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ON CERTAIN REGULAR NICELY
DISTANCE-BALANCED GRAPHS

BLAS FERNÁNDEZ, ŠTEFKO MIKLAVIČ, AND SAFET PENJIĆ

Abstract. A connected graph Γ is called nicely distance-balanced, whenever
there exists a positive integer γ = γ(Γ) such that, for any two adjacent vertices
u, v of Γ, there are exactly γ vertices of Γ which are closer to u than to v,
and exactly γ vertices of Γ which are closer to v than to u. Let d denote
the diameter of Γ. It is known that d ≤ γ, and that nicely distance-balanced
graphs with γ = d are precisely complete graphs and cycles of length 2d or
2d + 1. In this paper we classify regular nicely distance-balanced graphs with
γ = d + 1.

1. Introduction

Let Γ be a finite, undirected, connected graph with diameter d, and let V (Γ)
and E(Γ) denote the vertex set and the edge set of Γ, respectively. For u, v ∈ V (Γ),
let Γ(u) be the set of neighbors of u, and let d(u, v) = dΓ(u, v) denote the minimal
path-length distance between u and v. For a pair of adjacent vertices u, v of Γ we
let

Wu,v = {x ∈ V (Γ) | d(x, u) < d(x, v)}.

We say that Γ is distance-balanced (DB for short) whenever for an arbitrary pair
of adjacent vertices u and v of Γ we have that

|Wu,v| = |Wv,u|.
The investigation of distance-balanced graphs was initiated in 1999 by Handa [10],

although the name distance-balanced was coined nine years later by Jerebic, Klavžar,
and Rall [13]. The family of distance-balanced graphs is very rich and its study
is interesting from various purely graph-theoretic aspects where one focuses on
particular properties such as symmetry [15], connectivity [10, 17] or complexity
aspects of algorithms related to such graphs [6]. However, the balancedness prop-
erty of these graphs makes them very appealing also in areas such as mathematical
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chemistry and communication networks. For instance, the investigation of such
graphs is highly related to the well-studied Wiener index and Szeged index (see
[2, 12, 13, 19]), and they present very desirable models in various real-life situ-
ations related to (communication) networks [2]. Recently, the relations between
distance-balanced graphs and the traveling salesman problem were studied in [7].
It turns out that these graphs can be characterized by properties that at first glance
do not seem to have much in common with the original definition from [13]. For
example, in [3] it was shown that the distance-balanced graphs coincide with the
self-median graphs, that is, graphs for which the sum of the distances from a given
vertex to all other vertices is independent of the chosen vertex. Other such exam-
ples are equal opportunity graphs (see [2] for the definition). In [2] it is shown that
even order distance-balanced graphs are also equal to opportunity graphs. Finally,
let us also mention that various generalizations of the distance-balanced property
were defined and studied in the literature (see, for example, [1, 8, 11, 14, 18]).

The notion of nicely distance-balanced graphs appears quite naturally in the
context of DB graphs. We say that Γ is nicely distance-balanced (NDB for short)
whenever there exists a positive integer γ = γ(Γ) such that, for an arbitrary pair
of adjacent vertices u and v of Γ,

|Wu,v| = |Wv,u| = γ

holds. Clearly, every NDB graph is also DB, but the opposite is not necessarily
true. For example, if n ≥ 3 is an odd positive integer, then the prism graph on 2n
vertices is DB, but not NDB.

Assume now that Γ is NDB. Let us denote the diameter of Γ by d. In [16],
where these graphs were first defined, it was proved that d ≤ γ, and NDB graphs
with d = γ were classified. It turns out that Γ is NDB with d = γ if and only if
Γ is either isomorphic to a complete graph on n ≥ 2 vertices, or to a cycle on 2d
or 2d + 1 vertices. In this paper we study NDB graphs for which γ = d + 1. The
situation in this case is much more complex than in the case γ = d. Therefore, we
will concentrate our study on the class of regular graphs (recall that Γ is said to
be regular with valency k if |Γ(u)| = k for every u ∈ V (Γ)). Our main result is the
following theorem.

Theorem 1.1. Let Γ be a regular NDB graph with valency k and diameter d. Then
γ = d + 1 if and only if Γ is isomorphic to one of the following graphs:

(1) the Petersen graph (with k = 3 and d = 2);
(2) the complement of the Petersen graph (with k = 6 and d = 2);
(3) the complete multipartite graph Kt×3 with t parts of cardinality 3, t ≥ 2

(with k = 3(t − 1) and d = 2);
(4) the Möbius ladder graph on eight vertices (with k = 3 and d = 2);
(5) the Paley graph on 9 vertices (with k = 4 and d = 2);
(6) the 3-dimensional hypercube Q3 (with k = 3 and d = 3);
(7) the line graph of the 3-dimensional hypercube Q3 (with k = 4 and d = 3);
(8) the icosahedron (with k = 5 and d = 3).
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Our paper is organized as follows. After some preliminaries in Section 2 we
prove certain structural results about NDB graphs with γ = d + 1 in Section 3. In
Section 4 we show that if Γ is a regular NDB graph with γ = d + 1, then d ≤ 5
and the valency of Γ is either 3, 4 or 5. In Sections 5, 6 and 7 we consider each of
these three cases separately.

2. Preliminaries

In this section we recall some preliminary results that we will find useful later
in the paper. Let Γ be a simple, finite, connected graph with vertex set V (Γ) and
edge set E(Γ). If u, v ∈ V (Γ) are adjacent, then we simply write u ∼ v and we
denote the corresponding edge by uv = vu. For u ∈ V (Γ) and an integer i, we
let Γi(u) denote the set of vertices of V (Γ) that are at distance i from u. We
abbreviate Γ(u) = Γ1(u). We set ϵ(u) = max{d(u, z) | z ∈ V (Γ)} and we call ϵ(u)
the eccentricity of u. Let d = max{ϵ(u) | u ∈ V (Γ)} denote the diameter of Γ.
Pick adjacent vertices u, v of Γ. For any two non-negative integers i, j we let

Di
j(u, v) = Γi(u) ∩ Γj(v).

By the triangle inequality we observe that only the sets Di−1
i (u, v), Di

i(u, v), and
Di

i−1(u, v) (1 ≤ i ≤ d) can be nonempty. Moreover, the next result holds.

Lemma 2.1. With the above notation, abbreviate Di
j = Di

j(u, v). Then the fol-
lowing statements hold for 1 ≤ i ≤ d:

(i) If w ∈ Di
i−1 then Γ(w) ⊆ Di−1

i−2 ∪ Di−1
i−1 ∪ Di−1

i ∪ Di
i−1 ∪ Di

i ∪ Di+1
i .

(ii) If w ∈ Di
i then Γ(w) ⊆ Di−1

i−1 ∪ Di−1
i ∪ Di

i−1 ∪ Di
i ∪ Di

i+1 ∪ Di+1
i ∪ Di+1

i+1.
(iii) If w ∈ Di−1

i then Γ(w) ⊆ Di−2
i−1 ∪ Di−1

i−1 ∪ Di−1
i ∪ Di

i−1 ∪ Di
i ∪ Di

i+1.
(iv) If Di

i+1 ̸= ∅ (resp., Di+1
i ̸= ∅) then Dj

j+1 ̸= ∅ (resp., Dj+1
j ̸= ∅) for every

0 ≤ j ≤ i.

Proof. Straightforward (see also Figure 1). □

u

v

D1
1 · · · Di

i · · · Dd
d

· · · Di−1
i

· · · Dd−1
d

· · · Di
i−1 · · · Dd

d−1

Figure 1. Graphical representation of the sets Di
j(u, v). The line

between Di
j and Dn

m indicates possible edges between vertices of
Di

j and Dn
m.

Rev. Un. Mat. Argentina, Vol. 65, No. 1 (2023)
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Let us recall the definition of the NDB graphs. For an edge uv of Γ we let

Wu,v = {x ∈ V (Γ) | d(x, u) < d(x, v)}.

We say that Γ is NDB whenever there exists a positive integer γ = γ(Γ) such that,
for any edge uv of Γ,

|Wu,v| = |Wv,u| = γ

holds. One can easily see that Γ is NDB if and only if, for every edge uv ∈ E(Γ),
we have

d∑
i=1

|Di
i−1(u, v)| =

d∑
i=1

|Di−1
i (u, v)| = γ. (2.1)

Pick adjacent vertices u, v of Γ. For the purposes of this paper we say that the
edge uv is balanced if (2.1) holds for vertices u, v with γ = d + 1.

