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A CANONICAL DISTRIBUTION ON ISOPARAMETRIC
SUBMANIFOLDS III

CRISTIÁN U. SÁNCHEZ

Abstract. The present paper is devoted to showing that on every compact,
connected homogeneous isoparametric submanifold M = G/K of codimen-
sion h ≥ 2 in a Euclidean space, there exist canonical distributions which
are generated by the compact symmetric spaces associated to M (i.e., those
corresponding to the group G). The central objective is to show that all these
distributions are bracket generating of step 2. To that end, formulae that
complement those in the first article of this series (Rev. Un. Mat. Argentina
61, no. 1 (2020), 113–130) are obtained.

1. Introduction

The present paper can be considered a sequel and extension of the papers [9]
and [10]. In those papers, it was established the existence (in any compact, con-
nected, homogeneous, isoparametric submanifold M of codimension h ≥ 2 in a
Euclidean space) of a smooth, completely non-integrable, step 2 distribution D(Ω).

Here we indicate, on the family of isoparametric submanifolds M mentioned
above, the existence of new distributions having the same property as D(Ω), that
is, they are all completely non-integrable of step 2. It is important to mention here
that these distributions are associated to symmetric spaces of Type 1. In fact, for
our isoparametric submanifold M = K/KE , the symmetric spaces corresponding
to the group K (which are of the form K/L) “induce” on M smooth distributions
which, similarly to D(Ω), are completely non-integrable of step 2.

Recall that a distribution D of r-planes (n > r ≥ 2) in a compact, connected
manifold Mn is smooth [12, p. 41, Def. 1.56] if for any p ∈ Mn there are r smooth
vector fields {X1, . . . , Xr} defined on an open set A ⊂ Mn containing p such that
Xj(q) ∈ D(q) and D(q) = spanR {Xj (q)}, (1 ≤ j ≤ r, ∀q ∈ A). The distribution D
is said to be completely non-integrable of step 2 if for every point p ∈ Mn the above
vector fields defined in A satisfy (∀q ∈ A):

SpanR {Xj(q), [Xk, Xj ] (q) : 1 ≤ k, j ≤ r} = Tq(M),
i.e., the generated real vector space coincides with the corresponding tangent space.
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438 CRISTIÁN U. SÁNCHEZ

The mentioned homogeneous isoparametric submanifolds Mn of codimension
h ≥ 2 in Euclidean spaces are obtained as principal orbits of the tangential repre-
sentation (at a basic point) of a compact (or noncompact dual) symmetric space.
A way to obtain explicitly these submanifolds is to consider a real simple noncom-
pact Lie algebra g0 with Cartan decomposition g0 = k0⊕p0 and Cartan involution θ.
Then k0 is a maximal compactly embedded subalgebra of g0 [5, Pr. 7.4, p. 184]. Let
K be the analytic subgroup K of Int(g0) corresponding to the subalgebra adg0(k0)
of adg0(g0) which is compact and let Bθ be the positive definite, symmetric bilinear
form on g0 defined by

Bθ (x, y) := ⟨x, y⟩θ = −B (x, θy) , (1.1)
where B is the Killing form of g0.

The principal orbits of the representation of K on p0 are isoparametric subman-
ifolds Mn of Rn+h = p0. Let a0 be a maximal abelian subspace of p0 and consider
the set Φ(g0, a0) of roots “restricted” to a0 (see [9] for the required details and
notation). Let ∆ (g0, a0) be a corresponding system of simple roots in Φ (g0, a0).
For λ ∈ Φ (g0, a0), it is usual to define the subspaces

k0,λ =
{
x ∈ k0 : (ad (h))2

x = λ2 (h)x ∀h ∈ a0
}
,

p0,λ =
{
x ∈ p0 : (ad (h))2

x = λ2 (h)x ∀h ∈ a0
}
,

(1.2)

for which obviously k0,λ = k0,(−λ), p0,λ = p0,(−λ) and with them, respect to Bθ

(1.1), we have orthogonal decompositions

k0 = m0 ⊕
∑

λ∈Φ+(g0,a0)

k0,λ, p0 = a0 ⊕
∑

λ∈Φ+(g0,a0)

p0,λ, (1.3)

where Φ+ (g0, a0) is the set of roots written with non-negative coefficients in terms
of ∆ (g0, a0) and m0 is the centralizer of a0 in k0.1 As usual, the height of a root
in Φ+ (g0, a0) is defined as the sum of its coefficients with respect to ∆ (g0, a0).
Let Ω ⊂ Φ+ (g0, a0) be the set of positive roots of odd height. As in [9] and [10],
associated to Ω we define the subspace

D(Ω) =
∑
λ∈Ω

p0,λ ⊂ p0.

Let us fix a regular element E ∈ a0 ⊂ p0, call M = Ad(K)E ⊂ p0 its orbit and
let KE be the isotropy subgroup of K at E. The regularity of E implies that the
isotropy subalgebra (corresponding to) KE is k0,E = m0. Furthermore, the tangent
and normal spaces of M at E are

TE(M) =
∑

λ∈Φ+(g0,a0)

[k0,λ, E] =
∑

λ∈Φ+(g0,a0)

p0,λ and T⊥
E (M) = a0. (1.4)

Since the subspace D(Ω) is contained in TE(M) and it is invariant by the action
of KE , by translation with K, we obtain in M a distribution which we also call
D(Ω) and is contained in the tangent bundle of M . The main result of [9] and [10]

1The subspaces defined in (1.2) are also defined in [1, p. 57] and are related to the eigenspaces
of the shape operator as in [1, pp. 70–71].
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is that this distribution is completely non-integrable of step 2. The difference
between [9] and [10] resides in the nature of the system of restricted roots – reduced
in [9] and non-reduced in [10].

