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FINITE GROUPS IN WHICH SOME MAXIMAL SUBGROUPS
ARE MNP-GROUPS

PENGFEI GUO AND HUAGUO SHI

ABSTRACT. A finite group G is called an MNP-group if all maximal subgroups
of the Sylow subgroups of G are normal in G. The aim of this paper is to
give a necessary and sufficient condition for a group to be an MNP-group,
characterize the structure of finite groups whose maximal subgroups (respec-
tively, maximal subgroups of even order) are all MNP-groups, and determine
finite non-abelian simple groups whose second maximal subgroups (respec-
tively, maximal subgroups of even order) are all MNP-groups.

1. INTRODUCTION

All groups considered in this paper are finite and notions and notations are
standard.

One of the important topics in group theory is to characterize the structure of
groups by applying some properties of local subgroups. Since Srinivasan [12] gave
two sufficient conditions for supersolvability of groups by considering the maximal
subgroups of their Sylow subgroups, many scholars have studied this topic, and the
results have been frequently generalized. Among them, Walls [14] introduced the
term “MNP-group” for a group whose maximal subgroups of the Sylow subgroups
are normal, and provided its characterization. The first aim of this paper is to
give a necessary and sufficient condition for a group to be an MNP-group (see
Section 3).

Recently, Meng et al. [10] studied the structure of groups all of whose maximal
subgroups of even order are MS-groups (a group G is called an MS-group if all
minimal subgroups of G permute with every Sylow subgroup of G). Lu et al. [9]
studied the structure of groups by replacing MS-groups with SB-groups (a group G
is called an SB-group if every subgroup of G is either permutable with every Sylow
subgroup of G or abnormal in G).

The second aim of this paper is to investigate the structure of groups in which
some subgroups are MNP-groups. Since the property of being an MNP-group is
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not inherited in subgroups, we call a group G a sub-MNP-group if every maximal
subgroup of G is an MNP-group but G is not. It is obviously different from the
non-MNP-group whose all proper subgroups are MNP-groups. In Section 4, we
classify completely the sub-MNP-groups. In Section 5, we characterize groups all
of whose maximal subgroups of even order are MNP-groups. In Section 6, we
determine non-abelian simple groups all of whose second maximal subgroups of
even order (respectively, second maximal subgroups) are MNP-groups.

2. PRELIMINARY RESULTS

We give some necessary lemmas as shown below.

Lemma 2.1 ([I1l 5.2.15]). Let G be a group. If (G) < H < G and H/P(G) is
nilpotent, then H is nilpotent.

Lemma 2.2 ([I4] Theorem 6]). A group G is an MNP-group if and only if G =
H{xz), where H is a normal nilpotent Hall subgroup of G, and every generator of

every Sylow subgroup of {x) induces a power automorphism of order dividing a
prime in H/®(H).

Recall that Q1 (G) and Q2(G) denote the subgroups generated by all elements x
of the p-group G such that z? =1 and 2P’ = 1, respectively.

Lemma 2.3 ([7, IV, Satz 5.12]). Suppose that a p'-group H acts on a p-group G.

Let

(G 2

Q(G) _ 1( )7 p>2

Qs (G)7 p= 2.
If H acts trivially on Q(QG), then H acts trivially on G as well.
Lemma 2.4. Let G be an MNP-group and N 4 G. Then G/N s also an MNP-
group.
Proof. 1t is obviously true by checking. O
Lemma 2.5. Let G be a group, P € Syl,(G) and P {1 G for a prime p. Then
O(P) = 0(G)p.

Proof. Let B = ®(G), = PN ®(G). It is clear that B <G and ®(P) < B < P.
Now we prove B < ®(P). By the Schur—Zassenhaus theorem, there exists a
Hall p’-subgroup K of G and G = PK. Let M be a maximal subgroup of P. If
B <« M, then BM = P and G = PK = BMK = MK. However, it is obvious that
MK < G by order considerations, a contradiction that shows that B < ®(P). O

Lemma 2.6 ([12, Theorem 1]). If a group G is an MNP-group, then G is super-
solvable.

Lemma 2.7 ([I4, Lemma 1]). A Hall subgroup of an MNP-group must be an
MNP-group.

