be a generalized wavelet. Then for all f in L2

Ak
(Rd)W we have

‖ΦWh f‖µk,∞ ≤ ‖f‖L2
Ak

(Rd)‖h‖L2
Ak

(Rd). (2.8)

Theorem 2.18 (Plancherel’s formula for ΦWh ). Let h be a generalized wavelet on
Rd in L2

Ak
(Rd)W . For all f in L2

Ak
(Rd)W we have∫

Rd
|f(x)|2Ak(x) dx = 1

Ch

∫
Rd+1

+

|ΦWh (f)(a, x)|2 dµk(a, x). (2.9)

Corollary 2.19 (Parseval’s formula for ΦWh ). Let h be a generalized wavelet on
Rd in L2

Ak
(Rd)W and f1, f2 in L2

Ak
(Rd)W . Then we have∫

Rd
f1(x)f2(x)Ak(x) dx = 1

Ch

∫
Rd+1

+

ΦWh (f1)(a, x)ΦWh (f2)(a, x) dµk(a, x).

Theorem 2.20 (Inversion formula for ΦWh ). Let h be a generalized wavelet on Rd
in L2

Ak
(Rd)W . For all f in L1

Ak
(Rd)W (resp. L2

Ak
(Rd)W ) such that HWk (f) belongs

to L1
Ak

(Rd)W (resp. L1
Ak

(Rd)W
⋂
L∞Ak(Rd)) we have

f(y) = 1
Ch

∫ ∞
0

∫
Rd

ΦWh (f)(a, x)ha,y(x) dµk(a, x), a.e.,
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where for each y ∈ Rd, both the inner integral and the outer integral are absolutely
convergent, but possibly not the double integral.

3. Localization operators for the generalized continuous
wavelet transform

3.1. Preliminaries.
Notation. We denote by:

• lp(N) the set of all infinite sequences of real (or complex) numbers x :=
(xj)j∈N such that

‖x‖p :=
( ∞∑
j=1
|xj |p

) 1
p

<∞, if 1 ≤ p <∞,

‖x‖∞ := sup
j∈N
|xj | <∞.

For p = 2, we provide this space l2(N) with the scalar product

〈x, y〉L2
Ak

(Rd) :=
∞∑
j=1

xjyj ;

• B(L2
Ak

(Rd)) the space of bounded operators from L2
Ak

(Rd) into itself.
Definition 3.1. (i) The singular values (sn(A))n∈N of a compact operator A in
B(L2

Ak
(Rd)) are the eigenvalues of the positive self-adjoint operator |A| =

√
A∗A.

(ii) For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact operators
whose singular values lie in lp(N). The space Sp is equipped with the norm

‖A‖Sp :=
( ∞∑
n=1

(sn(A))p
) 1
p

.

Remark 3.2. We note that the space S2 is the space of Hilbert–Schmidt operators,
and S1 is the space of trace class operators.
Definition 3.3. The trace of an operator A in S1 is defined by

tr(A) =
∞∑
n=1
〈Avn, vn〉L2

Ak
(Rd), (3.1)

where (vn)n is any orthonormal basis of L2
Ak

(Rd).
Remark 3.4. If A is positive, then

tr(A) = ‖A‖S1 .

Moreover, a compact operator A on the Hilbert space L2
Ak

(Rd) is a Hilbert–Schmidt
operator if the positive operator A∗A is in the space of trace class S1. Then

‖A‖2HS := ‖A‖2S2
= ‖A∗A‖S1 = tr(A∗A) =

∞∑
n=1
‖Avn‖2L2

Ak
(Rd)

for any orthonormal basis (vn)n of L2
Ak

(Rd).
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Definition 3.5. We define S∞ := B(L2
Ak

(Rd)), equipped with the norm

‖A‖S∞ := sup
v∈L2

Ak
(Rd):‖v‖

L2
Ak

(Rd)=1
‖Av‖L2

Ak
(Rd).

In this section, h will be a generalized wavelet on Rd such that

‖h‖L2
Ak

(Rd) = 1.

3.2. Boundedness. In this subsection we define the localization operators for the
generalized continuous wavelet transform and we show that they are bounded.

Definition 3.6. The localization operator with symbol σ associated with the gen-
eralized continuous wavelet transform, denoted by Lh(σ), is defined on L2

Ak
(Rd)

by

Lh(σ)(f)(y) = 1
Ch

∫
Rd+1

+

σ(a, x)ΦWh (f)(a, x)ha,x(y) dµk(a, x), y ∈ Rd.

Often it is more convenient to interpret the definition of Lh(σ) in a weak sense,
that is, for f, g in L2

Ak
(Rd) we have

〈Lh(σ)(f), g〉L2
Ak

(Rd) = 1
Ch

∫
Rd+1

+

σ(a, x)ΦWh (f)(a, x)ΦWh (g)(a, x) dµk(a, x). (3.2)

In this section we prove that the linear operators

Lh(σ) : L2
Ak

(Rd)→ L2
Ak

(Rd)

are bounded for all symbols σ in Lpµk(Rd+1
+ )W , 1 ≤ p ≤ ∞. We consider first this

problem for σ in L1
µk

(Rd+1
+ )W and next in L∞µk(Rd+1

+ )W and we conclude by using
interpolation theory.