A graph Γ is said to be regular if there exists a non-negative integer k such that
|Γ(u)| = k for every vertex u ∈ V (Γ). In this case we also say that Γ is regular with
valency k (or k-regular for short). The following simple observation about regular
graphs will be very useful in the rest of the paper.

Lemma 2.2. Let Γ be a connected regular graph. Then for every edge uv of Γ we
have

|D1
2(u, v)| = |D2

1(u, v)|.

Proof. Note that Γ(u) = {v} ∪ D1
1(u, v) ∪ D1

2(u, v) and Γ(v) = {u} ∪ D1
1(u, v) ∪

D2
1(u, v). As Γ is regular, the claim follows. □

Assume Γ is regular with valency k. If there exists a non-negative integer λ such
that every pair u, v of adjacent vertices of Γ has exactly λ common neighbors (that
is, if |D1

1(u, v)| = λ), then we say that Γ is edge-regular (with parameter λ). Before
we start with our study of regular NDB graphs with γ = d + 1 we have a remark.

Remark 2.3. Let Γ be a regular NDB graph with diameter d and γ = d + 1.
Observe first that d ≥ 2. Moreover, if d = 2 then it follows from [16, Theorem 5.2]
that Γ is one of the following graphs:

(1) the Petersen graph,
(2) the complement of the Petersen graph,
(3) the complete multipartite graph Kt×3 with t parts of cardinality 3 (t ≥ 2),
(4) the Möbius ladder graph on eight vertices,
(5) the Paley graph on 9 vertices.

In what follows we will therefore assume that d ≥ 3.

Let Γ be an NDB graph with diameter d ≥ 3 and with γ = γ(Γ) = d + 1. Pick
vertices x0, xd of Γ such that d(x0, xd) = d, and let x0, x1, . . . , xd be a shortest
path between x0 and xd. Consider the edge x0x1 and note that

{x1, x2, . . . , xd} ⊆ Wx1,x0 .
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It follows that there is a unique vertex u ∈ Wx1,x0 \ {x1, x2, . . . , xd}. Let ℓ =
ℓ(x0, x1) (2 ≤ ℓ ≤ d) be such that u ∈ Dℓ−1

ℓ (x1, x0), and so Dℓ−1
ℓ (x1, x0) = {u, xℓ}

and Di−1
i (x1, x0) = {xi} for 2 ≤ i ≤ d, i ̸= ℓ.

3. Some structural results

Let Γ be an NDB graph with diameter d ≥ 3 and γ = γ(Γ) = d + 1. In this
section we prove certain structural results about Γ. To do this, let us pick arbitrary
vertices x0, xd of Γ with d(x0, xd) = d, and let us pick a shortest path x0, x1, . . . , xd

between x0 and xd. Set Di
j = Di

j(x1, x0) and ℓ = ℓ(x0, x1). Recall that the unique
vertex u ∈ Wx1,x0 \ {x1, x2, . . . , xd} is contained in Dℓ−1

ℓ . Observe that

{x0, x1, . . . , xd−1} ⊆ Wxd−1,xd
(3.1)

and
{x2, x3, . . . , xd} ⊆ Wx2,x1 . (3.2)

Note that if ℓ ≥ 3, then also u ∈ Wx2,x1 . In addition, we will use the following
abbreviations:

A =
d⋃

i=2

(
Γ(xi) ∩ Di

i

)
,

B =
(
Γ(x2) ∩ D2

1
)

∪
(
Γ(xd) ∩ Dd

d−1
)
.

Proposition 3.1. With the notation above, the following statements hold:
(i) There are no edges between xi and Di

i−1 ∪ Di−1
i−1 for 3 ≤ i ≤ d − 1.

(ii) |Γ(x2) ∩ (D1
1 ∪ D2

1)| ≤ 1.

Proof. (i) Assume that for some 3 ≤ i ≤ d − 1 we have that z is a neigh-
bor of xi contained in Di

i−1 ∪ Di−1
i−1. Let x0, y1, . . . , yi−2, z be a shortest path

between x0 and z. Observe that {y1, . . . , yi−2, z} ∩ {x0, x1, . . . , xd−1} = ∅ and
that {y1, . . . , yi−2, z} ⊆ Wxd−1,xd

. These comments, together with (3.1), yield
|Wxd−1,xd

| ≥ d + 2, which contradicts the fact that γ = d + 1.

(ii) Let z1, z2 ∈ Γ(x2) ∩ (D1
1 ∪ D2

1), z1 ̸= z2. Then z1, z2 ∈ Wxd−1,xd
. This, together

with (3.1), contradicts the fact that γ = d + 1. □

Proposition 3.2. With the notation above, the following statements hold:
(i) |A ∪ B| ≤ 2.
(ii) If ℓ ≥ 3, then |A ∪ B ∪

(
Γ(u) ∩ (Dℓ

ℓ ∪ Dℓ
ℓ−1)

)
| = 1.

Proof. (i) Note that A ∪ B ⊆ Wx2,x1 and that (A ∪ B) ∩ {x2, . . . , xd} = ∅. This,
together with (3.2), forces |A ∪ B| ≤ 2.

(ii) Note that in this case we have that u ∈ Wx2,x1 . The proof that |A∪B ∪
(
Γ(u)∩

(Dℓ
ℓ ∪ Dℓ

ℓ−1)
)
| ≤ 1 is now similar to the proof of (i) above. On the other hand, if

|A ∪ B ∪
(
Γ(u) ∩ (Dℓ

ℓ ∪ Dℓ
ℓ−1)

)
| = 0, then |Wx2,x1 | = d, contradicting the fact that

γ = d + 1. □
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4. Regular NDB graphs with γ = d + 1

Let Γ be a regular NDB graph with valency k, diameter d ≥ 3, and γ = γ(Γ) =
d + 1. In this section we use the results from Section 3 to find bounds on k
and d. As in the previous section, let us pick arbitrary vertices x0, xd of Γ with
d(x0, xd) = d, and let us pick a shortest path x0, x1, . . . , xd between x0 and xd. Set
Di

j = Di
j(x1, x0) and ℓ = ℓ(x0, x1).

Proposition 4.1. Let Γ be a regular NDB graph with valency k, diameter d = 3,
and γ = 4. Then for every x ∈ V (Γ) we have eccentricity ϵ(x) = 3.

Proof. Since d = 3, there exists y ∈ V (Γ) such that ϵ(y) = 3. Pick x ∈ Γ(y). By
the triangle inequality we also observe that ϵ(x) ∈ {2, 3}. Suppose that ϵ(x) = 2.
Then, the sets D3

2(x, y) and D3
3(x, y) are both empty. Recall that γ = 4, and so

by Lemma 2.2 we have |D1
2(x, y)| = |D2

1(x, y)| = 3, which implies D2
3(x, y) = ∅,

contradicting that ϵ(y) = 3. Therefore, ϵ(x) = 3 for every x ∈ Γ(y). Since Γ is
connected, this finishes the proof as every neighbor of a vertex of eccentricity 3 has
also eccentricity 3. □

Proposition 4.2. There exists no regular NDB graph with valency k = 6, diameter
d = 3, and γ = 4.

Proof. Suppose to the contrary that there exists a regular NDB graph Γ with
valency k = 6, diameter d = 3, and γ = 4. Then, by Proposition 4.1, every vertex
x ∈ V (Γ) has eccentricity ϵ(x) = 3.

Let us pick an edge xy ∈ E(Γ). By Lemma 2.2 we have that |D1
2(x, y)| =

|D2
1(x, y)|, and so it follows from (2.1) that |D2

3(x, y)| = |D3
2(x, y)| as well. We will

prove that the sets D2
3(x, y) and D3

2(x, y) are nonempty.
Assume to the contrary that the sets D3

2(x, y) and D2
3(x, y) are empty. As γ =

d + 1 = 4, we have that |D1
2(x, y)| = |D2

1(x, y)| = 3. Moreover, by Proposition 4.1
the set D3

3(x, y) is nonempty. Pick z ∈ D3
3(x, y) and note that there exists a vertex

w ∈ Γ(z) ∩ D2
2(x, y). Pick x1 ∈ D1

2(x, y) and observe that d(x1, z) ∈ {2, 3}. We
first claim that d(x1, z) = 3. Suppose to the contrary that d(x1, z) = 2. Without
loss of generality, we could assume that w and x1 are adjacent. Notice that there
exists a neighbor v of w in D1

1(x, y)∪D2
1(x, y) since d(w, y) = 2. Therefore, we have

{x, y, x1, v, w} ⊆ Ww,z, contradicting that γ = 4. This yields that d(x1, z) = 3,
and so there exists a shortest path x1, v1, w1, z between x1 and z of length 3. Note
that by the above claim we have w1 ∈ D2

2, and so {x, y, x1, v1, w1} ⊆ Ww1,z. As
x1 ̸∈ {x, y}, this yields a contradiction with γ = 4. This shows that the sets
D2

3(x, y) and D3
2(x, y) are nonempty.

