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LINEAR FUNCTIONALS AND ∆-COHERENT PAIRS
OF THE SECOND KIND

DIEGO DOMINICI∗ AND FRANCISCO MARCELLÁN

Abstract. We classify all the ∆-coherent pairs of measures of the second
kind on the real line. We obtain five cases, corresponding to all the families
of discrete semiclassical orthogonal polynomials of class s ≤ 1.

1. Introduction

The aim of this contribution is to provide a characterization of all pairs of
discrete measures {ρ0, ρ1} supported on the real line, such that the corresponding
sequences of monic orthogonal polynomials (MOPs for short) {Pn(ρ0;x)}n≥0 and
{Pn(ρ1;x)}n≥0 satisfy

Pn(ρ1;x) − τnPn−1(ρ1;x) = 1
n+ 1∆Pn+1(ρ0;x), n ≥ 1, (1.1)

where τn ̸= 0 for n ≥ 1 and ∆ denotes the forward difference operator defined by
∆ [f(x)] = f(x+ 1) − f(x). (1.2)

We will solve this problem by dealing with a more general situation concerning
the characterization of pairs of quasi-definite linear functionals (with complex mo-
ments) such that the corresponding sequences of MOPs satisfy (1.1).

As we will show in this contribution, we get special pairs of linear functionals
(in particular, positive definite linear functionals associated with positive measures
supported on infinite subsets of the real line) and the corresponding associated
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406 DIEGO DOMINICI AND FRANCISCO MARCELLÁN

sequences of orthogonal polynomials have interesting properties. These pairs are
formed with discrete semiclassical linear functionals of class at most s = 1 (for a
definition, see (2.9)), which have been studied in [9] and [10] in the framework of
the classification problem based on a hierarchy structure.

On the other hand, these sequences of orthogonal polynomials are related to
problems in approximation theory. More precisely, the analysis of Fourier expan-
sions in terms of sequences of polynomials orthogonal with respect to the Sobolev
inner product

⟨f, g⟩S =
∞∑
x=0

f(x)g(x)ρ0(x) + λ

∞∑
x=0

∆f(x)∆g(x)ρ1(x),

defined by the pair of discrete measures {ρ0, ρ1} of class s ≥ 1. It turns out that
the monic Sobolev orthogonal polynomials Sn(ρ0, ρ1;x) with respect to the inner
product ⟨ , ⟩S satisfy the connection formulas

Sn+1(ρ0, ρ1;x) − γnSn(ρ0, ρ1;x) = Pn+1(ρ0;x),
∆Sn+1(ρ0, ρ1;x) − γn∆Sn(ρ0, ρ1;x) = (n+ 1) [Pn(ρ1;x) − τnPn−1(ρ1;x)] ,

for all n ≥ 1 with S1(ρ0, ρ1;x) = P1(ρ0;x).
The above connection formulas between {Sn(ρ0, ρ1;x)}n≥0 and the sequences of

MOPs {Pn(ρ0;x)}n≥0 and {Pn(ρ1;x)}n≥0 yield a fruitful approach to the study of
algebraic and analytic properties of the polynomials Sn(ρ0, ρ1;x). Based on histor-
ical information given below we will refer to pairs of measures {ρ0, ρ1} satisfying
property (1.1) as ∆-coherent pairs of measures of the second kind on the real line.

The concept of coherence between a pair of probability measures {ν0, ν1} sup-
ported on the real line was introduced in [18]. Indeed, a pair of probability mea-
sures supported on the real line is said to be a coherent pair if the corresponding
sequences of MOPs {Pn(ν0;x)}n≥0 and {Pn(ν1;x)}n≥0, satisfy

Pn(ν1;x) = 1
n+ 1

[
P ′
n+1(ν0;x) − ρnP

′
n(ν0;x)

]
, ρn ̸= 0, n ≥ 1. (1.3)

It was shown in this case that the sequence of monic polynomials {Sn(ν0, ν1;x)}n≥0
orthogonal with respect to the inner product

⟨f, g⟩S =
∫
f(x)g(x)dν0 + λ

∫
f ′(x)g′(x)dν1 (1.4)

satisfies the connection formulas
Sn+1(ν0, ν1;x) − γnSn(ν0, ν1;x) = Pn+1(ν0;x) − ρnPn(ν0;x),
S′
n+1(ν0, ν1;x) − γnS

′
n(ν0, ν1;x) = (n+ 1)Pn(ν1;x),

(1.5)

for all n ≥ 1. These formulas are very useful in the study of analytic properties
of the corresponding Sobolev orthogonal polynomials. For more information about
polynomials orthogonal with respect to Sobolev inner products see the updated
survey [24].

The motivation for introducing such pairs of measures in [18] was their ap-
plications in the framework of Fourier expansions of functions in terms of se-
quences of polynomials orthogonal with respect to the Sobolev inner product ⟨ , ⟩S.
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A particular case of such Fourier series expansions based on Legendre–Sobolev or-
thogonal polynomials had already been considered in [19], where some numerical
tests comparing these Legendre–Sobolev Fourier series expansions and the ordinary
Legendre–Fourier series expansions were presented.