Proposition 3.7. Let σ be in L1
µk

(Rd+1
+ )W . Then the localization operator Lh(σ)

is in S∞ and we have
‖Lh(σ)‖S∞ 6

1
Ch
‖σ‖µk,1.

Proof. For all functions f and g in L2
Ak

(Rd)W , we have from the relations (3.2)
and (2.8):∣∣∣〈Lh(σ)(f), g〉L2

Ak
(Rd)

∣∣∣ 6 1
Ch

∫
Rd+1

+

∣∣σ(a, x) ‖ΦWh (f)(a, x)‖ΦWh (g)(a, x)
∣∣ dµk(a, x)

6
1
Ch
‖ΦWh (f)‖µk,∞‖ΦWh (g)‖µk,∞‖σ‖µk,1

6
1
Ch
‖f‖L2

Ak
(Rd)‖g‖L2

Ak
(Rd)‖σ‖µk,1.

Thus,
‖Lh(σ)‖S∞ 6

1
Ch
‖σ‖µk,1. �
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Proposition 3.8. Let σ be in L∞µk(Rd+1
+ )W . Then the localization operator Lh(σ)

is in S∞ and we have
‖Lh(σ)‖S∞ 6 ‖σ‖µk,∞. (3.3)

Proof. For all functions f and g in L2
Ak

(Rd)W , we have from Hölder’s inequality:∣∣∣〈Lh(σ)(f), g〉L2
Ak

(Rd)

∣∣∣ 6 1
Ch

∫
Rd+1

+

∣∣σ(a, x) ‖ΦWh (f)(a, x)‖ΦWh (g)(a, x)
∣∣ dµk(a, x)

6
1
Ch
‖σ‖µk,∞‖ΦWh (f)‖µk,2‖ΦWh (g)‖µk,2.

Using Plancherel’s formula for ΦWh , given by the relation (2.9), we get
|〈Lh(σ)(f), g〉L2

Ak
(Rd)| 6 ‖σ‖µk,∞‖f‖L2

Ak
(Rd)‖g‖L2

Ak
(Rd).

Thus,
‖Lh(σ)‖S∞ 6 ‖σ‖µk,∞. �

We can now associate a localization operator
Lh(σ) : L2

Ak
(Rd)W → L2

Ak
(Rd)W

to every function σ in Lpµk(Rd+1
+ )W , 1 ≤ p ≤ ∞, and prove that Lh(σ) is in S∞.

The precise result is the following theorem.

Theorem 3.9. Let σ be in Lpµk(Rd+1
+ )W , 1 ≤ p ≤ ∞. Then there exists a unique

bounded linear operator Lh(σ) : L2
Ak

(Rd)W → L2
Ak

(Rd)W such that

‖Lh(σ)‖S∞ 6 ( 1
Ch

)
1
p ‖σ‖µk,p.

Proof. Let f be in L2
Ak

(Rd)W . We consider the operator

T : L1
µk

(Rd+1
+ )W ∩ L∞µk(Rd+1

+ )W → L2
k(Rd)W ,

given by
T (σ) := Lh(σ)(f).

Then, by Proposition 3.7 and Proposition 3.8,

‖T (σ)‖L2
Ak

(Rd) ≤
1
Ch
‖f‖L2

Ak
(Rd)‖σ‖µk,1 (3.4)

and
‖T (σ)‖L2

Ak
(Rd) ≤ ‖f‖L2

Ak
(Rd)‖σ‖µk,∞. (3.5)

Therefore, by (3.4), (3.5), and the Riesz–Thorin interpolation theorem (see [38,
Theorem 2] and [41, Theorem 2.11]), T may be uniquely extended to a linear
transformation on Lpµk(Rd+1

+ )W , and we have

‖Lh(σ)(f)‖L2
Ak

(Rd) = ‖T (σ)‖L2
Ak

(Rd) ≤
(

1
Ch

) 1
p

‖f‖L2
Ak

(Rd)‖σ‖µk,p. (3.6)

Since (3.6) is true for arbitrary functions f in L2
Ak

(Rd)W , we obtain the desired
result. �
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3.3. Schatten–von Neumann properties for Lh(σ). In this subsection we will
prove that the localization operator

Lh(σ) : L2
Ak

(Rd)W → L2
Ak

(Rd)W

is in the Schatten class Sp. The first result on the Schatten property of localization
operators is given in the following theorem.