Lemma 2.8. Let G = PxQ be a sub-MNP-group with P = (x), where P € Syl (G)
and Q € Syl (G). Then P is of order p.
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Proof. If 2P # 1 and @ is non-cyclic, then (aP)@ is an MNP-group by hypothesis,
and so it is nilpotent by Lemma [2.2] However, Lemma [2.3] implies that G is
nilpotent, a contradiction. Hence P is of order p.

If 2P # 1 and Q = (y) is cyclic, then (x?)@ is an MNP-group by hypothesis,
and so (aP)(y?) is nilpotent. By Lemma P(y?) is nilpotent. Thus, G is an
MNP-group, a contradiction. Hence P is of order p. O

Lemma 2.9 ([0, Lemma 2.9]). If a g-group G of order ¢™ has a unique non-cyclic
maximal subgroup, then G is isomorphic to one of the following groups:

(i) Cyn-1xCq=(y, 2| Yt =21 =1, [y,z] = 1), where n > 3;
(il) Mg = (g, 2 | 97" =29 =1,[y,2z] =y7" ), wheren > 3, and n > 4 if
q=2.

Lemma 2.10 ([I3, Corollary 1]). Every minimal simple group is isomorphic to
one of the following groups:
(i) PSL(3,3);
(ii) the Suzuki group Sz(29), where q is an odd prime;
(iii) PSL(2,p), where p is a prime with p > 3 and p*> Z 1 (mod 5);
(iv) PSL(2,27), where q is a prime;
(v) PSL(2,3%), where q is an odd prime.

Lemma 2.11 ([5, Theorem 10.1.4]). If a group G has a fized-point-free automor-
phism of order 2, then G is abelian.

3. A NECESSARY AND SUFFICIENT CONDITION OF MNP-GROUPS
In this section, we give a necessary and sufficient condition of MNP-groups.

Theorem 3.1. A group G is an MNP-group if and only if G/®(G) is an MNP-
group.

Proof. This necessity is clear by Lemma

Now we prove the sufficiency.

If G/®(G) is an MNP-group, then assume that G/®(G) = H, /®(G)-K/®(G) by
Lemma 2.2 where H; /®(G) is a nilpotent normal Hall m-subgroup of G/®(G), and
K/®(G) is a cyclic Hall #’-subgroup of G/®(G). By Lemma H; is nilpotent,
and so there exists a nilpotent normal Hall m-subgroup H of H; such that H is
characteristic in Hy and H; < G. Furthermore, H < (G and it is also a normal Hall
m-subgroup of G.

Let K/9(G) = (y(G)) = (1)(G)/®(G) = (y)/(y) N B(G) be a Hall '~
subgroup of G/®(G). Now G = H1K = HK = (H,y,®(G)) = H(y). If the order
of 4 contains both m-number and 7/-number, then there exists a Hall 7’-subgroup
(x) of (y) such that it is also a n’-Hall subgroup of G. Thus, G = H(y) = H{x).

Let p be a prime such that p | |[H| and let P be a Sylow p-subgroup of H.
Then P < G and P is the unique Sylow p-subgroup of G. By Lemma [2.5] we have
that PN ®(G) = ®(P). If M is a maximal subgroup of P, then PN ®(G) < M
and M®(G)/®(G) is a maximal subgroup of P®(G)/®(G). Therefore M®(G) <
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G and M is a Sylow p-subgroup of M®(G). By the Frattini argument, G =
Ne(M)YM®(G) = Ng(M)M = Ng(M) and M < G.

Let p be a prime dividing |(z)| and let P be a Sylow p-subgroup of G. Then
P is cyclic and the unique maximal subgroup of P is ®(P) = M. Now we have
PN®(G) < M, and as before, M <4 G. Consequently, G is an MNP-group. O

4. A COMPLETE CLASSIFICATION OF SUB-MNP-GROUPS

In this section, we classify groups with the property that all their maximal
subgroups are MNP-groups.

Theorem 4.1. Let G be a sub-MNP-group. Then

(I) G =P xQ, where P € Syl,(G) and Q € Syl (G), with p # q, |G| = p*¢"
and at least one of a and b is greater than 1;
(IT) at least one of P and Q is cyclic.