On the other hand, coherent pairs of measures also appear in the framework of
spectral methods for boundary value problems of ordinary differential equations
once you formulate the corresponding variational approach. In [14] the authors
have analyzed such a kind of questions for the nonhomogeneous one dimensional
Schrödinger equation with a potential V (x) = x2 in the interval [−1, 1].

The pairs of probability measures supported on the real line with the property
that the corresponding sequences of MOPs satisfy (1.3) were completely determined
by H. G. Meijer in 1997 [25]. He showed that if (ν0, ν1) is a coherent pair of
measures on the real line, then one of the measures must be classical (either Jacobi
or Laguerre) and the other a rational perturbation of it. Note that the condition
for classical linear functionals to be part of a coherent pair was deduced in [22].

Thus, what was proved in [25] is more general than what is stated above. The
starting point of the classification in [25] are certain functional relations established
in [21] with respect to pairs of quasi-definite linear functionals such that the corre-
sponding sequences of MOPs satisfy a relation like (1.3). Note that if the coherence
property (1.3) holds, then you get the connection formulas in (1.5).

An extension of the concept of coherence, known in the literature as (1, 1)-
coherence, is defined in terms of the corresponding MOPs as follows (see [7]):

Pn(ν1;x) − τnPn−1(ν1;x) = 1
n+ 1

[
P ′
n+1(ν0;x) − ξnP

′
n(ν0;x)

]
,

ξn, τn ̸= 0, n ≥ 1, (1.6)
In this case, the Sobolev orthogonal polynomials associated with the inner product
⟨ , ⟩S in (1.4) satisfy the connection formulas

Sn+1(ν0, ν1;x) − γnSn(ν0, ν1;x) = Pn+1(ν0;x) − ξnPn(ν0;x),
S′
n+1(ν0, ν1;x) − γnS

′
n(ν0, ν1;x) = (n+ 1) [Pn(ν1;x) − τnPn−1(ν1;x)] ,

for all n ≥ 1. We would like to emphasize that the characterization of probabil-
ity measures satisfying the coherence property (1.6) is given in [7] assuming that
ξn, τn ̸= 0 for n ≥ 1. Therein you have semiclassical linear functionals of class
at most 1. Its role in the study of the sequences of orthogonal polynomials with
respect to the Sobolev inner product defined by a (1, 1) coherent pairs of measures
has been emphasized in [16]. Notice that when τn = 0 and ξn ̸= 0 for n ≥ 1, we
get the results on coherent pairs presented in [25]. Thus, a natural question is to
analyze the case ξn = 0, and τn ̸= 0 for n ≥ 0.

In [17], the concept of coherent pair of the second kind was introduced. A pair
of probability measures {ν0, ν1} supported on the real line is said to be a coherent
pair of the second kind if the corresponding sequences of MOPs {Pn(ν0;x)}n≥0 and
{Pn(ν1;x)}n≥0 satisfy

1
n+ 1P

′
n+1(ν0;x) = Pn(ν1;x) − τnPn−1(ν1;x), n ≥ 1,
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where τn ̸= 0 for n ≥ 1. The characterization of all pairs of probability measures as
well as the pairs of quasi-definite linear functionals which are coherent pairs of the
second kind has been given in [17]. Some illustrative examples were shown therein.

The concept of ∆-coherent pair of linear functionals was introduced in [1] as well
as in [3]. Indeed, a pair of linear functionals {L0, L1} it is said to be a ∆-coherent
pair if the corresponding sequences of MOPs {P (0)

n (x)}n≥0 and {P (1)
n (x)}n≥0 satisfy

a discrete version of (1.3):

P (1)
n (x) = 1

n+ 1

[
∆P (0)

n+1(x) − ρn∆P (0)
n (x)

]
, ρn ̸= 0, n ≥ 1.

It was shown in this case that the sequence of monic polynomials {Sn(x)}n≥0
orthogonal with respect to the inner product

⟨f, g⟩S = ⟨L0, fg⟩ + ⟨L1,∆f∆g⟩

satisfies the connection formulas

Sn+1(x) − γnSn(x) = P
(0)
n+1(x) − ρnP

(0)
n (x),

∆Sn+1(x) − γn∆Sn(x) = (n+ 1)P (1)
n (x),

for all n ≥ 1. In [3], it was proved that one of them must be a ∆-classical linear
functional. The corresponding companion linear functionals were described therein.
Notice that this inner product is a discretization of a Sobolev inner product (1.4),
i.e., ν0 and ν1 are discrete measures.

The paper is organized as follows: Section 2 summarizes the basic concepts
about linear functionals and orthogonal polynomials to be used in what follows.
We emphasize a special family of linear functionals, the so-called ∆-semiclassical,
which will play a central role in the article. In Section 3, we introduce the concept
of ∆-coherent pair of the second kind for linear functionals and we give a charac-
terization of them. We must point out that both functionals in the pair turn out
to be discrete semiclassical functionals of class at most 1. In Section 4 we clas-
sify all ∆-coherent pairs of the second kind. We show that the companions of the
discrete classical functionals (Charlier, Kravchuk, Meixner and Hahn) are discrete
semiclassical of class s = 1.

