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FINITE GROUPS IN WHICH SOME MAXIMAL SUBGROUPS
ARE MNP-GROUPS

PENGFEI GUO AND HUAGUO SHI

Abstract. A finite group G is called an MNP-group if all maximal subgroups
of the Sylow subgroups of G are normal in G. The aim of this paper is to
give a necessary and sufficient condition for a group to be an MNP-group,
characterize the structure of finite groups whose maximal subgroups (respec-
tively, maximal subgroups of even order) are all MNP-groups, and determine
finite non-abelian simple groups whose second maximal subgroups (respec-
tively, maximal subgroups of even order) are all MNP-groups.

1. Introduction

All groups considered in this paper are finite and notions and notations are
standard.

One of the important topics in group theory is to characterize the structure of
groups by applying some properties of local subgroups. Since Srinivasan [12] gave
two sufficient conditions for supersolvability of groups by considering the maximal
subgroups of their Sylow subgroups, many scholars have studied this topic, and the
results have been frequently generalized. Among them, Walls [14] introduced the
term “MNP-group” for a group whose maximal subgroups of the Sylow subgroups
are normal, and provided its characterization. The first aim of this paper is to
give a necessary and sufficient condition for a group to be an MNP-group (see
Section 3).

Recently, Meng et al. [10] studied the structure of groups all of whose maximal
subgroups of even order are MS-groups (a group G is called an MS-group if all
minimal subgroups of G permute with every Sylow subgroup of G). Lu et al. [9]
studied the structure of groups by replacing MS-groups with SB-groups (a group G
is called an SB-group if every subgroup of G is either permutable with every Sylow
subgroup of G or abnormal in G).

The second aim of this paper is to investigate the structure of groups in which
some subgroups are MNP-groups. Since the property of being an MNP-group is
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not inherited in subgroups, we call a group G a sub-MNP-group if every maximal
subgroup of G is an MNP-group but G is not. It is obviously different from the
non-MNP-group whose all proper subgroups are MNP-groups. In Section 4, we
classify completely the sub-MNP-groups. In Section 5, we characterize groups all
of whose maximal subgroups of even order are MNP-groups. In Section 6, we
determine non-abelian simple groups all of whose second maximal subgroups of
even order (respectively, second maximal subgroups) are MNP-groups.

2. Preliminary results

We give some necessary lemmas as shown below.

Lemma 2.1 ([11, 5.2.15]). Let G be a group. If Φ(G) ≤ H ⊴ G and H/Φ(G) is
nilpotent, then H is nilpotent.

Lemma 2.2 ([14, Theorem 6]). A group G is an MNP-group if and only if G =
H⟨x⟩, where H is a normal nilpotent Hall subgroup of G, and every generator of
every Sylow subgroup of ⟨x⟩ induces a power automorphism of order dividing a
prime in H/Φ(H).

Recall that Ω1(G) and Ω2(G) denote the subgroups generated by all elements x

of the p-group G such that xp = 1 and xp2 = 1, respectively.

Lemma 2.3 ([7, IV, Satz 5.12]). Suppose that a p′-group H acts on a p-group G.
Let

Ω(G) =
{

Ω1(G), p > 2,

Ω2(G), p = 2.

If H acts trivially on Ω(G), then H acts trivially on G as well.

Lemma 2.4. Let G be an MNP-group and N ⊴ G. Then G/N is also an MNP-
group.

Proof. It is obviously true by checking. □

Lemma 2.5. Let G be a group, P ∈ Sylp(G) and P ⊴ G for a prime p. Then
Φ(P ) = Φ(G)p.

Proof. Let B = Φ(G)p = P ∩ Φ(G). It is clear that B ⊴ G and Φ(P ) ≤ B ≤ P .
Now we prove B ≤ Φ(P ). By the Schur–Zassenhaus theorem, there exists a

Hall p′-subgroup K of G and G = PK. Let M be a maximal subgroup of P . If
B ≰ M , then BM = P and G = PK = BMK = MK. However, it is obvious that
MK < G by order considerations, a contradiction that shows that B ≤ Φ(P ). □

Lemma 2.6 ([12, Theorem 1]). If a group G is an MNP-group, then G is super-
solvable.

Lemma 2.7 ([14, Lemma 1]). A Hall subgroup of an MNP-group must be an
MNP-group.

Lemma 2.8. Let G = P⋊Q be a sub-MNP-group with P = ⟨x⟩, where P ∈ Sylp(G)
and Q ∈ Sylq(G). Then P is of order p.
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Proof. If xp ̸= 1 and Q is non-cyclic, then ⟨xp⟩Q is an MNP-group by hypothesis,
and so it is nilpotent by Lemma 2.2. However, Lemma 2.3 implies that G is
nilpotent, a contradiction. Hence P is of order p.

If xp ̸= 1 and Q = ⟨y⟩ is cyclic, then ⟨xp⟩Q is an MNP-group by hypothesis,
and so ⟨xp⟩⟨yq⟩ is nilpotent. By Lemma 2.3, P ⟨yq⟩ is nilpotent. Thus, G is an
MNP-group, a contradiction. Hence P is of order p. □

Lemma 2.9 ([6, Lemma 2.9]). If a q-group G of order qn has a unique non-cyclic
maximal subgroup, then G is isomorphic to one of the following groups:

(i) Cqn−1 × Cq = ⟨y, z | yqn−1 = zq = 1, [y, z] = 1⟩, where n ≥ 3;
(ii) Mqn = ⟨y, z | yqn−1 = zq = 1, [y, z] = yqn−2⟩, where n ≥ 3, and n ≥ 4 if

q = 2.

