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THE WEAKLY ZERO-DIVISOR GRAPH
OF A COMMUTATIVE RING

MOHAMMAD JAVAD NIKMEHR, ABDOLREZA AZADI, AND REZA NIKANDISH

ABSTRACT. Let R be a commutative ring with identity, and let Z(R) be the
set of zero-divisors of R. The weakly zero-divisor graph of R is the undirected
(simple) graph WTI'(R) with vertex set Z(R)*, and two distinct vertices x
and y are adjacent if and only if there exist r € ann(z) and s € ann(y) such
that rs = 0. It follows that WI'(R) contains the zero-divisor graph I'(R) as
a subgraph. In this paper, the connectedness, diameter, and girth of WI'(R)
are investigated. Moreover, we determine all rings whose weakly zero-divisor
graphs are star. We also give conditions under which weakly zero-divisor and
zero-divisor graphs are identical. Finally, the chromatic number of WI'(R) is
studied.

1. INTRODUCTION

The theory of graphs associated with rings was started by Beck [9] in 1981 and
has grown a lot since then. Anderson and Livingston [2] modified Beck’s definition
and introduced the notion of zero-divisor graph. Surely, this is the most important
graph associated with a ring, and not only zero-divisor graphs but also various
generalizations of it have attracted many researchers; see for instance [T}, [7, [13] [8,
B, 4], [10L [16, 17]. Therefore, this paper is devoted to introducing and studying a
super graph of zero-divisor graphs. First let us recall some necessary notation and
terminology from ring theory and graph theory.

Throughout this paper, all rings are assumed to be commutative with identity
and they are not fields. We denote by Min(R) and Nil(R) the set of all minimal
prime ideals of R and the set of all nilpotent elements of R, respectively. For a
subset A of a ring R, we let A* = A\ {0}. For every subset I of R, we denote the
annihilator of I by anng(I). The ring R is called local if it has a unique maximal
ideal. Also, the ring R is said to be reduced if it has no non-zero nilpotent element.
For any undefined notation or terminology in ring theory, we refer the reader to [6].

Let G = (V, E) be a graph, where V = V(G) is the set of vertices and E = F(G)
is the set of edges. By diam(G) and girth(G) we mean the diameter and the girth
of G, respectively. We write © — v to denote an edge with ends w,v. A graph
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H = (V, Eyp) is called a subgraph of G if Vj C V and Ey C E. Moreover, H is
called an induced subgraph by Vj, denoted by G[Vp], if Vo CV and Ey = {{u,v} €
E | u,v € Vy}. Let G; and Gy be two disjoint graphs. The join of G; and G,
denoted by G1 V Ga, is a graph with the vertex set V(G1 V G2) = V(G1) UV (G2)
and edge set E(G1V Ga) = E(G1)UE(G)U{w | u € V(Gy),v € V(G2)}. Also G
is called a null graph if it has no edge. A complete bipartite graph with part sizes
m,n is denoted by K,, . If m = 1, then the complete bipartite graph is called star
graph. Also, a complete graph of n vertices is denoted by K,. A cligue of G is a
maximal complete subgraph of G and the number of vertices in the largest clique
of G, denoted by w(G), is called the cligue number of G. For a graph G, let x(G)
denote the vertex chromatic number of G, i.e., the minimal number of colors which
can be assigned to the vertices of GG in such a way that every two adjacent vertices
have different colors. For any undefined notation or terminology in graph theory,
we refer the reader to [I§].

The zero-divisor graph of a ring R, denoted by T'(R), is a graph with the vertex
set Z(R)*, and two distinct vertices x and y are adjacent if and only if zy = 0.
The weakly zero-divisor graph of R is defined as the graph WT'(R) with the vertex
set Z(R)* = Z(R) \ {0}, and two distinct vertices x and y are adjacent if and
only if there exist » € ann(z) and s € ann(y) such that rs = 0. In this paper,
we study some connections between the graph-theoretic properties of WT'(R) and
some algebraic properties of rings. Moreover, we investigate the affinity between
weakly zero-divisor graph and zero-divisor graph associated with a ring. We focus
especially on the conditions under which these two graphs are identical. Finally,
the coloring of weakly zero-divisor graphs is studied.

2. BASIC PROPERTIES OF WEAKLY ZERO-DIVISOR GRAPHS

In this section, we study fundamental properties of WT'(R). It is shown that
WT(R) is always a connected graph and diam(WT(R)) < 2. Moreover, we prove
that if WT'(R) contains a cycle, then girth(WT'(R)) < 4. We begin with a lemma
containing several useful properties of WI'(R).