Theorem 3.10. Let σ be in L1
µk

(Rd+1
+ )W . Then the bounded localization operator

Lh(σ) : L2
Ak

(Rd)W → L2
Ak

(Rd)W

is in S1 and we have
‖Lh(σ)‖S1 6

4
Ch
‖σ‖µk,1.

Proof. First let us assume that σ is a nonnegative real-valued symbol, thus the
localization operator Lh(σ) is positive. Let {uj , j = 1, 2, . . . } be any orthonor-
mal basis for L2

Ak
(Rd)W . Then from Fubini’s theorem, the Parseval identity, and

relations (2.6) and (2.7), we get
∞∑
j=1
〈Lh(σ)(uj), uj〉L2

Ak
(Rd) =

∞∑
j=1

1
Ch

∫
Rd+1

+

σ(a, x)|ΦWh (uj)(a, x)|2 dµk(a, x)

= 1
Ch

∫
Rd+1

+

σ(a, x)
( ∞∑
j=1
|ΦWh (uj)(a, x)|2

)
dµk(a, x).

Thus we get
∞∑
j=1
〈Lh(σ)(uj), uj〉L2

Ak
(Rd) = 1

Ch

∫
Rd+1

+

σ(a, x)‖ha,x‖2L2
Ak

(Rd) dµk(a, x). (3.7)

Using now the relation (2.6), we deduce that
∞∑
j=1
〈Lh(σ)(uj), uj〉L2

Ak
(Rd) 6 sup

(a,x)∈Rd+1
+

‖ha,x‖2L2
Ak

(Rd)
1
Ch
‖σ‖µk,1

= 1
Ch
‖σ‖µk,1.

Then, by [41, Proposition 2.4], the operator Lh(σ) is in S1.
We have

√
Lh(σ)∗Lh(σ) = Lh(σ), so if we consider {uj , j = 1, 2, . . . } an or-

thonormal basis for L2
Ak

(Rd)W consisting of eigenvectors of the positive compact
operator

√
Lh(σ)∗Lh(σ) and let sj , j = 1, 2, . . . , be the eigenvalues of |Lh(σ)|

corresponding to uj , then

‖Lh(σ)‖S1 =
∞∑
j=1

sj =
∞∑
j=1

〈√
Lh(σ)∗Lh(σ)(uj), uj

〉
L2
Ak

(Rd)

=
∞∑
j=1
〈Lh(σ)(uj), uj〉L2

Ak
(Rd) 6

1
Ch
‖σ‖µk,1.
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For σ a real-valued function, we write σ = σ+ − σ−, with

σ+ = max(σ, 0), σ− = −min(σ, 0);

then Lh(σ) is in S1 and we have

‖Lh(σ)‖S1 6 ‖Lh(σ+)‖S1 + ‖Lh(σ−)‖S1 6
2
Ch
‖σ‖µk,1.

Finally, when σ = σ1 + iσ2 is a complex-valued function with σ1 and σ2 the real
and imaginary parts of σ, we have that Lh(σ) is in S1 and

‖Lh(σ)‖S1 6 ‖Lh(σ1)‖S1 + ‖Lh(σ2)‖S1 6
4
Ch
‖σ‖µk,1. �

Corollary 3.11. For σ in L1
µk

(Rd+1
+ )W , we have the trace formula

tr(Lh(σ)) = 1
Ch

∫
Rd+1

+

σ(a, x)‖ha,x‖2L2
Ak

(Rd) dµk(a, x).

Proof. From the previous theorem, the localization operator Lh(σ) belongs to S1;
then by the definition of trace given by the relation (3.1), we have

tr(Lh(σ)) =
∞∑
j=1
〈Lh(σ)(uj), uj〉L2

Ak
(Rd).

The result is obtained by the relation (3.7). �

Proposition 3.12. Let σ be a symbol in Lpµk(Rd+1
+ )W , 1 6 p < ∞. Then the

localization operator Lh(σ) is compact.

Proof. Let σ be in Lpµk(Rd+1
+ )W and let (σn)n∈N be a sequence of functions in

L1
µk

(Rd+1
+ )W

⋂
Lpµk(Rd+1

+ )W such that σn → σ in Lpµk(Rd+1
+ )W as n → ∞. Then

by Theorem 3.9

‖Lh(σn)− Lh(σ)‖S∞ ≤
(

1
Ch

) 1
p

‖σn − σ‖µk,p.

Hence Lh(σn)→ Lh(σ) in S∞ as n→∞. On the other hand, as by Theorem 3.10
Lh(σn) is in S1, hence compact, it follows that Lh(σ) is compact. �

In the following theorem we improve the constant given in Theorem 3.10. First,
we begin by investigating the case σ in L1

µk
(Rd+1

+ )W and we give, in addition, a
lower bound of the norm ‖Lh(σ)‖S1 .

Theorem 3.13. Let σ be in L1
µk

(Rd+1
+ )W . Then,

1
Ch
‖σ̃‖µk,1 6 ‖Lh(σ)‖S1 6

1
Ch
‖σ‖µk,1,

where σ̃ is given by

σ̃(a, x) = 〈Lh(σ)(ha,x), ha,x〉L2
Ak

(Rd), (a, x) ∈ Rd+1
+ .
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Proof. Since σ is in L1
µk

(Rd+1
+ )W , by Theorem 3.10 Lh(σ) is in S1. Using [41,

Theorem 2.2], there exists an orthonormal basis {uj , j = 1, 2, . . . } for N(Lh(σ))⊥,
the orthogonal complement of the kernel of Lh(σ), consisting of eigenvectors of
|Lh(σ)|, and {vj , j = 1, 2, . . . } an orthonormal set in L2

Ak
(Rd)W , such that

Lh(σ)(f) =
∞∑
j=1

sj〈f, uj〉L2
Ak

(Rd)vj , (3.8)

where sj , j = 1, 2, . . . , are the positive singular values of Lh(σ) corresponding
to uj . Then we get

‖Lh(σ)‖S1 =
∞∑
j=1

sj =
∞∑
j=1
〈Lh(σ)(uj), vj〉L2

Ak
(Rd).