Lemma 2.10 ([13, Corollary 1]). Every minimal simple group is isomorphic to
one of the following groups:

(i) PSL(3, 3);
(ii) the Suzuki group Sz(2q), where q is an odd prime;
(iii) PSL(2, p), where p is a prime with p > 3 and p2 ̸≡ 1 (mod 5);
(iv) PSL(2, 2q), where q is a prime;
(v) PSL(2, 3q), where q is an odd prime.

Lemma 2.11 ([5, Theorem 10.1.4]). If a group G has a fixed-point-free automor-
phism of order 2, then G is abelian.

3. A necessary and sufficient condition of MNP-groups

In this section, we give a necessary and sufficient condition of MNP-groups.

Theorem 3.1. A group G is an MNP-group if and only if G/Φ(G) is an MNP-
group.

Proof. This necessity is clear by Lemma 2.4.
Now we prove the sufficiency.
If G/Φ(G) is an MNP-group, then assume that G/Φ(G) = H1/Φ(G)·K/Φ(G) by

Lemma 2.2, where H1/Φ(G) is a nilpotent normal Hall π-subgroup of G/Φ(G), and
K/Φ(G) is a cyclic Hall π′-subgroup of G/Φ(G). By Lemma 2.1, H1 is nilpotent,
and so there exists a nilpotent normal Hall π-subgroup H of H1 such that H is
characteristic in H1 and H1 ⊴ G. Furthermore, H ⊴ G and it is also a normal Hall
π-subgroup of G.

Let K/Φ(G) = ⟨yΦ(G)⟩ = ⟨y⟩Φ(G)/Φ(G) ∼= ⟨y⟩/⟨y⟩ ∩ Φ(G) be a Hall π′-
subgroup of G/Φ(G). Now G = H1K = HK = ⟨H, y, Φ(G)⟩ = H⟨y⟩. If the order
of y contains both π-number and π′-number, then there exists a Hall π′-subgroup
⟨x⟩ of ⟨y⟩ such that it is also a π′-Hall subgroup of G. Thus, G = H⟨y⟩ = H⟨x⟩.

Let p be a prime such that p | |H| and let P be a Sylow p-subgroup of H.
Then P ⊴ G and P is the unique Sylow p-subgroup of G. By Lemma 2.5, we have
that P ∩ Φ(G) = Φ(P ). If M is a maximal subgroup of P , then P ∩ Φ(G) ≤ M
and MΦ(G)/Φ(G) is a maximal subgroup of PΦ(G)/Φ(G). Therefore MΦ(G) ⊴

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



426 PENGFEI GUO AND HUAGUO SHI

G and M is a Sylow p-subgroup of MΦ(G). By the Frattini argument, G =
NG(M)MΦ(G) = NG(M)M = NG(M) and M ⊴ G.

Let p be a prime dividing |⟨x⟩| and let P be a Sylow p-subgroup of G. Then
P is cyclic and the unique maximal subgroup of P is Φ(P ) = M . Now we have
P ∩ Φ(G) ≤ M , and as before, M ⊴ G. Consequently, G is an MNP-group. □

4. A complete classification of sub-MNP-groups

In this section, we classify groups with the property that all their maximal
subgroups are MNP-groups.

Theorem 4.1. Let G be a sub-MNP-group. Then
(I) G = P ⋊ Q, where P ∈ Sylp(G) and Q ∈ Sylq(G), with p ̸= q, |G| = paqb

and at least one of a and b is greater than 1;
(II) at least one of P and Q is cyclic.

Proof. By hypothesis and Lemma 2.6, G is either supersolvable or minimal non-
supersolvable. So G is solvable and it has a normal Sylow p-subgroup P by a result
in [4]. Let {P1, P2, . . . , Ps} be a Sylow basis of G. Without loss of generality,
assume that the maximal subgroup P11 of P1 is not normal in G by hypothesis.
If s ≥ 3, then P1Pj (j = 2, . . . , s) are MNP-groups by Lemma 2.7. Thus, P11 is
normal in P1Pj , and so P11 is normal in G. This contradiction leads to |π(G)| = 2
and (I) holds.

Assume that neither P nor Q is cyclic, and let Q1, Q2 be two maximal subgroups
of Q and H be any maximal subgroup of P . Then PQ1 and PQ2 are MNP-groups
by hypothesis, and so H is normal in not only PQ1 but also PQ2. Thus, H is
normal in G. The arbitrariness of H induces that AQ and BQ are MNP-groups by
hypothesis for two maximal subgroups A and B of P . By Lemma 2.2, Q is normal
in G = ⟨A, B, Q⟩, a contradiction. Hence either P or Q is cyclic and (II) holds. □

Theorem 4.2. Let p and q be distinct prime divisors of the order of a group G,
P ∈ Sylp(G) and Q ∈ Sylq(G). Then G is a sub-MNP-group if and only if G is
isomorphic to one of the following types:

(I) G = ⟨x, y | xp = yqn = 1, y−1xy = xi⟩, where q | p − 1, iq ̸≡ 1 (mod p),
iq2 ≡ 1 (mod p), n ≥ 2 and 1 < i < p.