Proof. By hypothesis and Lemma G is either supersolvable or minimal non-
supersolvable. So G is solvable and it has a normal Sylow p-subgroup P by a result
in [4]. Let {Py, Ps,...,Ps} be a Sylow basis of G. Without loss of generality,
assume that the maximal subgroup P;; of P; is not normal in G by hypothesis.
If s > 3, then PiP; (j = 2,...,s) are MNP-groups by Lemma Thus, Py is
normal in P, P;, and so Pi; is normal in G. This contradiction leads to |7(G)| = 2
and (I) holds.

Assume that neither P nor @ is cyclic, and let @1, Q2 be two maximal subgroups
of @ and H be any maximal subgroup of P. Then PQ; and PQ, are MNP-groups
by hypothesis, and so H is normal in not only PQ; but also PQs. Thus, H is
normal in G. The arbitrariness of H induces that AQ and BQ are MNP-groups by
hypothesis for two maximal subgroups A and B of P. By Lemma Q is normal
in G = (A, B,Q), a contradiction. Hence either P or @ is cyclic and (IT) holds. O

Theorem 4.2. Let p and q be distinct prime divisors of the order of a group G,
P € Syl,(G) and Q € Syl (G). Then G is a sub-MNP-group if and only if G is
isomorphic to one of the following types:
M) G=(x,y|a? =y =1,y ‘oy = a°), where q | p—1, i 1 (mod p),
i =1 (mod p), n>2and 1 <i < p.
M) G = {z,y | 2?1 =y =1,y oy = 2°), where ¢ | p—1, i =1 (mod q),
19 =1 (mod p) with 1 <i < pq.
() G = (z,y|2* =1, y?> = 2?°, y~ Loy = 271) with p # 2.
(V) G = (z,y,2 | 2P = yq"—l =27 =1, yilxy = xiv [z,2] = 1, [y,2] = 1),
where ¢ |p—1,17=1 (mod p), 1 <i<p andn > 3.
(V) G = <m7y,z | zP = yq"*l =z1=1, y_l‘ry = xi: [xvz] =1, [y,z] = yq"*2>’
where ¢ [p—1,i7=1 (mod p), 1 <i<p,n>3,andn >4 if g=2.
(VI) G = P xQ, where P/®(P) = R/®(P) x K/®(P) = (a,b) is an elementary
abelian p-group of order p*, Q = (y) is cyclic of order q" with q | p — 1,
and y induces two power automorphisms of order dividing q in R/P(R)
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and K/®(K), respectively. Define a¥ = a*, b¥ = b/, [P,y9] =1 and r > 1,
where i Z j (mod p) and 0 < i,j < p.

(VII) G = P x Q, where Q = (y) is cyclic of order ¢" > 1, with ¢t p— 1, and
P is an irreducible Q-module over the field of p elements with kernel (y?)
n Q.

(VIII) G = P xQ, where P is a non-abelian special p-group of rank 2m, the order
of p modulo q being 2m, Q = (y) is cyclic of order ¢" > 1, y induces an au-
tomorphism in P such that P/®(P) is a faithful and irreducible Q-module,
and y centralizes ®(P). Furthermore, |P/®(P)| = p*™ and |P'| < p™.

(IX) G =P xQ, where P = (ag, a1, ..,aq-1) i an elementary abelian p-group
of order p%, Q = (y) is cyclic of order ¢", q || p— 1 and r > 1. Define
af = aji1 for0 < j <q—1andal_, = af, wherei is a primitive q-th root
of unity modulo p.

(X) G =P x Q, where P = (ag,ay) is an extra-special group of order p* with
exponent p, Q = (y) is a cyclic group of order 2" with 2 || p—1 and r > 1.
Define af = a; and a¥ = ag 'z, where x € ([ag, a;]).

Proof. Assume that G is a sub-MNP-group, let G = P x @), and at least one of P
and @ is cyclic by Theorem where P € Syl,(G) and Q € Syl (G).
We discuss from the following four types.

(1) Assume that P and @ are cyclic. By Lemma if P = (x), then a? = 1.
By hypothesis, @ = (y) and (y?) is not normal in G and <yq2> is normal in (x)(y?).

Conjugation in P by (y) yields a nontrivial homomorphism from @ to Aut(P).
Hence y~txy = x* where 1 < i < p. Since Aut(P) has order p — 1 and y yields a
homomorphism of order multiple of ¢, we have that ¢ | p— 1. Moreover, (y9) is not
normal and (y? ) is normal in (z)(y?). Hence 2** # x and ' = z. It follows that
1?7 £ 1 (mod p) and i’ =1 (mod p). Therefore, G is of type (I).