Lemma 2.1. Let R be a ring. Then the following statements hold:
(1) If x — y is an edge of T'(R), for some distinct elements x,y € Z(R)*, then
x —y is an edge of WI'(R).
(2) If x € Nil(R)*, then x is adjacent to all other vertices.
(3) Nil(R)* is a complete subgraph of WT'(R).

Proof. (1) Suppose that x — y is an edge of T'(R), for some distinct elements
x,y € Z(R)*. Thus xy = 0 and clearly x € ann(y) and y € ann(z). Hence
x —y is an edge of WI'(R).

(2) Assume that € Nil(R)*, for some x € Z(R)*, and let y € V(WI'(R))
and r € ann(y). Since z € Nil(R)*, we deduce that there exists a positive
integer n € N such that 2" = 0 and 2 # 0, forall 1 <i <n—1. Itis
clear that x"~! € ann(x). If 2" ~'r = 0, then x — y is an edge of WI'(R).
If 2" 1r # 0, then 2"~ 1r € ann(x) Nann(y) and 2" 1rz"~1r = 0. Thus
x —y is an edge of WI'(R).
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(3) It is clear, by part (2). O

By using Lemma [2.1] we give upper bounds for diam(WT(R)) and girth(WT(R))
(if WT'(R) contains a cycle).

Theorem 2.2. Let R be a ring. Then WI'(R) is connected and diam(WT'(R)) < 2.
Moreover, if WI'(R) contains a cycle, then girth(WT'(R)) < 4.

Proof. By Lemma every edge (path) of T'(R) is an edge (path) of WI'(R).
Hence [2, Theorem 2.3] implies that WT'(R) is connected. Moreover, it follows
from [I5, p. 3541] that girth(WT'(R)) < 4. To complete the proof, we show that
diam(WT(R)) < 2. Suppose that x —y is not an edge of WI'(R), for some distinct
elements x,y € Z(R)*. Then rs # 0, for every r € ann(z) and s € ann(y). Since
rsz = 0 and rsy = 0, we find the path  — rs — y is in WT'(R). This completes the
proof. O

The next result shows that girth(WT'(R)) = 4 may occur.

Theorem 2.3. Let R be a ring and let WT'(R) contain a cycle. Then
girth(WT(R)) = 4 if and only if R is reduced with | Min(R)| = 2.

Proof. First suppose that girth(WT'(R)) = 4. If Nil(R) # (0), then by part (2) of
Lemma girth(WT'(R)) = 3, a contradiction. Hence Nil(R) = (0). We claim
that WT'(R) = I'(R). Assume, to the contrary, that WT'(R) # I'(R). Then there
are distinct elements z,y € Z(R)* such that x — y is an edge of WT'(R) which is
not an edge of I'(R). Hence there are r € ann(x) and s € ann(y) such that rs =0,
r#s,x#r#y andy#s#x.

We consider the following cases.

Case 1. 0 # b € ann(z) Nann(y). Thus b —x —y — b is a cycle in WT'(R) of
length three. Hence girth(WT'(R)) = 3, a contradiction.

Case 2. ann(z) Nann(y) = 0. Then it is not hard to check that y, zy, x are
pairwise distinct. Since r € ann(z) C ann(zy) and rs = 0, we deduce that zy — y
is an edge of WT'(R). Also zy — «x is an edge of WT'(R), as s € ann(y) C ann(zy)
and rs = 0. Therefore, xy — x — y — xy is a cycle in WIT'(R) of length three, a
contradiction, and so the claim is proved. This fact, together with girth(WT'(R)) =
4 and the fact that R is reduced, implies that | Min(R)| = 2, by [3, Theorem 2.2].
Conversely, suppose that R is reduced and Min(R) = {P;, P»}. Since R is reduced,
Z(R) = PLUP, and P, N P, = (0), by [12, Corollary 2.4]. It is enough to show
that Py, P, are independent sets of WI'(R). Let x,y € Py, 0 # r € ann(z), and
0# s € ann(y). Then r,s € Pp, as PN P, = 0. If rs = 0, then either » = 0 or
s = 0, a contradiction. Similarly, P is independent. Then WI'(R) = K|ps| p;|-
By hypothesis WT'(R) contains a cycle and so girth(TI'(R)) = 4. O

The next result provides conditions under which WT'(R) contains a triangle.