2. Basic background

Let P = C [x] and let N0 be the set of nonnegative integers

N0 = N ∪ {0} = {0, 1, 2, . . .} .

We will denote by δk,n the Kronecker delta, defined by

δk,n =
{

1, k = n,

0, k ̸= n,
k, n ∈ N0,

and say that {Λn(x)}n≥0 ⊂ P is a basis of P if deg (Λn) = n. We will denote by P∗

the algebraic dual space of P.
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Suppose that L : P → C is a linear functional (i.e., L ∈ P ∗), that {Λn(x)}n≥0
is a basis of P, and we choose a nonzero sequence {hn}n≥0 ⊂ C. If the system of
linear equations

n∑
i=0

L [ΛkΛi] cn,i = hnδk,n, 0 ≤ k ≤ n, (2.1)

has a unique solution {cn,i}0≤i≤n, we can define a polynomial Pn(x) by Pn(x) =∑n
i=0 cn,iΛi(x), n ∈ N0. We say that {Pn(x)}n≥0 is an orthogonal polynomial

sequence with respect to the functional L. The system (2.1) can be written as
L [ΛkPn] = hnδk,n, 0 ≤ k ≤ n, and using linearity we see that the sequence
{Pn(x)}n≥0 satisfies the orthogonality conditions

L [PkPn] = hnδk,n, k, n ∈ N0. (2.2)
The linear functional L is said to be quasi-definite [6].

We define the multiplication of a linear functional by a polynomial q(x) to be
the linear functional qL ∈ P ∗ such that

(qL) [p] = L [qp] , p ∈ P. (2.3)
These transformations of linear functionals are known in the literature as Christoffel
transformations (see [29]).

On the other hand, given the forward difference operator ∆ defined in (1.2), we
introduce its adjoint operator ∆∗ : P ∗ → P ∗ by

(∆∗L) [p] = −L [∆p] , p ∈ P. (2.4)
We say that L is a semiclassical functional with respect to the operator ∆,

(∆-semiclassical, in short) [23] if there exist polynomials ϕ(x), ψ(x) such that L
satisfies the Pearson equation

∆∗ (ϕL) + ψL = 0, (2.5)
where ϕ is monic and deg(ψ) ≥ 1. Note that using (2.3) and (2.4) we can rewrite
the Pearson equation as

L [ϕ∆p] = L [ψp] , p ∈ P. (2.6)

Lemma 2.1. If f, g : Z → C, then we have the summation by parts formula
b∑

x=a
f(x)∆g(x) = [f (x− 1) g(x)]b+1

a −
b∑

x=a
g(x)∇f(x), a, b ∈ Z, (2.7)

where ∇ denotes the backward difference operator defined by
∇ [f(x)] = f(x) − f(x− 1).

Proof. The formula follows from the telescoping sum
b∑

x=a
[f(x)∆g(x) + g(x)∇f(x)] =

b∑
x=a

f(x)g (x+ 1) − g(x)f (x− 1)

= f (b) g (b+ 1) − g(a)f (a− 1) . □
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Using summation by parts, we can write an alternative form of the Pearson
equation (2.5).

Proposition 2.2. Let L be a linear functional associated with a discrete measure ρ
and defined by

L[p] =
∞∑
x=0

p(x)ρ(x), p ∈ P,

where ρ (−1) = 0 and
lim
x→∞

p(x)ρ(x) = 0, p ∈ P.

Then, L satisfies the Pearson equation (2.5) if and only if
∇ (ϕρ) + ψρ = 0. (2.8)

Proof. Since (2.5) is equivalent to (2.6), we can use (2.7) and conclude that L
satisfies (2.5) if and only if

∞∑
x=0

ψ(x)p(x)ρ(x) = −
∞∑
x=0

p(x)∇ (ϕρ) (x), p ∈ P.

If the last equation holds for all p ∈ P, then we must have
ψρ = −∇ (ϕρ) ,

and the result follows. □

The class of a discrete semiclassical linear functional L is defined by
s = min{max {deg(ϕ) − 2, deg(ψ)} − 1} , (2.9)

where the minimum is taken among all pairs of polynomials (ϕ, ψ) such that the
Pearson equation (2.5) holds for the linear functional L. Functionals of class s = 0
are called ∆-classical (see [15], [20], and [27], among others). The ∆-semiclassical
linear functionals of class s = 1 have been described in [9] and [10].

Remark 2.3. Let deg(ϕ) = d1, deg(ψ) = d2. If d1 = d2 +1 = s+2, we will always
assume the admissibility condition

ψd2 ̸= n− s, n ∈ N0, (2.10)
where ψd2 is the leading coefficient of ψ(x).