Thus, by Fubini’s theorem, Schwarz’s inequality, Bessel’s inequality, and the rela-
tions (2.6) and (2.7), we get

‖Lh(σ)‖S1 =
∞∑
j=1
〈Lh(σ)(uj), vj〉L2

Ak
(Rd)

=
∞∑
j=1

1
Ch

∫
Rd+1

+

σ(a, x)ΦWh (uj)(a, x)ΦWh (vj)(a, x) dµk(a, x)

6
1
Ch

∫
Rd+1

+

|σ(a, x)|
( ∞∑
j=1
|ΦWh (uj)(a, x)|2

) 1
2
( ∞∑
j=1
|ΦWh (vj)(a, x)|2

) 1
2

dµk(a, x)

6
1
Ch

∫
Rd+1

+

|σ(a, x)|‖ha,x‖2L2
Ak

(Rd) dµk(a, x)

6
1
Ch
‖σ‖µk,1.

It is easy to see that σ̃ belongs to L1
Ak

(Rd), and using formula (3.8) we obtain

|σ̃(a, x)| =
∣∣∣〈Lh(σ)(ha,x), ha,x〉L2

Ak
(Rd)

∣∣∣
=
∣∣∣∣ ∞∑
j=1

sj〈ha,x, uj〉L2
Ak

(Rd)〈vj , ha,x〉L2
Ak

(Rd)

∣∣∣∣
6

1
2

∞∑
j=1

sj
(
|〈ha,x, uj〉L2

Ak
(Rd)|2 + |〈ha,x, vj〉L2

Ak
(Rd)|2

)
.
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Then using Plancherel’s identity for ΦWh and Fubini’s theorem, we get∫
Rd+1

+

|σ̃(a, x)| dµk(a, x) = 1
2

∞∑
j=1

sj

(∫
Rd+1

+

|〈ha,x, uj〉L2
Ak

(Rd)|2 dµk(a, x)

+
∫
Rd+1

+

|〈ha,x, vj〉L2
Ak

(Rd)|2 dµk(a, x)
)

6 Ch

∞∑
j=1

sj = Ch‖Lh(σ)‖S1 .

The proof is complete. �

In the following theorem we give the main result of this section.

Theorem 3.14. Let σ be in Lpµk(Rd+1
+ )W , 1 6 p 6 ∞. Then the localization

operator
Lh(σ) : L2

Ak
(Rd)W → L2

Ak
(Rd)W

is in Sp and we have

‖Lh(σ)‖Sp 6
(

1
Ch

) 1
p

‖σ‖µk,p.

Moreover, Lh(σ) satisfies the relation (3.2).

Proof. The result follows from Proposition 3.8, Theorem 3.13 and by interpolation
(see [41, Theorem 2.10 and Theorem 2.11]). �

4. Generalized wavelet scalograms

4.1. The range of the wavelet transform. We denote by
• Ph : L2

µk
(Rd+1

+ )W → L2
µk

(Rd+1
+ )W the orthogonal projection from

L2
µk

(Rd+1
+ )W onto ΦWh (L2

Ak
(Rd)W );

• PU : L2
µk

(Rd+1
+ )W → L2

µk
(Rd+1

+ )W the orthogonal projection from
L2
µk

(Rd+1
+ )W onto the subspace of functions supported in the subset

U ⊂ Rd+1
+ . In other words, we can write

PUF = χ
U
F, F ∈ L2

µk
(Rd+1

+ )W ,

where χ
U

denotes the characteristic function of the subset U of Rd+1
+ .

Let h be a generalized wavelet on Rd in L1
Ak

(Rd)W ∩L2
Ak

(Rd)W . In this section
we shall keep our focus on localization operators Lh(σ) with symbol σ = χ

U
, where

U is a subset of Rd+1
+ with finite measure µk(U) given by

µk(U) :=
∫
U

dµk(a, x).

In what follows, such operator will be denoted Lh(U) for the sake of simplicity.
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Proposition 4.1. The space ΦWh (L2
Ak

(Rd)W ) is a reproducing kernel Hilbert space
with kernel

Kh(a′, x′; a, x) := 1
Ch

∫
Rd
ha′,x′(y)ha,x(y)Ak(y) dy,

which satisfies

∀ (a′, x′), (a, x) ∈ Rd+1
+ , |Kh(a′, x′; a, x)| ≤

‖h‖2
L2
Ak

(Rd)

Ch
.