Theorem 2.4. Let R be a reduced ring and assume that Z(R)* is an ideal of R.
Then WT'(R) # I'(R) and girth(WT'(R)) = 3.
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Proof. Let a € Z(R)* and b € ann(a) \ {0}. Then a +b € Z(R)*, as Z(R) is an
ideal. Since a(b+a) # 0, we deduce that a —a+b is not an edge of I'(R). A simple
check yields ann(a + b) C ann((b + a)a) = ann(a?), and so ann(a + b) C ann(a?).
Then there exists m € R such that m € ann(a+b) and m € ann(a?). Thus ma = 0,
since R is reduced. Hence mb = 0. This fact, together with m € ann(a + b) and
b € ann(a), implies that a+b—a is an edge of WT'(R). Since a+b—a is an edge of
WT'(R) that is not an edge of I'(R), we conclude that WI'(R) # I'(R). To complete
the proof, we show that girth(I'(R)) = 3. We claim that a + b # (a + b)a # a. If
(a+b)a = a, then a? = a and so R is decomposable. Hence Z(R) is not an ideal,
a contradiction. Thus (a + b)a # a. Also if a + b = (a + b)a, then a + b = a® and
a®? # a. These imply that a? = (a + b)a = a? - @ = a® and so a? is idempotent.
Again we get a contradiction. By the above assumptions, m € ann(a+b) C ann(a),
b € ann(a) = ann(a?) = ann((a+b)a), and mb = 0. Thus a+b—a—(a+b)a—a+b
is a triangle in WT'(R), as desired. 0

In the following theorem we classify all rings with star weakly zero-divisor
graphs.

Theorem 2.5. Let R be a ring. Then WT'(R) is a star graph if and only if one
of the following statements holds:

(1) R=Zs x D, where D is an integral domain.
(2) INil(R)| = | Z(R)| = 3.

Proof. One side is clear. To prove the other side, suppose that WI'(R) is a star
graph. By Lemma [2.1] (3), [ Nil(R)| < 3. We consider the following cases.

Case 1. |Nil(R)| = 1 (i.e., R is reduced). Suppose that a € V(WT'(R)) is
adjacent to all the other vertices. We claim that a is idempotent. For, if not,
ann(a) = ann(a?), as R is reduced. This implies that a and a? are adjacent to all
the other vertices. Then Z(R) = {0, a,a?}, since WI'(R) is star. But it is clear
that a® # 0, a - a® # 0, and (a?)? # 0 (since R is reduced), a contradiction, and
so the claim is proved. Therefore, R = R; X Ry, where Ry, Ry are two rings. We
show that Ry = Zs and Ry = D, where D is an integral domain. If R; = Z, and
Ry = Zs, then there is nothing to prove. Without loss of generality, suppose that
|R;| > 2 (ie., 1 #b € Rj). Forany 1 # r € Ry, (r,0) is a zero-divisor and so
(r,0) = (0,1) — (1,0) — (0,b) — (r,0) is a cycle in WI'(R), a contradiction unless
r = 0. Hence, Ry 2 Zy. If x € Z(R2)* and a € ann(z), then it is easily seen that
the induced subgraph on the vertices (1,0), (0,z), and (0,a) forms a triangle in
WT(R), a contradiction. Thus Z(Rz2) = (0) and so R = Zy x D, where D is an
integral domain.

Case 2. We show that | Nil(R)| = 2 does not happen. Suppose, to the contrary,
that |Nil(R)| = 2. Since T'(R) is a star graph, [2 Theorem 2.5] implies that
ann(z) = Z(R), for some = € Z(R)*. We show that WT'(R) is complete. Suppose
that z and y are two vertices of WT'(R) such that y # x # z. Since x € ann(y) N
ann(z) and 22 = 0, y — z is an edge of WI'(R), i.e., WI'(R) is complete. This
fact, together with WI'(R) being a star graph, implies that WT'(R) = Ks. So
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Z(R) = {0,z,b}. This yields b?> = b and hence R = Rb x R(1—b), i.e., Z(R) is not
an ideal, a contradiction. Therefore | Nil(R)| # 2.

Case 3. |Nil(R)| = 3. By Lemma [2.1] (2), we conclude that WI'(R) = K, and
so |Nil(R)| = |Z(R)| = 3. O

The last result of this section is devoted to studying complete weakly zero divisor
graphs. First, we fix a notation. Let R & Ry X Ry X --+ X R,,,, where every R;
is a ring, for 1 < i < m. By e; we mean the i-th standard basis vector, for every
i=1,...,m. Indeed, ¢; = (0,...,0,1g,,0,...,0).