We will denote by {φn(x)}n≥0 the basis of falling factorial polynomials defined
by φ0(x) = 1 and

φn(x) =
n−1∏
k=0

(x− k) , n ∈ N.

The polynomials φn(x) satisfy the basic identities
xφn(x) = φn+1(x) + nφn(x), n ∈ N0, (2.11)

and
∆φn = nφn−1, n ∈ N0. (2.12)
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Lemma 2.4. We have the representation

φn (x− 1) =
n∑
k=0

(−1)k φk(n)φn−k(x), n ∈ N0. (2.13)

Proof. We use induction. The identity is true for n = 0 since φ0(x) = 1. Assuming
(2.13) to be true for all 0 ≤ k ≤ n and using the recurrence (2.11), we have

φn+1 (x− 1) = (x− 1 − n)φn (x− 1) =
n∑
k=0

(−1)k φk(n) (x− 1 − n)φn−k(x)

=
n∑
k=0

(−1)k φk(n) [φn+1−k(x) − (k + 1)φn−k(x)] .

Since φn+1(n) = 0, we can rewrite the sum above as

φn+1 (x− 1) =
n+1∑
k=0

(−1)k φk(n)φn+1−k(x) +
n∑
k=0

(−1)k+1 (k + 1)φk(n)φn−k(x),

or, shifting the index in the second sum,

φn+1 (x− 1) =
n+1∑
k=0

(−1)k φk(n)φn+1−k(x) +
n+1∑
k=1

(−1)k kφk−1(n)φn+1−k(x).

But from (2.12) we see that
φk (n+ 1) = φk(n) + kφk−1(n),

and we conclude that

φn+1 (x− 1) =
n+1∑
k=0

(−1)k φk (n+ 1)φn+1−k(x). □

Proposition 2.5. Let {pn(x)}n≥0 be a sequence of polynomials orthogonal with
respect to a ∆-semiclassical functional L of class s. Then,

L [ϕ∆q∆pn] = 0, q ∈ P, deg(q) < n− s. (2.14)

Proof. The equation (2.14) is obviously true if q = 1, so we can assume that
deg(q) ≥ 1. Using (2.13) with k ≥ 1, we have

∆φk = −
k∑
j=1

(−1)j φj(k)φk−j (x+ 1) ,

and multiplying by ∆pn we get

∆φk∆pn =
k∑
j=1

(−1)j φj(k) [∆φk−jpn − ∆ (φk−jpn)] ,

where we have used the identity
∆ (fg) = g (x+ 1) ∆f + f∆g = g∆f + f∆g + ∆f∆g. (2.15)
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Using the Pearson equation (2.5) and (2.12), we obtain

L [ϕ∆φk∆pn] =
k∑
j=1

(−1)j φj(k) (L [ϕ∆φk−jpn] − L [ψφk−jpn])

=
k∑
j=1

(−1)j φj(k) {(k − j)L [ϕφk−j−1pn] − L [ψφk−jpn]} ,

and since the sequence of polynomials {pn(x)}n≥0 is orthogonal with respect to L
we conclude that

L [ϕ∆φk∆pn] = 0, k < min {n+ 2 − deg(ϕ), n+ 1 − deg(ψ)} = n− s.

Using the fact that {φk(x)}k≥0 is a polynomial basis, the result follows. □

Using Proposition 2.5, we can prove the following characterization of discrete
semiclassical polynomials.

Proposition 2.6. Let {pn(x)}n≥0 be a sequence of monic polynomials orthogonal
with respect to a functional L. The following statements are equivalent:

(i) L is ∆-semiclassical of class s.
(ii) There exists a monic polynomial ϕ(x) such that the polynomials pn satisfy

the structure equation

ϕ(x)∆pn+1 =
n+d1∑
k=n−s

εn,kpk, n > s, εn,n−s ̸= 0. (2.16)

Proof. (i) ⇒ (ii) Since the sequence {pn}n≥0 is a polynomial basis in the linear
space of polynomials, we can write

ϕ(x)∆pn+1 =
n+d1∑
k=0

εn,kpk.

From the orthogonality relation (2.2) and (2.15), we have
hkεn,k = L [ϕpk∆pn+1] = L [ϕ∆ (pkpn+1)] − L [ϕ∆pkpn+1] − L [ϕ∆pk∆pn+1] .
Using (2.6) and orthogonality, we get

L [ϕ∆ (pkpn+1)] = L [ψpkpn+1] = 0, k < n+ 1 − d2,

and
L [ϕ∆φkpn+1] = kL [ϕφk−1pn+1] = 0, k < n+ 2 − d1,

from which it follows that
L [ϕ∆ (pkpn+1)] − L [ϕ∆pkpn+1] = 0, k < n− s.

Using (2.14) we see that
L [ϕ∆pk∆pn+1] = 0, k < n+ 1 − s,

and therefore
εn,k = 0, k < n− s.
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For k = n − s, we have εn,n−s = hn+1

(
ψd2

hn+1−d2
δd2,s+1 − n+2−d1

hn+2−d1
δd1,s+2

)
, and it

follows that εn,n−s ̸= 0 as long as d1 − 2 ̸= d2 − 1. If d1 = d2 + 1, we need the
additional condition (2.10).