(2) Assume that P is cyclic and @ is non-cyclic. By Lemma P is of order p.
If @ has two non-cyclic maximal subgroups @1 and @2, then PQ; and PQs are
both nilpotent by Lemma 2.2 and so @ = Q1Q2 is normal in G, a contradiction.
Therefore, every maximal subgroup of @ is cyclic or ) has a unique non-cyclic
maximal subgroup.

Case 1. Every maximal subgroup of @ is cyclic.

It is clear that @ is either elementary abelian of order ¢2 or the quaternion group
of order 8.

Let Q be an elementary abelian group of order ¢2. Since Aut(P) is a cyclic group
of order p — 1, we have that Q/Cq(z) is a cyclic group of order ¢ | p — 1. There
exists a ¢ Cq(z) and Cg(z) = (b). Hence Q = (a) x (b) and G is of type (II).

Let @ be the quaternion group of order 8. Since Q/Cq(x) is a cyclic group, we
have that QQ/Cq(z) has order 2 | p — 1. Hence Cg(x) = (a) is a cyclic subgroup
of @ of order 4 and p # 2. There exists b € Q of order 4 such that z* = 27!, and
also a® = a~'. Hence the elements za and b generate G and G is of type (III).

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



428 PENGFEI GUO AND HUAGUO SHI

Case 2. Let Q = (a) x (b) such that |{a)| = ¢"~! and |[(b)| = ¢, and P = (z). Since
Aut(P) is a cyclic group of order p — 1, we have that QQ/Cq(z) is a cyclic group of
order ¢" | p— 1.

Since (a)P is an MNP-group, we have that a? € Cg(z) and Q/Cq(x) is a cyclic
group of order g. Moreover, (a?)(b)P is an MNP-group. Thus (a9)(b) is normal in
(a?)(b)P. Hence b € Cg(x). Consequently, G is of type (IV) or (V).

(3) Assume that P is non-cyclic, @ = (y) and that G is supersolvable.

Let 1<+ <9®(P)AN<---<<R<P<--- <G be a principal series of G. Since
N/®(P) £ ®(G)/®(P), there exists a maximal subgroup M of G such that MN =
G. By Baer’s theorem [3] Theorem 1.1.7], the group G/Coreq(N) has a unique min-
imal normal subgroup N Coreq(M)/Coreq(M) and Cq(NCoreq(M)/Coreq(M)) =
NCoreg(M). Since P/®(P) is an elementary abelian group, it is clear that
Ca(NCoreg(M)/Coreg(M)) = Co(N/®(P)) > P. Then K = PN Coreg(M) is a
normal subgroup of G and |P : K| = |PCoreg(M) : Coreg(M)| = |NCoreg(M) :
Coreg(M)| = |N : ®(P)| = p. By hypothesis, R(y) and K(y) are both MNP-
groups, and so (y9) is normal in G = (R, K, y).

Now we prove s = 2. Without loss of generality, assume s = 3 and let P/®(P) =
(a1) x {az) x (az), where ay,as € R, as,a3 € K. Since R(y) is an MNP-group, we
have (r®(R))Y = r'®(R) by Lemmafor every r € R\®(R), where [ is a positive
integer. Thus, (r®(P))Y = r'®(P) for every r € R\®(P). Similarly, (k®(P))Y =
Em®(P) for every k € K\®(P), where m is a positive integer. Furthermore,
ab®(P) = (ax®(P))Y = a’®(P), and so | = m (mod p). Hence (a,®(P))Y =
al, ®(P) for n = 1,2,3. By Lemma G is an MNP-group, this contradiction
leads to s = 2.

Now we let P/®(P) = R/®(P) x K/®(P) = (a) x (b), where a € R,b € K,
a¥ = a' and bY = 7. Clearly, i # j (mod p), P has only two maximal subgroups
R and K which are normal in G. So G is of type (VI).

(4) Assume that G is minimal non-supersolvable and @ = (y) is cyclic.

It is easy to prove that G has only two kinds of maximal subgroups P{y?)9
and ®(P)(y)9 for g € G by applying the property of minimal non-supersolvable
groups [4].