Proof. Let f be in L2
Ak

(Rd)W . We have

ΦWh (f)(a, x) =
∫
Rd
f(y)ha,x(y)Ak(y) dy, (a, x) ∈ Rd+1

+ .

Using the relation (2.9), we obtain

ΦWh (f)(a, x) = 1
Ch

∫
Rd+1

+

ΦWh (f)(a′, x′)ΦWh (ha,x)(a′, x′) dµk(a′, x′).

On the other hand, by using Proposition 2.12, one can see that for every a, a′ > 0,
x, x′ ∈ Rd the function

x′ 7→ ΦWh (ha,x)(a′, x′) = 1
Ch

∫
Rd
ha′,x′(y)ha,x(y)Ak(y) dy

belongs to L2
Ak

(Rd)W . Therefore, we obtain the result. �

Remark 4.2. i) We note that

‖PUPh‖HS :=
(∫

Rd+1
+ ×Rd+1

+

|χ
U

(a, x)|2 |Kh(a′, x′; a, x)|2 dµk(a′, x′) dµk(a, x)
) 1

2

≤
‖h‖L2

Ak
(Rd)W

√
Ch

√
µk(U) <∞.

Hence, PUPh is a Hilbert–Schmidt operator and therefore it is a compact operator.
ii) We note that Ph = ΦWh (ΦWh )∗. Explicitly, Ph is the integral operator

PhF (z) =
∫
Rd+1

+

F (a, x)Kh(z; a, x) dµk(a, x), z = (a′, x′) ∈ Rd+1
+ ,

with integral kernel Kh.
iii) As Kh is the integral kernel of an orthogonal projection, it satisfies

Kh(z; z′) = Kh(z′; z), for all z, z′ ∈ Rd+1
+ ,

and
Kh(z; z′) =

∫
Rd+1

+

Kh(z; z′′)Kh(z′′; z′) dµk(z′′), z, z′ ∈ Rd+1
+ . (4.1)

iv) If {vn : n ∈ N} is an orthonormal basis of ΦWh (L2
Ak

(Rd)W ), Kh can be
expanded as

Kh(z; z′) =
∞∑
n=1

vn(z)vn(z′), z, z′ ∈ Rd+1
+ .
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Definition 4.3. Let h be a generalized wavelet on Rd in L2
Ak

(Rd)W . We define
the generalized wavelet scalogram of f as

SWh (f)(a, x) = 1
Ch
|ΦWh (f)(a, x)|2, (a, x) ∈ Rd+1

+ .

Remark 4.4. From the Plancherel formula of ΦWh , we have∫
Rd+1

+

SWh (f)(a, x) dµk(a, x) = ‖f‖2L2
Ak

(Rd).

It justifies the interpretation of a scalogram as a time-frequency energy density.
Note that also by (3.2) we have

〈Lh(σ)f, f〉L2
Ak

(Rd) =
∫
Rd+1

+

σ(a, x)SWh (f)(a, x) dµk(a, x).

Definition 4.5. We define the Calderón–Toeplitz operator
Th,U : ΦWh (L2

Ak
(Rd)W )→ ΦWh (L2

Ak
(Rd)W )

by
Th,U F = PhPUF.

Proposition 4.6. The operator Th,U : L2
Ak

(Rd)W → L2
Ak

(Rd)W is trace class and
satisfies

0 ≤ Th,U ≤ PU ≤ I (4.2)
and

Th,U = ΦWh Lh(U)(ΦWh )∗. (4.3)

Proof. For all F ∈ ΦWh (L2
Ak

(Rd)W ),

〈Th,U F, F 〉µk,2 = 〈Ph(PUF ), F 〉µk,2 = 〈PUF, F 〉µk,2 =
∫
U

|F (a, x)|2 dµk(a, x).

Thus we deduce (4.2), and Th,U is bounded and positive.
Now, we want to prove (4.3). Indeed, using ΦWh and (ΦWh )∗, the time-frequency

localization operator
Lh(U) : L2

Ak
(Rd)W → L2

Ak
(Rd)W

can be written as
Lh(U)(f) = (ΦWh )∗(PUΦWh f), f ∈ L2

Ak
(Rd)W .

Therefore
(ΦWh Lh(U)(ΦWh )∗)F = PhPUF = Th,U F, F ∈ ΦWh (L2

Ak
(Rd)W ).

Consequently, the time-frequency operator Lh(U) and the Calderón–Toeplitz op-
erator Th,U are related by

Th,U = ΦWh Lh(U)(ΦWh )∗. �

Remark 4.7. From the above proposition we deduce that Th,U and Lh(U) enjoy
the same spectral properties; in particular, we have the following proposition.
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Proposition 4.8. The Calderón–Toeplitz operator Th,U is compact and even trace
class with

tr(Th,U ) = tr(Lh(U)) = Mk(h, U),
where

Mk(h, U) := 1
C2
h

∫
U

‖ha,x‖2L2
Ak

(Rd)dµk(a, x).