(ii) ⇒ (i) Since
{
pn

hn
L
}
n≥0

is a basis of P∗ satisfying

pn
hn
L [pk] = 1

hn
L [pkpn] = δk,n,

we have the representation

∆∗ (ϕL) =
∞∑
n=0

cn
pn
hn
L.

Taking into account the structure relation (2.16) and orthogonality, we get
cn+1 = ∆∗ (ϕL) [pn+1] = −L [ϕ∆pn+1]

= −
n+d1∑
k=n−s

εn,kL [pk] =
{

0, n > s,

−µ0εn,0, n ≤ s,

where µ0 = L [1]. Thus, ∆∗ (ϕL) + ψL = 0, with

ψ(x) = µ0

s+1∑
n=1

εn−1,0

hn
pn(x).

Note that deg(ψ) − 1 ≤ s, in agreement with (2.9). □

For more information about this kind of structure relations for ∆-semiclassical
linear functionals, check [23]. Notice that in the ∆-classical case (s = 0) two struc-
ture relations characterizing such linear functionals are given in [15].

3. Coherent pairs

Let {L0, L1} be a pair of quasi-definite functionals and let
{
P

(0)
n (x)

}
n≥0 and{

P
(1)
n (x)

}
n≥0 be the corresponding sequences of monic orthogonal polynomials.

We say that {L0, L1} is a ∆-coherent pair of the second kind (abbreviated ∆c2) if
there exists {τn}n≥0 ⊂ C \ {0} such that

Qn(x) =
∆P (0)

n+1(x)
n+ 1 = P (1)

n (x) − τnP
(1)
n−1(x), n ∈ N0, (3.1)

where P (0)
−1 (x) = P

(1)
−1 (x) = 0. The sequences of polynomials

{
P

(i)
n (x)

}
n≧0, i = 0, 1,

satisfy the orthogonality conditions

Li

[
P

(i)
k P (i)

n

]
= h(i)

n δn,k, i = 0, 1, n, k ∈ N0. (3.2)

Proposition 3.1. If {L0, L1} is a ∆c2 and the linear functionals v(i)
n are defined

by

v(i)
n = P

(i)
n

h
(i)
n

Li, i = 0, 1, n ∈ N0, (3.3)
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then
∆∗v(1)

n = τn+1 (n+ 2) v(0)
n+2 − (n+ 1) v(0)

n+1, n ∈ N0. (3.4)

Proof. From (3.2) and (3.3), we have

v(i)
n

[
P

(i)
k

]
= δn,k, i = 0, 1, n, k ∈ N0. (3.5)

Let un ∈ P∗ be defined by

un [Qk] = δn,k, n, k ∈ N0.

Since the sequence of linear functionals {un}n≥0 is a basis of P∗, we can write

v(1)
n =

∞∑
k=0

an,kun.

Using (3.1) and (3.5), we get

an,k = v(1)
n [Qk] = v(1)

n

[
P

(1)
k − τkP

(1)
k−1

]
= δn,k − τkδn,k−1,

and therefore
v(1)
n = un − τn+1un+1, n ∈ N0. (3.6)

If we write

∆∗un =
∞∑
k=0

bn,kv(0)
k ,

then

bn,k = ∆∗un
[
P

(0)
k

]
= −v(0)

n

[
∆P (0)

k

]
= −kv(0)

n [Qk−1] = −kδn,k−1,

and, as a consequence,
∆∗un = −(n+ 1)v(0)

n+1. (3.7)
Using (3.7) in (3.6), we obtain (3.4). □

With the help of Proposition 3.1, we can prove a characterization of ∆-coherent
pairs of the second kind.

Theorem 3.2. The following statements are equivalent:
(i) {L0, L1} is a ∆c2.
(ii) There exist Λ2,Λ3 ∈ P defined by

Λk(x) =
k∑
i=0

λ
(k)
i xi, k = 2, 3,

and satisfying

λ
(2)
2 + (n− 1)λ(3)

3 ̸= 0, n ∈ N, (3.8)

such that
∆∗L1 = Λ2L0, L1 = Λ3L0. (3.9)
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Proof. (i) ⇒ (ii) Setting n = 0 in (3.4), we have

1
h

(1)
0

∆∗L1 = 2τ1
P

(0)
2

h
(0)
2
L0 − P

(0)
1

h
(0)
1
L0,

and defining Λ2(x) = 2τ1h
(1)
0

h
(0)
2

P
(0)
2 (x) − h

(1)
0
h

(0)
1
P

(0)
1 (x), we get ∆∗L1 = Λ2L0. Since

τ1 ̸= 0, we see that deg (Λ2) = 2.
Similarly, setting n = 1 in (3.4) gives

1
h

(1)
1

∆∗
(
P

(1)
1 L1

)
= 3τ2

P
(0)
3

h
(0)
3
L0 − 2P

(0)
2

h
(0)
2
L0,

and using (2.15) we have

∆∗P
(1)
1 L1 + P

(1)
1 ∆∗L1 + ∆∗P

(1)
1 ∆∗L1 =

(
3τ2h

(1)
1

h
(0)
3

P
(0)
3 − 2h(1)

1

h
(0)
2

P
(0)
2

)
L0.

