REVISTA DE LA UNION MATEMATICA ARGENTINA
Vol. 63, No. 1, 2022, Pages 203-221

Published online: June 6, 2022

https://doi.org/10.33044 /revuma.1110

STABILITY CONDITIONS AND MAXIMAL GREEN
SEQUENCES IN ABELIAN CATEGORIES

THOMAS BRUSTLE, DAVID SMITH, AND HIPOLITO TREFFINGER

ABSTRACT. We study the stability functions on abelian categories introduced
by Rudakov and their relation with torsion classes and maximal green se-
quences. Moreover, we introduce the concept of red paths, a stability condition
in the sense of Rudakov that captures information of the wall and chamber
structure of the category.

1. INTRODUCTION

The concept of stability condition was introduced in algebraic geometry by Mum-
ford in [I§] to study moduli spaces under the action of a group. The success of
this new approach motivated the use of these tools in different branches of math-
ematics. In the case of representation theory of quivers, they were introduced in
seminal papers by Schofield [2T] and King [I7], and the general notion of stability
was formalised in the context of abelian categories by Rudakov [19].

We study Rudakov’s notion of stability on an abelian length category A, which
is given by a function ¢ on the class Obj*(A) of non-zero objects of A. It assigns
to each non-zero object X a phase ¢(X), which is an element of a totally ordered
set P, satisfying the so-called see-saw condition on short exact sequences (see Def-
inition 2.1). A non-zero object M in A is said to be ¢-stable (or ¢-semistable)
if every non-trivial subobject L C M satisfies ¢(L) < ¢(M) (or ¢(L) < ¢p(M),
respectively). Inspired by [8], but in the more general context of abelian categories
allowing infinitely many simple objects, we then define for each phase p a torsion
pair (7,,F,) in A as follows (see Proposition and Proposition [2.18):

Tp={M € A: ¢(N) > p for every non-zero quotient N of M} U {0}
Fp={M € A: ¢(L) < p for every non-zero subobject L of M} U {0}.
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Since T, 2 T, when p < ¢, a stability function ¢ : Obj"(A) — P induces a
chain of torsion classes in 4. We adapt the definition of maximal green sequence
introduced by Keller in [I6] for cluster algebras to the context of abelian categories.
In this context, a maximal green sequence in an abelian category A is a finite non-
refinable increasing chain of torsion classes starting with the zero class and ending
in A. The equivalence of this definition to the original on cluster algebras is shown
in [I1, Proposition 4.9] using 7-tilting theory.

Following Engenhorst [14], we call a stability function ¢ : Obj*(A) — P on A
discrete if it admits, up to isomorphism, at most one ¢-stable object for every phase
peP.

The first main result of this paper characterises which stability functions induce
maximal green sequences in A.

Theorem (See Theorem . Let ¢ : Obj*(A) — P be a stability function that
admits no maximal phase. Then ¢ induces a mazximal green sequence of torsion
classes in A if and only if ¢ is a discrete stability function inducing only finitely
many different torsion classes Tp.

The wall and chamber structure of a module category was introduced by Bridge-
land in [8] to give an algebraic interpretation of scattering diagrams studied in
mirror symmetry by Gross, Hacking, Keel and Kontsevich, see [I5]. It was shown
in [II] that all functorially finite torsion classes of an algebra can be obtained
from its wall and chamber structure. We consider in this paper more generally
abelian categories A with finitely many simple objects. In this context, we provide
a construction of stability functions on A that conjecturally induce all its maximal
green sequences. These stability functions are induced by certain curves, called
red paths in the wall and chamber structure of A. In particular, we show that red
paths give a non-trivial compatibility between the stability conditions introduced
by King in [I7] and the stability functions introduced by Rudakov in [I9]. As a
consequence, we show that the wall and chamber structure of an algebra can be
recovered using red paths, see Theorem [£.8]

This paper is a revised version of one part of the preprint [10]. We would like to
point to the paper [5] by Barnard, Carrol and Zhu, which obtains Propositionin
the context of module categories of finite dimensional algebras over an algebraically
closed field. We refer to the textbooks [4, [3, 20] for background material.

Acknowledgements The authors want to thank Kiyoshi Igusa for his pertinent
remarks and helpful discussions. They also acknowledge Patrick Le Meur, whose
comments on the PhD thesis of the third author led to the current version of this
work. The authors send a special thanks to the anonymous referee for the patient
and careful revision of the previous versions of the manuscript.

2. STABILITY CONDITIONS

The aim of this section is to study Rudakov’s [19] definition of stability on
abelian categories. While [I9] uses the notion of a proset, we prefer to work with
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stability functions. We first review this concept of stability here, and then discuss
torsion classes arising from a stability function.

2.1. Stability functions. Throughout this section, we consider an essentially
small abelian length category A.

Definition 2.1. Let (P, <) be a totally ordered set. A function ¢ : Obj*(A) — P
which is constant on isomorphism classes is said to be a stability function if for each
short exact sequence 0 — L — M — N — 0 of non-zero objects in A one has the
so-called see-saw (or teeter-totter) property, that is, exactly one of the following

holds:
either (L) < ¢(M) < ¢(N),
or P(L) > p(M) > ¢(N),
or ¢(L) = ¢(M) = ¢(N).

For a non-zero object = of A, we refer to ¢(z) as the phase (or slope) of x.

FIGURE 1. The see-saw (or teeter-totter) property.

Remark 2.2. Note that the image by ¢ of the zero object in A would not be well
defined if there existed two non-zero objects M and N such that ¢(M) # ¢(N).
Indeed, consider the following short exact sequences:

0-0—->M—> M —0, 00— N-—>N-—0.