Theorem 2.6. Let R be an Artinian ring. Then WT'(R) is a complete graph if
and only if one of the following statements holds:

(].) RgZQ Xoee XZQ.
(2) R= Ry x---X Ry, where R; is a non-reduced Artinian local ring, for every
1<i<m.

Proof. First suppose that WT'(R) is a complete graph. By [6, Theorem 8.7], R =
Ry X --+ X Ry, where R; is an Artinian local ring, for every 1 < i < m. If every
R;, 1 <14 < m, is non-reduced, then there is nothing to prove. So suppose that at
least one of the R;’s is a field, say R; (obviously, every reduced local Artinian ring
is a field). Consider the following two cases.

Case 1. R; & Zs, for every ¢ # 1. We show that R = Zs X - -+ X Zy. Suppose,
to the contrary, that Ry % Zs. Let 1 # uw € Rj. Then z = (u,1,...,1,0),
y=(1,1,...,1,0) € V(WI(R)) and ann(z) = ann(y) = (0,...,0,1). Therefore,
x,y are not adjacent, a contradiction.

Case 2. R; % Zs, for some i # 1. We show that this case does not occur.
Without loss of generality, suppose that R, % Zs. Let z = (0,1,...,1,u), y =
(0,1,...,1,1) €e V(WI(R)), and 1 # u € R, \ Z(R). Then ann(z) = ann(y) =
{(r,0,...,0) | r € R*1}. This implies that x is not adjacent to y, a contradiction.

To prove the other side, first suppose that R = Zs X - -- X Zs. One may easily
check that V(WT'(R)) = {(z1,...,2m) € R | ©; = 0 for some 1 <i<m}. We
show that WI'(R) is complete. To see this, suppose that z = (z1,...,2,,) and
y = (y1,...,ym) are two distinct arbitrary elements of V(WT'(R)). Then there
exist 1 < ¢,j < m such that i # j, ; = 0, and z; = 0. Since e; € ann(X),
e;j € ann(Y'), and e;e; = 0, we conclude that z is adjacent to y, as desired.

Now suppose that R &£ Ry X --- X R,,, where R; is an non-reduced Artinian
local ring, for every 1 < i < m. We put A = {(z1,...,2m) € R | x; €
Nil(R;)* for some 1 < ¢ < m} and B = {(z1,...,2m) € R | x; ¢ Nil(R;)*
forall 1 <i<mand z; =0 for some 1 <i<m}. One may easily check that
V(WT(R)) = AUB, AN B = &. We show that WI'(R) is a complete graph.
To see this, consider the following cases.

Case 1. Let X = (21,...,%m,) and Xo = (2],...,2),) be two distinct elements
of A. Then x; € Nil(R;)* for some 1 < i < m and 2z € Nil(R;)* for some
1 < j < m, and hence there exist two positive integers n,m such that 27! = 0,
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™t # 0 and ™ =0, x;mfl # 0 (fix ¢ and j). We have the following two
subcases.

Subcase A.Ifi # j, then (27! -ei)(m;-m*l -e;) = 0. Since (2" -¢;) € ann(X;)
and (x}mfl -e;) € ann(Xs), X; is adjacent to Xs.

Subcase B. If i = j, then either z' ' - /™ ' =0 or 2771 2™t £ 0. If
2P =0, then (2771 e;) - (2" - €;) = 0. Hence X, is adjacent to Xo.
If 1 2™ 1 #£0, then r = 2"t - 2} - ¢; € ann(x;) Nann(zs). Since 72 = 0,
X, is adjacent to Xs.

Case 2. Let Y1 = (y1,...,ym) and Yo = (y],...,y.,) be two distinct elements
of B. We can suppose that the i-th component of Y7 is zero, for some 1 < i < m,
and also that the j-th component of Y5 is zero, for some 1 < 7 < m. We consider
the following two subcases.

Subcase A. Let ¢ # j. Since e; € ann(Y7), e; € ann(ys), and e;e; = 0, we
conclude that Y7 is adjacent to Y5.

Subcase B. Let i = j. Since R; is non-reduced, for every 1 < i < m, there
exists a non-zero nilpotent element 7; in Nil(R;)* such that r? = 0 and r]'"~! # 0,
;’_1 -e; € ann(Yy), r; - ¢; € ann(Ya),

-e;) - (r; - ¢;) = 0. This implies that Y7 is adjacent to Y5.

where n is a positive integer. It is clear that r
and (7‘?‘1
Case 3. Let X7 € A and Y; € B. Then we have the following two subcases.

Subcase A. If i # j, then x?‘lei -e; = 0. Since z?’_lei € ann(zp) and
e; € ann(Y7), we conclude that X; is adjacent to Y.