As indicated above, in the present paper we show the existence, onM = Ad(K)E
of other distributions, all with the same property as D(Ω). These distributions
are associated to two classes of compact symmetric spaces. The first one is that
of symmetric R-spaces, i.e., extrinsic symmetric spaces (these are the compact
Hermitian symmetric spaces and their real forms, as indicated in [1, pp. 427–428]).
The way in which symmetric R-spaces are presented is well known but it may
be convenient to recall it. Let g0 be a real simple noncompact Lie algebra with
Cartan decomposition g0 = k0 ⊕ p0 and Cartan involution θ. The subalgebra
k0 is a maximal compactly embedded in g0. Let K be the analytic subgroup of
Int(g0) corresponding to the subalgebra adg0 (k0) of adg0 (g0) which is compact.
Let us consider the Euclidean space p0 with the inner product Bθ (1.1). Let
a0 ⊂ p0, Φ (g0, a0) and ∆ (g0, a0) have the same meaning as above and assume
that there exists an element H ∈ a0 such that the eigenvalues of ad(H) on g0
are {(−1), 0, 1} (these elements are called extrinsically symmetric). Then the orbit
N = Ad(K)H ⊂ p0 is a symmetric R-space. On the other hand, the principal orbits
of the representation of K on p0 are the isoparametric submanifolds that support
the associated distribution (one of them is chosen by taking a regular element
E ∈ a0 and considering its orbit M = Ad(K)E ⊂ p0 by the adjoint action of K
on p0). A particular subset of symmetric R-spaces is that of the Hermitian ones and
they are presented as follows: Let u0 be a compact simple Lie algebra and consider
the real Lie algebra gR = u0 ⊕ iu0. This is a Cartan decomposition of gR [5, p. 185].
Let us take a Cartan subalgebra t0 ⊂ u0 so it0 ⊂ iu0 is a maximal abelian subspace
of iu0 and h = (t0 ⊕ it0) ⊂ u0 ⊕ iu0 = gR is a Cartan subalgebra of gR. We have the
roots in Φ

(
gR, h

)
and the restricted roots are those in Φ

(
gR, it0

)
. They are just

the roots of u0 with respect to t0. Let us take a compact connected Lie group K
(without center) corresponding to u0, the compact Hermitian symmetric space can
be realized (isometrically embedded) as orbit of an extrinsically symmetric element
H ∈ it0 ⊂ iu0 ⊂ gR by the adjoint action of K on (iu0). For Hermitian symmetric
spaces the associated isoparametric submanifolds are the manifolds of complete
flags of the group K. These are the principal orbits of the adjoint representation
of K.

The other set of symmetric spaces to be considered contains some of the so called
quaternionic symmetric spaces and also the space EVIII = E8/Spin(16)/Z2, which
is not a quaternionic one. These are not R-spaces.

The symmetric spaces Gr2(Cn+2) = SU(n + 2)/S(U(n) × U(2)) (n ≥ 1) are
quaternionic symmetric and Hermitian symmetric, so we exclude them from the
present considerations and take the space EVIII instead. Then they are:

• classical:

Gr4(Rn+4) = SO(n+ 4)/SO(n) × SO(4), n ≥ 3,
HPn = Sp(n+ 1)/Sp(n) × Sp(1), n ≥ 1,

(1.5)
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• exceptional:
EIX = E8/E7Sp(1), FI = F4/Sp(3)Sp(1),
EVI = E7/Spin(12)Sp(1), G = G2/SO(4),
EII = E6/SU(6)Sp(1), EVIII = E8/Spin(16)/Z2.

(1.6)

The distributions for this class of symmetric spaces K/H are defined (as for Her-
mitian ones) in the manifolds of complete flags of the group K.

The paper is organized as follows. The next section contains the two results
that are the objectives of the present paper; they are Theorem 2.1, which involves
symmetric R-space, and Theorem 2.2 concerning the other type of symmetric spaces
considered here.

The paper goes along the lines of [9] and, for that reason, notation and some
results from that paper have to be recalled. They are contained in Appendix A,
which is divided into five short sections recalling: basis, smooth local fields, known
identities and finally, formulae (A.13), (A.16) and (A.17) obtained in [9] and cor-
responding to the sums of roots. Standard facts and notation from Lie theory are
taken from [7, 5, 4, 8, 2], as in [9]. On the other hand, in Appendix B we get
the new formulae expressing the vectors of the basis associated to the difference of
roots as combination of brackets of local fields in the distribution (evaluated at the
basic point E of M). The reader shall certainly notice that formulae in Appen-
dix B are dual to those in Appendix A. Section 3 contains the construction of the
distributions, required notation and the necessary lemmata. It contains two sub-
sections, reflecting the differences of the situations considered. Section 4 contains
some examples that illustrate the way in which the distributions are generated and
hopefully shall clarify their meaning. Finally, Section 5 contains the proofs of The-
orem 2.1 and 2.2, where the formulae given in Appendices A and B are essentially
used.

2. Objectives

Here we indicate the results contained in the present paper, namely Theorems 2.1
and 2.2. Since the large majority of the compact, connected, irreducible symmet-
ric spaces are extrinsically symmetric (nowadays called symmetric R-spaces) we
indicate first the result associated to them, keeping the notation indicated in the
previous sections.

Theorem 2.1. Let E ∈ a0 be a regular element and assume that there exists an
element H ∈ a0 such that the eigenvalues of ad (H) on g0 are {(−1), 0, 1} (we
call these elements extrinsically symmetric). Then the orbit N = Ad(K)H ⊂ p0
is a symmetric R-space. The tangent space TH (N) of the symmetric R-space N
at H “induces” a distribution D (N) in T (M) (M = Ad(K)E) which is completely
non-integrable of step 2.

Proof. The proof is contained in Section 5. □

We shall describe the construction of D (N) in the next section. Let us consider
now the situation for those symmetric spaces in (1.5) and (1.6).
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Theorem 2.2. Let u0 be one of the compact simple Lie algebras corresponding to
the compact simple groups generating the spaces in (1.5) and (1.6), and consider
the real Lie algebra gR = u0 ⊕ iu0. With k0 = u0 and p0 = iu0 this k0 ⊕ p0
is a Cartan decomposition of gR. Then k0 = u0 is a maximal compactly embedded
subalgebra of gR. Let K be a compact, connected, adjoint Lie group K corresponding
to u0. Let us consider the Euclidean space iu0 = p0 with the inner product given
by the Killing form B. Let it0 ⊂ iu0 = p0, while Φ (g0, a0) and ∆ (g0, a0) have
the above meaning. The principal orbits of the representation of K on iu0 = p0
are isoparametric submanifolds. Let us choose a regular element E ∈ a0 and set
M = Ad (K)E ⊂ p0. The symmetric space K/H in (1.5) or (1.6) induces a
distribution D(Θ) in T (M) which is completely non-integrable of step 2.
Proof. The proof of this theorem is also contained in Section 5. □

Recall that a Lie group with trivial center is called an adjoint group.

3. Construction of the distributions

3.1. Distribution generated by symmetric R-spaces. Let us assume that
there exists H ∈ a0 ⊂ p0 extrinsically symmetric (i.e., ad(H) has only eigenvalues
{(−1), 0, 1}). Then (ad(H))2 has eigenvalues {0, 1} and determines two subsets of
Φ+(g0, a0), namely

Ψ0 =
{
λ ∈ Φ+ (g0, a0) : λ (H) = 0

}
,

Θ =
{
λ ∈ Φ+ (g0, a0) : λ (H) = 1

}
.