Then, applying the see-saw property twice yields ¢(0) = ¢(M) and ¢(N) = ¢(0),
contradicting ¢(M) # ¢(N). Therefore non-constant stability functions can only
be defined on the class of non-zero objects of the category.

Note that Rudakov defined stability structures using the notion of a proset,
that is, a pre-order < on Obj*(A) satisfying for all L, M in Obj*(A) that L < M
or M < L, or both. We can define an equivalence relation on Obj*(A) by setting
L ~ M when both L < M and M < L are satisfied, and denote by P = Obj*(A)/ ~
the set of equivalence classes. The pre-order < thus turns P into a totally ordered
set, whose order relation we denote by <. The projection ¢ : Obj*(A) — P that
assigns to each object its equivalence class is then the function from Definition 2.1}
and the notion of stability we consider here is equivalent to Rudakov’s original
formulation.

The stability functions as defined above generalise several notions of stability
conditions present in the literature as we can see in the following remarks.
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Remark 2.3. In [17], King adapted the notion of stability from geometric invariant
theory, introduced by Mumford in [I§], to the context of abelian categories with
Grothendieck group of finite rank. In [19] Proposition 3.4], Rudakov shows that
every stability condition as defined by King induces a stability function in the sense
presented here.

Remark 2.4. Stability functions are present in the physics literature, and in this
case they are induced by a central charge Z. We recall this notion here, following
the treatment given in [7]. A linear stability function on an abelian category A is
given by a central charge, that is, a group homomorphism Z : K(A) — C on the
Grothendieck group K (A) such that for all 0 # M € A the complex number Z (M)
lies in the strict upper half-plane

H={r exp(ing):r>0and 0 < ¢ < 1}.
Given such a central charge Z : K(A) — C, the phase of a non-zero object M € A
is defined to be
(M) = (1/m) arg Z(M).
A simple argument on the sum of vectors in the plane shows that the phase function
¢ : Obj*(A) — (0, 1] satisfies the see-saw property.

The most important feature of a stability function ¢ is the fact that it creates
a distinguished subclass of objects in A called ¢-semistables. They are defined as
follows.

Definition 2.5 ([I9, Definitions 1.5 and 1.6]). Let ¢ : Obj*(A) — P be a stability
function on 4. A non-zero object M of A is said to be ¢-stable (or ¢-semistable)
if every non-trivial subobject L C M satisfies ¢p(L) < ¢(M) (or ¢(L) < ¢p(M),
respectively).

Remark 2.6. Note that, due to the see-saw property, one can equally define the
¢-stable (or ¢-semistable) objects as those objects M whose non-trivial quotient
objects N satisfy ¢(N) > ¢(M) (or ¢(N) > ¢(M), respectively).

The following theorem from [I9] implies that morphisms between ¢-semistable

objects respect the order induced by ¢, that is, Hom 4 (M, N) = 0 whenever M, N
are ¢-semistable and ¢(M) > ¢(N).

Theorem 2.7 ([I9, Theorem 1]). Let ¢ : Obj*(A) — P be a stability function
on A and let f : M — N be a non-zero morphism in A between two ¢-semistable
objects M, N such that ¢p(M) > ¢(N). Then

(a) ¢(M) = ¢(N).

(b) If N is ¢-stable then f is an epimorphism.

(¢) If M is ¢-stable then f is a monomorphism.

(d) If M and N are both ¢-stable then f is an isomorphism.

Corollary 2.8. Let ¢ : Obj*(A) — P be a stability function on A and let M, N € A
be two non-isomorphic ¢-stable objects such that (M) = ¢(N). Then

Hom4(M,N) = 0.
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Remark 2.9. As observed in [19], Theorem implies that ¢-stable objects are
bricks when A is a Hom-finite k-category over an algebraically closed field k. Here
M is called a brick when End(M) ~ k. This implies in particular that ¢-stable
objects are indecomposable. In fact, it is easy to see that ¢-stable objects are
always indecomposable, for any abelian category A.

2.2. Harder—Narasimhan filtration and stability functions. From now on,
we assume that the abelian category A is a length category, that is, each object M
admits a filtration

0=My C M CMyC---C My &M =M

such that the quotients M;/M;_; are simple. In particular, A is both noetherian
and artinian. For a finite dimensional k-algebra A over a field k, the category
mod A of finitely generated A-modules is a length category.

We borrow the following terminology from [7]; however, the concept was already
used in [19].

Definition 2.10. Let A be an abelian length category, let ¢ : Obj*(A) — P be a
stability function on A, and let M be a non-zero object of A.

(a) A pair (N,p) consisting of a non-zero object N € A and an epimorphism
p: M — N is said to be a mazimally destabilising quotient (or m.d.q.
for short) of M if every non-zero quotient p’ : M — N’ of M satisfies
d(N") > ¢(N), and moreover, if ¢(N) = ¢(N'), then the epimorphism p’
factors through p.

(b) A pair (L,4) consisting of a non-zero object L € A and a monomorphism
i: L — M is a mazimally destabilising subobject (or m.d.s. for short) of M
if every non-zero subobject i’ : L' — M of M satisfies ¢(L") < ¢(L), and
moreover, if ¢(L) = ¢(L’) then the monomorphism i’ factors through i.

We sometimes omit the epimorphism p when referring to a maximally destabil-
ising quotient, and similarly for maximally destabilising subobjects.

Remark 2.11. It follows directly from Definition that ¢(L) > ¢(M) > ¢(N),
where L and N are the maximally destabilising subobject and quotient of M,
respectively. This property will be used often in the proofs of the present paper.