Proof. We know that the operator Th,U : ΦWh (L2
Ak

(Rd)W ) → ΦWh (L2
Ak

(Rd)W )
is bounded and positive. Now, let {φn}∞n=1 be an arbitrary orthonormal basis
for ΦWh (L2

Ak
(Rd)W ). If we denote by ϕn =

√
Ch(ΦWh )∗(φn), then {ϕn}∞n=1 is an

orthonormal basis for L2
Ak

(Rd)W .
Thus by (3.2) and Fubini’s theorem,

∞∑
n=1
〈Th,U (φn), φn〉µk,2 =

∞∑
n=1

〈
Lh(U)(ΦWh )∗(φn), (ΦWh )∗(φn)

〉
L2
Ak

(Rd)

= 1
C2
h

∞∑
n=1

∫
U

|ΦWh (ϕn)(a, x)|2 dµk(a, x)

= 1
C2
h

∫
U

∞∑
n=1
|ΦWh (ϕn)(a, x)|2 dµk(a, x)

= 1
C2
h

∫
U

∞∑
n=1
| 〈ϕn, ha,x〉L2

Ak
(Rd) |

2 dµk(a, x)

= 1
C2
h

∫
U

‖ha,x‖2L2
Ak

(Rd) dµk(a, x)

= Mk(h, U).
Therefore, by Definition 3.3 and Remark 3.4, the operator Th,U is trace class with

‖Th,U ‖S1 = tr(Th,U ) = Mk(h, U). �

Let Vh,U : L2
µk

(Rd+1
+ )W → L2

µk
(Rd+1

+ )W be the operator defined by Vh,U =
PhPUPh. The advantage of Vh,U compared to Th,U is that it is defined on
L2
µk

(Rd+1
+ )W and consequently its spectral properties can be easily related to its

integral kernel.
Since Th,U is positive and trace class, using the decomposition

L2
µk

(Rd+1
+ )W = ΦWh (L2

Ak
(Rd)W )⊕

(
ΦWh (L2

Ak
(Rd)W )

)⊥
we deduce that Vh,U is also positive and trace class with

tr(Vh,U ) = tr(Th,U ) = Mk(h, U).
In addition, we have the following result.

Proposition 4.9. The trace of T 2
h,U is given by

tr(T 2
h,U ) =

∫
U

∫
U

|Kh(a, x; a′, x′)|2 dµk(a, x) dµk(a′, x′).
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Proof. As Vh,U is positive, we have

tr(T 2
h,U ) = tr(V2

h,U ).

On the other hand, using the fact that the space ΦWh (L2
Ak

(Rd)W ) is a reproducing
kernel Hilbert space with kernel Kh, we get that, for F ∈ L2

µk
(Rd+1

+ )W ,

Vh,UF (a, x)

=
∫
Rd+1

+

F (a′, x′)
∫
Rd+1

+

χ
U

(b, y)Kh(a, x; b, y)Kh(b, y; a′, x′) dµk(b, y) dµk(a′, x′).

That is, Vh,U has integral kernel

Nh,U (a, x; a′, x′) =
∫
Rd+1

+

χ
U

(b, y)Kh(a, x; b, y)Kh(b, y; a′, x′) dµk(b, y).

Therefore,

tr(V2
h,U ) =

∫
Rd+1

+

∫
Rd+1

+

|Nh,U (a, x; a′, x′)|2 dµk(a, x) dµk(a′, x′)

=
∫
Rd+1

+

∫
Rd+1

+

Nh,U (a, x; a′, x′)Nh,U (a, x; a′, x′) dµk(a, x) dµk(a′, x′)

=
∫
Rd+1

+

∫
Rd+1

+

χ
U

(z1)χ
U

(z2)Kh(z1; z2) dµk(z1) dµk(z2),

where by using the properties of the kernel of the reproducing kernel Hilbert space

Kh(z1; z2) = Kh(z2; z1)Kh(z1; z2).

Using (4.1), we get
Kh(z1; z2) = |Kh(z1; z2)|2,

and we conclude the proof. �

4.2. Eigenvalues and eigenfunctions. Since the localization operator Lh(U) =
(ΦWh )∗χ

U
ΦWh that we consider is a compact and self-adjoint operator, the spectral

theorem gives the following spectral representation:

Lh(U)(f) =
∞∑
n=1

sn(U)
〈
f, ϕUn

〉
L2
Ak

(Rd) ϕ
U
n , f ∈ L2

Ak
(Rd)W ,

where {sn(U)}∞n=1 are the positive eigenvalues arranged in a nonincreasing manner
and {ϕUn }∞n=1 is the corresponding orthonormal set of eigenfunctions. Note that
sn(U)↘ 0 and by (3.3) we have, for all n ≥ 1,

sn(U) ≤ s1(U) ≤ 1.

By using this, together with (4.3), we can deduce that the Toeplitz operator

Th,U : ΦWh (L2
Ak

(Rd)W )→ ΦWh (L2
Ak

(Rd)W )
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can be diagonalized as

Th,U F = Ch

∞∑
n=1

sn(U)
〈
F, φUn

〉
µk,2

φUn , F ∈ ΦWh (L2
Ak

(Rd)W ),

where φUn = 1√
Ch

ΦWh (ϕUn ).