(3.1)

Note that Φ+ (g0, a0) = Ψ0 ∪ Θ and consider the orbit N = Ad(K)H ⊂ p0. N is
a symmetric R-space (see for instance [3]) whose isotropy subalgebra and tangent
space at H are, respectively,

kH =
∑

λ∈Ψ0

k0,λ ⊂ k0

TH (N) = [k0, H] =
∑

λ∈Φ+(g0,a0)

[k0,λ, H] =
∑
λ∈Θ

p0,λ ⊂ p0. (3.2)

Now we observe the following:
Lemma 3.1. If the system of roots Φ (g0, a0) is irreducible [6, p. 52] and there is
an H ∈ a0 ⊂ p0 extrinsically symmetric, then there is one and only one simple root
η ∈ ∆ (g0, a0) such that η ∈ Θ in (3.1).
Proof. This is clear. See Remark 3.4 below. □

The roots in Ψ0 (written in terms of ∆ (g0, a0)) are those without the term η,
while those in Θ have the term η (with coefficient 1).

Let us consider now the following:
Lemma 3.2. Let us assume that the maximal root µ ∈ Φ+ (g0, a0) has a simple
root term with coefficient 1. Then for each γ ∈ Ψ0 ⊂ Φ+ (g0, a0) there are two
roots φ and ψ in Θ such that γ = φ−ψ and (φ+ ψ) is not a root. The simple root
systems considered in this lemma are Ar, Br, Cr, Dr, E6, E7.
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Proof. The proof is by inspection on the systems of roots. See Remark 3.4 below.
□

We have then two subspaces of p0, namely (3.2) and (1.4). We may now define
DE(Θ) ⊂ TE(M) by DE(Θ) =

∑
λ∈Θ p0,λ and have the obvious inclusion

DE(Θ) =
∑
λ∈Θ

p0,λ ⊂
∑

λ∈Φ+(g0,a0)

p0,λ = TE(M).

The subspace DE(Θ) is invariant by the isotropy subgroup KE of K at E and
hence, by translation with K, we get the distribution D(Θ) on M .

3.2. Distribution generated by the other spaces. We indicate now how to
construct the distributions associated to the spaces in (1.5) and (1.6).

Recall the notations indicated in Theorem 2.2 and take a regular element E ∈
a0 = it0 ⊂ iu0 = p0, while Φ (g0, a0) and ∆ (g0, a0) have the above meaning. The
orbit M = Ad(K)E ⊂ p0 (a principal orbit) is a manifold of complete flags of K
(the isotropy group of M at E is a maximal torus of K). This is our isoparametric
submanifold in the present case.

Let us write the roots in Φ(g0, a0) in terms of ∆(g0, a0) as

δ =
∑

γ∈∆(g0,a0)

sγ (δ) γ

and assume that we can choose a simple root λ ∈ ∆ (g0, a0) such that for the
maximal root µ we have sλ(µ) = 2. The chosen root λ ∈ ∆ (u0, t0) splits Φ+ (g0, a0)
into three sets, namely

Ψ0 =
{
δ ∈ Φ+ (g0, a0) : sλ (δ) = 0

}
,

Ψ2 =
{
δ ∈ Φ+ (g0, a0) : sλ (δ) = 2

}
,

Θ =
{
δ ∈ Φ+ (g0, a0) : sλ (δ) = 1

}
.

(3.3)

The subspace DE(Θ) =
∑

δ∈Θ p0,δ of TE(M) in (1.4) associated to Θ ⊂ Φ+ (g0, a0)
is invariant by the maximal torus T of K which is the isotropy subgroup of K at
E and so, by translation with K, defines a distribution D(Θ) on the manifold Ṁ .

Let us consider the symmetric spaces in (1.5) and (1.6). All these spaces have
the property that there is a simple root λ ∈ ∆ (u0, t0) such that all roots in the
tangent space (written in terms of ∆ (g0, a0)) have a term λ with coefficient 1 and
sλ(µ) = 2. Then, the tangential roots in these symmetric spaces are those in Θ.
In the following Tables 1 and 2 we indicate, for each one of them, the simple root
that defines Θ, as in (3.3). The subscripts of the indicated roots are those in the
notation from [5, pp. 477–478]:

A glance at the table in [5, pp. 477–478] shows that for these choices the coeffi-
cient sλ(µ) for these simple roots is sλ(µ) = 2. Tables 1 and 2 indicate the existence
of at least one such root for each of these spaces. It is important to mention that
there is no orbit of the type of these symmetric spaces in the corresponding adjoint
representations of their groups. The set Θ, for each of the indicated symmetric
spaces, is defined by (3.3) with the roots in 1 and 2.
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space root

Gr4(Rn+4) = SO(n+ 4)/SO(n) × SO(4), n ≥ 3
{
αm, n = 2m
α2, n = 2m+ 1

HPn = Sp(n+ 1)/Sp(n) × Sp(1), n ≥ 1 αn

Table 1.

space root space root
EII α2 EIX α8
EVI α1 FI α1
EVIII α1 G α2

Table 2.

We have the following lemma which replaces Lemma 3.2 in the present situation.

Lemma 3.3. For each γ ∈ Ψ0 ⊂ Φ+ (g0, a0) there are two roots φ and ψ in Θ
such that γ = φ−ψ and the sum (φ+ψ) is not a root of Φ (g0, a0). Also, for each
η ∈ Ψ2 ⊂ Φ+ (g0, a0), there are two roots δ and ω in Θ such that η = δ + ω and
|δ − ω| is not a root of Φ (g0, a0).

Proof. The proof is by inspection on the systems of roots. □

Remark 3.4. The reader can find complete proofs of Lemmata 3.1, 3.2 and 3.3
in [11].

At this point, it seems convenient to present some examples to illustrate the
construction of the distributions considered in Theorems 2.1 and 2.2.