Since ∆∗P
(1)
1 = 1 and ∆∗L1 = Λ2L0, we conclude that L1 = Λ3L0 with

Λ3(x) = 3τ2h
(1)
1

h
(0)
3

P
(0)
3 (x) − 2h(1)

1

h
(0)
2

P
(0)
2 (x) − Λ2(x)

[
P

(1)
1 (x) + 1

]
.

Note that deg (Λ3) ≤ 3.
(ii) ⇒ (i) Since the polynomial sequence {P (1)

n (x)}n≥0 is a basis of P, we have

Qn(x) = P (1)
n +

n−1∑
k=0

cn,kP
(1)
k (x).

Orthogonality and (2.15) yield

(n+ 1)h(1)
k cn,k = (n+ 1)L1

[
QnP

(1)
k

]
= L1

[
∆P (0)

n+1P
(1)
k

]
= L1

[
∆
(
P

(0)
n+1P

(1)
k

) ]
− L1

[
P

(0)
n+1∆P (1)

k

]
− L1

[
∆P (0)

n+1∆P (1)
k

]
= −L0

[
Λ2P

(0)
n+1P

(1)
k

]
− L0

[
Λ3P

(0)
n+1∆P (1)

k

]
− L0

[
Λ3∆P (0)

n+1∆P (1)
k

]
,

and hence, for all 0 ≤ k ≤ n− 1,

L0

[
Λ2P

(0)
n+1P

(1)
k

]
= λ

(2)
2 h

(0)
n+1δk,n−1,

L0

[
Λ3P

(0)
n+1∆P (1)

k

]
= (n− 1)λ(3)

3 h
(0)
n+1δk,n−1.

From (3.9) it follows that

∆∗ (Λ3L0) = Λ2L0.

Therefore, L0 is ∆-semiclassical of class at most 1. Using (2.14), we conclude that

L0

[
Λ3∆P (0)

n+1∆P (1)
k

]
= 0, k < n.
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Thus, for all 0 ≤ k ≤ n− 1,

(n+ 1)h(1)
k cn,k = −

[
λ

(2)
2 + (n− 1)λ(3)

3

]
h

(0)
n+1δk,n−1,

and we obtain
Qn(x) = P (1)

n (x) − τnP
(1)
n−1(x),

where

τn = λ
(2)
2 + (n− 1)λ(3)

3
n+ 1

h
(0)
n+1

h
(1)
n−1

, n ∈ N.

Since the polynomials Λ2,Λ3 satisfy (3.8), we see that τn ̸= 0. □

4. Classification

In this section, we find all ∆-coherent pairs of the second kind. According to
Theorem 3.2, it is enough to consider discrete semiclassical functionals of class
s ≤ 1 satisfying the Pearson equation

∆∗ (Λ3L0) = Λ2L0, deg (Λ2) = 2, deg (Λ3) ≤ 3.
In [9], we classified the discrete semiclassical functionals of class s ≤ 1 satisfying
(2.8), and obtained the following cases:

(1) Charlier (class s = 0):

ρ(x) = zx

x! , z > 0. (4.1)

This discrete weight is associated to the Poisson distribution:

ϕ(x) = 1, ψ(x) = x

z
− 1. (4.2)

(2) Meixner (class s = 0):

ρ(x) = (a)x
zx

x! , a > 0, 0 < z < 1. (4.3)

This discrete weight is associated to the Pascal distribution:

ϕ(x) = x+ a, ψ(x) = x

z
− (x+ a) . (4.4)

Subcase: Kravchuk polynomials:

ρ(x) = (−N)x
zx

x! , N ∈ N, z > 0. (4.5)

This discrete weight is associated to the binomial distribution:

ϕ(x) = x−N, ψ(x) = x

z
− (x−N) . (4.6)

(3) Hahn (class s = 0):

ρ(x) =
(−N)x (a)x

(b+ 1)x
1
x! , N ∈ N, a > 0, b > −1. (4.7)

This discrete weight is associated to the hypergeometric distribution:
ϕ(x) = (x−N) (x+ a) , ψ(x) = (N − a+ b)x+ aN. (4.8)
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(4) Generalized Charlier (class s = 1):

ρ(x) = 1
(b+ 1)x

zx

x! , z > 0, b > −1, (4.9)

ϕ(x) = 1, ψ(x) = x (x+ b)
z

− 1. (4.10)

(5) Generalized Meixner (class s = 1):

ρ(x) = (a)x
(b+ 1)x

,
zx

x! , z, a > 0, b > −1, (4.11)

ϕ(x) = x+ a, ψ(x) = x (x+ b)
z

− (x+ a) . (4.12)

(6) Generalized Kravchuk (class s = 1):

ρ(x) = (−N)x (a)x
zx

x! , N ∈ N, z, a > 0, (4.13)

ϕ(x) = (x−N) (x+ a) , ψ(x) = x

z
− (x−N) (x+ a) . (4.14)

(7) Generalized Hahn of type I (class s = 1):

ρ(x) =
(a1)x (a2)x

(b+ 1)x
zx

x! , a1, a2 > 0, b > −1, (4.15)

ϕ(x) = (x+ a1) (x+ a2) , ψ(x) = x (x+ b)
z

− (x+ a1) (x+ a2) . (4.16)

Note that if we set z = 1, a1 = a, a2 = −N , then we obtain the Hahn
polynomials.