(II) G = ⟨x, y | xpq = yq = 1, y−1xy = xi⟩, where q | p − 1, i ≡ 1 (mod q),
iq ≡ 1 (mod p) with 1 < i < pq.

(III) G = ⟨x, y | x4p = 1, y2 = x2p, y−1xy = x−1⟩ with p ̸= 2.
(IV) G = ⟨x, y, z | xp = yqn−1 = zq = 1, y−1xy = xi, [x, z] = 1, [y, z] = 1⟩,

where q | p − 1, iq ≡ 1 (mod p), 1 < i < p and n ≥ 3.
(V) G = ⟨x, y, z | xp = yqn−1 = zq = 1, y−1xy = xi, [x, z] = 1, [y, z] = yqn−2⟩,

where q | p − 1, iq ≡ 1 (mod p), 1 < i < p, n ≥ 3, and n ≥ 4 if q = 2.
(VI) G = P ⋊Q, where P/Φ(P ) = R/Φ(P ) × K/Φ(P ) = ⟨ā, b̄⟩ is an elementary

abelian p-group of order p2, Q = ⟨y⟩ is cyclic of order qr with q | p − 1,
and y induces two power automorphisms of order dividing q in R/Φ(R)
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and K/Φ(K), respectively. Define āy = āi, b̄y = b̄j, [P, yq] = 1 and r ≥ 1,
where i ̸≡ j (mod p) and 0 < i, j < p.

(VII) G = P ⋊ Q, where Q = ⟨y⟩ is cyclic of order qr > 1, with q ∤ p − 1, and
P is an irreducible Q-module over the field of p elements with kernel ⟨yq⟩
in Q.

(VIII) G = P ⋊Q, where P is a non-abelian special p-group of rank 2m, the order
of p modulo q being 2m, Q = ⟨y⟩ is cyclic of order qr > 1, y induces an au-
tomorphism in P such that P/Φ(P ) is a faithful and irreducible Q-module,
and y centralizes Φ(P ). Furthermore, |P/Φ(P )| = p2m and |P ′| ≤ pm.

(IX) G = P ⋊Q, where P = ⟨a0, a1, . . . , aq−1⟩ is an elementary abelian p-group
of order pq, Q = ⟨y⟩ is cyclic of order qr, q ∥ p − 1 and r > 1. Define
ay

j = aj+1 for 0 ≤ j < q − 1 and ay
q−1 = ai

0, where i is a primitive q-th root
of unity modulo p.

(X) G = P ⋊ Q, where P = ⟨a0, a1⟩ is an extra-special group of order p3 with
exponent p, Q = ⟨y⟩ is a cyclic group of order 2r with 2 ∥ p − 1 and r > 1.
Define ay

0 = a1 and ay
1 = a−1

0 x, where x ∈ ⟨[a0, a1]⟩.

Proof. Assume that G is a sub-MNP-group, let G = P ⋊ Q, and at least one of P
and Q is cyclic by Theorem 4.1, where P ∈ Sylp(G) and Q ∈ Sylq(G).

We discuss from the following four types.

(1) Assume that P and Q are cyclic. By Lemma 2.8, if P = ⟨x⟩, then xp = 1.
By hypothesis, Q = ⟨y⟩ and ⟨yq⟩ is not normal in G and ⟨yq2⟩ is normal in ⟨x⟩⟨yq⟩.

Conjugation in P by ⟨y⟩ yields a nontrivial homomorphism from Q to Aut(P ).
Hence y−1xy = xi where 1 < i < p. Since Aut(P ) has order p − 1 and y yields a
homomorphism of order multiple of q, we have that q | p − 1. Moreover, ⟨yq⟩ is not
normal and ⟨yq2⟩ is normal in ⟨x⟩⟨yq⟩. Hence xiq ̸= x and xiq2

= x. It follows that
iq ̸≡ 1 (mod p) and iq2 ≡ 1 (mod p). Therefore, G is of type (I).

(2) Assume that P is cyclic and Q is non-cyclic. By Lemma 2.8, P is of order p.
If Q has two non-cyclic maximal subgroups Q1 and Q2, then PQ1 and PQ2 are
both nilpotent by Lemma 2.2, and so Q = Q1Q2 is normal in G, a contradiction.
Therefore, every maximal subgroup of Q is cyclic or Q has a unique non-cyclic
maximal subgroup.

Case 1. Every maximal subgroup of Q is cyclic.
It is clear that Q is either elementary abelian of order q2 or the quaternion group

of order 8.
Let Q be an elementary abelian group of order q2. Since Aut(P ) is a cyclic group

of order p − 1, we have that Q/CQ(x) is a cyclic group of order q | p − 1. There
exists a /∈ CQ(x) and CQ(x) = ⟨b⟩. Hence Q = ⟨a⟩ × ⟨b⟩ and G is of type (II).

Let Q be the quaternion group of order 8. Since Q/CQ(x) is a cyclic group, we
have that Q/CQ(x) has order 2 | p − 1. Hence CQ(x) = ⟨a⟩ is a cyclic subgroup
of Q of order 4 and p ̸= 2. There exists b ∈ Q of order 4 such that xb = x−1, and
also ab = a−1. Hence the elements xa and b generate G and G is of type (III).
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Case 2. Let Q = ⟨a⟩⋊ ⟨b⟩ such that |⟨a⟩| = qn−1 and |⟨b⟩| = q, and P = ⟨x⟩. Since
Aut(P ) is a cyclic group of order p − 1, we have that Q/CQ(x) is a cyclic group of
order qr | p − 1.