Assume for the moment that |D2
3(x, y)| = 2. Since γ = 4, it follows from (2.1)

that |D1
2(x, y)| = 1. Let x2 denote the unique vertex of Γ in D1

2(x, y) and let x3 be
a neighbor of x2 which is in D2

3(x, y). Since the edge xx2 is balanced and D2
3(x, y)∪

{x2} ⊆ Wx2,x, we have that x2 has at most one neighbor in D2
2(x, y) ∪ D2

1(x, y).
However, as k = 6, this shows that x2 has at least two neighbors in D1

1(x, y) and
so the edge x2x3 is not balanced. Consequently, for every edge xy ∈ E(Γ) we have
that |D2

3(x, y)| = |D3
2(x, y)| = 1.
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It follows from the above comments and (2.1) that |D1
2(x, y)| = |D2

1(x, y)| = 2 for
every edge xy ∈ E(Γ). This implies that |D1

1(x, y)| = 3 for every edge xy ∈ E(Γ)
and so Γ is edge-regular with λ = 3.

Pick an edge xy ∈ E(Γ). Let D1
2(x, y) = {x2, u} and let x3 be a neighbor of x2

in D2
3(x, y). We observe that the three common neighbors of x2 and x3 are not all

in D2
2(x, y), since the edge xx2 is balanced. Then, u is a common neighbor of x2

and x3 and there exist two common neighbors of x2 and x3 in D2
2(x, y). Moreover,

since the edge xx2 is balanced, x2 has no neighbors in D2
1(x, y). Furthermore, as

k = 6 we have that x2 has a neighbor, say z, in D1
1(x, y). It now follows that

Γ(x) ∩ Γ(x2) = {u, z}, contradicting that λ = 3. □

Theorem 4.3. Let Γ be a regular NDB graph with valency k, diameter d ≥ 3, and
γ = d + 1. Then k ∈ {3, 4, 5}.

Proof. First note that a cycle Cn (n ≥ 3) is NDB with γ(Cn) equal to the diameter
of Cn. Therefore, k ≥ 3.

Assume first that ℓ = 2 and recall that in this case the set D1
2 = {x2, u}.

We observe that x1 and x3 are the only neighbors of x2 in the set D0
1 ∪ D2

3.
Furthermore, by Proposition 3.1 (ii), x2 has at most one neighbor in D1

1 ∪ D2
1

and by Proposition 3.2 (i), x2 has at most two neighbors in D2
2. Moreover, since

ℓ = 2, we also notice that x2 has at most one neighbor in D1
2. If x2 and u are not

adjacent, then k ≤ 5. Assume next that x2 and u are adjacent. We consider the
cases d ≥ 4 and d = 3 separately. If d ≥ 4, we also have that u ∈ Wxd−1,xd

, and so
Wxd−1,xd

= {x0, x1, . . . , xd−1, u} (recall that γ = d+1). If w ∈ D1
1 ∪D2

1 is adjacent
to x2, then we have that w ∈ Wxd−1,xd

, a contradiction. Therefore, x2 has no
neighbors in D1

1 ∪ D2
1. As x2 has at most 2 neighbors in D2

2, it follows that k ≤ 5.
If x2 and u are adjacent and d = 3, then k ≤ 6. However, by Proposition 4.2, there
exists no regular NDB graph with valency k = 6, diameter d = 3, and γ = 4. This
shows that k ≤ 5.

Assume next that ℓ ≥ 3. By Propositions 3.1 (ii) and 3.2 (ii), x2 has at most one
neighbor in D1

1 ∪ D2
1, and at most one neighbor in D2

2. Since x2 has at most one
neighbor in D1

2 (namely u), it follows that k ≤ 5. This concludes the proof. □

Theorem 4.4. Let Γ be a regular NDB graph with valency k, diameter d ≥ 3, and
γ = d + 1. Then the following statements hold:

(i) If k = 3, then d ∈ {3, 4, 5}.
(ii) If k = 4, then d ∈ {3, 4}.
(iii) If k = 5, then d = 3.

Proof. (i) Assume that d ≥ 6 and consider first the case ℓ = 2. Note that by
Proposition 3.1 (i) x4 and x5 have a neighbor in D4

4 and D5
5 respectively. If x3 has

a neighbor in D3
3 then this contradicts Proposition 3.2 (i). Therefore, x3 and u are

adjacent and so u ∈ Wxd−1,xd
. This and (3.1) implies that x2 has no neighbors

in D1
1 ∪ D2

1. If x2 and u are adjacent, then we have that |Wu,x2 | = |Wx2,u| =
1, contradicting γ = d + 1. Therefore, x2 has a neighbor in D2

2, contradicting
Proposition 3.2 (i).
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If ℓ = 3, then by Proposition 3.1 (i) vertex x5 has a neighbor in D5
5. By Propo-

sition 3.1 (i) and Proposition 3.2 (ii), x3 and x4 are both adjacent with u. But then
|Wu,x3 | = |Wx3,u| = 1, contradicting γ = d + 1.

If ℓ = d − 1, then by Proposition 3.1 (i) vertex x3 has a neighbor in D3
3. Propo-

sition 3.1 (i) and Proposition 3.2 (ii) now force that x2 has a neighbor in D1
1 and

that xd−1 and u are adjacent. As |Wxd−1,xd
| = d + 1 we have that also xd and

u are adjacent (otherwise u ∈ Wxd−1,xd
). But now |Wu,xd−1 | = |Wxd−1,u| = 1,

contradicting γ = d + 1.
If ℓ = d, then x3 and x4 both have a neighbor in D3

3 and D4
4 respectively,

contradicting Proposition 3.2 (ii).
Assume finally that 4 ≤ ℓ ≤ d − 2. Similarly as above we see that xℓ and

xℓ+1 are not both adjacent to u, so either xℓ has a neighbor in Dℓ
ℓ or xℓ+1 has a

neighbor in Dℓ+1
ℓ+1 (but not both). Therefore we have that u ∈ Wxd−1,xd

, and so x2
has no neighbors in D1

1 ∪D2
1. Consequently, x2 has a neighbor in D2

2, contradicting
Proposition 3.2 (ii).
(ii) Assume d ≥ 5. If ℓ = 2, then by Proposition 3.1 (i) vertex x3 has at least one
neighbor in D3

3, while vertex x4 has two neighbors in D4
4. However, this contradicts

Proposition 3.2 (i).
If ℓ ≥ 3, then again by Proposition 3.1 (i) vertex x3 (resp., vertex x4) has at

least one neighbor in D3
3 (resp., D4

4), contradicting Proposition 3.2 (ii).
(iii) Assume d ≥ 4. It follows from the proof of Theorem 4.3 that in this case
ℓ ∈ {2, 3} holds. If ℓ = 2, then by Proposition 3.1 (ii) and since k = 5, vertex x2
has at least one neighbor in D2

2, while vertex x3 has at least two neighbors in D3
3.

However, this contradicts Proposition 3.2 (i).
If ℓ ≥ 3, then by Proposition 3.1 (i) vertex x3 has at least two neighbors in D3

3,
again contradicting Proposition 3.2 (ii). This shows that d = 3. □

Proposition 4.5. Let Γ be a regular NDB graph with valency k, diameter d = 3,
and γ = 4. Then for every edge xy ∈ E(Γ) we have that |D2

3(x, y)| = |D3
2(x, y)| ≠ 0.

Proof. Let us pick an edge xy ∈ E(Γ). Recall that by Lemma 2.2 we have that
|D1

2(x, y)| = |D2
1(x, y)|, and so it follows from (2.1) that |D2

3(x, y)| = |D3
2(x, y)|

as well. Therefore, it remains to prove that the sets D2
3(x, y) and D3

2(x, y) are
nonempty.