Subcase B. If i = j, then r = x?_l -e; € ann(zy) and s = x; - e; € ann(y1).
Hence X is adjacent to Y7, since rs = 0.

Therefore WI'(R) is a complete graph. O

3. WHEN 1S WT'(R) IDENTICAL TO I'(R)?

As we have seen in Section 2, I'(R) is a subgraph of WT'(R). A natural question
is posed: When are WI'(R) and I'(R) identical? In this section, we completely
answer this question.

Theorem 3.1. Let R be a reduced ring that is not an integral domain. Then
WT(R) =T'(R) if and only if | Min(R)| = 2.

Proof. Suppose that WT'(R) = T'(R). If |Min(R)| > 3, then by [14, Theo-
rem 2.6], diam(I'(R)) = 3. This contradicts Theorem [2.2] Hence | Min(R)| = 2, as

|Min(R)| = 1 means that R is an integral domain. Conversely, suppose that P;
and P, are two distinct minimal prime ideals of R. It is not hard to check that
WT(R) = T(R) = K|p:| ;- 0

Next, we study non-reduced rings R whose weakly zero-divisor graphs and zero-
divisor graphs are identical.

Theorem 3.2. Let R be a non-reduced ring. Then the following statements are
equivalent:

(1) WI(R) = I'(R).
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(2) Z(R)? =0.
(3) T'(R) is a complete graph.

Proof. (1) => (2). Let = € Nil(R)*. Then by part (2) of Lemma [2.1] « is adjacent
to all the other vertices in WT'(R). This fact, together with WT'(R) = I'(R), implies
that ann(z) = Z(R), by [2, Theorem 2.5]. Thus WT'(R) is a complete graph, and
so is I'(R). Hence by [2, Theorem 2.8], the result holds.

(2) = (3) and (3) = (1) are clear. O

Theorem [3.2] leads to the following corollary.

Corollary 3.3. Let R be a non-reduced ring. Then the following statements are
equivalent:

(1) WT(R) is a star graph.

(2) glrth(WF(R)) 00.

(3) WI'(R) =T'(R) and girth(T'(R)) = oc.
(4) \Z( )*| = INil(R)"| = 2.

(5) WI(R) =T(R) = K1

Proof. (1) = (2). It is clear.

(2) = (3). If a € Nil(R)*, then a is adjacent to all the other vertices in
WT(R). Since girth(WT'(R)) = oo and I'(R) is a connected subgraph of WI'(R),
we conclude that WT'(R) = I'(R), and so girth(T'(R)) = occ.

(3) = (4). If WI'(R) = I'(R), then WI'(R) = T'(R) is a complete graph,
by Theorem Since girth(T'(R)) = oo and R is non-reduced, we have that
Z(R)| = | NI(R)*| = 2.

(4) = (5) and (5) = (1) are clear. O

4. COLORING OF WT(R)

In this section, we study the coloring of WI'(R). First, we state the following
lemma.

Lemma 4.1. Let R= Dy X Dy X --- x Dy, where n > 3 is a positive integer and
D; is an integral domain, for every 1 < i < n. Then WI'(R) = K,, \/ H,,, where
H,, is a complete n-partite graph and K,, is a complete graph.

Proof. Let A ={X = (%1,...,2,) € R | only one of z;’s is zero} and B = {X =
(x1,...,2n) € R | at least two of the z;’s are zero}. It is clear that V(WT(R)) =
AU B. Suppose that X = (x1,...,2,) and Y = (y1,...,Yyn) are elements of A,
where x;,y; € D;, for every 1 < ¢ < n. Define the relation ~ on A as follows:
X ~Y whenever z; = 0 if and only if y; = 0, for every 1 < i < n. It is easily seen
that ~ is an equivalence relation on A. By [X;], we mean the equivalence class
of X;, where X; = (1,1,...,1,0,1,...,1) such that only the i-th component is
zero, for every 1 <i < n. It is clear that A = |J]_,[X;]. We claim that WT'(R)[A]
is a complete n-partite subgraph of WI'(R). First we show that there is no adja-
cency between elements of [X;], for every 1 <i <n. To see this, suppose that
X = (.’El,$27. .. ,‘fCi,l,O,.’EH,l, e ,.’En) and Y = (yl;y%' .. ,yi,l,O,yHl,. . ;yn)