Since ⟨a⟩P is an MNP-group, we have that aq ∈ CQ(x) and Q/CQ(x) is a cyclic
group of order q. Moreover, ⟨aq⟩⟨b⟩P is an MNP-group. Thus ⟨aq⟩⟨b⟩ is normal in
⟨aq⟩⟨b⟩P . Hence b ∈ CQ(x). Consequently, G is of type (IV) or (V).

(3) Assume that P is non-cyclic, Q = ⟨y⟩ and that G is supersolvable.
Let 1◁ · · ·◁Φ(P )◁N ◁ · · ·◁R◁P ◁ · · ·◁G be a principal series of G. Since

N/Φ(P ) ≰ Φ(G)/Φ(P ), there exists a maximal subgroup M of G such that MN =
G. By Baer’s theorem [3, Theorem 1.1.7], the group G/CoreG(N) has a unique min-
imal normal subgroup NCoreG(M)/CoreG(M) and CG(NCoreG(M)/CoreG(M)) =
NCoreG(M). Since P/Φ(P ) is an elementary abelian group, it is clear that
CG(NCoreG(M)/CoreG(M)) = CG(N/Φ(P )) ≥ P . Then K = P ∩ CoreG(M) is a
normal subgroup of G and |P : K| = |PCoreG(M) : CoreG(M)| = |NCoreG(M) :
CoreG(M)| = |N : Φ(P )| = p. By hypothesis, R⟨y⟩ and K⟨y⟩ are both MNP-
groups, and so ⟨yq⟩ is normal in G = ⟨R, K, y⟩.

Now we prove s = 2. Without loss of generality, assume s = 3 and let P/Φ(P ) =
⟨ā1⟩ × ⟨ā2⟩ × ⟨ā3⟩, where a1, a2 ∈ R, a2, a3 ∈ K. Since R⟨y⟩ is an MNP-group, we
have (rΦ(R))y = rlΦ(R) by Lemma 2.2 for every r ∈ R\Φ(R), where l is a positive
integer. Thus, (rΦ(P ))y = rlΦ(P ) for every r ∈ R\Φ(P ). Similarly, (kΦ(P ))y =
kmΦ(P ) for every k ∈ K\Φ(P ), where m is a positive integer. Furthermore,
al

2Φ(P ) = (a2Φ(P ))y = am
2 Φ(P ), and so l ≡ m (mod p). Hence (anΦ(P ))y =

al
nΦ(P ) for n = 1, 2, 3. By Lemma 2.2, G is an MNP-group, this contradiction

leads to s = 2.
Now we let P/Φ(P ) = R/Φ(P ) × K/Φ(P ) = ⟨ā⟩ × ⟨b̄⟩, where a ∈ R, b ∈ K,

āy = āi and b̄y = b̄j . Clearly, i ̸≡ j (mod p), P has only two maximal subgroups
R and K which are normal in G. So G is of type (VI).

(4) Assume that G is minimal non-supersolvable and Q = ⟨y⟩ is cyclic.
It is easy to prove that G has only two kinds of maximal subgroups P ⟨yq⟩g

and Φ(P )⟨y⟩g for g ∈ G by applying the property of minimal non-supersolvable
groups [4].

Case 1. If G is also minimal non-nilpotent, then G is of either type (VII) or type
(VIII) by [1, Theorem 3].

Case 2. If G is not minimal non-nilpotent with P abelian, by applying [2, Theorems
9 and 10], assume that G = PQ, where P = ⟨a0, a1, . . . , aq−1⟩ is elementary abelian
of order pq, Q = ⟨y⟩ is cyclic of order qr, qf is the highest power of q dividing p − 1
and r > f ≥ 1. Define ay

j = aj+1 for 0 ≤ j < q − 1 and ay
q−1 = ai

0, where i is a
primitive qf -th root of unity modulo p.

By hypothesis and Lemma 2.2, yq induces a power automorphism of order q

in P . Hence, aiq

0 = ayq2

0 = a0. Thus iq ≡ 1 (mod p) and f = 1. So G is of type
(IX).
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Case 3. If G is not minimal non-nilpotent with P non-abelian, by applying [2,
Theorems 9 and 10], assume that G = PQ such that P = ⟨a0, a1⟩ is an extra-
special group of order p3 with exponent p, Q = ⟨y⟩ is cyclic of order 2r with 2f the
largest power of 2 dividing p − 1 and r > f ≥ 1, and ay

0 = a1 and ay
1 = ai

0x, where
x ∈ ⟨[a0, a1]⟩ and i is a primitive 2f -th root of unity modulo p.

Since ay2

0 = ay
1 = ai

0x ̸= a0, P ⟨y2⟩ is non-nilpotent. By hypothesis, [x, y2] = 1
and ay4

0 = ai2

0 xi+1 = a0. Thus, ai2−1
0 = (xi+1)−1. Hence i ≡ −1 (mod p). By

computations, ay4

1 = a1, [a0, a1]y2 = [ai
0, ai

1] = [a0, a1]i2 = [a0, a1]. So G is of
type (X).