Assume to the contrary that the sets D3
2(x, y) and D2

3(x, y) are empty. As
γ = d + 1 = 4 we have that |D1

2(x, y)| = |D2
1(x, y)| = 3. In view of Theorem 4.3

we therefore have k ∈ {4, 5}. Moreover, by Proposition 4.1 the set D3
3(x, y) is

nonempty. Pick z ∈ D3
3(x, y) and note that there exists a vertex w ∈ Γ(z)∩D2

2(x, y).
Assume first that k = 4. Then the set D1

1(x, y) is empty. Hence, there exist
vertices u ∈ D1

2(x, y) and v ∈ D2
1(x, y) which are neighbors of w. We thus have

{u, v, w, x, y} ⊆ Ww,z, contradicting γ = 4.
Assume next that k = 5. Note that in this case |D1

1(x, y)| = 1. Let us denote
the unique vertex of D1

1(x, y) by u. If w and u are not adjacent, then a similar
argument as in the previous paragraph shows that |Ww,z| ≥ 5, a contradiction.
Therefore, w and u are adjacent, and so Ww,z = {x, y, u, w}. It follows that the
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Figure 2. (a) Case d = 5, k = 3, and ℓ = 4 (left). (b) Case d = 5,
k = 3, and ℓ = 3 (right).

remaining three neighbors of w (let us denote these neighbors by v1, v2, v3) are also
adjacent to z. As {u, w, z} ⊆ Wu,x, at least two of these three common neighbors
(say v1 and v2) are in D2

2 (recall D2
3 and D3

2 are empty). By the same argument
as above (that is Γ(v1) ∩ (D1

2 ∪ D2
1) = ∅ and Γ(v2) ∩ (D1

2 ∪ D2
1) = ∅), v1 and v2

are adjacent to u, and so {u, w, v1, v2, z} ⊆ Wu,x, a contradiction. This shows that
D2

3(x, y) and D3
2(x, y) are both nonempty. □

5. Case k = 3

Let Γ be a regular NDB graph with valency k = 3, diameter d ≥ 3, and γ =
γ(Γ) = d + 1. Recall that by Theorem 4.4 (i) we have d ∈ {3, 4, 5}. In this section
we first show that in fact d = 4 or d = 5 is not possible, and then classify NDB
graphs with k = d = 3. We start with a proposition which claims that d ̸= 5.
Although the proof of this proposition is rather tedious and lengthy, it is in fact
pretty straightforward.

Proposition 5.1. Let Γ be a regular NDB graph with valency k = 3, diameter
d ≥ 3, and γ = γ(Γ) = d + 1. Then d ̸= 5.

Proof. Assume to the contrary that d = 5. Pick vertices x0, x5 of Γ such that
d(x0, x5) = 5. Pick also a shortest path x0, x1, x2, x3, x4, x5 from x0 to x5 in Γ.
Let Di

j = Di
j(x1, x0), let ℓ = ℓ(x0, x1) and recall that 2 ≤ ℓ ≤ 5. Observe that if

ℓ ≥ 3, then there is a unique vertex w ∈ D1
1 and a unique vertex y2 ∈ D2

1. In this
case x2 and w are not adjacent, otherwise edge wx1 is not balanced. Similarly we
could prove that w and y2 are not adjacent, and so w has a neighbor v in D2

2.
Assume first that ℓ = 5. Then by Proposition 3.1 (i) vertex x3 has exactly

one neighbor in D3
3. Now vertex x2 has a neighbor in D2

1 ∪ D2
2, contradicting

Proposition 3.2 (ii).
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Assume ℓ = 4. As x2 has a neighbor in D2
1 ∪ D2

2, Propositions 3.1 (i) and 3.2 (ii)
imply that x4 is adjacent to u. If x5 is adjacent to u, then Wu,x4 = {u}, a contradic-
tion. Therefore, x5 and u are not adjacent, and so Wx4,x5 = {x4, x3, x2, x1, x0, u}.
Consequently, w ̸∈ Wx4,x5 , which implies d(x5, w) = 4. It follows that there exists
a path w, v1, v2, v3, x5 of length 4, and it is easy to see that v1 = v, v2 ∈ D3

3 and
v3 ∈ D4

4 (see Figure 2 (a)).
If x2 is adjacent with y2, then y2 ∈ Wx4,x5 , a contradiction. Therefore, x2

has a neighbor z ∈ D2
2. If z = v, then {x2, x3, x4, x5, u, v, v2, v3} ⊆ Wx2,x1 , a

contradiction. Therefore z ̸= v, Wx2,x1 = {x2, x3, x4, x5, u, z}, and z is adjacent to
y2 (recall that z must be at distance 2 from x0 and that y is not adjacent with x1
and v). If z has a neighbor in D3

2 ∪D3
3, then this neighbor would be another vertex

in Wx2,x1 , which is not possible. The only other possible neighbor of z is v, and so
z and v are adjacent. It is now clear that Ww,v = {w, x0, x1}, contradicting γ = 6.

Assume ℓ = 3. By Proposition 3.1 (i), we have that either x4 is adjacent to u,
or that x4 has a neighbor in D4

4. Let us first consider the case when x4 and u are
adjacent. If also x3 and u are adjacent, then ux3 is clearly not balanced, and so
Propositions 3.1 (i) and 3.2 (ii) imply that u and x3 have a common neighbor v2 in
D3

3. Since x4x5 is balanced, v2 must be at distance 2 from x5, which implies that
v2 and x5 have a common neighbor v3 ∈ D4

4. But now {x2, x3, x4, x5, u, v2, v3} ⊆
Wx2,x1 , a contradiction. Therefore x4 is not adjacent to u, and so x4 has a neighbor
z in D4

4. Propositions 3.1 (i) and 3.2 (ii) imply that x3 has no neighbors in D2
2 ∪

D3
2 ∪ D3

3, and so x3 is adjacent to u. This implies that z and x5 are adjacent, as
otherwise x4x5 is not balanced. Similarly, by Proposition 3.2 (ii) u has no neighbors
in D3

2 ∪ D3
3, and so u is adjacent to v (note that v is the unique vertex of D2

2).
As in the previous paragraph (since w ̸∈ Wx4,x5 = {x4, x3, x2, x1, x0, u}) we obtain
that there exists a path w, v, v2, v3, x5 of length 4, and that v2 ∈ D3

3, v3 ∈ D4
4

(note that it could happen that z = v3). Note that u and x3 have no neighbors
in D3

3, and that the only neighbor of v in D3
3 is v2. Therefore, as k = 3, this

implies that v2 is the unique vertex of D3
3. Let us now examine the cardinality

of D4
4. By Proposition 3.2 (ii), both neighbors of x5, different from x4, are in D4

4,
and so |D4

4| ≥ 2. On the other hand, if v2 has two neighbors in D4
4, then wx0 is

not balanced, and so v3 is the unique neighbor of v2 in D4
4. As x4 has exactly one

neighbor in D4
4 (namely z), this shows that |D4

4| = 2 and that v3 ̸= z. But as Γ
is a cubic graph, it must have an even order. Then, there exists a vertex t in D5

5.
Note that t is not adjacent to x5, and so it must be adjacent to at least one of z, v3.
However, if t is adjacent to z, then x2x1 is not balanced, while if it is adjacent to
v3, then wx0 is not balanced. This shows that ℓ ̸= 3

Assume finally that ℓ = 2. By Proposition 3.1 (i), vertex x4 has a neighbor
z ∈ D4

4. Also by Proposition 3.1 (i), vertex x3 either has a neighbor in D3
3, or is

adjacent with u. Assume first that x3 is adjacent with u. Note that in this case
x2 ̸∼ u (otherwise edge x2u is not balanced) and {x4, x3, x2, x1, x0, u} = Wx4,x5 .
It follows that x2 cannot have a neighbor in D2

1 (otherwise the edge x4x5 is not
balanced) and so x2 has a neighbor v ∈ D2

2. Now if v has a neighbor v2 ∈ D3
3, then

{x2, x3, x4, x5, z, v, v2} ⊆ Wx2,x1 , a contradiction. Therefore v has no neighbors in
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D3
3, implying that d(x5, v) = 4. But this forces v ∈ Wx4,x5 , a contradiction. Thus

x3 ̸∼ u, and it follows that x3 has a neighbor v2 ∈ D3
3. As {x2, x3, x4, x5, v2, z} =

Wx2,x1 , vertex x2 has no neighbors in D2
1 ∪ D2

2, implying that x2 is adjacent to u.
Since Wx4,x5 = {x4, x3, x2, x1, x0, u}, vertex z is adjacent to x5, and vertices v2
and x5 have a common neighbor in D4

4. Now, since x1x2 is balanced we have that
this common neighbor is in fact z, and so z is adjacent to v2. Now consider the
edge v2z. Note that {x1, x2, x3, v2} ⊆ Wv2,z. As d(x0, v2) = 3, there exist vertices
y1, y2 such that x0, y1, y2, v2 is a path of length 3 between x0 and v2. Observe that
{x0, y1, y2, v2} ⊆ Wv2,z. As {x1, x2, x3}∩{x0, y1, y2} = ∅, we have that |Wv2,z| ≥ 7,
a contradiction. □

5.1. Case d = 4 is not possible. Let Γ be a regular NDB graph with valency
k = 3, diameter d ≥ 3, and γ = γ(Γ) = d + 1. We now consider the case d = 4.
Our main result in this subsection is to prove that this case is not possible. For the
rest of this subsection pick arbitrary vertices x0, x4 of Γ such that d(x0, x4) = 4.
Pick a shortest path x0, x1, x2, x3, x4 between x0 and x4. Let Di

j = Di
j(x1, x0) and

let ℓ = ℓ(x0, x1). Let u denote the unique vertex of Dℓ−1
ℓ \ {xℓ}.