An important property of maximally destabilising subobjects and quotients is
that they are always ¢-semistable.

Lemma 2.12. Let ¢ : Obj*(A) — P be a stability function on A and let M be a
non-zero object in A. Then

(a) The mazimally destabilising quotient (N, p) of M is ¢p-semistable and unique
up to isomorphism.

(b) The mazximally destabilising subobject (L, 1) of M is ¢-semistable and unique
up to isomorphism.

Proof. This follows directly from [19, Proposition 1.9] and its dual. O
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The following theorem from [I9] implies in particular that every non-zero object
admits a maximally destabilising quotient and a maximally destabilising subobject.

Theorem 2.13 (|19, Theorem 2 and Proposition 1.13]). Let A be an abelian length
category with a stability function ¢ : Obj* A — P, and let M be a non-zero object
in A. Up to isomorphism, M admits a unique Harder—Narasimhan filtration, that
18, a filtration
0=MyCM CMy G- C Myt C M, =M

such that

(a) the quotients F; = M;/M;_1 are ¢-semistable, and

(b) ¢(Fn) < G(Fn-1) <+ < d(F2) < ¢(F1).

Moreover, Fy = M is the mazimally destabilising subobject of M and F, =
M, /M, 1 is the mazimally destabilising quotient of M.

For further use, it is also worthwhile to recall the following weaker version of a
result from Rudakov.

Theorem 2.14 ([I9, Theorem 3]). Let A be an abelian length category with a
stability function ¢ : Obj* A — P, and let M be a ¢-semistable object in A. There
exists a filtration

0=MyCM CMyC--C My CM,=M

such that
(a) the quotients G; = M;/M;_1 are ¢-stable;
(b) (M) = ¢(Gn-1) =+ = ¢(G2) = ¢(G1).

Moreover, the set of quotients {G;} is uniquely determined up to isomorphisms
by M and the properties (a) and (b).

2.3. Torsion pairs. The concept of torsion pair in an abelian category was first
introduced by Dickson in [13], generalising properties of abelian groups of finite
rank. The definition is the following.

Definition 2.15. Let A be an abelian category. Then the pair (7,F) of full
subcategories of A is a torsion pair if the following conditions are satisfied:

e Homy(X,Y)=0forall X € T and Y € F;

e for all object X in A there exists a short exact sequence

0—-tX >X > X/tX —0
such that tX € T and X/tX € F.

Given a torsion pair (T, F) we say that 7 is a torsion class and F is a torsion-free
class.

It is well known that a subcategory 7 of A is the torsion class of a torsion
pair (7,F) if and only if 7 is closed under quotients and extensions. Dually, a
subcategory F of A is the torsion-free class of a torsion pair if and only if F is closed
under subobjects and extensions. See [3, Proposition VI.1.4] for more details.
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In this subsection, we show that a stability function ¢ : Obj* A — P induces a
torsion pair (7,,Fp) in A for every p € P, where
Tp ={M € Obj*(A) : $(M') > p, where M' is the m.d.q. of M} U {0},
Fp={M € Obj*(A) : p(M") < p, where M" is the m.d.s. of M} U {0}.
But before doing so, we need to fix some notation.
Definition 2.16. Let ¢ : Obj*(A) — P be a stability function and let p € P. We
define A>, to be
As, :={M € A: M is ¢-semistable and ¢(M) > p} U {0}.
We define in a similar way A<,, Asp, A<p and A,.
Given a subcategory X and an object M of A we say that M is filtered by X if
there exists a chain of nested subobjects
0=MoC M C M G- G Myy & My, =M
of M such that each M;/M;_; is an object of X. We denote by Filt(X') the full
subcategory of A consisting of all M € A which are filtered by X.

We use the notation Fac(X) for the class of all objects in A which are a factor
object of some X € X. Likewise, Sub(X) denotes the class of all objects in A which
are subobjects of any object X in X.

The following proposition not only shows that 7, is a torsion class, but also gives
a series of equivalent characterisations.

Proposition 2.17. Let ¢ : Obj*(A) — P be a stability function and consider some
phase p € P. Then the class Tp defined above satisfies:

(a) Tp is a torsion class;

(b) Tp = Filt(A>,);

(c) T, = Filt(Fac(A>,));

(d) Tp={M € A: ¢(N) > p for every non-zero quotient N of M} U {0}.

Proof. (a): We need to show that 7, is closed under extensions and quotients.
To show that 7, is closed under extensions, suppose that

0=LLME NS0

is a short exact sequence in A with L, N € 7,,. If L or M are zero, then M clearly
belongs to 7,. Otherwise, let (M’,pas) be the maximally destabilising quotient
of M. Then we can construct the following commutative diagram:

0 L M

L

0 ——im(pp f) —= M’ — 5 coker f/ —=0

L

0 0 0

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)



210 T. BRUSTLE, D. SMITH, AND H. TREFFINGER

Let (L',pr) and (N’,py) be the maximally destabilising quotients of L and N,
respectively.

If im(pas f) = 0, then there exists an epimorphism h : N — M’, and it follows
from the definition of N’ that ¢(M') > ¢(N') > p. Else, it follows from the
semistability of M’ that ¢(im(parf)) < ¢(M’). Moreover, ¢p(im(pa f)) > ¢(L') >
p, since L’ is a maximally destabilising quotient. Consequently, ¢(M’) > p and Tp
is closed under extensions.