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



112 M. J. NIKMEHR, A. AZADI, AND R. NIKANDISH

are two distinct arbitrary elements of [X;]. Then we have ann(X) = ann(Y) =
{(0,...,0,a;,0,...,0) | a; € D;}. This implies that there are no elements r, s of
ann(X) = ann(Y) such that rs = 0, and so X is not adjacent to Y. Now, sup-
pose that [X;] and [X;] are two distinct arbitrary equivalence classes of A. We
show that each element of [X;] is adjacent to each element of [X;]. Let X =
(x1,22,...,2i—1,0,Zi41,...,2,) be an element of [X;] and Y = (y1,v2,...,¥;-1,0,
Yj+1,---,Yn) be an element of [X;]. Then e, € ann(X) and e; € ann(Y’), where
ei,ej, are the ith and jth standard basis vectors. Since e;e; = 0, we conclude
that X is adjacent to Y. Therefore WT'(R)[A] = H,, where H, is a complete
n-partite graph. In what follows, we show that WI'(R)[B] = K,,, where m =
|B|. Let X = (z1,22,...,%k-1,0,Zp+1,---,%i-1,0,Z141,...,2,) € Band YV =
(y1,92, -+ %i-1,0,Yit1,- ., ¥j—1,0,Y;,...,Yn) € B. Then either k # i or k # j.
With no loss of generality, assume that ¢ # k. Then e € ann(X), e; € ann(Y),
and exe; = 0. Hence X is adjacent to Y and thus WT'(R)[B] = K,,. To complete
the proof, we show that every vertex contained in B is adjacent to every vertex
contained in A. Let X = (x1,22,...,2,-1,0,Tkx1,.--, 21,0, Z141,...,2,) € B
and Y = (y1,92, -, ¥%i-1,0,Yix1,---,Yn) € [x;] C A. Then i # k or i # [. With
no loss of generality, assume that ¢ # k. Since e € ann(X), e; € ann(Y), and
ere; = 0, we conclude that X is adjacent to Y. Therefore WI'(R) = K,,, \ H,. O

To state our main result in this section, we need to fix a notation.

Notation. Let R = Fyx--- X Fp X Ry x---X R, where F; is a field for every 1 < i <
k and R; is a non-field Artinian local ring, for every 1 < j < n. Set A = Ule A,
where A; = {(z1,...,2%,¥1,-..,Yn) | ©; = 0 for exactly one 1 < i <k, and y; is
a unit of R; for all 1 < j <n}. Moreover, put M = |Z(R)*| — |Al.

Theorem 4.2. Let R= F} X -+ X Fi, Xx Ry X --- X R,,, where F; is a field for every
1 <i <k and R; is an Artinian local ring with | Nil(R;)*| # 0 for every 1 < j <mn.
Then w(WT(R)) = x(WT(R)) = M + k.

Proof. We put A = Ule A;, where
A ={(x1,- Tk, 1, -, Yn) | s = 0 for exactly one 1 <14 <k,
and y; is a unit of R; for all 1 < j <n}
and B = Ule B;, where
By ={(z1,.- -, Tk, Y1, - - Yn) | y; € Nil(R;)* for some 1 < j < n},
By ={(z1,.. ., Tk, Y1, yn) | x; ZO0forall 1 <i <k,

y; € Nil(R;)* for all 1 < j < n, and only one of y;’s is zero}

and

B3 = {(‘Tla"'7xkay17"'7yn) | Yj ¢N11(Rj)* for all 1 S]S n,

and at least two components are zero}.
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One may check that V(WT'(R)) = AUB, AN B = &, and so {4, B} is a partition
of V(WT(R)). We note that By N Bs = By N By = Bo N B3 = &. First we show
that WT'(R) = WT'(R)[A] \V WT'(R)[B]. Indeed, we have the following claims:

Claim 1. WT'(R)[A4] is a complete K-partite subgraph of WT'(R).

Suppose that A; and A; are two distinct arbitrary sets. It is enough to show
that there is no adjacency between two vertices of A; and that every vertex of A;
is adjacent to all the vertices of A;. To see this, let X; and X, be two vertices
of A; and Y7 a vertex of A;. So X1 = (z1,...,%i=1,0,Zit1, - -, Tk Y1, - - -, Yn)s
Xo= (1, T 1,0, @51, T Yy Y ), and Vi = (2,2, 0,20 g,
2yl ... yl), where i # j. Then ann(X;) = ann(X,) = {(0,...,0,4a;,0,...,0) |
a; € F;}, and so there are no elements r, s of ann(X;) = ann(X») such that rs = 0.
This implies that X; and X, are not adjacent. Also e; € ann(X;) and e; € ann(Y).
Since ¢ # j, we obtain e;e; = 0. Therefore X, is adjacent to Y, as desired.