Proposition 5.2. Let Γ be a regular NDB graph with valency k = 3, diameter
d = 4, and γ = γ(Γ) = d + 1 = 5. With the notation above, we have that ℓ ̸= 4.

Proof. Assume to the contrary that ℓ = 4. Note that in this case, since k = 3 and
|D1

2| = |D2
1| = 1, we have |D1

1| = 1. Let w denote the unique vertex of D1
1, and

let z denote the neighbor of x2, different from x1 and x3. Observe that z ̸= w, as
otherwise x1w is not balanced. Similarly, w is not adjacent to the unique vertex
y2 of D2

1. Observe also that {x0, x1, x2, x3} ⊆ Wx3,u. We claim that u ∈ Γ(x4).
To prove this, suppose that x4 and u are not adjacent. Then x4 ∈ Wx3,u, and so
z is contained in D2

2. Observe that d(z, u) = 2, otherwise x3u is not balanced.
Therefore, u and z must have a common neighbor z1 and it is clear that z1 ∈ D3

3.
But now {x2, x3, x4, u, z, z1} ⊆ Wx2,x1 , a contradiction. This proves our claim that
u ∼ z.

Suppose now that z = y2. Then D3
2 ∪ D4

3 ∪ {u, x2, x3, x4, y2} ⊆ Wx2,x1 . Note
that by the NDB condition we have |D3

2 ∪ D4
3| = 3, and so x2x1 is not balanced, a

contradiction. We therefore have that z ∈ D2
2.

By Proposition 3.2 (ii) it follows that u and x4 have a neighbor z1 and z2 in
D3

3, respectively. We observe that z1 ̸= z2, as otherwise x4u is not balanced. Note
that z has no neighbors in D3

3, as otherwise x2x1 is not balanced. Therefore, z is
not adjacent to any of z1, z2, which gives us Wx3,x4 = Wx3,u = {x3, x2, x1, x0, z}.
Consequently, d(w, u) = d(w, x4) = 3, and so the (unique) neighbor of w in D2

2 is
adjacent to both z1 and z2. But this implies that wx0 is not balanced, a contra-
diction. □

Proposition 5.3. Let Γ be a regular NDB graph with valency k = 3, diameter
d = 4, and γ = γ(Γ) = d + 1 = 5. With the notation above, we have that ℓ ̸= 3.

Proof. Suppose that ℓ = 3. By Lemma 2.2 we have |D2
1| = 1, and since k = 3

also |D1
1| = 1. Let w and y2 denote the unique vertex of D1

1 and D2
1, respectively.
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Since γ = 5, y2 has at least one neighbor y3 in D3
2, and |D4

3| ≤ 2. If D4
3 = ∅,

then there are three vertices in D3
2, which are all adjacent to y2, contradicting

k = 3. By Proposition 5.2 we have that |D4
3| ≠ 2, and so |D4

3| = 1, |D3
2| = 2.

Let y4 denote the unique element of D4
3 and let u1 denote the unique element of

D3
2 \ {y3}. Without loss of generality assume that y4 and y3 are adjacent. Observe

that Γ(y2) = {x0, y3, u1}, and so w has a neighbor v ∈ D2
2, and it is easy to see

that v is the unique vertex of D2
2 (see Figure 3 (a)). By Proposition 3.1 (i) we find

that either x3 ∈ Γ(u), or x3 has a neighbor in D3
3.

Case 1: there exists z ∈ Γ(x3) ∩ D3
3. Note that in this case we have Wx2,x1 =

{x2, x3, x4, u, z}. We split our analysis into two subcases.
Subcase 1.1: vertices u and x4 are not adjacent. As x2x1 is balanced and as

v is the unique vertex of D2
2, this forces u to be adjacent with v and z. As every

vertex in D3
3 is at distance 3 from x1 and as vertices u, x3 already have three

neighbors each, this implies that beside z there is at most one more vertex in D3
3

(which must be adjacent with v). But this shows that x4 could have at most one
neighbor in D3

3 (observe that z could not be adjacent with x4, as otherwise z is not
at distance 3 from x0), and consequently x4 has at least one neighbor in D4

4 ∪ D4
3.

But now x2x1 is not balanced, a contradiction.
Subcase 1.2: vertices u and x4 are adjacent. By Proposition 3.2 (ii), ver-

tex u is either adjacent to v ∈ D2
2 or to z ∈ D3

3. If u is adjacent to v, then
{x0, x1, x2, u, v, w} ⊆ Wu,x4 , a contradiction. This shows that u ∼ z. Note that
the third neighbor of z is one of the vertices v, y3, u1, and so z and x4 are not
adjacent. Consequently, Wx3,x4 = {x3, x2, x1, x0, z}, and so w must be at distance
3 from x4. Therefore, v and x4 have a common neighbor v1 ∈ D3

3. Note that v1 ̸= z
as z and x4 are not adjacent. Every vertex in D3

3, different from z and v1, must be
adjacent with v in order to be at distance 3 from x1. This shows that |D3

3| ≤ 3. If
there exists vertex v2 ∈ D3

3, which is different from z and v1, then there must be
a vertex t ∈ D4

4 (recall that Γ is of even order). As t could not be adjacent with
x4, it must be adjacent with at least one of v1, v2. However, this is not possible
(note that in this case {w, v, v1, v2, x4, t} ⊆ Ww,x0 , a contradiction). Therefore,
D3

3 = {z, v1} and D4
4 = ∅. It follows that y4 is adjacent with v1 and u1. If z

and v are adjacent, then Wx1,w = {x1, x2, u, x3}, contradicting γ = 5. Therefore,
z is adjacent to either y3 or u1. This shows that either y3 or u1 is contained in
Wx3,x4 = {x3, x2, x1, x0, z}, a contradiction.

Case 2: x3 and u are adjacent. Observe that x4 /∈ Γ(u), otherwise ux3 is
not balanced. It follows that Wx3,x4 = {x3, x2, x1, x0, u}, and so d(w, x4) = 3.
Therefore there exists a common neighbor z of x4 and v, and note that z ∈ D3

3.
Reversing the roles of the paths x0, x1, x2, x3, x4 and x1, x0, y2, y3, y4, we get that
u1 and y3 are adjacent, and that y4 /∈ Γ(u1). As |Wx1,w| = 5, vertex u must have
a neighbor, which is at distance 3 from x1 and at distance 4 from w. As x4, y3 and
u1 are all at distance 3 from w, this implies that u has a neighbor z1 ∈ D3

3, which
is not adjacent with v (and is therefore different from z). Note that since z1 is at
distance 3 from x0, it is adjacent with u1. As k = 3, v has a neighbor z2 ̸= z in
D3

3. Pick now a vertex t ∈ D4
4 (observe that D4

4 ̸= ∅ as Γ has even order). If t is
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Figure 3. (a) Case d = 4, k = 3, and ℓ = 3 (left). (b) Case d = 4,
k = 4, and ℓ = 2 (right).

adjacent with x4 or with z1, then t ∈ Wx2,x1 = {x2, x3, x4, u, z1}, a contradiction.
If t is adjacent with z or z2, then t ∈ Ww,x0 = {w, v, z, z2, x4}, a contradiction.
This finally proves that ℓ ̸= 3. □

Proposition 5.4. Let Γ be a regular NDB graph with valency k = 3, diameter
d = 4, and γ = γ(Γ) = d + 1 = 5. With the notation above, Γ is triangle-free.

Proof. Pick an edge xy ∈ E(Γ) and let Di
j = Di

j(x, y). If either D4
3 or D3

4 is
nonempty, then Propositions 5.2 and 5.3 together with Lemma 2.2 imply that
|D1

2| = |D2
1| = 2. As Γ is 3-regular, the set D1

1 is empty, and so xy is not contained
in any triangle.