To show that 7, is closed under quotients, suppose that f : M — N is an
epimorphism with M and N two non-zero objects and M € T,. Let (M’,pys) and
(N’,pn) be the maximally destabilising quotients of M and N, respectively. Then
pnf i M — N’ is an epimorphism and it follows from the definition of M’ that
d(N') > ¢(M') > p. Hence N € T,. This proves that 7, is a torsion class.

(b) and (c): Clearly, Filt(As,) C Filt(FacA>,). On the other hand, it follows
from [12], Proposition 3.3] that Filt(Fac A>,) is the smallest torsion class containing
Asp. As As, CT,, we get Filt(Fac A>p) C 7).

It thus remains to show that 7, C Filt(A>,). Let M be a non-zero object of
Tp, and let M’ be a maximally destabilising quotient of M. By definition of 7,, we
have that ¢(M’) > p. Therefore we can consider the Harder—Narasimhan filtration
of M and Theorem implies that M € Filt(A>,). Hence

Tp C Fﬂt(.AZp) - Fﬂt(FaC(.Azp)) CTp.

(d): Let M € T,, and suppose that M’ is its maximally destabilising quotient.
By definition of the maximally destabilising quotient, every non-zero quotient N
of M is such that ¢(N) > ¢(M’) > p. Thus

Tp C{M € A: ¢(N) > p for every non-zero quotient N of M} U {0}.
The reverse inclusion is immediate. O

The following result is the dual statement for the torsion-free class F, defined
above.

Proposition 2.18. Let ¢ : Obj*(A) — P be a stability function and consider a
phase p € P. Then:

(a) Fp is a torsion-free class;

(b) Fp =Filt(A<p);

(c) Fp = Filt(Sub(A<p));

(d) Fp={M € A: ¢(L) < p for every non-zero subobject L of M} U {0}.

Now we are able to prove the main result of this section.
Proposition 2.19. Let p € P. Then (T, Fp) is a torsion pair in A.

Proof. We first show that Hom 4(7,, F,) = 0. Suppose that f € Hom (M, N),
where M and N are non-zero, with M € T, and N € F,. Let M’ be the maximally
destabilising quotient of M and let N’ be the maximally destabilising subobject
of N. Then im f is a quotient of M and a subobject of N. So, if f # 0, it
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follows from the definitions of M’ and N’ that ¢(im f) > ¢(M') > p and ¢(im f) <
#(N') < p, a contradiction. Thus f = 0 and Hom4(7,, F,) = 0.

For the maximality, suppose for instance that Hom 4(7,, N) = 0 for a non-zero
object N of A. If N’ is the maximally destabilising subobject of N, it follows that
Hom4(7,, N') = 0, and thus ¢(N’) < p by definition of 7,. Consequently, N € F,,.
We show in the same way that Hom 4 (M, F,) = 0 implies M € 7,, which proves
maximality. O

As a consequence of the previous proposition we have the following result that
provides a method to build abelian subcategories of A using stability conditions.

Proposition 2.20. Let ¢ : Obj*(A) — P be a stability function and let p € P be
fizxed. Then the full subcategory

A, ={M € A: M is ¢g-semistable and ¢(M) = p} U {0}
is a wide subcategory of A.

Proof. A, is a wide subcategory if it is abelian. To show that, we note first that
A, = T, NFilt(A<,). Then Proposition and its dual imply that A, is the
intersection of a torsion class 7, and a torsion-free class Filt(.A<,). This implies in
particular that A, is closed under extensions.

Now we show that A4, is closed under taking kernels and cokernels. Let f: M —
N be a morphism in A,. If f is zero or an isomorphism, the result follows at once.
Otherwise, consider the following short exact sequences in A:

0O—kerf—>M—>imf—0
0 — im f - N — coker f — 0,

where all these objects are non-zero. The semistability of M implies that ¢(im f) >
¢(M) = p, while the semistability of N implies that ¢(im f) < ¢(N) = p. Con-
sequently, ¢(im f) = p. The see-saw property applied to the two exact sequences
yields ¢(ker f) = p and ¢(coker f) = p.

Moreover, every subobject L of ker f is a subobject of M, thus ¢(L) < ¢(M) =
¢(ker f). Therefore ker f is ¢-semistable and belongs to A,. Dually we show that
coker f also belongs to A,. This finishes the proof. O

Remark 2.21. It is easy to see that the ¢-stable objects with phase p are exactly
the simple objects of the abelian category .A,. Moreover, the proof establishes
again the parts (b) and (c) of Theorem

3. MAXIMAL GREEN SEQUENCES AND STABILITY FUNCTIONS

In the previous section we discussed how a stability function ¢ : Obj*(A) — P
induces a torsion pair (7,,F,) in A for each phase p € P. Moreover, as noted in [6]
Section 3], it is easy to see that if p < g in P, then 7, 2 7, and F, C F,. Since P is
totally ordered, every stability function ¢ yields a (possibly infinite) chain of torsion
classes in A. In this section we are mainly interested in the different torsion classes
induced by ¢. We therefore define, for a fixed stability function ¢ : Obj*(A4) — P,
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an equivalence relation on P by p ~ g when 7, = 7, and consider the equivalence
classes P/ ~.

Of particular importance is the case where the chain of equivalence classes P/ ~
is finite, not refinable, and represented by elements py > -+ > p,, € P such that
Tp, ={0} and 7, = A.

Definition 3.1. A maximal green sequence in A is a finite sequence of torsion
classes 0 =Xy C X3 € -+ C X1 C X, = A such that for alli € {0,1,...,n—1},
the existence of a torsion class X satisfying &; C X C A4y implies X = X or
X =X

Remark 3.2. Note that this definition is not the original definition of maximal
green sequence as given by Keller in [I6] and studied in [9]. However, the equiva-
lence between both definitions follows directly from [I1l Proposition 4.9].