Lemma 4.10. For all z = (a, x) ∈ Rd+1
+ , we have

Θ(z) :=
∫
Rd+1

+

χ
U

(ω)|Kh(ω; z)|2 dµk(ω) = Ch

∞∑
n=1

sn(U)SWh (ϕUn )(z).

Proof. From Proposition 4.1, we have that for all z = (a, x) ∈ Rd+1
+ the function

Kh(.; z) is in ΦWh (L2
Ak

(Rd)W ). Therefore using the properties of the kernel of the
reproducing kernel Hilbert space, we get

〈Th,U Kh(.; z),Kh(.; z)〉µk,2 = 〈PUKh(.; z),Kh(.; z)〉µk,2

=
∫
Rd+1

+

χ
U

(ω)Kh(ω; z)Kh(ω; z) dµk(ω)

=
∫
Rd+1

+

χ
U

(ω) |Kh(ω; z)|2 dµk(ω).

Let {wUn }∞n=1 ⊂ ΦWh (L2
Ak

(Rd)W ) be an orthonormal basis of Ker(Th,U ) (possibly
empty). Hence, {φUn }∞n=1 ∪ {wUn }∞n=1 is an orthonormal basis of ΦWh (L2

Ak
(Rd)W )

and therefore the reproducing kernel Kh can be written as

Kh(a, x; a′, x′) = Kh(a′, x′; z) =
∞∑
n=1

φUn (z)φUn (a′, x′) +
∞∑
n=1

wUn (z)wUn (a′, x′).

Using this, we compute again

〈Th,U Kh(.; z),Kh(.; z)〉µk,2 =
〈
Th,U

∞∑
n=1

φUn (z)φUn ,
∞∑
k=1

φUk (z)φUk
〉
µk,2

=
∑
n,k

φUn (z)φUk (z)
〈
Th,U φ

U
n , φ

U
k

〉
µk,2

= Ch

∞∑
n=1

sn(U)
∣∣φUn (z)

∣∣2 ,
and the conclusion follows. �

Let ε ∈ (0, 1) and define the quantity

n(ε, U) := card {n : sn(U) ≥ 1− ε} .

Then by an easy adaptation of the proof of Lemma 3.3 in [1] we obtain the following
estimate for the eigenvalue distribution.
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Proposition 4.11. Let ε ∈ (0, 1). We have

|n(ε, U)−Mk(h, U)|

≤ max
{

1
ε
,

1
1− ε

} ∣∣∣∣∫
U

∫
U

|Kh(z′; z)|2 dµk(z)dµk(z′)−Mk(h, U)
∣∣∣∣ .

4.3. Scalogram of a subspace. Given an N -dimensional subspace V of L2
Ak

(Rd),
PV is the orthogonal projection onto V with projection kernel GV , i.e.,

PV f(·) =
∫
Rd
GV (·, t)f(t)Ak(t) dt.

Recall that if {vn}
N

n=1 is an orthonormal basis of V , then

GV (x, t) =
N∑
n=1

vn(x)vn(t).

The kernel GV is independent of the choice of orthonormal basis for V .

Definition 4.12. The scalogram of the space V with generalized wavelet h is
defined as

SCALkhV (a, x) :=
∫
Rd

∫
Rd
GV (t, y)ha,x(t)ha,x(y)Ak(t)Ak(y) dt dy.

Then we have the following result.

Lemma 4.13. The scalogram SCALkhV is given by

SCALkhV = Ch

N∑
n=1

SWh (vn).

Proof. We have

SCALkhV (a, x) =
∫
Rd

∫
Rd

N∑
n=1

vn(t)vn(y)ha,x(t)ha,x(y)Ak(t)Ak(y) dt dy

=
N∑
n=1
〈vn, ha,x〉L2

Ak
(Rd) 〈vn, ha,x〉L2

Ak
(Rd)

=
N∑
n=1

ΦWh (vn)(a, x)ΦWh (vn)(a, x)

=
N∑
n=1
|ΦWh (vn)(a, x)|2. �

Definition 4.14. We define the time-frequency concentration of a subspace V in U
as

ξU,h(V ) := 1
N

∫
U

SCALkhV (a, x) dµk(a, x).
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Then, from Lemma 4.13,

ξU,h(V ) := Ch
N

N∑
n=1

∫
U

SWh (vn)(a, x) dµk(a, x).

Theorem 4.15. The N -dimensional signal space VN = span{ϕUn }Nn=1 consisting
of the first N eigenfunctions of Lh(U) corresponding to the N largest eigenvalues
{sn(U)}Nn=1 maximize the regional concentration ξU,h(V ) and

ξU,h(VN ) := Ch
N

N∑
n=1

sn(U).

Proof. We have

ξU,h(VN ) := Ch
N

N∑
n=1

∫
U

SWh (ϕUn )(a, x) dµk(a, x).