Claim 2. WT'(R)[B] is a complete subgraph of WI'(R).
Suppose that X = (z1,...,2k,y1,...,yn) and Y = (2,..., 2}, v},...,y,) are
two vertices of WT'(R)[B]. Then we have the following cases.

Case 1. Let X and Y be two vertices of B;. Then y; € Nil(R}) for some
1 <i<n,and yj S Nil(R;f) for some 1 < j < n. Hence there exist two positive
integers n,m such that y? = 0, y/'~' # 0 and y;™" =0, y}mfl # 0. Fix i and j
and consider the following two subcases.

Subcase A. If i = j, then either y? '/ " = 0 or y? 1y " £ 0. If
yr Ly ™t = 0, then (0,...,0,4771,0,...,0)(0,...,0,4™",0,...,0) = 0. Hence
X is adjacent to Y, since (0, ... ,O,y?_l, 0,...,0) € ann(X) and (0,... ,O,ygm_l,
0,...,0) € ann(Y). If yfflygmfl # 0, then a = (0,...,O,yfflyz’-mfl,o,...,O) €
ann(X) Nann(Y). Hence X is adjacent to Y, since a? = 0.

Subcase B. If i # j, then (0,...,0,y7"*,0,...,0)(0,...,0 Y™ 0,...,0) = 0.

I
Hence X is adjacent to Y.

Case 2. Let X and Y be two vertices of By. We can suppose that the (i + k)-th
component of X is zero, for some 1 < ¢ < n, and also that the (j+k)-th component
of Y is zero, for some 1 < j < n. We have the following two subcases.

Subcase A. Let ¢ = j. Since R; is non-reduced for every 1 < i < n, there
exists a non-zero nilpotent element y; in Nil(R;)* such that y? = 0 and y"~' # 0,
where n is a positive integer. It is clear that (0, ... ,O,yffl,O, ...,0) € ann(X),
(0,...,0,:,0,...,0) € ann(Y), and (0,...,0,4*,0,...,0)(0,...,0,9;,0,...,0) =
0. This implies that X is adjacent to Y.

Subcase B. Let ¢ # j. Since ex4; € ann(X), ex4; € ann(Y), and eg4iex4+; = 0,
we conclude that X is adjacent to Y.

Case 3. Let X and Y be two vertices of Bs. Since X € Bs, two components
of X are zero. We can suppose that the i-th and j-th components are the zero of X,
for some 1 <i < k+nand 1 <j<k+n. Similarly, since Y € B3, we can suppose
that the [-th and A-th components are the zero of Y, for some 1 <[ < k+n and
1 < h <k+mn. It is clear that either i # [ or ¢ # h. Without loss of generality,
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take i # . It is easily seen that e; € ann(X), ¢; € ann(Y'), and e;e; = 0. Hence X
is adjacent to Y.

Case 4. Let X be a vertex of B; and Y be a vertex of By. Since X € By, we
have y; € Nil(R}), for some 1 < ¢ < n, and there exists a positive integer n such
that y' = 0, yf‘l # 0. Then (O,...,O,yf_l,O,...,O) € ann(X). On the other
hand, since Y € By, for the component y;-, 1 < j < n, we have yg = 0. We consider
the following two subcases.

Subcase A. Let i = j. It is clear that (0,...,0,y" %0,...,0) € ann(X),
(0,...,0,9,0,...,0) € ann(Y), and (0,...,0,47"*,0,...,0)(0,...,0,9;,0,...,0) =
0. This implies that X is adjacent to Y.

Subcase B. Let i # j. Clearly, (0,...,0,4 %,0,...,0) € ann(X), exy; €
ann(Y'), and (0, ..., 0,3/?71707 ...,0)exs; = 0 imply that X is adjacent to Y.

Case 5. Let X be a vertex of By and Y be a vertex of Bz. Since Y € Bs,
two components of Y are zero. We can suppose that the i-th and j-th components
are the zero of ¥V, for 1 < i < k+mnand 1 < j < k+n Soe; and e; €
ann(Y'). Also, by an argument similar to that in Case 4, we can suppose that
(0,...,0,97,0,...,0) € ann(X) such that y* = 0 for 1 < [ < n. Clearly,
either ¢ # [ or j # [. Without loss of generality, take ¢ # [. This implies that
e;(0,...,0, ylnfl, 0,...,0) =0, as desired.

Case 6. Let X be a vertex of B; and Y be a vertex of B3. The proof is similar
to that of Case 5. Therefore WT'(R)[B] is a complete subgraph of WT'(R).