Case 1. If G is also minimal non-nilpotent, then G is of either type (VII) or type
(VIII) by [1, Theorem 3.

Case 2. If G is not minimal non-nilpotent with P abelian, by applying [2] Theorems
9 and 10], assume that G = PQ, where P = (ag, a1, . .., aq—1) is elementary abelian
of order p?, Q = () is cyclic of order ¢", ¢/ is the highest power of ¢ dividing p — 1
and r > f > 1. Define af = ajy, for 0 < j < ¢—1and a)_; = af, where i is a
primitive ¢f-th root of unity modulo p.

By hypothesis and Lemma [2.2] y? induces a power automorphism of order g¢
2

in P. Hence, a} = agq = ap. Thus i =1 (mod p) and f = 1. So G is of type
(IX).
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Case 3. If G is not minimal non-nilpotent with P non-abelian, by applying [2]
Theorems 9 and 10], assume that G = PQ such that P = (ag,a1) is an extra-
special group of order p? with exponent p, Q = (y) is cyclic of order 2" with 2/ the
largest power of 2 dividing p— 1 and r > f > 1, and a} = a; and af = a}x, where
x € {[ap, a1]) and 4 is a primitive 2/-th root of unity modulo p.

Since ag2 = a} = a}x # ag, P(y?) is non-nilpotent. By hypothesis, [z,y?] = 1
4 . . . .
and a! = ai " = . Thus, a?ffl = (2171, Hence i = —1 (mod p). By
4 . . .

computations, af = ay, [a07a1]y2 = [a},a}] = [ao,al]22 = [ap,a1]. So G is of
type (X).

Conversely, it is clear that a group satisfying one of the types (I)-(X) is a sub-
MNP-group. O

5. GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS OF EVEN ORDER ARE
MNP-GROUPS

In this section, we determine groups with the property that all of their maximal
subgroups of even order are MNP-groups.

Theorem 5.1. Let G be a group of even order. Suppose that all maximal subgroups
of G of even order are MNP-groups. Then G is solvable.

Proof. Let G be a counterexample of minimal order. Then we have that G is a
minimal simple group. If 1 < N < G, then G/N satisfies the hypotheses. Hence
G/N is a solvable group by the minimality of G. If N does not have even order,
then NV is solvable and G is solvable. If N has even order, there is a maximal
subgroup M of G whose order is even and such that N < M. By Lemma M is
supersolvable, and then N is solvable and so G is solvable, a contradiction. Hence
G is a minimal simple group.

Now we claim that G is not isomorphic to one of the simple groups listed in
Lemma Note that every proper subgroup of G of even order must be super-
solvable by Lemma but each of PSL(2,p), PSL(2,3%) and PSL(3,3) contains
a subgroup isomorphic to a non-supersolvable alternating group A, of degree 4, a
contradiction. If G is isomorphic to PSL(2,29) or Sz(29), then G is a Zassenhaus
group of odd degree and the stabilizer of a point is a Frobenius group with kernel
a 2-group. This implies that G has a non-supersolvable subgroup of even order, a
contradiction. (]

Theorem 5.2. Let G be a non-MNP-group of even order. If all maximal subgroups
of G of even order are MNP-groups, then |m(G)| < 3.

Proof. By Theorem G is solvable. Let n(G) = {p1,p2,...,ps} with p; = 2
and let {Py, P,,..., Ps} be a Sylow basis of G. If G is a sub-MNP-group, then
|7(G)| = 2 by Theorem [4.1}

Now we assume that G is not a sub-MNP-group. By hypothesis, G possesses a
maximal subgroup M of odd order which is not an MNP-group. Without loss of
generality, let M = P --- Ps. Then there exists a positive integer j and a maximal
subgroup Pj; of P; such that Pj; is not normal in M. Without loss of generality,
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we can let j =s. If s >4, then PP, P; (1 =2,...,s—1) is a proper Hall subgroup
of G. By hypothesis and Lemma@ Pj1 is normal in P P; P, and so Pj; is normal
in G= PP, Ps, a contradiction. Hence |7(G)| < 3. O

We first determine the non-MNP-groups having two prime divisors.

Theorem 5.3. Let G be a non-MNP-group and w(G) = {2,p}. Then all mazimal
subgroups of G of even order are MNP-groups if and only if G is a sub-MNP-group.