Our aim is to establish conditions under which the chain of torsion classes in-
duced by a stability function is a maximal green sequence. Observe first that if
@ : Obj*(A) — P is a stability function and the totally ordered set P has a maximal
element p, then 75 is the minimal element in the chain of torsion classes induced

by ¢.
Lemma 3.3. Let ¢ : Obj*(A) — P be a stability function.

(a) If P has a mazimal element D, then Tz # {0} if and only if p € ¢(A).
(b) Assume the set of equivalence classes P/ ~ is finite and P has no mazimal
element. Then there exists pg € P such that T, = {0} for all p > po.

Proof. (a) Suppose that p is a maximal element in P. If 75 # {0}, then there exists
a non-zero object M in 7. If M’ is the maximally destabilising quotient of M, we
know that ¢(M’) > p. Since p is the maximal element of P, we have ¢(M') = p
and thus p € ¢(A).

Conversely, if (M) = p, then it follows from the maximality of p that ¢(L) <
¢(M) = p for every non-trivial subobject L of M. Thus M is a ¢-semistable object,
whence M € Ay C 7.

(b) By assumption, the chain of torsion classes induced by ¢ is finite, say

Too & Ton & G To-

= = =

If 7,, # {0}, choose a non-zero object M in T,,. Let M’ be the maximally
destabilising quotient of M, thus M’ € T,, and ¢(M’) > po. Since P does not
have a maximal element, there exists a p € P with p > ¢(M’). It follows that
M’ ¢ T,, while T, C T,,, contradicting the minimality of 7,,. Thus 7,, = {0} and
the statement follows from Proposition [2.17] (]

Following Engenhorst [14], we call a stability function ¢ : A — P discrete at p
if two ¢-stable objects M7, My satisfy ¢(M;) = ¢(Ms) = p precisely when M; and
My are isomorphic in A. Moreover, we say that ¢ is discrete if ¢ is discrete at p
for every p € P.
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Proposition 3.4. Let ¢ : Obj*(A) — P be a stability function and let p,q € P be
such that T, C Tq. Then the following statements are equivalent:

(a) There is no r € P such that T, C T, C Ty, and ¢ is discrete at every ¢
with ¢’ ~ q.
(b) There is no torsion class T such that T, €T C Tg.

Proof. (a) implies (b): Suppose that 7 is a torsion class such that 7, C T C 7.
Then there exists an object M € T \ 7,. Let M’ be the maximally destabilising
quotient of M. Then ¢(M’) > q because M € T C 7T,. Consequently, Tyary C Tg.
On the other hand, ¢(M’) < p because M ¢ T,,. Moreover, since M’ is ¢-semistable
by Theorem M’ € Ty \Tp. Consequently, T, € Ty € Tg. It thus follows
from our assumption that Tg(a) = Ty

Now, Theorem implies the existence of a ¢-stable object M such that
o(M") = ¢(M'), which is unique since ¢ is discrete. Using Theorem again,
M’ can be filtered by M". In particular, M" is a quotient of M, and thus M € T.

Consider a (b—stable object X in A2¢(]\/[H). In particular, X € 7;5(1\/[//) = 7:1 If
d(X) = ¢p(M"), then X is isomorphic to M" by the discreteness, and X € T. Else
d)(X) > d)(M”), and M € 7:1,(]\/[//) \7;7(_)() Therefore, 7:1,()() - 7;5(1\/[//) = 7:1, which
implies, by assumption, that 7yx) € 7, € 7. In particular, X € 7. Since T is a
torsion class, this implies that A> 47y € T, and furthermore

Tq = Toury = Filt(Asparn) ST
This shows that 7, = 7.

(b) implies (a): The fact that there is no € P such that 7, € 7, C T, is
immediate. To show that ¢ is discrete, assume that there exist two non-isomorphic
¢-stable objects M and N such that ¢(M) = ¢(N) = ¢/, with ¢’ ~ g. Consider
the set 7 = Filt(A>, U{N}). We will show that 7 is a torsion class such that
Tp €T € Tgy, a contradiction to our hypothesis.

First, because 7, C T, = Ty, we have ¢ < p. Since T, = Filt(A>,), we
have N ¢ T,, so T, € 7. On the other hand, M and N are non-isomorphic
¢-stable objects in Ay, so M is not filtered by N, by Theorem Moreover,
Proposition implies that M is not in Filt(A>,). Hence, M does not belong
to 7. Since M € 7Ty, this shows that 7 C 7,. Thus 7, €7 C 7.

We now show that 7 = Filt(A>, U{N}) is a torsion class, that is, T is closed
under extensions and quotients. By definition, T is closed under extensions. To
show that 7 is closed under quotients, suppose that

T—T —0

is an exact sequence in A and T € T.

If T € 7T,, then T” € T, since T, is a torsion class and therefore 77 € T. Else,
T € T\ Tp. Let @ be the maximally destabilising quotient of 7. Since T ¢ T,
we have ¢(Q) < p. Moreover, ¢(Q) > ¢ since T € T C T,. Consequently,
qg < ¢(Q) < p, and it follows from our hypothesis that ¢(Q) = ¢ (otherwise
To € To@) S Tq)- So Q € Ty = Ty. This shows in particular that ¢ = ¢
Indeed, if ¢ < ¢, then the fact that @ is ¢-semistable leads to Q € T, ¢ Ty, a
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contradiction. Similarly, if ¢’ < ¢, then N € Ty ¢ 7,, again a contradiction. So
q = ¢, and consequently Q, N € A,.
Now, suppose that

0=ThCHCT G GCT 1 CT=T

is a Harder—Narasimhan filtration of 7', as in Theorem In particular, @ =
T/T,,-1 and

q=0(Q) < (Th-1/Th—2) < - < d(T2/T1) < $(T1/Tp).