Moreover, the min-max lemma for self-adjoint operators states that (cf. [36])

sn(U) =
∫
U

SWh (ϕUn )(z) dµk(a, x)

= max
{
〈Lh(U)(f), f〉L2

Ak
(Rd) : ‖f‖L2

Ak
(Rd) = 1, f ⊥ ϕU1 , . . . , ϕUn−1

}
.

So the eigenvalues of Lh(U) determine the number of orthogonal functions that
have a well-concentrated scalogram in U . Thus,

ξU,h(VN ) = Ch
N

N∑
n=1

sn(U).

The min-max characterization of the eigenvalues of compact operators implies
that the first N eigenfunctions of the time-frequency operator Lh(U) have optimal
cumulative time-frequency concentration inside U , in the sense that

N∑
n=1

〈
Lh(U)(ϕUn ), ϕUn

〉
L2
Ak

(Rd)

= max
{ N∑
n=1
〈Lh(U)vn, vn〉L2

Ak
(Rd) : {vn}Nn=1 orthonormal

}
.

Therefore no N -dimensional subset V of L2
Ak

(Rd) can be better concentrated in U
than VN , i.e.,

ξU,h(V ) ≤ ξU,h(VN ).
The proof is complete. �

Remark 4.16. The time-frequency concentration of a subspace VN in U satisfies

sN (U) ≤ C−1
h ξU,h(VN ) ≤ s1(U) ≤ 1.
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4.4. Accumulated scalogram. Let ρ(h,U) := SCALkhVNk(h,U), called the accu-
mulated scalogram, where we assume that Nk(h, U) = [Mk(h, U)] is the smallest
integer greater than or equal to Mk(h, U) and

VNk(h,U) = span{vUn }
Nk(h,U)
n=1 .

Then

ρ(h,U)(a, x) =
Nk(h,U)∑
n=1

|ΦWh (vUn )(a, x)|2 =
Nk(h,U)∑
n=1

|φUn (a, x)|2.

Note that
‖ρ(h,U)‖1,µk = ChNk(h, U) = ChMk(h, U) +O(1).

Moreover, since
Nk(h,U)∑
n=1

sn(U) ≤ tr(Lh(U)) = Mk(h, U)

then we can define the quantity

E(h, U) := 1−

Nk(h,U)∑
n=1

sn(U)

Mk(h, U) ,

which satisfies
0 ≤ E(h, U) ≤ 1.

More precisely, we have the following result.

Lemma 4.17. Let ε ∈ (0, 1). We have

0 ≤ E(h, U) ≤ 1− (1− ε) min
(

1, n(ε, U)
Mk(h, U)

)
.

Proof. Let ε ∈ (0, 1) and define lk(ε, U) = min(Nk(h, U), n(ε, U)). It follows that
sn(U) ≥ 1− ε, 1 ≤ n ≤ lk(ε, U).

As Nk(h, U) ≥ lk(h, U), we get
Nk(h,U)∑
n=1

sn(U) ≥
lk(ε,U)∑
n=1

sn(U) ≥ (1− ε)lk(ε, U).

Therefore
0 ≤ E(h, U) ≤ 1− (1− ε) lk(ε, U)

Mk(h, U) .

As Nk(ε, U) ≥Mk(h, U), we obtain the desired result. �

Consequently, when the eigenvalues {sn(U)}n(ε,U)
n=0 are close to 1, E(h, U) → 0.

Moreover, we have the following result bounding the error between ρ(h,U) and Θ.

Proposition 4.18. We have
1

Mk(h, U)‖ρ(h,U) −Θ‖1,µk ≤
Ch

Mk(h, U) + 2ChE(h, U). (4.4)
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Proof. From Lemma 4.10, we have, for all z = (a, x) ∈ U ,

ρ(h,U)(z)−Θ(z) =
∞∑
n=1

(tn − sn(U))|φUn (z)|2,,

where tn = 1 if n ≤ Nk(h, U) and 0 otherwise. As

‖|φUn |2‖1,µk = Ch and
∞∑
n=1

sn(U) = Mk(h, U),

we get

‖ρ(h,U) −Θ‖1,µk ≤ Ch
∞∑
n=1
|tn − sn(U)|

= Ch

Nk(h,U)∑
n=1

(1− sn(U)) + Ch
∑

n>Nk(h,U)

sn(U)

= ChNk(h, U) + Ch

∞∑
n=1

sn(U)− 2Ch
Nk(h,U)∑
n=1

sn(U)

= ChNk(h, U) + ChMk(h, U)− 2Ch
Nk(h,U)∑
n=1

sn(U)

= Ch

(
Nk(h, U)−Mk(h, U)

)
+ 2Ch

(
Mk(h, U)−

Nk(h,U)∑
n=1

sn(U)
)

≤ Ch + 2Ch
(
Mk(h, U)−

Nk(h,U)∑
n=1

sn(U)
)
,

and the estimate (4.4) follows. �
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Analysis, Birkhäuser Boston, Boston, MA, 2001. MR 1843717.

[18] A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable
wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), no. 4, 723–736. MR 0747432.
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