Proof. Clearly, the maximal subgroup of G of odd order (if exists) is a Sylow
subgroup, and so it is an MNP-group. Therefore, G is a sub-MNP-group. The rest
is clear. O

We next determine the non-MNP-groups having three prime divisors.

Theorem 5.4. Let G be a non-MNP-group of even order and |mw(G)| = 3, where
P € Syl,(G), Q € Syl,(G) and R € Syly(G) with p > q > r = 2. Suppose that all
mazximal subgroups of G of even order are MNP-groups. Then R is of order 2 and
one of the following statements holds:

(I) G =M x R, where M is a sub-MNP-group;

(II) G=MxR=(PxQ)xRwithl < Cpy(R) < M, where M is a sub-
MNP-group with Q cyclic, R induces two power automorphisms of order
dividing 2 in P/®(P) and Q, respectively;

(III) G =M xR = (Q X P)x R with1 < Cyp(R) < M, where M is a mini-
mal non-nilpotent group with @ non-cyclic, R induces two power automor-
phisms of order dividing 2 in P and Q/®(Q), respectively;

(IV) G=MxR=(PxQ)xR with Cps(R) = Q, where M is a sub-MNP-group
with P of order p and @ non-cyclic.

Proof. Since |7(G)| = 3, G is not a sub-MNP-group by Theorem Then there
exists a maximal subgroup M of G of odd order such that M is not an MNP-group
by hypothesis. By Theorem G is solvable. Then we can let M be a Hall
2'-subgroup of G and G = M R.

We first prove that R is of order 2 and M is the normal 2-complement from two
cases as follows.

Case 1. O2(G) # 1.

If O2(G) < R, then M < MO2(G) < MR = G, which contradicts that M is
a maximal subgroup of G. So O3(G) = R is the normal Sylow 2-subgroup of G.
Note that M is non-nilpotent, if |R| > 2, then M;R is a maximal subgroup of G
of even order for any maximal subgroup M; of M. By hypothesis, M1 R is an
MNP-group, and so M1 R = M; x R by Lemma Furthermore, MR = M x R.
For any nontrivial maximal subgroup R; of R, it makes M < MRy < MR=G, a
contradiction. So R is of order 2.
Case 2. O2(G) = 1.

Since O3(G) = 1 and the solvability of G, we have Oy (G) # 1.

Let N/O2(G) be a minimal normal subgroup of G/Oz/(G). Since N/Ox(G)
has even order and Oy (G) < M, we have that MN = G and M NN = O« (G).
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Hence N/Oz/(G) is a Sylow subgroup of G/O«(G), RO2(G) = N and G =
Ng(R)N = Ng(R)O2 (G). Let H be a Hall 2’-subgroup of Ng(R). By hypothesis
and Lemma H is normal in Ng(R), and R1H is a subgroup of G for every
maximal subgroup Ry of R. So G = R(HO2(G)) and let M = HO5/(G). More-
over, we can see that R{HO«(G) = R{M > M if Ry > 1, which implies that
G = R M. Tt follows that R = R;. This contradiction induces that |R| = 2 and so
M is the normal 2-complement.

We next complete the rest of the proof as follows.

Suppose Cp(R) = 1. Then an automorphism of R acting on M is both of
order 2 and fixed point-free. Lemma [2.11]implies that M is abelian, and so it is an
MNP-group. This contradiction leads to Cas(R) > 1.

If Cy(R) = M, then MR =M x R, and MR is an MNP-group by hypothesis
for any maximal subgroup M; of M. By Lemma M is an MNP-group, and
so M is a sub-MNP-group. Therefore, G is of type (I).

If 1 < Cy(R) < M, then PR and QR are MNP-groups by hypothesis and
Lemma [2.7] and so R induces two power automorphisms of order dividing 2 in
P/®(P) and Q/P(Q), respectively by Lemma

Let 1<--- < K < PQ <G be a principal series of G. Since G is solvable, one
of P and @ is contained in K, and there exists a maximal subgroup H of G of
even order such that KR < H. By hypothesis and Lemma [2.6] H is supersolvable.
If @ < K, then Q is either cyclic or normal in K by hypothesis and Lemma [2.2}
Furthermore, if @ is normal in K, then @ is normal in G as @ is characteristic in
K and K 9 G. Similarly, if P < K, then P is normal in G by the supersolvability
of K. We discuss from three cases as shown below.