Consequently, T;/T;—1 € A, for all i < n — 1, while ¢(Q) = ¢. Now, Q is a ¢-
semistable object since it is the maximally destabilising quotient of T'. Therefore
Theorem implies that @ € Filt(A, ). But, at the same time, we have by
hypothesis that the only possible composition factor of T" in A, is N, which implies
that @ € Filt({N}) C T.

Now, let Q' be the maximally destabilising quotient of T”. Since @ is the max-
imally destabilising quotient of T, we have ¢(Q') > #(Q). If ¢(Q’) > #(Q), then
d(Q) >p,and T € T, C T. Else, ¢(Q’) = ¢(Q), and it follows from the fact that
Q is the maximally destabilising quotient of 7" that the epimorphism from T to Q'
factors through @, and thus there exists an epimorphism f : Q@ — Q' in A, and
thus in A,.

Recall from Proposition that A, is an abelian category whose ¢-stable
objects coincide with the simple objects by Remark Consequently, it follows
from the existence of the epimorphism f : Q@ — Q' and the fact that Q is filtered
by the ¢-stable object N that Q" € Filt({N}).

Let

0=TyCT{CTyC - C T, ST} =T
be the Harder—Narasimhan filtration of 77. Then Q' = T"/T! _, and

q=0(Q) < Ty 1/Th ) <+ < O(T3/T]) < $(T7/T).

Consequently, T} /T/_, € A, for all i < m—1. Since @’ is filtered by N, this implies
that T” € Filt(A, U{N}) = 7. This finishes the proof. O

We are now able to characterise the stability functions inducing maximal green
sequences in A.

Theorem 3.5. Let ¢ : Obj*(A) — P be a stability function. Suppose that P has
no mazimal element, or that the mazimal element of P is not in ¢p(A). Then ¢
induces a mazimal green sequence if and only if ¢ is a discrete stability function
inducing finitely many equivalence classes on P.

Proof. Suppose that ¢ induces a maximal green sequence, say

0} =T CT G STy = A

= =

In particular, the set of equivalence classes on P is finite. Moreover, it follows from
Proposition [3.4] that ¢ is discrete.
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Conversely, suppose that ¢ is a discrete stability function inducing finitely many
equivalence classes on P. So we get a (complete) chain of torsion classes

%ocﬁlg'”g%n

induced by ¢. The discreteness of ¢ implies by Proposition that this chain of
torsion classes is maximal. Moreover, Lemma shows that 7,, = {0}: If P has
no maximal element this follows from part (b), and if the maximal element of P
is not in ¢(A) this follows from part (a) of the Lemma. It remains to show that
Tp, = A If M € Abut M ¢ T, , then the maximally destabilising quotient A/’
of M satisfies ¢(M') < p,. Since M’ € Ty(ary, it follows that T,, C Ty, a
contradiction to the maximality of 7, . So 7,, = A. O

As an immediate corollary we have the following result, which is of importance
for the study of the representation theory of the so-called 7-tilting finite algebras.

Corollary 3.6. Let A be an abelian category having only finitely many torsion
classes. Then every discrete stability function ¢ : Obj*(A) — P induces a maximal
green sequence.

Example 3.7. We illustrate by the following example that non-linear stability
functions sometimes allow one to describe all torsion classes, which would not have
been possible using linear stability conditions. Consider the Kronecker quiver
Q: 1—=2.
It is well known that the indecomposable representations of () are parametrised
by two discrete families P, and I, for n € N, of dimension vectors (n,n + 1)
and (n+1,n), respectively, together with a Py (k)-family of representations R) , of
dimension vector (n,n), with A € P1(k), n € N, for an algebraically closed field k.
We order the indecomposables by their slope
$(V) =2, ifdimV = (ny,n),
n2

and thus obtain a stability function

¢ :rep@ — RU {oo}.
It is known that one obtains all functorially finite torsion classes of rep ) in the
form 7, for some p € RU {oo}. Moreover, note that every indecomposable object
in rep Q is ¢-semistable. For more details on this, see [I1 [12].

However, there are lots of torsion classes for rep @ that are not functorially finite;
they are given by selection of indecomposables as follows (see [2, Example 6.9]):
Let S be any subset of P;(k); then the additive hull of all indecomposables R,
and I, for n € N and A € S, forms a torsion class which we denote by Tg. Every
non-functorially finite torsion class of rep @ is of this form for some set S, and
we can certainly not obtain these classes by a linear stability function, since the
elements R ,,, where )\ is in .S, share the same dimension vector with those where
A does not lie in S.

We therefore define a set P = RU {oo} U {1*}, where we add a new element,
1*, as a double of 1, at the same order relative to the other elements = # 1, but
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we agree on setting 1* < 1. Thus P is totally ordered, and we define a stability
function

¢" :rtep@Q — P
by the following values on the indecomposables:

% if dimV = (n1,n2) and ny # na,
*(V)y=1<1 ifV=Ry,and A €S,
1* ifV=Ryx,and A ¢ S.

Using this setting, one obtains the torsion class Tg as 71 with respect to the element
p=1¢eP.