4. Examples

Let us consider the extrinsic symmetric spaces which are real forms of the Her-
mitian symmetric space EVII . They are:

Hermitian: EVII = E7/(E6U(1))
real forms: EIV = (E6.U(1))/F4 AII = SU(8)/Sp(4)

Each one of them is realized as orbit in the tangential representation of the sym-
metric spaces indicated in the following table.

space dim ambient dim
EIV = (E6.U(1))/F4 27 ↪→ EVII = E7/(E6U(1)) 54
AII = SU(8)/Sp(4) 27 ↪→ EV = E7/SU(8) 70
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We have Cartan decompositions and restricted root system (RRS) for the corre-
sponding “ambient” spaces.

space RRS
EVII e7 = (e6 ⊕ R) ⊕ p0 c3
EV e7 = su(8) ⊕ p0 e7

4.1. The space EIV = (E6.U(1))/F4. Let us consider the symmetric space EVII
and the associated Cartan decomposition

e7 = (e6 ⊕ R) ⊕ p0

and the maximal abelian subspace a0 in p0. The Dynkin diagrams of e7 and c3,
indicating the coefficients of the corresponding highest roots, are

2
α2
◦
↓

1◦
α7

− 2◦
α6

− 3◦
α5

− 4◦
α4

− 3◦
α3

− 2◦
α1

,
2◦

λ1
− 2◦

λ6
⇐= 1◦

λ7
(4.1)

The restriction rule [5, p. 534] of the roots is
α2
•
↓

◦
α7

− ◦
α6

− •
α5

− •
α4

− •
α3

− ◦
α1

7−→ ◦
λ1

− ◦
λ6

⇐= ◦
λ7

with the notation in [5, p. 534] this is: αj 7−→ λj for j = 1, 6, 7 and αj 7−→ 0 for
j = 2, 3, 4, 5. The multiplicities of the simple roots are: m (λj) = 8 for j = 1, 6
and m (λ7) = 1. For convenience, we change the names of the simple roots of c3 to
{λ1, λ2 := λ6, λ3 := λ7}. The 9 positive roots of c3 are

e1 − e2 = λ1 e1 + e2 = λ1 + 2λ2 + λ3 2e1 = 2λ1 + 2λ2 + λ3

e1 − e3 = λ1 + λ2 e2 + e3 = λ2 + λ3 2e2 = 2λ2 + λ3

e2 − e3 = λ2 e1 + e3 = λ1 + λ2 + λ3 2e3 = λ3

with maximal roots
long: µ = 2 (λ1 + λ2) + λ3, short: η = λ1 + 2λ2 + λ3.

The following table indicates the corresponding multiplicities for all the positive
roots of c3:

m (λ1) = 8 m (λ2) = 8 m (λ3) = 1
m (λ1 + λ2) = 8 m (λ2 + λ3) = 8 m (2λ2 + λ3) = 1

m (λ1 + λ2 + λ3) = 8 m (λ1 + 2λ2 + λ3) = 8 m (2λ1 + 2λ2 + λ3) = 1.

We have the subset Ω ⊂ Φ+ (g0, a0) of roots of odd height with respect to the simple
roots {λ1, λ2, λ3}. The set Ω has the 6 roots

λ1, λ2, λ3,

λ1 + λ2 + λ3, 2λ2 + λ3, 2λ1 + 2λ2 + λ3.

We see that the dimension of D(Ω) is dim(D(Ω)) = 27.
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We can take the dual basis {v1, v2, v3} of {λ1, λ2, λ3} defined by λk (vj) = δk,j

and consider the vector E = v1 + v2 + v3 which is clearly a regular element (no
root vanishes on E). So the orbit of E by E6U(1) is a principal orbit which we can
take as our isoparametric submanifold M in this example. The dimension of M
is the sum of the multiplicities of all the positive roots so dim(M) = 51. Then
we have (see (1.3)) that dim(m0) = 28. In order to get the symmetric R-space,
namely EIV = (E6.U(1)/F4), we just have to take the vector v3 ∈ a0 just defined
and evaluating the roots on v3 we see that

λ1(v3) = 0 (λ1 + 2λ2 + λ3)(v3) = 1 (2λ1 + 2λ2 + λ3)(v3) = 1
(λ1 + λ2)(v3) = 0 (λ2 + λ3)(v3) = 1 (2λ2 + λ3)(v3) = 1
λ2(v3) = 0 (λ1 + λ2 + λ3)(v3) = 1 λ3(v3) = 1.

So v3 is extrinsically symmetric and its orbit is in fact a symmetric R-space. We
see that the orbit of v3 by E6.U(1) has dimension 27, which is that of E6.U (1) /F4.
Now Θ is the set of roots with λ3 with coefficient 1 and it defines the subspace

DE(EIV ) =
∑
λ∈Θ

p0,λ

of dimension 27 in the tangent space TE(M) at M at the point E, which in turn
extends to a distribution of this dimension in the isoparametric submanifold M of
dimension 51.

4.2. The space AII = SU(8)/Sp(4).
AII = SU(8)/Sp(4)27 ↪→ EV = E7/SU(8)70.

Let us consider the symmetric space
space dim rank Φ(g0, a0)

EV E7/SU(8) 70 7 e7

This is an inner split symmetric space. We have the associated Cartan decompo-
sition

e7 = su(8) ⊕ p0.

The restricted root system is e7. The Dynkin diagram of e7 (with coefficients of
the highest root) is in (4.1). Let us consider the maximal abelian subspace a0 in p0
of dimension 7. The orthogonal complement as in (1.3) has dimension 63, which is
the dimension of the principal orbits. Now we take the duals to the simple roots
of e7, namely ξj such that αk (ξj) = δk,j and take the vector ξ7 ∈ a0 ⊂ p0 ⊂ e7.
By looking at the table of roots in [4, p. 529], we see that evaluating each positive
root in ξ7 we get either 1 or 0 so this vector is extrinsically symmetric since all the
roots in e7 evaluated in the vector ξ7 give either 1, 0 or (−1).

It is important to observe that there are 27 roots with coefficient 1 in α7 (α7 is the
extreme of the long arm of the above Dynkin diagram), and since the multiplicities
of the roots are all m = 1 we get that the orbit of ξ7 by the adjoint action of SU(8)
has dimension 27.

We include now some examples referring to the distributions considered in The-
orem 2.2.
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4.3. The space EII = E6/SU(6)SU(2). Let us consider the quaternionic sym-
metric space EII . It generates a distribution of dimension 40 in the isoparametric
submanifold M = E6/T

6 of dimension 72. M is any chosen principal orbit in the
adjoint representation of E6 in its Lie algebra.

We have
space dim rank Φ (g0, a0)

EII E6/SU(6)SU(2) 40 4 f4

The maximal root µ of e6 is α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6, so we have three
simple roots with coefficient 2. But, as indicated in Table 2, we take the root α2.
Let us consider now the subsets of roots

Ψ0(α2) =
{
λ ∈ Φ+(g0, a0) : sλ(α2) = 0

}
,

Ψ2(α2) =
{
λ ∈ Φ+(g0, a0) : sλ(α2) = 2

}
,

Θ(α2) =
{
λ ∈ Φ+(g0, a0) : sλ(α2) = 1

}
.