Conversely, it is clear that a group satisfying one of the types (I)–(X) is a sub-
MNP-group. □

5. Groups all of whose maximal subgroups of even order are
MNP-groups

In this section, we determine groups with the property that all of their maximal
subgroups of even order are MNP-groups.

Theorem 5.1. Let G be a group of even order. Suppose that all maximal subgroups
of G of even order are MNP-groups. Then G is solvable.

Proof. Let G be a counterexample of minimal order. Then we have that G is a
minimal simple group. If 1 ◁ N ◁ G, then G/N satisfies the hypotheses. Hence
G/N is a solvable group by the minimality of G. If N does not have even order,
then N is solvable and G is solvable. If N has even order, there is a maximal
subgroup M of G whose order is even and such that N ⊴ M . By Lemma 2.6, M is
supersolvable, and then N is solvable and so G is solvable, a contradiction. Hence
G is a minimal simple group.

Now we claim that G is not isomorphic to one of the simple groups listed in
Lemma 2.10. Note that every proper subgroup of G of even order must be super-
solvable by Lemma 2.6, but each of PSL(2, p), PSL(2, 3q) and PSL(3, 3) contains
a subgroup isomorphic to a non-supersolvable alternating group A4 of degree 4, a
contradiction. If G is isomorphic to PSL(2, 2q) or Sz(2q), then G is a Zassenhaus
group of odd degree and the stabilizer of a point is a Frobenius group with kernel
a 2-group. This implies that G has a non-supersolvable subgroup of even order, a
contradiction. □

Theorem 5.2. Let G be a non-MNP-group of even order. If all maximal subgroups
of G of even order are MNP-groups, then |π(G)| ≤ 3.

Proof. By Theorem 5.1, G is solvable. Let π(G) = {p1, p2, . . . , ps} with p1 = 2
and let {P1, P2, . . . , Ps} be a Sylow basis of G. If G is a sub-MNP-group, then
|π(G)| = 2 by Theorem 4.1.

Now we assume that G is not a sub-MNP-group. By hypothesis, G possesses a
maximal subgroup M of odd order which is not an MNP-group. Without loss of
generality, let M = P2 · · · Ps. Then there exists a positive integer j and a maximal
subgroup Pj1 of Pj such that Pj1 is not normal in M . Without loss of generality,
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we can let j = s. If s ≥ 4, then P1PiPs (i = 2, . . . , s − 1) is a proper Hall subgroup
of G. By hypothesis and Lemma 2.7, Pj1 is normal in P1PiPs, and so Pj1 is normal
in G = P1P2 · · · Ps, a contradiction. Hence |π(G)| ≤ 3. □

We first determine the non-MNP-groups having two prime divisors.

Theorem 5.3. Let G be a non-MNP-group and π(G) = {2, p}. Then all maximal
subgroups of G of even order are MNP-groups if and only if G is a sub-MNP-group.

Proof. Clearly, the maximal subgroup of G of odd order (if exists) is a Sylow
subgroup, and so it is an MNP-group. Therefore, G is a sub-MNP-group. The rest
is clear. □

We next determine the non-MNP-groups having three prime divisors.

Theorem 5.4. Let G be a non-MNP-group of even order and |π(G)| = 3, where
P ∈ Sylp(G), Q ∈ Sylq(G) and R ∈ Syl2(G) with p > q > r = 2. Suppose that all
maximal subgroups of G of even order are MNP-groups. Then R is of order 2 and
one of the following statements holds:

(I) G = M × R, where M is a sub-MNP-group;
(II) G = M ⋊ R = (P ⋊ Q) ⋊ R with 1 < CM (R) < M , where M is a sub-

MNP-group with Q cyclic, R induces two power automorphisms of order
dividing 2 in P/Φ(P ) and Q, respectively;

(III) G = M ⋊ R = (Q ⋊ P ) ⋊ R with 1 < CM (R) < M , where M is a mini-
mal non-nilpotent group with Q non-cyclic, R induces two power automor-
phisms of order dividing 2 in P and Q/Φ(Q), respectively;

(IV) G = M ⋊R = (P ⋊Q)⋊R with CM (R) = Q, where M is a sub-MNP-group
with P of order p and Q non-cyclic.

Proof. Since |π(G)| = 3, G is not a sub-MNP-group by Theorem 4.1. Then there
exists a maximal subgroup M of G of odd order such that M is not an MNP-group
by hypothesis. By Theorem 5.1, G is solvable. Then we can let M be a Hall
2′-subgroup of G and G = MR.

We first prove that R is of order 2 and M is the normal 2-complement from two
cases as follows.
Case 1. O2(G) ̸= 1.

If O2(G) < R, then M < MO2(G) < MR = G, which contradicts that M is
a maximal subgroup of G. So O2(G) = R is the normal Sylow 2-subgroup of G.
Note that M is non-nilpotent, if |R| > 2, then M1R is a maximal subgroup of G
of even order for any maximal subgroup M1 of M . By hypothesis, M1R is an
MNP-group, and so M1R = M1 × R by Lemma 2.6. Furthermore, MR = M × R.
For any nontrivial maximal subgroup R1 of R, it makes M < MR1 < MR = G, a
contradiction. So R is of order 2.
Case 2. O2(G) = 1.