Assume next that D4
3 = D3

4 = ∅. If the edge xy is contained in a triangle, then
D1

2 and D2
1 both contain at most one vertex, and so D2

3 and D3
2 could contain at

most two vertices as Γ is 3-regular. We thus have |Wx,y| ≤ 4, contradicting γ = 5.
The result follows. □

Proposition 5.5. Let Γ be a regular NDB graph with valency k = 3, diameter
d ≥ 3, and γ = γ(Γ) = d + 1. Then d ̸= 4.

Proof. Suppose, towards a contradiction, that d = 4, and so γ = 5. Assume the
notation from the first paragraph of this subsection, and note that Propositions 5.2
and 5.3 imply that ℓ = 2. By Lemma 2.2 we have |D2

1| = 2. Let u1, y2 denote the
vertices of D2

1. Note that D1
1 is empty. We also observe that by Proposition 3.1 (i)

either u ∈ Γ(x3), or x3 has a neighbor in D3
3. We consider these two cases sepa-

rately.
Case 1: u and x3 are adjacent. Then {x0, x1, x2, x3, u} = Wx3,x4 , and so neither

x2 nor u have neighbors in D2
1. Since Γ is triangle-free, there exists w ∈ Γ(x2)∩D2

2,
and w has a neighbor in D2

1 (by definition of the set D2
2). We may assume without

loss of generality that w ∈ Γ(y2). Note that d(w, x3) = 2, and so d(w, x4) = 2
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as well, as otherwise x3x4 is not balanced. It follows that there exists a common
neighbor z of w and x4, and it is clear that z ∈ D3

3.
Similarly we find that u has a neighbor w1 ∈ D2

2, and as k = 3, we have that
w1 ̸= w. Note that {x2, x1, x0, w, y2} = Wx2,x3 , and so d(x3, u1) = 3 (otherwise
u1 ∈ Wx2,x3 , a contradiction). Note, however, that d(x3, u1) = 3 is only possible if
w1 and u1 are adjacent. A similar argument as above shows that w1 and x4 must
have a common neighbor z1 ∈ D3

3. If z1 = z, then {z, w, w1, y2, u1, x0} ⊆ Wz,x4 ,
a contradiction. Therefore z1 ̸= z, and it is now clear that D2

2 = {w, w1}, D3
3 =

{z, z1}. If there exists t ∈ D4
4, then t is adjacent to either z or z1, but none of these

two possible edges is balanced, and so D4
4 = ∅. If z (resp., z1) has a neighbor in

D4
3, then x2x1 (resp., ux1) is not balanced, a contradiction. As Γ is triangle-free,

z and z1 both have a neighbor in D3
2. Assume now for a moment that there exists

a vertex y4 ∈ D4
3. In this case γ = 5 forces that there is a unique vertex in D3

2,
which is therefore adjacent to both z and z1, to y4, and to at least one of y2, u1,
contradicting k = 3. It follows that D4

3 = ∅. Let us denote the neighbors of z and
z1 in D3

2 by v and v1, respectively. Note that as zx4 and z1x4 are balanced, we
have that Wz,x4 = {z, w, v, y2, x0} and Wz1,x4 = {z1, w1, v1, u2, x0}. It follows that
v and v1 must be adjacent to y2 and u1, respectively, and so v ̸= v1. As k = 3,
also v and v1 are adjacent. It is now easy to see that Γ is not NDB with γ = 5 (for
example, edge x1u is not balanced). This shows that u and x3 are not adjacent.

Case 2: x3 has a neighbor w in D3
3. As Γ is triangle-free, x2 has a neighbor z

in D2
1 ∪ D2

2, and w ̸∼ x4. If z ∈ D2
1, then {x0, x1, x2, x3, z, w} ⊆ Wx3,x4 , a contra-

diction. This yields that z ∈ D2
2. If d(z, x4) ≥ 3, then again {x0, x1, x2, x3, z, w} ⊆

Wx3,x4 , a contradiction. Therefore, z and x4 have a common neighbor w1 ∈ D3
3,

and w1 ̸= w as w ̸∼ x4. But now {x2, x3, x4, z, w, w1} ⊆ Wx2,x1 , a contradiction.
This finishes the proof. □

5.2. Case d = 3. In this subsection we consider the case d = 3. We start with the
following proposition.

Proposition 5.6. Let Γ be a regular NDB graph with valency k = 3, diameter
d = 3, and γ = 4. Then for every edge x0x1 of Γ we have that |D1

2(x1, x0)| =
|D2

1(x1, x0)| = 2.

Proof. Pick an edge x0x1 of Γ and let Di
j = Di

j(x1, x0). Observe first that |D1
2| ≤ 2

as k = 3. By Proposition 4.5 we have that D2
3 ̸= ∅, and so pick x3 ∈ D2

3. Note
that x1 and x3 have a common neighbor x2 ∈ D1

2. Assume to the contrary that
|D1

2| = 1, and so |D2
3| = 2, |D1

1| = 1 = |D2
1|. Let us denote the unique vertex of D2

1
by y2 (note that y2 has two neighbors, say y3 and u1 in D3

2), the unique vertex of
D1

1 by w, and the unique vertex of D2
3 \ {x3} by u (note that Γ(x2) = {x1, x3, u}).

Note that w has a neighbor v in D2
2, and that D2

2 = {v}.
Assume first that u and x3 are not adjacent. Then Wx2,x3 = {x2, u, x1, x0}, and

so w is at distance 2 from x3 (otherwise w ∈ Wx2,x3). It follows that x3 is adjacent
with v. Similarly we show that u is adjacent with v. As none of the neighbors of v
is contained in D3

3, every vertex from D3
3 must be adjacent to either u or x3, and

so D3
3 ∪ {x2, x3, u} ⊆ Wx2,x1 . It follows that |D3

3| ≤ 1. As Γ is a cubic graph, it

Rev. Un. Mat. Argentina, Vol. 65, No. 1 (2023)



ON CERTAIN REGULAR NICELY DISTANCE-BALANCED GRAPHS 179

must have an even order, which gives us D3
3 = ∅. This shows that both u and x3

have a neighbor in D3
2. But now {y2, y3, u1, x3, u} ∪ D3

2 ⊆ Wy2,x0 , a contradiction.
Therefore, u and x3 must be adjacent, and they have a common neighbor x2. Let

z1 and z2 denote the third neighbor of u and x3, respectively. If z1 = z2 then ux3 is
not balanced, and so we have that z1 ̸= z2. Furthermore, as {x2, x3, u} ⊆ Wx2,x1 ,
not both of z1, z2 are contained in D3

3 ∪ D3
2. Therefore, either z1 or z2 is equal

to v. Without loss of generality assume that z1 = v. But then d = 3 forces
Wx2,u = {x2, x1, x0}, a contradiction. This shows that |D1

2| = 2, and by Lemma 2.2
also |D2

1| = 2. □

Corollary 5.7. Let Γ be a regular NDB graph with valency k = 3, diameter d = 3,
and γ = 4. Then Γ is triangle-free and D3

3(x, y) = ∅ for every edge xy of Γ.

Proof. Pick an arbitrary edge xy of Γ and let Di
j = Di

j(x, y). By Proposition 4.5
we get that the sets D1

2, D2
1, D2

3, and D3
2 are all nonempty. Furthermore, by

Proposition 5.6 and Lemma 2.2 we have that |D1
2| = |D2

1| = 2 and |D3
2| = |D2

3| = 1
(recall that γ = 4). Since k = 3, it follows that D1

1 = ∅. This shows that Γ is
triangle-free.

We next assert the set D3
3 is empty. Suppose to the contrary there exists z ∈ D3

3
and let w denote a neighbor of z. Assume first that w ∈ D2

2. Since D1
1 = ∅,

there exist vertices u ∈ D1
2 and v ∈ D2

1 which are neighbors of w. We thus have
{u, v, w, x, y} ⊆ Ww,z, contradicting γ = 4. This shows that w /∈ D2

2. Therefore
z is adjacent to both vertices which are in D3

2 and D2
3. As z has three neighbors,

none of which is in D2
2, and as |D2

3| = |D3
2| = 1, it follows that z has a neighbor

w′ ∈ D3
3. But by the same argument as above, w′ must be adjacent to both vertices

in D3
2 and D2

3, contradicting the fact that Γ is triangle-free. □

Theorem 5.8. Let Γ be a regular NDB graph with valency k = 3, diameter d ≥ 3,
and γ = d + 1. Then Γ is isomorphic to the 3-dimensional hypercube Q3.