(8) Generalized Hahn of type II (class s = 1):

ρ(x) =
(−N)x (a1)x (a2)x
(b1 + 1)x (b2 + 1)x

1
x! , N ∈ N, a1, a2 > 0, b1, b2 > −1, (4.17)

ϕ(x) = (x−N) (x+ a1) (x+ a2) , (4.18)
ψ(x) = (N − a1 − a2 + b1 + b2)x2

+ (Na1 +Na2 − a1a2 + b1b2)x+Na1a2.

If we define L0, L1 ∈ P∗ by

Li [p] =
∞∑
x=0

p(x)ρi(x), i = 0, 1, p ∈ P,

with ρi (−1) = 0, i = 0, 1, then we can use (2.2) and rewrite (3.9) as

∇ (Λ3ρ0) + Λ2ρ0 = 0, ρ1 = Λ3ρ0. (4.19)

Before we start the classification of the ∆c2 pairs, we need the following result.
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Proposition 4.1. Let q, ϕ0, ψ0 ∈ P. If L0 ∈ P∗ satisfies

∇ (ϕ0ρ0) + ψ0ρ0 = 0 (4.20)

and
Λ2 = (q − ∇q)ψ0 − ϕ0∇q, Λ3 = qϕ0, (4.21)

then
∇ (Λ3ρ0) + Λ2ρ0 = 0. (4.22)

Proof. From the identity

∇ (fg) = g∇f + f∇g − ∇f∇g

and (4.21), we have

∇ (Λ3ρ0) = (∇q)ϕ0ρ0 + (q − ∇q) ∇ (ϕ0ρ0) .

Using (4.20), we get

∇ (Λ3ρ0) = (∇q)ϕ0ρ0 − (q − ∇q)ψ0ρ0 = −Λ2ρ0,

and (4.22) follows. □

We will now find all ∆c2 pairs with deg (Λ2) = 2.

4.1. Case I: deg(Λ3) = 0. If we take Λ3 = 1, we see from (4.19) that

∇ρ0 + Λ2ρ0 = 0, ρ1 = ρ0,

and if ρ0(x) is the weight function corresponding to the generalized Charlier poly-
nomials (4.9), using (4.10) we get

Λ2(x) = x (x+ b)
z

− 1, z ̸= 0.

Thus, the generalized Charlier polynomials are self-coherent of the second kind.
Note that this fact was already observed in [11].

4.2. Case II (a): deg(Λ3) = 1. If we take Λ3 = x + ω, ω ∈ C, then we see from
(4.19) that

∇ [(x+ ω) ρ0] + Λ2ρ0 = 0, ρ1 = (x+ ω) ρ0.

If ρ0(x) is the weight function corresponding to the Charlier polynomials (4.1), we
can use Proposition 4.1 with q = x+ ω and obtain

Λ2(x) = x

z
(x+ ω − 1) − (x+ ω) , z ̸= 0,

where we have also used (4.2). The functional L1 is a Christoffel transformation
of L0 satisfying

∇ [(x+ ω) ρ1] + Λ2ρ1 = 0,
and using (4.12) we see that ρ1(x) is the weight function corresponding to the
generalized Meixner polynomials (4.11) with

a = ω, b = ω − 1.
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4.3. Case II (b): deg(Λ3) = 1. If we take Λ3 = x+ω, ω ∈ C, then from (4.19) we
get that ∇ [(x+ ω) ρ0] + Λ2ρ0 = 0, ρ1 = (x+ ω) ρ0. If ρ0(x) is the weight function
corresponding to the Kravchuk polynomials (4.5), we can use Proposition 4.1 with
q = x + ω and obtain Λ2(x) = x

z (x+ ω − 1) − (x+ ω) (x−N), z ̸= 0, where
we have also used (4.6). The functional L1 is a Christoffel transformation of L0
satisfying

∇ [(x+ ω) ρ1] + Λ2ρ1 = 0,
and using (4.14) we see that ρ1(x) is the weight function corresponding to the
generalized Kravchuk polynomials (4.13) with

a = ω, b = ω − 1.

4.4. Case III: deg(Λ3) = 2. If we take Λ3 = (x+ ω) (x+ a), ω ∈ C, then from
(4.19) it follows that

∇ [(x+ ω) (x+ a) ρ0] + Λ2ρ0 = 0, ρ1 = (x+ ω) (x+ a) ρ0.