There are 36 positive roots in e6. Then, ny taking a look at the corresponding table
of roots, we see that

|Ψ0(α2)| = 15,
|Ψ2(α2)| = 1,
|Θ(α2)| = 20.

Since we are considering the adjoint representation of E6, the multiplicities of all
the roots are m(λ) = 2, and we see that, by considering the roots in the set Θ,
in the tangent space to the principal orbit E6/T

6, we get the subspace D(Θ). It
generates a distribution of dimension 40, which is the dimension of EII . If we take
α5 instead we have

|Ψ0(α5)| = 11,
|Ψ2(α5)| = 5,
|Θ(α5)| = 20,

and similarly for α3. With the three simple roots of e6 we get distributions D(Θ)
of rank (dimension) 40 in the tangent bundle of E6/T

6.

4.4. The space EVI = E7/SO(12)SU(2).

space dim rank Φ (g0, a0)
EVI E7/SO(12)SU(2) 64 4 f4

dim(E7) = 133, |positive roots| = 63.

For this space we take the root α1 with the notation in [5, p. 477]. (In this notation,
α1 is the exterior root in the short arm of the diagram of E7). We have 63 positive
roots in e7 and 32 of them have coefficient 1 on α1. Since the roots have multiplicity
m = 2, we see that we have a subspace of dimension 64 in the tangent space to the
isoparametric submanifold E7/T

7 of dimension 126. On the other hand, the set Ω
generates a distribution of dimension 70.
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4.5. The space FI = F4/Sp(3)SU(2).
space dim rank Φ (g0, a0)

FI F4/Sp(3)SU(2) 28 4 f4

This is a split symmetric space and the roots that we have to consider by the table
are those involving the root α1. Again here we consider the adjoint representation
(in this case of F4) and choose a principal orbit which is of the form F4/T

4 and
has dimension 48.

With the notation in [5, p. 477], α1 is the first long root at the left in the
diagram. The algebra f4 has 24 positive roots and 14 of them have the coefficient
of α1 equal to 1. Since in the adjoint representation the roots have multiplicity
m = 2, we see that we have a subspace of dimension 28 in the tangent space to the
isoparametric submanifold F4/T

4.

5. Proof of Theorems 2.1 and 2.2

In the present section we shall prove Theorems 2.1 and 2.2. To that end we are
going to use formulae (A.13), (A.16) and (A.17), recalled in Appendix A, and also
their dual versions (B.12), (B.13) and (B.14) that are obtained in Appendix B.

Let us start with a general observation. In order to prove each of the Theo-
rems 2.1 and 2.2, it suffices to show that, for each positive root λ which does not
belong to Θ, each vector of the basis Ξp(λ) (A.10) of p0λ ⊂ TE(M) may be com-
puted as a linear combination of brackets (evaluated at E) of local fields defined
around E that belong to the distribution D(Θ). It is important to mention that the
vectors in (A.10) are associated to the roots in ρ−1(λ) = ρ−1 (λ)R ∪ ρ−1(λ)∗

C and
that in ρ−1(λ)∗

C we have only one element of the pair {α, ασ} for each α ∈ ρ−1(λ)C.

Proof of Theorem 2.1. Here our space N = Ad(K)H ⊂ p0 is a symmetric R-space
and the vector H is dual to a simple root η in ∆ (g0, a0) which appears with
coefficient 1 in the maximal root of Φ+ (g0, a0). We have Φ+ (g0, a0) = Ψ0 ∪ Θ (see
(3.1)) and the roots in Ψ0 (written in terms of ∆ (g0, a0)) are those without the
term η, while those in Θ have the term η with coefficient 1.

Let us take then λ ∈ Ψ0 ⊂ Φ+ (g0, a0) and recall the basis of p0λ given in (A.10).
We start by taking γ ∈

(
ρ−1(λ)∗

C
)

for our λ and consider Uγ , Vγ for our chosen γ.
By Lemma 3.2, there exist two roots δ and φ in Θ ⊂ Φ+ (g0, a0) such that

λ = δ − φ

and δ + φ is not a root of Φ (g0, a0). Furthermore, for the root γ ∈ ρ−1(λ), there
exist roots α ∈ ρ−1 (δ) and β ∈ ρ−1(φ) such that γ = α − β. So we consider
Uγ = U(α−β), Vγ = V(α−β). Then, we are to use formulae (B.12) (for the present
subscripts). We have

L(δ,φ,α,β)U(α−β) + B1(δ,φ,α,β) =
[
UF

α , U
F
β

]
(E) +

[
V F

α , V F
β

]
(E),

F(δ,φ,α,β)V(α−β) + B2(δ,φ,α,β) =
[
UF

α , V
F

β

]
(E) −

[
V F

α , UF
β

]
(E).

Let us consider the terms B1(δ,φ,α,β) and B2(δ,φ,α,β) which, except by non-zero
factors, are B1 (α, β) and B2 (α, β). Since δ+φ is not a root of Φ+ (g0, a0), α+β is

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



448 CRISTIÁN U. SÁNCHEZ

not a root either because ρ (α+ β) = δ + φ and furthermore, by the same reason,
neither ασ + β nor α + βσ are roots of Φ+ (g, h). Thus B1 (α, β) and B2 (α, β)
vanish and then the formulae above reduce to

L(δ,φ,α,β)U(α−β) =
[
UF

α , U
F
β

]
(E) +

[
V F

α , V F
β

]
(E),

F(δ,φ,α,β)V(α−β) =
[
UF

α , V
F

β

]
(E) −

[
V F

α , UF
β

]
(E),

so we see that U(α−β), V(α−β) are linear combinations of brackets (evaluated on E)
of local fields defined around E and belonging to the distribution D(Θ).

It remains to consider the case of real roots. So take γ ∈
(
ρ−1(λ)R

)
for λ ∈

Ψ0 ⊂ Φ+ (g0, a0), then we have the vector Wγ . Again there exist two roots δ and
φ in Θ ⊂ Φ+ (g0, a0) such that λ = δ − φ, and roots α ∈ ρ−1 (δ), β ∈ ρ−1(φ) such
that γ = α− β. Then we have the following possibilities:

(i) α and β are both real roots of Φ (g, h);
(ii) α and β are both complex roots of Φ (g, h).