Since O2(G) = 1 and the solvability of G, we have O2′(G) ̸= 1.
Let N/O2′(G) be a minimal normal subgroup of G/O2′(G). Since N/O2′(G)

has even order and O2′(G) ≤ M , we have that MN = G and M ∩ N = O2′(G).
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Hence N/O2′(G) is a Sylow subgroup of G/O2′(G), RO2′(G) = N and G =
NG(R)N = NG(R)O2′(G). Let H be a Hall 2′-subgroup of NG(R). By hypothesis
and Lemma 2.6, H is normal in NG(R), and R1H is a subgroup of G for every
maximal subgroup R1 of R. So G = R(HO2′(G)) and let M = HO2′(G). More-
over, we can see that R1HO2′(G) = R1M > M if R1 > 1, which implies that
G = R1M . It follows that R = R1. This contradiction induces that |R| = 2 and so
M is the normal 2-complement.

We next complete the rest of the proof as follows.
Suppose CM (R) = 1. Then an automorphism of R acting on M is both of

order 2 and fixed point-free. Lemma 2.11 implies that M is abelian, and so it is an
MNP-group. This contradiction leads to CM (R) > 1.

If CM (R) = M , then MR = M × R, and M1R is an MNP-group by hypothesis
for any maximal subgroup M1 of M . By Lemma 2.7, M1 is an MNP-group, and
so M is a sub-MNP-group. Therefore, G is of type (I).

If 1 < CM (R) < M , then PR and QR are MNP-groups by hypothesis and
Lemma 2.7, and so R induces two power automorphisms of order dividing 2 in
P/Φ(P ) and Q/Φ(Q), respectively by Lemma 2.2.

Let 1 ◁ · · · ◁ K ◁ PQ ⊴ G be a principal series of G. Since G is solvable, one
of P and Q is contained in K, and there exists a maximal subgroup H of G of
even order such that KR ≤ H. By hypothesis and Lemma 2.6, H is supersolvable.
If Q ≤ K, then Q is either cyclic or normal in K by hypothesis and Lemma 2.2.
Furthermore, if Q is normal in K, then Q is normal in G as Q is characteristic in
K and K ⊴ G. Similarly, if P ≤ K, then P is normal in G by the supersolvability
of K. We discuss from three cases as shown below.

(1) Q is cyclic.
Clearly, P ⊴ G. We prove that PQ is a sub-MNP-group.
By hypothesis, PΦ(Q)R is an MNP-group, and so PΦ(Q) is an MNP-group by

Lemma 2.7. Let P1Q ⋖ PQ with P1 ≤ P . Clearly, Φ(P ) ≤ P1 and PR is an
MNP-group, so R ≤ NG(P1). Thus, P1QR is an MNP-group by hypothesis, and
so P1Q is an MNP-group by Lemma 2.7. Therefore, PQ is a sub-MNP-group and
G is of type (II).

(2) Q is non-cyclic and Q ⊴ G.
If P is non-cyclic, then P1QR is an MNP-group by hypothesis for any maximal

subgroup P1 of P . By Lemma 2.7 and Lemma 2.2, P1Q is nilpotent, and so PQ
is nilpotent, a contradiction. Thus, P is cyclic and Φ(P )Q is nilpotent as the fact
Φ(P )QR is an MNP-group. Let PQ1 ⋖ PQ with Q1 ≤ Q. Clearly, Φ(Q) ≤ Q1
and PQ1R is a maximal subgroup of G of even order. By hypothesis, PQ1R is
an MNP-group, so it is supersolvable by Lemma 2.6. Hence P ⊴ PQ1. It follows
that PQ1 is nilpotent from the fact Q1 is subnormal in G, and so PQ is minimal
non-nilpotent. Thus, G is of type (III).

(3) P is normal in G.
If Q is cyclic, then G is of type (II) as the arguments in (1).
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If Q is non-cyclic, then PQ1R, PQ2R are MNP-groups by hypothesis for two
different maximal subgroups Q1, Q2 of Q. So P1 is normal in G = ⟨PQ1R, PQ2R⟩
for any maximal subgroup P1 of P .

We first prove that P is cyclic. If not, then P1QR, P2QR are MNP-groups
by hypothesis for two different maximal subgroups P1, P2 of P . It follows that
Q is normal in G = ⟨P1QR, P2QR⟩ by Lemma 2.2, and so PQ is nilpotent, a
contradiction.

We next prove that P is of order p. If not, then Ω1(P ) ≤ Φ(P ) and Φ(P )QR
is an MNP-group by hypothesis, so Φ(P )Q is nilpotent by Lemma 2.2. Therefore,
PQ is nilpotent by Lemma 2.3, a contradiction.

Obviously, PQ1R is an MNP-group by hypothesis, and so PQ1 is an MNP-group
by Lemma 2.7 for any maximal subgroup Q1 of Q. Hence PQ is a sub-MNP-group.

By examining Theorem 4.2, M is isomorphic to one of the types (II), (IV),
(V) in Theorem 4.2, and so there exists a maximal subgroup PQ1R of G such
that PQ1R is an MNP-group by hypothesis, and PQ1 is non-nilpotent for some
maximal subgroup Q1 of Q. By Lemma 2.2 again, Q1R is nilpotent. Furthermore,
QR is nilpotent by the fact that QR is an MNP-group. Hence G is of type (IV). □

6. Simple groups all of whose second maximal subgroups of even
order are MNP-groups

In this section, we determine non-abelian simple groups all of whose second
maximal subgroups of even order (respectively, maximal subgroups) are MNP-
groups.