If ρ0(x) is the weight function corresponding to the Meixner polynomials (4.3), we
can use Proposition 4.1 with q = x+ ω and obtain

Λ2(x) = x

z
(x+ ω − 1) − (x+ ω) (x+ a) , z ̸= 0,

were we have also used (4.4). The functional L1 is a Christoffel transformation of
L0 satisfying

∇ [(x+ ω) (x+ a) ρ1] + Λ2ρ1 = 0,
and using (4.16) we see that ρ1(x) is the weight function corresponding to the
generalized Hahn polynomials of type I (4.15) with

a1 = a, a2 = ω, b = ω − 1.

4.5. Case IV: deg(Λ3) = 3. If we take Λ3 = (x+ ω) (x−N) (x+ a), ω ∈ C,
N ∈ N, from (4.19) we deduce that

∇ [(x+ ω) (x−N) (x+ a) ρ0] + Λ2ρ0 = 0,
ρ1 = (x+ ω) (x−N) (x+ a) ρ0.

If ρ0(x) is the weight function corresponding to the Hahn polynomials (4.7), we
can use Proposition 4.1 with q = x+ ω and obtain

Λ2 = (N − a+ b− 1)x2 + (Nω +Na− aω + bω − b)x+Naω,

where we have also used (4.8). The functional L1 is a Christoffel transformation of
L0 satisfying

∇ [(x+ ω) (x−N) (x+ a) ρ1] + Λ2ρ1 = 0,
and using (4.18) we see that ρ1(x) is the weight function corresponding to the
generalized Hahn polynomials of type II (4.17) with

a1 = a, a2 = ω, b1 = b, b2 = ω − 1.
Note that Christoffel transforms of ∆-classical linear functionals have been an-

alyzed in [8] and [28].
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5. Conclusions and future directions

We have classified all ∆-coherent pairs of the second kind {L0, L1} and derived
the following results:

L0 L1

generalized Charlier generalized Charlier
Charlier generalized Meixner
Kravchuk generalized Kravchuk
Meixner generalized Hahn of type I
Hahn generalized Hahn of type II

In all cases, the functional L1 is a Christoffel transformation of L0, in agreement
with the general results obtained by Meijer [25] for the continuous case. Notice that
Christoffel transformations of discrete classical linear functionals play a key role in
the study of bispectral problems, as pointed out in some recent contributions by
A. J. Durán and co-workers (see [12] and [13]).

In a work in progress we are focussing our attention on the asymptotic formulas
for the polynomials orthogonal with respect to a Sobolev inner product associated
with a ∆c2 pair of measures. In particular, we are interested on the outer relative
asymptotics of such polynomials and the polynomials P (0)

n with the convenient
scaling in the variable and the analogue of the Mehler–Heine formula. The location
of their zeros is another interesting problem.

We must point out that in [5] the authors deal with asymptotic properties and
the location of zeros of discrete polynomials associated with a Sobolev inner product

⟨p, q⟩S = ⟨u0, pq⟩ + λ⟨u1,∆p∆q⟩,
where λ ≥ 0, (u0, u1) is a ∆-coherent pair of positive-definite linear functionals
and u1 is the Meixner linear functional. A limit relation between these orthogonal
polynomials and the Laguerre–Sobolev orthogonal polynomials which is analogous
to the one existing between Meixner and Laguerre polynomials in the Askey scheme
is deduced. Notice that Meixner polynomials are ∆ self-coherent, Thus, Mehler–
Heine type formulas and zeros of such polynomials when u0 = u1 is the Meixner
functional have been studied in [26]. Outer relative asymptotics and Plancherel–
Rotach asymptotics as well as limit relations are analyzed in [4]. Algebraic prop-
erties of such polynomials as well as the behavior of their zeros appear in [2].
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polynomials of Meixner type: Asymptotics and limit relation, J. Comput. Appl. Math. 178
no. 1-2 (2005), 21–36. DOI MR Zbl

[6] T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications
13, Gordon and Breach, New York-London-Paris, 1978. MR Zbl

[7] A. M. Delgado and F. Marcellán, Companion linear functionals and Sobolev inner prod-
ucts: A case study, Methods Appl. Anal. 11 no. 2 (2004), 237–266. DOI MR Zbl

[8] D. Dominici, Recurrence relations for the moments of discrete semiclassical orthogonal poly-
nomials, J. Class. Anal. 20 no. 2 (2022), 143–180. DOI MR Zbl

[9] D. Dominici and F. Marcellán, Discrete semiclassical orthogonal polynomials of class one,
Pacific J. Math. 268 no. 2 (2014), 389–411. DOI MR Zbl

[10] D. Dominici and F. Marcellán, Discrete semiclassical orthogonal polynomials of class 2, in
Orthogonal polynomials: Current trends and applications, SEMA SIMAI Springer Ser. 22,
Springer, Cham, 2021, pp. 103–169. DOI MR Zbl
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