4. PATHS IN THE WALL AND CHAMBER STRUCTURE

In this section we focus on abelian length categories A with finitely many sim-
ple objects, that is, rk(Ky(A)) = n for some n € N. We provide a construction of
stability functions on A4 that conjecturally induce all its maximal green sequences.
These stability functions are induced by certain curves, called red paths, in the wall
and chamber structure of A, described in [II] when A is the module category of
an algebra. In particular, we show that red paths give a non-trivial compatibility
between the stability conditions introduced by King in [I7] and the stability func-
tions introduced by Rudakov in [T19]. As a consequence, we show that the wall and
chamber structure of an algebra can be recovered using red paths. In this section
the canonical inner product of R™ is denoted by (—, —). That is, given two vectors
v, w € R", we have that (v, w) =Y | v;w;.

4.1. The wall and chamber structure of an abelian category. One of the
main motivations of Rudakov for introducing stability functions was to generalise
the stability condition introduced by King in [I7]. The definition given by King is
the following.

Definition 4.1 ([I7, Definition 1.1]). Let 6 be a vector of R™ and let M be an object
in A. Then M is called 0-stable (or 0-semistable) if (8,[M]) = 0 and (6,[L]) < 0
({8, [L]) <0, respectively) for every proper subobject L of M.

One can see Definition [4.1] as a forking path: either one fixes a vector 6 and
studies the category of f-semistable objects, or one fixes an object M and studies
the vectors € turning M 6-semistable. The wall and chamber structure of A is
defined taking the second option.

Definition 4.2. The stability space of an object M of A is
D(M)={0 € R": M is f-semistable}.

Moreover, the stability space ©(M) of M is said to be a wall when D(M) has
codimension one. In this case we say that ©(M) is the wall defined by M.

Note that not every 8 € R™ belongs to the stability space ©(M) for some non-
zero object M. For instance, it is easy to see that § = (1,1,...,1) is an example
of such a vector for every A. This leads to the following definition.
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Definition 4.3. Let A be an abelian length category such that rk(Ky(A)) = n
and let
R=R"\ |J D)
0£MEeA
be the maximal open set of all # having no 6-semistable objects other than the zero
object. A connected component € of R is called a chamber and this partition of
R™ is known as the wall and chamber structure of A.

4.2. Red paths. Let A be an abelian length category of rank n as before, and
let v : [0,1] — R™ be a continuous function such that y(0) = (1,...,1) and
~(1) = (—1,...,—1). If we fix an object M in A, v(t) induces a continuous function
pu i [0,1] — R defined as ppr(t) = (y(t), [M]). Note that par(0) > 0 and ppr(1) <
0. Therefore, for every object there is at least one t € (0,1) such that pps(t) = 0.
This leads to the following definition of red paths:

Definition 4.4. A continuous function « : [0,1] — R™ in the wall and chamber
structure of A is a red path if the following conditions hold:

(1) 7(0) = (1,...,1);

(2) v(1) =(-1,...,-1);

(3) for every non-zero object M there is a unique tp; € [0,1] such that
pa(tar) = 0.

Remark 4.5. In [II, Section 4] the notion of ®-generic paths in the wall and
chamber of an algebra A is studied. In particular, every wall crossing of a -
generic path is either green or red. We use the name red paths here because every
wall crossing is red in the sense of [IT].

Remark 4.6. Note that, by definition, red paths can pass through the intersection
of walls, which is not allowed in the definition of Bridgeland’s D-generic paths (see
[8, Definition 2.7]) nor in that of Engenhorst’s discrete paths (see [14]).

Another key difference between red paths and the other paths cited above is
that red paths take account of crossing of all hyperplanes, not only the walls. In
the next proposition we show that we can recover the information of crossings from
the stability structure induced by the path.

Lemma 4.7. Let vy be a red path. Then (v(t), [M]) < 0 if and only if t > tp.

Proof. This is a direct consequence of the definition of red path and the fact that
the function py; induced by v and M is continuous. O

The following result shows that each red path v : [0,1] — R" yields a stability
function ¢~ : Obj*(A) — [0,1] keeping track of the walls that are crossed by .

Theorem 4.8. Let A be an abelian length category such that rtk(Ky(A)) = n.
Then every red path v : [0,1] — R™ induces a stability function ¢~ : Obj*(A) —
[0,1] defined by ¢ (M) = tar, where tar is the unique element in [0,1] such that
(y(tar), [M]) = 0. Moreover, M is ¢~-semistable if and only if M is v(tar)-
semistable.
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Proof. Let v be a red path in R”. First, note that ¢, is a well defined function by
the definition of red path. We want to show that ¢, induces a stability structure
on A. It follows from Lemma that (y(t),[M]) < 0 if and only if ¢t > ¢, and
(v(¥), [M]) > 0 if and only if t < ty;.

Consider a short exact sequence of non-zero objects

O—+L—M-—>N—=0

and suppose that ¢, (L) < ¢, (M). Then (y(tar), [M]) = 0 and (y(ta), [L]) < 0.
Therefore

<7(tM)7 [N]> = <’V(tM)v [M] - [L]> = <’7(tM)7 [M]> - <7(tM)7 [L]> > 0.

Hence ¢, (L) < ¢4(M) < ¢(N). The other two conditions of the see-saw property
are proved in a similar way, which shows that ¢, : Obj*(A) — [0,1] is a stability
function by Definition [2.1}

Now we prove the “moreover” part of the statement. Let M be a non-zero object
of A and suppose that M is ¢--semistable. Then ¢ (L) < ¢, (M) (i.e., tr, < tar)
for every proper subobject L of M. Therefore (y(tar),[L]) < 0 by Lemma
Thus M is «(tr)-semistable.