(1) @ is cyclic.

Clearly, P < G. We prove that PQ is a sub-MNP-group.

By hypothesis, P®(Q)R is an MNP-group, and so P®(Q) is an MNP-group by
Lemma Let P1Q < PQ with P, < P. Clearly, ®(P) < P; and PR is an
MNP-group, so R < Ng(P1). Thus, P1QR is an MNP-group by hypothesis, and
so P;@ is an MNP-group by Lemma Therefore, PQ is a sub-MNP-group and
G is of type (II).

(2) @ is non-cyclic and @ < G.

If P is non-cyclic, then Pi@QR is an MNP-group by hypothesis for any maximal
subgroup P; of P. By Lemma [2.7] and Lemma [2.2] P;Q is nilpotent, and so PQ
is nilpotent, a contradiction. Thus, P is cyclic and ®(P)Q is nilpotent as the fact
O(P)QR is an MNP-group. Let PQ; < PQ with @1 < Q. Clearly, ®(Q) < Q1
and PQ;R is a maximal subgroup of G of even order. By hypothesis, PQ1 R is
an MNP-group, so it is supersolvable by Lemma [2.6] Hence P < PQ;. It follows
that PQ; is nilpotent from the fact @)1 is subnormal in G, and so PQ is minimal
non-nilpotent. Thus, G is of type (III).

(3) P is normal in G.

If @ is cyclic, then G is of type (II) as the arguments in (1).
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If @ is non-cyclic, then PQ1 R, PQsR are MNP-groups by hypothesis for two
different maximal subgroups @1, Q2 of . So P; is normal in G = (PQ1 R, PQ2R)
for any maximal subgroup P; of P.

We first prove that P is cyclic. If not, then PLQR, P,QR are MNP-groups
by hypothesis for two different maximal subgroups P;, P> of P. It follows that
Q@ is normal in G = (PIQR, P,QR) by Lemma and so PQ is nilpotent, a
contradiction.

We next prove that P is of order p. If not, then ;(P) < ®(P) and ®(P)QR
is an MNP-group by hypothesis, so ®(P)Q is nilpotent by Lemma Therefore,
PQ is nilpotent by Lemma [2.3] a contradiction.

Obviously, PQ1 R is an MNP-group by hypothesis, and so PQ; is an MNP-group
by Lemma [2.7] for any maximal subgroup Q1 of Q. Hence PQ is a sub-MNP-group.

By examining Theorem M is isomorphic to one of the types (II), (IV),
(V) in Theorem n and so there exists a maximal subgroup PQ 1R of G such
that PQ1R is an MNP-group by hypothesis, and P@Q; is non-nilpotent for some
maximal subgroup @1 of Q. By Lemma [2.2] again, Q1 R is nilpotent. Furthermore,
QR is nilpotent by the fact that QR is an MNP-group. Hence G is of type (IV). O

6. SIMPLE GROUPS ALL OF WHOSE SECOND MAXIMAL SUBGROUPS OF EVEN
ORDER ARE MNP-GROUPS

In this section, we determine non-abelian simple groups all of whose second
maximal subgroups of even order (respectively, maximal subgroups) are MNP-
groups.

Theorem 6.1. Let G be a group all of whose second mazximal subgroups of even
order are MNP-groups. Then G is a non-abelian simple group if and only if G is
isomorphic to one of the following types:
(1) As;
(1) PSL(2,p), where p is a prime with p > 13, 51 p* —1, 16 1 p> — 1, and only
one of (p+1)/4 and (p — 1)/4 is a prime;
(II1) PSL(2,29), where q is an odd prime and 29 — 1 is a prime;
(IV) PSL(2,3%), where q is an odd prime and (39 4+ 1)/4 is a prime.

Proof. Suppose that G is a non-abelian simple group. Let M be a maximal sub-
group of G. If M is a group of odd order, then M is solvable. If M is a group
of even order, then M is either an MNP-group or a non-MNP-group all of whose
maximal subgroups of even order are MNP-groups by hypothesis. By Lemma [2.6
and Theorem M is solvable. Hence all proper subgroups of G are solvable. So
G is a minimal simple group. By Lemma we know that G is isomorphic to
one of the following simple groups:

(i) PSL(3,3);

(ii) the Suzuki group Sz(27), where ¢ is an odd prime;
(iii) PSL(2,p), where p is a prime with p > 3 and p? £ 1 (mod 5);
(iv) PSL(2,29), where ¢ is a prime;
(v) PSL(2,3%), where ¢ is an odd prime.
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Case 1. G % PSL(3,3).