Theorem 6.1. Let G be a group all of whose second maximal subgroups of even
order are MNP-groups. Then G is a non-abelian simple group if and only if G is
isomorphic to one of the following types:

(I) A5;
(II) PSL(2, p), where p is a prime with p ≥ 13, 5 ∤ p2 − 1, 16 ∤ p2 − 1, and only

one of (p + 1)/4 and (p − 1)/4 is a prime;
(III) PSL(2, 2q), where q is an odd prime and 2q − 1 is a prime;
(IV) PSL(2, 3q), where q is an odd prime and (3q + 1)/4 is a prime.

Proof. Suppose that G is a non-abelian simple group. Let M be a maximal sub-
group of G. If M is a group of odd order, then M is solvable. If M is a group
of even order, then M is either an MNP-group or a non-MNP-group all of whose
maximal subgroups of even order are MNP-groups by hypothesis. By Lemma 2.6
and Theorem 5.1, M is solvable. Hence all proper subgroups of G are solvable. So
G is a minimal simple group. By Lemma 2.10, we know that G is isomorphic to
one of the following simple groups:

(i) PSL(3, 3);
(ii) the Suzuki group Sz(2q), where q is an odd prime;
(iii) PSL(2, p), where p is a prime with p > 3 and p2 ̸≡ 1 (mod 5);
(iv) PSL(2, 2q), where q is a prime;
(v) PSL(2, 3q), where q is an odd prime.
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Case 1. G ≁= PSL(3, 3).
Suppose G ∼= PSL(3, 3). Then G contains a maximal subgroup which is isomor-

phic to S4, and so G contains a second maximal subgroup isomorphic to A4. But
A4 is not an MNP-group, a contradiction. Hence G ≁= PSL(3, 3).

Case 2. G ≁= Sz(2q), where q is an odd prime.
Suppose G ∼= Sz(2q). Then G contains a Frobenius maximal subgroup M with

a cyclic complement H of order 2q − 1 and kernel K of order 22q. Since K is non-
abelian, Φ(K)H is contained in a second maximal subgroup N of G of even order
which is an MNP-group. By Lemma 2.6, N is supersolvable, and so Φ(K)H is
supersolvable. Hence Φ(K)H is nilpotent, a contradiction. So G is not isomorphic
to Sz(2q).

Case 3. G ∼= A5 or G ∼= PSL(2, p), where p is a prime with p ≥ 13, 5 ∤ p2 − 1,
16 ∤ p2 − 1, and only one of (p + 1)/4 and (p − 1)/4 is a prime.

Suppose G ∼= PSL(2, p). If p = 5, then G ∼= A5, so G is of type (I). If p2 ≡
1 (mod 16), then G has a maximal subgroup which is isomorphic to S4 by [8,
Corollary 2.2], and so A4 is a second maximal subgroup of G which is not an
MNP-group, a contradiction. If p ≥ 13, then G has maximal subgroups which
are isomorphic to dihedral groups Dp−1 and Dp+1, a Frobenius group of order
p(p − 1)/2, A4 by [8, Corollary 2.2]. Furthermore, 4 must divide the order of either
of Dp−1 or Dp+1, say A. Clearly, the Sylow 2-subgroup of A is non-cyclic and A is
not an MNP-group by Lemma 2.2, so A is either a sub-MNP-group or a group all of
whose maximal subgroups of even order are MNP-groups by hypothesis. Note that
4 | |A|, then A must be a sub-MNP-group by Theorems 5.3 and 5.4. By examining
Theorem 4.2, G is of type (II).

Case 4. G ∼= A5 or G ∼= PSL(2, 2q), where q and 2q − 1 are odd primes.
Suppose G ∼= PSL(2, 2q). Then by [8, Corollary 2.2], G has maximal subgroups:

the dihedral groups of order 2(2q ± 1); the Frobenius group H of order 2q(2q − 1);
A4 if q = 2. By arguments similar to those in Case 3, H must be a sub-MNP-group
if q > 2. By examining Theorem 4.2, we have that 2q − 1 must be a prime. So G
is of type (III). Clearly, G ∼= A5 if q = 2, so G is of type (I).

Case 5. G ∼= PSL(2, 3q), where (3q + 1)/4 is a prime.
Suppose G ∼= PSL(2, 3q). Then by [8, Corollary 2.2], G has maximal subgroups:

the dihedral groups of order 3q ±1; the normalizer H of the Sylow 3-subgroup of G
of order 3q(3q −1)/2; A4. Clearly, 4 | 3q +1, 3q(3q −1)/2 is an odd number and the
dihedral group of order 3q − 1 is an MNP-group, so we only consider the dihedral
group D of order 3q + 1. By arguments similar to those in Case 3, D must be a
sub-MNP-group. By examining Theorem 4.2, (3q + 1)/4 is a prime, so G is of type
(IV).