Proof. By Theorem 4.4 (i), Proposition 5.1 and Proposition 5.5 we have that d = 3.
Pick an edge xy of Γ and let Di

j = Di
j(x, y). Observe that Γ is triangle-free and

D3
3 = ∅ by Corollary 5.7. We first show that D2

2 = ∅ as well. Observe that as
D1

1 = ∅, every vertex of D2
2 must have a neighbor in both D1

2 and D2
1. This shows

that
∣∣D2

2
∣∣ ∈ {1, 2, 3}, and so |V (Γ)| ∈ {9, 10, 11}. However, since Γ is regular with

k = 3, we have |V (Γ)| = 10 and
∣∣D2

2
∣∣ = 2. In [5], it is shown that the number

of connected 3-regular graphs with 10 vertices is 19, but only five of them have
diameter d = 3 and girth g ≥ 4. Out of these five graphs, only four have all
vertices with eccentricity 3 (see Figure 4). It is easy to see that none of these
graphs is NDB with γ = 4. This shows that D2

2 = ∅, and so |V (Γ)| = 8. But it
is well known (and also easy to see) that Q3 is the only cubic triangle-free graph
with eight vertices and diameter d = 3. □

6. Case k = 4

Let Γ be a regular NDB graph with valency k = 4, diameter d ≥ 3, and γ =
γ(Γ) = d + 1. Recall that by Theorem 4.4 (ii) we have d ∈ {3, 4}. In this section
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Figure 4. Connected 3-regular graphs of order 10 with diameter
d = 3, girth g ≥ 4, and with all vertices with eccentricity 3.

we first show that the case d = 4 is not possible, and then classify regular NDB
graphs with k = 4 and d = 3. We start with the following lemma.

Lemma 6.1. Let Γ be a regular NDB graph with valency k = 4, diameter d = 4,
and γ = γ(Γ) = d + 1. Pick vertices x0, x4 of Γ such that d(x0, x4) = 4, and
pick a shortest path x0, x1, x2, x3, x4 between x0 and x4. Let ℓ = ℓ(x0, x1), Di

j =
Di

j(x1, x0), and Dℓ−1
ℓ = {xℓ, u}. Then ℓ = 2. Moreover, u ∼ x2 and u ∼ x3.

Proof. Assume first that ℓ = 4. By Proposition 3.1 (i), vertex x3 has a neighbor
z in D3

3. Now Wx2,x1 = {x2, x3, x4, u, z}, and so x2 has no neighbors in D2
2 ∪ D2

1.
Consequently, x2 has two neighbors in D1

1, contradicting Proposition 3.1 (ii).
Assume now that ℓ = 3. By Proposition 3.1 (i) x3 does not have neighbors in

D3
2 ∪ D2

2, and so by Proposition 3.2 (ii) we get that x3 and u are adjacent, and
that x3 has a neighbor z in D3

3. By Proposition 3.2 (ii) vertex x2 has no neighbors
in D2

2 ∪ D2
1, and so x2 has a neighbor w in D1

1. Now {x3, x2, x1, x0, w} ⊆ Wx3,x4 ,
implying that x4 is adjacent to both u and z. Similarly, {u, x2, x1, x0, w} ⊆ Wu,x4 ,
and so u has no neighbors in D2

2 ∪ D3
2. It follows that u has a neighbor in D3

3, and
by Proposition 3.2 (ii), this neighbor is z. But now the edge x3u is not balanced, a
contradiction.

This shows that ℓ = 2. By Proposition 3.1 (i), vertex x3 has either one or two
neighbors in D3

3. If x3 has two neighbors in D3
3, then by Proposition 3.2 (i) vertex x2

has no neighbors in D2
2 ∪D2

1. Therefore, x2 is adjacent to the unique vertex w ∈ D1
1,

and is also adjacent to u. But now we have that {x3, x2, x1, x0, u, w} ⊆ Wx3,x4 , a
contradiction.

Therefore, x3 has exactly one neighbor in D3
3. As by Proposition 3.1 (i) vertex x3

has no neighbors in D2
2∪D3

2, we have that x3 ∼ u. Consequently {x3, x2, x1, x0, u} ⊆
Wx3,x4 , and so x2 and u have no neighbors in D1

1 ∪D2
1. Since k = 4 and since edges

x2x1 and ux1 are balanced, it follows both of x2 and u have exactly one neighbor
in D2

2, and that x2 ∼ u. □

Proposition 6.2. Let Γ be a regular NDB graph with valency k = 4, diameter
d ≥ 3, and γ = γ(Γ) = d + 1. Then d ̸= 4.

Proof. Assume to the contrary that d = 4. Pick vertices x0, x4 of Γ such that
d(x0, x4) = 4. Pick a shortest path x0, x1, x2, x3, x4 between x0 and x4. Let Di

j =
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Di
j(x1, x0), let ℓ = ℓ(x0, x1) and let Dℓ−1

ℓ = {xℓ, u}. Recall that by Lemma 6.1
we have that ℓ = 2 and that vertex u is adjacent with x2 and x3. Let z denote a
neighbor of x3 in D3

3 (note that by Proposition 3.1 (i) vertex x3 has no neighbors
in D2

2 ∪ D3
2).

Since Wx3,x4 = {x3, x2, x1, x0, u}, vertices x2 and u have no neighbors in D1
1∪D2

1.
Let us denote the neighbors of u and x2 in D2

2 by v1, v2, respectively. Note that
v1 ̸= v2, otherwise edge ux2 is not balanced. Furthermore, {x3, x2, x1, x0, u} =
Wx3,x4 implies that x4 and z are adjacent, and that x4 is at distance 2 from both
v1 and v2. Consequently, v1 and v2 both have a common neighbor, say z1 and z2,
respectively, with x4, and these common neighbors must be in D3

3. But as edges
x2x1 and ux1 are balanced, this implies that z1 = z = z2 (see Figure 3 (b)).

Note that v1 and v2 both have at least one neighbor in D1
1 ∪ D2

1. Let us denote
a neighbor of v1 (resp., v2) in D1

1 ∪ D2
1 by w1 (resp., w2). If w1 ̸= w2, then

{z, v1, v2, w1, w2, x0} ⊆ Wz,x4 , contradicting γ = 5. Therefore w1 = w2 and by
applying Lemma 6.1 to the path x0, w1, v1, z, x4 we get that vertices v1 and v2 are
adjacent. But now it is easy to see that Wu,x2 = {u, v1}, a contradiction. This
finishes the proof. □

Proposition 6.3. Let Γ be a regular NDB graph with valency k = 4, diameter
d = 3, and γ = γ(Γ) = 4. Then for every edge x0x1 of Γ we have that |D1

2(x1, x0)| =
|D2

1(x1, x0)| = 2.

Proof. Pick an edge x0x1 of Γ and let Di
j = Di

j(x1, x0). By Proposition 4.5 we
have that D2

3 ̸= ∅, and so γ = 4 implies |D1
2| ≤ 2. Assume to the contrary that

|D1
2| = 1, and so |D2

3| = 2, |D1
1| = 2, and |D2

1| = 1. Let x3, u be vertices of D2
3, and

let x2 be the unique vertex of D1
2. Let z denote the neighbor of x2, different from

x1, x3, u, and note that z ∈ D2
2 ∪ D2

1 ∪ D1
1. In each of these three cases we derive a

contradiction.
Assume first that z ∈ D2

2. Then D1
2(x2, x1) = {x3, u, z}, and γ = 4 forces

D2
3(x2, x1) = ∅, contradicting Proposition 4.5.
Assume next that z ∈ D2

1 (note that z is the unique vertex in D2
1). Then

{x2, z, x3, u} ∪ D3
2 ⊆ Wx2,x1 . As D3

2 ̸= ∅ by Proposition 4.5, this contradicts γ = 4.
Assume finally that z ∈ D1

1. Recall that |D1
1| = 2 and denote the other vertex

of D1
1 by w. If z and w are adjacent, then Wx1,z = {x1}, a contradiction. If z

has a neighbor v ∈ D2
2, then {z, v, x2, u, x3} ⊆ Wz,x0 , a contradiction. This shows

that z is adjacent to the unique vertex of D2
1. Let us denote this vertex by y2. As

Wx2,x3 = Wx2,u = {x2, x1, x0, z}, vertices x3 and u are both at distance 2 from y2.
But this shows that Wz,y2 = {x1, z, x2}, a contradiction. □

Theorem 6.4. Let Γ be a regular NDB graph with valency k = 4, diameter d ≥ 3,
and γ = γ(Γ) = d + 1. Then Γ is isomorphic to the line graph of the 3-dimensional
hypercube Q3.