Claim 3. Every vertex of WT'(R)[B] is adjacent to every vertex of WT'(R)[A].

Let X = (z1,...,%k,Y1,.--,Yn) be a vertex of WI'(R)[B] and Y = (zf,...,z},
Yi,...,y,) be a vertex of WI'(R)[A]. Then there exists a positive integer m such
that Y € A,,, 1 <m < k. Since X € B = |J_, B;, cither X € By, X € By, or
X € Bs. The following three cases complete the proof.

Case 1. Let X € B;. This implies that y; € Nil(R;)*, for some 1 <i < n such
that y =0, yffl # 0, where n is a positive integer. Now, (0,...,0, y?fl, 0,...,0) €
ann(X) and e, € ann(Y). Thus X is adjacent to Y, since em(O,...,O,yf_l,
0,...,0) =0.

Case 2. Let X € By. Then the (i + k)-th component is zero for 1 < ¢ < n, and
0 e;r € ann(X). Since e; e, = 0, we conclude that X is adjacent to Y.

Case 3. Let X € Bs. The proof is similar to that of Case 3 in Claim 2.
Therefore WI'(R) = Ky \/ Hy, where M = |B| = |By| + |Bz| + |Bs|, and so
w(WI(R)) = x(WT(R)) = M + k. O

In Theorems and [£4] we study weakly zero-divisor graphs with finite chro-
matic number.

Theorem 4.3. Let R be a ring that is not an integral domain and suppose that
X(WI'(R)) < oco. Then the following statements are equivalent.

(1) Z(R) = Nil(R).
(2) R is an Artinian local ring.
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Proof. (1) :> (2). Let Z(R) = Nil(R). Then WT'(R) is a complete graph, by
Lemma [2.1] (3). Since x(WT(R)) < oo, we have 2 < |Z(R)| = |Nil(R)| < oo and
so |R| < o0, by [11, Theorem 1]. This, together with Z(R) = Nil(R), implies that
R is an Artinian local ring.

The converse is trivial. O

Following [I1], we know that Z(R) is finite if and only if either R is finite or an
integral domain. So, for an Artinian local ring R, if | Nil(R)| # 1 then R is finite
if and only if Nil(R) is finite. We use these facts to prove the last result of this

paper.

Theorem 4.4. Let R be an Artinian ring. Then w(WT(R)) = x(WT(R)) < oo if
and only if one of the following statements holds:

(1) REF, where F is a field.

(2) R is a finite ring.

(3) R= Fy x Fy, where F; is a field, fori=1,2.

Proof. Suppose that x(WT'(R)) = w(WT(R)) < oco. If x(WT(R)) = w(WT(R)) =
0, then R is an integer domain and so R is a field. Also, if 0 < x(WT'(R)) =
w(WT(R)) < oo, then we show that either |R| < co or R & F} X F5. By [0
Theorem 8.7], R = Ry X Ra X -+ X R,,, where R; is an Artinian local ring, for every
1 <i < n. We have the following two cases.

Case 1. If at least one of the R;’s is non-reduced, then we claim that |R;| < oo,
for every 1 < i < n. Let Nil(Ry) # 0 (fixed k). Since WI'(R)[(0,...,Nil(Ry), 0,
..,0)] is a complete subgraph of WI'(R) (by Lemma [2.1)), |Z(Ry)| = | Nil(Ry)| <
0o. Thus |Ry| < oo. Also, let A = {(z1,...,2,) | z; € R; with i # k and
x, € Nil(Ry)}. Then WT'(R)[A] is a complete subgraph of WTI'(R), by an argument
similar to that used in Case 1 of Claim 2 in Theorem Since w(WT'(R)) =
X(WT'(R)) < o0, |R;| < 0o and so |R| < oo.

Case 2. If R; is reduced for every 1 < i < n, then we have the following two
subcases.

Subcase A. Let n > 3. We show that |R| < co. It is sufficient to show that
|R;| < co. Put B ={(z1,...,2,) | z1 =22 =0and a; € R}, A={(z1,...,2n) |
29 =23 = 0and a € Ri}, and C = {(z1,...,2,) | 1 = 23 = 0 and z; € Ry}.
Hence WT'(R)[B], WT'(R)[A], and WT'(R)[C] are complete subgraphs of WI'(R),
by an argument similar to that used in Case 3 of Claim 2 in Theorem [I.2] Then
|R;| < oo, and hence |R| < 0.

Subcase B. Let 2 > n. Since 0 < w(WT'(R)) = x(WT'(R)), n # 1 and so
R~ F; x Fs. O
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