Suppose G = PSL(3,3). Then G contains a maximal subgroup which is isomor-
phic to S4, and so G contains a second maximal subgroup isomorphic to A4. But
Ay is not an MNP-group, a contradiction. Hence G % PSL(3, 3).

Case 2. G % Sz(2%), where ¢ is an odd prime.

Suppose G = Sz(29). Then G contains a Frobenius maximal subgroup M with
a cyclic complement H of order 27 — 1 and kernel K of order 229. Since K is non-
abelian, ®(K)H is contained in a second maximal subgroup N of G of even order
which is an MNP-group. By Lemma N is supersolvable, and so ®(K)H is
supersolvable. Hence ®(K)H is nilpotent, a contradiction. So G is not isomorphic
to Sz(29).

Case 3. G = A5 or G = PSL(2,p), where p is a prime with p > 13, 5 p* — 1,
16 1 p? — 1, and only one of (p+1)/4 and (p — 1)/4 is a prime.

Suppose G = PSL(2,p). If p = 5, then G & Aj, so G is of type (I). If p? =
1 (mod 16), then G has a maximal subgroup which is isomorphic to Sy by [8]
Corollary 2.2], and so A4 is a second maximal subgroup of G which is not an
MNP-group, a contradiction. If p > 13, then G has maximal subgroups which
are isomorphic to dihedral groups D,_; and D,i1, a Frobenius group of order
p(p—1)/2, A4 by [8, Corollary 2.2]. Furthermore, 4 must divide the order of either
of Dp_1 or Dy11, say A. Clearly, the Sylow 2-subgroup of A is non-cyclic and A is
not an MNP-group by Lemma so A is either a sub-MNP-group or a group all of
whose maximal subgroups of even order are MNP-groups by hypothesis. Note that
4| |A], then A must be a sub-MNP-group by Theorems |5.3| and By examining
Theorem [4.2] G is of type (II).

Case 4. G = A5 or G =2 PSL(2,29), where ¢ and 29 — 1 are odd primes.

Suppose G = PSL(2,27). Then by [8, Corollary 2.2], G has maximal subgroups:
the dihedral groups of order 2(279 £ 1); the Frobenius group H of order 27(29 — 1);
A, if ¢ = 2. By arguments similar to those in Case 3, H must be a sub-MNP-group
if ¢ > 2. By examining Theorem we have that 29 — 1 must be a prime. So G
is of type (III). Clearly, G = A5 if ¢ = 2, so G is of type (I).

Case 5. G = PSL(2,3%), where (374 1)/4 is a prime.

Suppose G = PSL(2,37). Then by [8, Corollary 2.2], G has maximal subgroups:
the dihedral groups of order 37+ 1; the normalizer H of the Sylow 3-subgroup of G
of order 37(37—1)/2; A4. Clearly, 4 | 37+1, 37(37—1)/2 is an odd number and the
dihedral group of order 39 — 1 is an MNP-group, so we only consider the dihedral
group D of order 37 + 1. By arguments similar to those in Case 3, D must be a
sub-MNP-group. By examining Theorem (39+1)/4 is a prime, so G is of type
(Iv).

Conversely, it is clear that a group of one of the types (I)—-(IV) is satisfied with
the condition of this theorem. O
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Corollary 6.2. Let G be a group all of whose second mazimal subgroups are MNP-
groups. Then G is a non-abelian simple group if and only if G is isomorphic to
one of the following types:

(1) As;

(I1) PSL(2,p), where p is a prime with p > 13, 54 p?> — 1, 16 { p> — 1, only
one of (p+1)/4 and (p —1)/4 is a prime, and (p — 1)/2 is square-free if
(p+1)/4 is a prime;

(IIT) PSL(2,29), where q is an odd prime, and 29 — 1 is a prime;
(IV) PSL(2,3%), where q is an odd prime, (39+1)/4 and (37 —1)/2 are primes.

Proof. The proof is similar to that of Theorem O
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