Proof. By Theorem 4.4 (ii) and Proposition 6.2 we have that d = 3. Pick an
arbitrary edge xy of Γ. By Proposition 6.3 we have that |D1

2(x, y)| = |D2
1(x, y)| = 2.

Consequently |D1
1(x, y)| = 1, and so Γ is an edge-regular graph with λ = 1. Observe
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that γ = 4 also implies that |D2
3(x, y)| = |D3

2(x, y)| = 1. Observe that Γ contains
|V (Γ)|k/6 = 2|V (Γ)|/3 triangles, and so |V (Γ)| is divisible by 3.

Pick vertices x0, x3 of Γ at distance 3 and let x0, x1, x2, x3 be a shortest path
from x0 to x3. Abbreviate Di

j = Di
j(x1, x0). Obviously D2

3 = {x3} and x2 ∈ D1
2.

Let us denote the other vertex of D1
2 by u, the vertices of D2

1 by y2, v, the vertex
of D3

2 by y3, and the vertex of D1
1 by w. Without loss of generality we may assume

that y2 and y3 are adjacent. Since Γ is edge-regular with λ = 1, we also obtain that
x2 and u are adjacent, that y2 and v are adjacent, and that w has two neighbors,
say z1 and z2, in D2

2, and that z1, z2 are also adjacent. As Wx2,x3 = {x2, x1, x0, u},
x3 is at distance 2 from w, and so x3 is adjacent to exactly one of z1, z2. Without
loss of generality we could assume that x3 and z1 are adjacent.

Note that Γ(w) = {x0, x1, z1, z2}, and so x2 and w are not adjacent. Vertex x2
is also not adjacent to y2, as otherwise edge x2y2 is not contained in a triangle. If
x2 ∼ v, then v ∼ u and the edge ux2 is contained in two triangles, contradicting
λ = 1. It follows that x2 has no neighbors in D2

1. Therefore, x2 has a neighbor in
D2

2. Consequently, by Proposition 3.2 (i), x3 could have at most one neighbor in
D3

3 ∪ D3
2.

We now show that D3
3 = ∅. Assume to the contrary that there exists t ∈ D3

3.
If t is adjacent to z1 or z2, then {w, z1, z2, x3, t} ⊆ Ww,x0 , a contradiction. If t is
adjacent with z ∈ D2

2 \ {z1, z2}, then z has a neighbor in D1
2 and a neighbor in D2

1,
implying that |Wz,t| ≥ 5, a contradiction. It follows that t has no neighbors in D2

2,
and so t is adjacent with x3 (and with y3). Now the unique common neighbor of
x3 and t must be contained in D3

3 ∪ D3
2, contradicting the fact that x3 could have

at most one neighbor in D3
3 ∪ D3

2. This shows that D3
3 = ∅.

Let us now estimate the cardinality of D2
2. Observe that each z ∈ D2

2 \ {z1, z2}
has a neighbor in D1

2. But u could have at most two neighbors in D2
2, while x2 has

exactly one neighbor in D2
2. It follows that 2 ≤ |D2

2| ≤ 5, and so 11 ≤ |V (Γ)| ≤ 14.
As |V (Γ)| is divisible by 3, we have that |V (Γ)| = 12. By [9, Corollary 6], there are
just two edge-regular graphs on 12 vertices with λ = 1, namely the line graph of
3-dimensional hypercube (see Figure 5), and the line graph of the Möbius ladder
graph on eight vertices. It is easy to see that the latter one is not even distance-
balanced. □

7. Case k = 5

Let Γ be a regular NDB graph with valency k = 5, diameter d ≥ 3, and γ =
γ(Γ) = d + 1. Recall that by Theorem 4.4 we have d = 3, and so γ = 4. In
this section we classify such NDB graphs. We first show that in this case we have
|D1

2(x1, x0)| = |D2
1(x1, x0)| = 2 for every edge x1x0 of Γ.

Proposition 7.1. Let Γ be a regular NDB graph with valency k = 5, diameter
d = 3, and γ = 4. Then for every edge x0x1 of Γ we have that |D1

2(x1, x0)| =
|D2

1(x1, x0)| = 2.

Proof. Pick an edge x0x1 of Γ and let Di
j = Di

j(x1, x0). By Proposition 4.5 we
have that D2

3 ̸= ∅, and so γ = 4 implies |D1
2| ≤ 2. Assume to the contrary that
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x1

x0

u

v
w

x3

y3

y2

x2

z3
z1z2

x1

x0

x2
x3

Figure 5. The line graph of Q3, drawn in two different ways.
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z3

u

x3 u1

y3

Figure 6. Graph Γ from Proposition 7.1.

|D1
2| = 1, and so |D2

3| = 2, |D1
1| = 3, and |D2

1| = 1. Let x3, u be vertices of D2
3,

and let x2 be the unique vertex of D1
2. Let us denote the unique vertex of D2

1 by
y2, and the vertices of D1

1 by z1, z2, z3. Note that also |D3
2| = 2, and let us denote

these two vertices by y3, u1. Clearly we have that x2 is adjacent to both x3 and u,
and y2 is adjacent to both y3 and u1 (see the diagram on the left side of Figure 6).
Observe that each edge xy of Γ is contained in at least one triangle; otherwise
|Wx,y| ≥ 5 > γ, a contradiction. Therefore, x2 and y2 both have at least one
neighbor in D1

1. On the other hand, these two vertices could not have more than
one neighbor in D1

1, as otherwise |Wx2,x3 | ≥ 5 (resp., |Wy2,y3 | ≥ 5), a contradiction.
Without loss of generality we could assume that z1 is the unique neighbor of x2 in
D1

1. Note that it follows from Proposition 3.1 (ii) that x2 and y2 are not adjacent.
This shows that x2 has a unique neighbor (say w) in D2

2. As Wx2,x3 = Wx2,u =
{x2, x1, x0, z1}, vertex w is adjacent to both u and x3. Similarly we prove that also
y2 has a unique neighbor in D2

2, say w′, and that w′ is adjacent to both u1 and y3.
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If w = w′, then the degree of w is at least 6, a contradiction. Therefore, w ̸= w′

(see the diagram on the right side of Figure 6).
Note that Wx2,x1 = {x2, x3, u, w}, and so both y3 and u1 are at distance 3

from x2. Similarly, Wx1,x2 = {x1, x0, z2, z3}, and so y2 is at distance 2 from x2.
Therefore y2 and x2 have a common neighbor, and by the comments above the
only possible common neighbor is z1. It follows that z1 and y2 are adjacent. But
now {y2, x0, x1, z1, x2} ⊆ Wy2,y3 (recall that d(x2, y3) = 3), a contradiction. This
shows that |D1

2| = 2. By Lemma 2.2 we obtain that |D2
1| = 2 as well. □

Theorem 7.2. Let Γ be a regular NDB graph with valency k = 5, diameter d ≥ 3,
and γ = d + 1. Then Γ is isomorphic to the icosahedron.

Proof. First recall that by Theorem 4.4 we have d = 3, and so γ = 4. We will first
show that Γ is edge-regular with λ = 2. Pick an arbitrary edge xy and observe
that by Proposition 7.1 we obtain |D1

2(x, y)| = 2, which forces |D1
1(x, y)| = 2. This

shows that Γ is edge-regular with λ = 2. It follows that for every vertex x of Γ,
the subgraph of Γ which is induced on Γ(x) is isomorphic to the five-cycle C5. By
[4, Proposition 1.1.4], Γ is isomorphic to the icosahedron. □

Proof of Theorem 1.1. It is straightforward to see that all graphs from Theorem 1.1
are regular NDB graphs with γ = d+1. Assume now that Γ is a regular NDB graph
with valency k, diameter d, and γ = d+1. If d = 2, then it follows from Remark 2.3
that Γ is isomorphic either to the Petersen graph, the complement of the Petersen
graph, the complete multipartite graph Kt×3 with t parts of cardinality 3 (t ≥ 2),
the Möbius ladder graph on eight vertices, or the Paley graph on 9 vertices. If
d ≥ 3, then it follows from Theorem 4.4 that k ∈ {3, 4, 5}. If k = 3, then Γ is
isomorphic to the 3-dimensional hypercube Q3 by Theorem 5.8. If k = 4 then Γ is
isomorphic to the line graph of Q3 by Theorem 6.4. If k = 5, then Γ is isomorphic
to the icosahedron by Theorem 7.2. □
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