(5.1)

Considering first the case (i) in (5.1), we have to use formulae (B.14). Here the
notation (subscripts) in (B.14) should be changed as follows:

λ 7−→ δ, µ 7−→ φ, δ 7−→ α, φ 7−→ β. (5.2)

Then, by the same reason indicated above, B1(δ,φ,α,β) and B2(δ,φ,α,β) vanish in all
cases. This shows that Wγ = W(α−β) is a bracket (evaluated at E) of local fields
defined around E that belong to the distribution D(Θ). On the other hand, in
case (ii) of (5.1), we may apply formulae (B.13) (also with (5.2)) and here again
B1(δ,φ,α,β) and B2(δ,φ,α,β) vanish. We see, again in this case, that Wγ is a sum
of brackets (evaluated at E) of local fields that belong to the distribution D(Θ).
Then we have the proof of Theorem 2.1. □

Proof of Theorem 2.2. Here the positive roots not contained in Θ are those ω ∈ Ψ0
and λ ∈ Ψ2, defined in (3.3). Here, Ψ0 has the same meaning as in the previous
theorem, but here we must apply Lemma 3.3, which says that for each ω ∈ Ψ0 ⊂
Φ+ (g0, a0) there are two roots φ and ψ in Θ such that ω = φ − ψ and the sum
(φ+ ψ) is not a root of Φ (g0, a0). By taking α ∈ ρ−1(φ) and β ∈ ρ−1(ψ), we see
again, as above, that α+ β is not a root and neither ασ + β nor α+ βσ are roots
of Φ+(g, h).

Then, for ω ∈ Ψ0, the proof just given yields that each vector of the basis Ξp (ω)
of p0ω ⊂ TE(M) may be computed as a linear combination of brackets (evaluated
at E) of local fields defined around E that belong to the distribution D(Θ).

It remains to consider the case in which λ ∈ Ψ2. Again we start by taking
γ ∈

(
ρ−1(λ)∗

C
)

for λ ∈ Ψ2 ⊂ Φ+ (g0, a0) and consider Uγ and Vγ for our chosen γ.
By Lemma 3.3, there exist two roots δ and φ in Θ ⊂ Φ+ (g0, a0) such that λ = δ+φ
and |δ − φ| is not a root of Φ (g0, a0). Furthermore, we have roots α ∈ ρ−1 (δ) and
β ∈ ρ−1(φ) such that γ = α + β and |α− β| is not a root and, as in the above
proof of Theorem 2.1, neither |α− βσ| nor |ασ − β| are roots, and so H1 (α, β) and
T2 (α, β) in (A.14) and (A.15) (on roots α, β) vanish, and we may write formulae
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(A.13) as
Θ(λ,µ,α,β)U(α+β) =

[
UF

α , U
F
β

]
(E) −

[
V F

α , V F
β

]
(E),

Θ(λ,µ,α,β)V(α+β) =
[
UF

α , V
F

β

]
(E) +

[
V F

α , UF
β

]
(E).

Then we have that Uγ = U(α+β), Vγ = V(α+β) are sums of brackets (evaluated
on E) of local fields defined around E and belonging to the distribution D(Θ).
Now we see that the case of real roots is managed by using formulae (A.16) and/or
(A.17) in similar fashion to the procedure applied above. This completes the proof
of Theorem 2.2. □

Appendix A. Notation and previous results

We shall use the notation in [9], and for that reason, we hope that the reader
will have opportunity to take a look at the second section of [9]. On the other
hand, we recall here parts of the fourth section of that paper which are needed in
the proof of the theorems.

A.1. Basis for g0. Let us take the σ and τ adapted Chevalley basis for (g, h)
from [9] (also [7]). In [9], we defined kα for each α ∈ Φ (g, h) by

σ (xα) = kαxασ , kα = ±1

and observed the identities

kαkασ = 1, kασ = kα, k−α = kα, (A.1)

θ(xα) = kαx−ασ , θ(xασ ) = kαx−α. (A.2)
Keeping the σ and τ adapted Chevalley basis for (g, h), let us consider, for α ∈
Φ(g, h), the vectors

Xα = xα + σ (xα) , Yα = i (xα − σ (xα)) , Zα = Xα + Yα.

They are fixed by σ, so they belong to g0. Now, setting
Pα = (Xα + θXα) , Qα = (Yα + θYα) , Rα = (Zα + θZα) ,
Uα = (Xα − θXα) , Vα = (Yα − θYα) , Wα = (Zα − θZα) ,

(A.3)

we see that the vectors in the first row of (A.3) belong to k0 and those in the second
row to p0. Using (A.2) and the definitions, we observe that

Pα = (Xα + θXα) = (xα + kαxασ ) + (kαx−ασ + x−α) ,
Uα = (Xα − θXα) = (xα + kαxασ ) − (kαx−ασ + x−α) ,
Qα = (Yα + θYα) = i (xα − kαxασ ) + i (kαx−ασ − x−α) ,
Vα = (Yα − θYα) = i (xα − kαxασ ) − i (kαx−ασ − x−α) .

(A.4)

On the other hand, the vectors Rα and Wα shall be considered only for α real
(i.e., ασ = α), and we have the equalities

if kα = 1, Rα = Pα, Wα = Uα;
if kα = −1, Rα = Qα, Wα = Vα.

(A.5)
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For α ∈ ΦC and β ∈ ΦR we see that Pα, Qα, Rβ ∈ k0 and Uα, Vα, Wβ ∈ p0. We
must notice also that by (A.1) we have

P−α = Pα, Q−α = −Qα, U−α = −Uα, V−α = −Vα. (A.6)

Now as in [9], setting ρ (α) = ρ (β) = λ, for α ∈ ΦC, β ∈ ΦR, the vectors in
(A.3) are such that

Pα, Qα, Rβ ∈ k0λ and Uα, Vα,Wβ ∈ p0λ. (A.7)

A.2. Basis for k0,λ and p0,λ, λ ∈ Φ+(g0, a0). Consider now for λ ∈ Φ+ (g0, a0) the
set ρ−1(λ) = {α ∈ Φ+ (g, h) : ρ (α) = λ} and split it separating the real roots from
the complex ones. So we set ρ−1(λ)R = ρ−1(λ) ∩ ΦR and ρ−1 (λ)C = ρ−1(λ) ∩ ΦC.
For a root α in ρ−1(λ)C we have ασ ̸= α; then we define, as in [7], the set ρ−1(λ)∗

C
where we place one of the two elements in {α, ασ} for each α ∈ ρ−1(λ)C. Now for
λ, µ ∈ Φ+ (g0, a0) take the sets

Ξk(λ) =
{
Rη, Pδ, Qγ : η ∈ ρ−1(λ)R, δ, γ ∈ ρ−1(λ)∗

C
}
,

Ξp(µ) =
{
Wα, Uβ , Vφ : α ∈ ρ−1(µ)R, β, φ ∈ ρ−1(µ)∗

C
}
.