On the other hand, suppose that M is ~y(ty)-semistable and L is a proper
subobject of M. Then (y(ta),[L]) < 0, and hence t;, < tp by Lemma
Therefore M is ¢--semistable. O

As a consequence of the previous theorem we get the following result, in which
we use the notation of Subsection with P = [0,1].

Proposition 4.9. Let v : [0,1] — R™ be a red path and let ¢~ : Obj*(A) — [0,1]
be the stability structure induced by v. Then Ty = A and T; = {0}.

Proof. Note that {(y(0), [M’']) > 0 for all M’ € Obj*(A). In particular, {(y(0), [N]) >
0 for every non-zero quotient N of any M € Obj*(A). Hence, Proposition [2.17]
implies that 7o = A.

Similarly, since (y(1),[M']) < 0 for all M’ € Obj*(A), Proposition implies
that 71 = A. Hence 71 = {0}. O

Corollary 4.10. Let v : [0,1] — R" be a red path and let ¢~ : Obj*(A) — [0,1] be
the stability function induced by ~v. Then ~y : [0,1] — R™ induces a mazimal green
sequence if and only if the set Sy of ¢~-stable objects is finite and they are such
that tar # tn for every pair of non-isomorphic M, N € S,,.

Proof. 1t follows directly from Theorem@tha‘c the set S, of ¢,-stable objects has
the properties indicated in the statement if 7 induces a maximal green sequence.
Now we show the other implication. Since S, is finite, we can write it as Sy =
{My,...,M,}. Without loss of generality we can suppose that ty;, <ty if i < j.
It is easy to see that the finiteness of S, implies that the chain of torsion classes
induced by 7 is finite. Moreover, Propositionimplies that 7o = A and 77 = {0}.
Finally, we have that ¢, < ¢y, whenever i < j, and we conclude that ¢, is discrete.
Therefore Theorem [3.5 implies that v induces a maximal green sequence. O

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)



STABILITY & MAXIMAL GREEN SEQUENCES IN ABELIAN CATEGORIES 219

Recall that Bridgeland associated in [8, Lemma 6.6] a torsion class Ty to every
0 € R™ as follows:

To={M € A: (6,[N]) > 0 for every quotient N of M}.

On the other hand, in Subsection we studied the torsion classes associated to
stability functions. Therefore, given a red path -, it is natural to compare the
torsion classes given by T,y and T; for all ¢ € [0,1]. This is done in the following
proposition.

Proposition 4.11. Let v : [0,1] — R™ be a red path, let Ty be the torsion class
associated to the stability function ¢~ : Obj"(A) — [0, 1], and let Ty be as defined
by Bridgeland. Then T; = T, ) for every t € [0, 1].

Proof. By definition we have that
Tyw) = {M € A: (y(t),[N]) > 0 for every quotient N of M}.
This definition is equivalent to the following:
Tyt) = {M € Obj* A : (y(t),[N]) > 0 for every non-zero quotient N of M} U {0}.
Now, applying Lemma [4.7] this can be rewritten as
Ty = {M € A: ¢, (N) >t for every non-zero quotient N of M} U {0},
which is exactly 7; by Proposition [2.17] O

In [8], Bridgeland defined D-generic paths in order to show the consistency of a
scattering diagram that he introduced for the module category of certain algebras.
The scattering diagram of an algebra consists of the wall and chamber structure of
its module category, where each wall is decorated by an element of the motivic Hall
algebra associated to the original algebra. In the following definition we recall the
combinatorial properties of ®-generic paths. By abuse of notation we call them
‘®-generic paths’ as well, even if we do not consider some of the geometrical and
algebraic aspects of the original definition.

Definition 4.12 ([8, §2.7]). We say that a smooth path v : [0,1] — R” is a
D-generic path if:
(1) 4(0) and (1) do not belong to the stability space ®(M) of a non-zero
object M, that is, they are located inside some chambers;
(2) v does not meet any cone of codimension greater than 1;
(3) all intersections of v with a wall are transversal.

Note that the second condition of the previous definition implies that + does
not pass through the intersection of two non-parallel walls. Given that every wall
is induced by some object M, this implies that = crosses the intersection of the
stability space of two non-isomorphic modules M, N only if their elements in the
Grothendieck group of the category [M] and [N] are proportional.

Also, if 7 crosses at tp a wall D(M) transversely it means that the vector v/(tg)
does not belong to the hyperplane in which the wall ©(M) is contained. In other
words, this means that v/(¢o) is not perpendicular to [M].
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These remarks allow us to define ®-generic paths equivalently as follows.

Definition 4.13 ([8, §2.7]). We say that a smooth path v : [0,1] — R” is a

D-

generic path if:
(1) 4(0) and (1) do not belong to the stability space ®(M) of a non-zero
object M, that is, they are located inside some chambers;
(2) If v(t) belongs to the intersection ®(M) N D(N) of two walls, then the
dimension vector [M] of M is a scalar multiple of the dimension vector [V]
of N;
(3) whenever () is in D(M), (' (t),[M]) # 0.

It is clear that every red path 4’ inducing a maximal green sequence in A satisfies
condition (1). Moreover, Theorem and Corollary say that +' has at most
one ¢/-stable object for every ¢ € [0,1]. This implies in particular that 4/ is in the
intersection of ® (M) and D (M) if and only if M; and My are filtered by the same

¢7'

-stable module M. In particular, this implies condition (2) of Definition
On the other hand, one of the main results in [I1] says that every maximal green

sequence is induced by a ®-generic path. This leads us to the following conjecture.

Conjecture 4.14. Let A be an abelian length category of finite rank. Then every
maximal green sequence in A is induced by a red path in the wall and chamber
structure of A.
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