Conversely, it is clear that a group of one of the types (I)–(IV) is satisfied with
the condition of this theorem. □
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Corollary 6.2. Let G be a group all of whose second maximal subgroups are MNP-
groups. Then G is a non-abelian simple group if and only if G is isomorphic to
one of the following types:

(I) A5;
(II) PSL(2, p), where p is a prime with p ≥ 13, 5 ∤ p2 − 1, 16 ∤ p2 − 1, only

one of (p + 1)/4 and (p − 1)/4 is a prime, and (p − 1)/2 is square-free if
(p + 1)/4 is a prime;

(III) PSL(2, 2q), where q is an odd prime, and 2q − 1 is a prime;
(IV) PSL(2, 3q), where q is an odd prime, (3q + 1)/4 and (3q − 1)/2 are primes.

Proof. The proof is similar to that of Theorem 6.1. □
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[4] K. Doerk, Minimal nicht überauflösbare, endliche Gruppen, Math. Z. 91 (1966), 198–205.
DOI MR Zbl

[5] D. Gorenstein, Finite groups, Harper & Row, New York-London, 1968. MR Zbl

[6] P. Guo and X. Guo, On minimal non-MSN-groups, Front. Math. China 6 no. 5 (2011),
847–854. DOI MR Zbl

[7] B. Huppert, Endliche Gruppen I, Grundlehren Mathe. Wiss. 134, Springer, Berlin-New
York, 1967. DOI MR Zbl

[8] O. H. King, The subgroup structure of finite classical groups in terms of geometric con-
figurations, in Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser. 327,
Cambridge University Press, Cambridge, 2005, pp. 29–56. DOI MR Zbl

[9] J. Lu, X. Zhang, W. Meng, and B. Zhang, Finite groups with some SB-subgroups, Comm.
Algebra 51 no. 1 (2023), 161–167. DOI MR Zbl

[10] W. Meng, Y. Deng, and J. Lu, Finite groups with S-quasinormal subgroups, Comm. Algebra
49 no. 6 (2021), 2547–2555. DOI MR Zbl

[11] D. J. S. Robinson, A course in the theory of groups, second ed., Graduate Texts in Mathe-
matics 80, Springer, New York-Berlin, 1996. DOI MR Zbl

[12] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math.
35 no. 3 (1980), 210–214. DOI MR Zbl

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)

https://doi.org/10.1090/S0002-9939-05-07996-7
http://www.ams.org/mathscinet-getitem?mr=2163579
https://zbmath.org/?q=an:1082.20006
https://doi.org/10.4171/RMI/488
http://www.ams.org/mathscinet-getitem?mr=2351128
https://zbmath.org/?q=an:1126.20013
https://doi.org/10.1007/1-4020-4719-3
http://www.ams.org/mathscinet-getitem?mr=2241927
https://zbmath.org/?q=an:1102.20016
https://doi.org/10.1007/BF01312426
http://www.ams.org/mathscinet-getitem?mr=191962
https://zbmath.org/?q=an:0135.05401
http://www.ams.org/mathscinet-getitem?mr=231903
https://zbmath.org/?q=an:0185.05701
https://doi.org/10.1007/s11464-011-0115-z
http://www.ams.org/mathscinet-getitem?mr=2836852
https://zbmath.org/?q=an:1229.20015
https://doi.org/10.1007/978-3-642-64981-3
http://www.ams.org/mathscinet-getitem?mr=224703
https://zbmath.org/?q=an:0217.07201
https://doi.org/10.1017/CBO9780511734885.003
http://www.ams.org/mathscinet-getitem?mr=2187733
https://zbmath.org/?q=an:1107.20035
https://doi.org/10.1080/00927872.2022.2094390
http://www.ams.org/mathscinet-getitem?mr=4525288
https://zbmath.org/?q=an:1520.20069
https://doi.org/10.1080/00927872.2021.1876082
http://www.ams.org/mathscinet-getitem?mr=4255025
https://zbmath.org/?q=an:1506.20028
https://doi.org/10.1007/978-1-4419-8594-1
http://www.ams.org/mathscinet-getitem?mr=1357169
https://zbmath.org/?q=an:0836.20001
https://doi.org/10.1007/BF02761191
http://www.ams.org/mathscinet-getitem?mr=576471
https://zbmath.org/?q=an:0437.20012


FINITE GROUPS WITH MNP MAXIMAL SUBGROUPS 435

[13] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull.
Amer. Math. Soc. 74 (1968), 383–437. DOI MR Zbl

[14] G. L. Walls, Groups with maximal subgroups of Sylow subgroups normal, Israel J. Math.
43 no. 2 (1982), 166–168. DOI MR Zbl

Pengfei GuoB

School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
guopf999@163.com

Huaguo Shi
Department of Teacher Education, Sichuan Vocational and Technical College, Suining 629000,
China
shihuaguo@126.com

Received: June 20, 2023
Accepted: January 15, 2024
Early view: August 27, 2024

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)

https://doi.org/10.1090/S0002-9904-1968-11953-6
http://www.ams.org/mathscinet-getitem?mr=230809
https://zbmath.org/?q=an:0159.30804
https://doi.org/10.1007/BF02761728
http://www.ams.org/mathscinet-getitem?mr=689976
https://zbmath.org/?q=an:0511.20014

	1. Introduction
	2. Preliminary results
	3. A necessary and sufficient condition of MNP-groups
	4. A complete classification of sub-MNP-groups
	5. Groups all of whose maximal subgroups of even order are MNP-groups
	6. Simple groups all of whose second maximal subgroups of even order are MNP-groups
	Acknowledgment
	References