(A.8)

By (A.7), we have Ξk(λ) ⊂ k0λ and Ξp(µ) ⊂ p0µ, and each set is linearly inde-
pendent over R. Since the equal cardinalities of Ξk(λ) and Ξp(λ) coincide with the
dimensions of k0,λ and p0,λ, we have a basis for each of these subspaces. Obviously,
there is a one-to-one correspondence between Ξk(λ) and Ξp(λ). For the members
of the basis Ξk(λ) and Ξp(λ) we have

[Rη, E] = −η(E)Wη, [Pδ, E] = −δ(E)Uδ, [Qδ, E] = −δ(E)Vδ,

which is coherent with their one-to-one correspondence.

A.3. Smooth local fields. Proceeding as in [9], we may extend the vectors of the
basis

⋃
λ∈Θ Ξp(λ) to local fields defined in some open set AE containing E in M .

We use for them the same notation as in [9], that is,{
UF

β , V
F

β ,WF
α : β ∈

(
ρ−1(λ)∗

C
)
, α ∈

(
ρ−1(λ)R

)
, λ ∈ Θ

}
.

At the point E ∈ M , they coincide with the vectors {Wα, Uβ , Vβ} of Ξp (λ) for
λ ∈ Θ. We have then a local basis for D(Θ) in the open set AE containing E and
these fields are smooth in AE . Now, at any other point p ∈ M there is a g ∈ K such
that p = Ad(g)E and we may consider the open set Ad(g)AE containing p. On
such open set, we have a local basis of smooth vector fields defined by translation
of those on AE with Ad(g). Hence, by the usual definition ([12, p. 41, Def. 1.56]),
the distribution D(Θ) on M is smooth.

In [9] we computed the brackets of the fields in D (Θ) constructed above by using
the Levi-Civita connection on M . We recall the resulting formula. The bracket of
the fields UF

φ and UF
γ at E, for γ ∈ ρ−1(λ) and φ ∈ ρ−1(µ), evaluated at E, is[

UF
φ , U

F
γ

]
(E) =

(
−1
µ(E)

)
Ta ([Pφ, Uγ ]) −

(
−1
λ(E)

)
Ta ([Pγ , Uφ]) . (A.9)
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In this formula, we have brackets of fields (evaluated at E) on the left side and
products in g0 on the right side. We use the words brackets for fields and products
for vectors in g0.

For λ, µ ∈ Θ, we have the bases Ξp(λ) for p0λ and Ξp(µ) for p0µ, respectively,
as indicated in (A.8). To fix notation we set them as

Ξp(λ) =
{
Uγ , Vγ ,Wδ : γ ∈ ρ−1(λ)∗

C, δ ∈ ρ−1(λ)R
}

⊂ p0λ,

Ξp(µ) =
{
Uφ, Vφ,Wη : φ ∈ ρ−1(µ)∗

C, η ∈ ρ−1(µ)R,
}

⊂ p0µ.
(A.10)

Each of these tangent vectors at E generates a corresponding field
{
UF

γ , V
F

γ ,WF
β

}
and

{
UF

φ , V
F

φ ,WF
δ

}
around E. So we have nine possible brackets of these fields.

A.4. Known identities. We need to mention some important identities proven
in [9] that are to be used in the required computations. First recall that we have

cδ,β = c−δ,−β . (A.11)

Since σ
(
x(α+β)

)
= k(α+β)x(α+β)σ and [xα, xβ ] = cα,βx(α+β) with real coefficients

cα,β , the following identities hold:
σ [xα, xβ ] = σ (cα,βxα+β) = cα,βσ (xα+β) = cα,βk(α+β)x(α+β)σ ,

σ [xα, xβ ] = [σxα, σxβ ] = [kαxασ , kβxβσ ] = kαkβcασ,βσx(ασ+βσ).

By repeating this computation for [xα, x−β ], [x−α, xβ ] and [x−α, x−β ] (using (A.11)
and (A.1)), we get the four equalities

kαkβcασ,βσxασ+βσ = cα,βk(α+β)x(α+β)σ ,

kαkβcασ,−βσxασ−βσ = cα,−βk(α−β)x(α−β)σ ,

kαkβc−ασ,βσx−ασ+βσ = c−α,βk(−α+β)x(−α+β)σ ,

kαkβc−ασ,−βσx−ασ−βσ = cα,βk(α+β)x−(α+β)σ .

(A.12)

A.5. Formulae for the sum of roots. We need to recall now some formulae
obtained in [9] and used there and also in [10]. Those formulae give expressions for
the vectors

U(δ+φ), V(δ+φ), W(δ+φ) in TE(M)
(for the roots λ, µ ∈ Ω ⊂ Φ+ (g0, a0) with δ ∈ ρ−1 (λ)∗

C and φ ∈ ρ−1(µ)∗
C) in terms

of brackets, evaluated at E, of local fields defined around E. They are:

Θ(λ,µ,δ,φ)U(δ+φ) + Λ(λ,µ)(Ta(H1)) = [UF
δ , U

F
φ ](E) − [V F

δ , V F
φ ](E),

Θ(λ,µ,δ,φ)V(δ+φ) + Λ(λ,µ)(Ta(T2)) = [UF
δ , V

F
φ ](E) + [V F

δ , UF
φ ](E),

(A.13)

with

H1(δ, φ) = 2(kδcδσ,−φ(x−δσ+φ − xδσ−φ)
− kφcδ,−φσ (xδ−φσ − x−δ+φσ )), (A.14)

T2(δ, φ) = 2i(kδcδσ,−φ(xδσ−φ + x−δσ+φ)
− kφcδ,−φσ (xδ−φσ + x−δ+φσ )). (A.15)
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We have to consider also the case in which δ + φ is real and both δ and φ
complex. Again, λ, µ ∈ Ω ⊂ Φ+ (g0, a0), δ ∈ ρ−1(λ)∗

C and φ ∈ ρ−1(µ)∗
C. In this

case, from (A.13) and having (A.5) in mind we obtain

k(δ+φ) = 1,
Θ(λ,µ,δ,φ)W(δ+φ) + Λ(λ,µ) (Ta (H1)) =

[
UF

δ , U
F
φ

]
(E) −

[
V F

δ , V F
φ

]
(E),

k(δ+φ) = (−1),
Θ(λ,µ,δ,φ)W(δ+φ) + Λ(λ,µ) (Ta (T2)) =

[
UF

δ , V
F

φ

]
(E) +

[
V F

δ , UF
φ

]
(E),

(A.16)

and it is necessary to consider also the case in which both δ and φ are real. That
is, λ, µ ∈ Ω ⊂ Φ+ (g0, a0), δ ∈ ρ−1(λ)R and φ ∈ ρ−1 (µ)R. Furthermore, the first
line in (A.12) in the present case clearly yields kδkφ = k(δ+φ) and then formulae
(A.16) become

k(δ+φ) = 1, kδ = kφ = 1,
Θ(λ,µ,δ,φ)W(δ+φ) + Λ(λ,µ) (Ta (H1)) =

[
WF

δ ,W
F
φ

]
(E) ,

k(δ+φ) = 1, kδ = kφ = −1,
Θ(λ,µ,δ,φ)W(δ+φ) + Λ(λ,µ) (Ta (H1)) = −

[
WF

δ ,W
F
φ

]
(E) ,

k(δ+φ) = (−1) , kδ = 1, kφ = −1,
Θ(λ,µ,δ,φ)W(δ+φ) + Λ(λ,µ) (Ta (T2)) =

[
WF

δ ,W
F
φ

]
(E) ,

k(δ+φ) = (−1) , kδ = −1, kφ = 1,
Θ(λ,µ,δ,φ)W(δ+φ) + Λ(λ,µ) (Ta (T2)) =

[
WF

δ ,W
F
φ

]
(E) .

(A.17)

Appendix B. Formulae for the difference of roots

In this appendix, we give a proof for the new formulae (B.12), (B.13) and (B.14),
used in the proofs of Theorems 2.1 and 2.2. These formulae are complementary to
those in (A.13), (A.16) and (A.17) (obtained in [9]), as the latter give vectors corre-
sponding to sums of roots, while the former give those associated to the difference
of roots.

By (A.9), to get the brackets of tangent fields we take the basis Ξk(λ) and Ξp(µ)
in (A.8), for k0,λ and p0,µ respectively. There are nine possible products, namely

(1) [Rη,Wα] , (2) [Rη, Uβ ] , (3) [Rη, Vφ] ,
(4) [Pδ,Wα] , (5) [Pδ, Uβ ] , (6) [Pδ, Vφ] ,
(7) [Qγ ,Wα] , (8) [Qγ , Uβ ] , (9) [Qγ , Vφ] .

(B.1)

However, we shall need only (1) (for η, α real) and (5), (6), (8) and (9) for complex
roots (δ, φ, β and γ). Now we compute the products (5), (6), (8) and (9) mentioned
in (B.1). For reasons of space, we shall not perform all these computations in
full detail; however, it is straightforward to complete them. We take a pair of
complex roots δ, β in Φ+ (g0, a0). Let us start computing the product (5) with the
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expressions in (A.4):

(5) [Pδ, Uβ ] =
[
((xδ + kδxδσ ) + (kδx−δσ + x−δ)) ,

(xβ + kβxβσ ) − (kβx−βσ + x−β)
]
.

We obtain

(5) [Pδ, Uβ ] = cδ,βxδ+β + kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β + kδkβcδσ,βσxδσ+βσ

− kβcδ,−βσxδ−βσ − cδ,−βxδ−β − kδkβcδσ,−βσxδσ−βσ

− kδcδσ,−βxδσ−β + kδc−δσ,βx−δσ+β + kδkβc−δσ,βσx−δσ+βσ

+ c−δ,βx−δ+β + kβc−δ,βσx−δ+βσ − kδkβc−δσ,−βσx−δσ−βσ

− kδc−δσ,−βx−δσ−β − kβc−δ,−βσx−δ−βσ − c−δ,−βx−δ−β .

There are four terms with the product kδkβ , which can be replaced using the
above identities (A.12); by doing this we get

(5) [Pδ, Uβ ] = cδ,βxδ+β + kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β + cδ,βk(δ+β)x(δ+β)σ

− kβcδ,−βσxδ−βσ − cδ,−βxδ−β − cδ,−βk(δ−β)x(δ−β)σ

− kδcδσ,−βxδσ−β + kδc−δσ,βx−δσ+β + c−δ,βk(−δ+β)x(−δ+β)σ

+ c−δ,βx−δ+β + kβc−δ,βσx−δ+βσ − cδ,βk(δ+β)x−(δ+β)σ

− kδc−δσ,−βx−δσ−β − kβc−δ,−βσx−δ−βσ − c−δ,−βx−δ−β .

Let us consider now the expression for Ua in (A.4) (taking α = (δ − β)). If we
multiply by (−1) cδ,−β , it takes the form

(−1)cδ,−βU(δ−β) = −cδ,−β

(
x(δ−β) + k(δ−β)x(δ−β)σ − k(δ−β)x−(δ−β)σ − x−(δ−β)

)
,

and observe that the four terms conforming (−1)cδ,−βU(δ−β) are present in the
product (5). By placing those terms at the end (recalling that cδ,β = c−δ,−β and
k(δ−β) = k(β−δ)), we have

(5) [Pδ, Uβ ] = cδ,βxδ+β + kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β + cδ,βk(δ+β)x(δ+β)σ

− kβcδ,−βσxδ−βσ − kδcδσ,−βxδσ−β + kδc−δσ,βx−δσ+β

+ kβc−δ,βσx−δ+βσ − cδ,βk(δ+β)x−(δ+β)σ − kδc−δσ,−βx−δσ−β

− kβc−δ,−βσx−δ−βσ − c−δ,−βx−δ−β − cδ,−βxδ−β

− cδ,−βk(δ−β)x(δ−β)σ + c−δ,βk(−δ+β)x(−δ+β)σ + c−δ,βx−δ+β .

Then, replacing them, the product (5) can be written as

(5) [Pδ, Uβ ] = cδ,βxδ+β + kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β + cδ,βk(δ+β)x(δ+β)σ

− kβcδ,−βσxδ−βσ − kδcδσ,−βxδσ−β + kδc−δσ,βx−δσ+β

+ kβc−δ,βσx−δ+βσ − cδ,βk(δ+β)x−(δ+β)σ − kδc−δσ,−βx−δσ−β

− kβc−δ,−βσx−δ−βσ − c−δ,−βx−δ−β + (−1)cδ,−βU(δ−β).
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We may repeat the computation just performed but with the product (9) and
the same pair of roots δ and β.

(9) [Qδ, Vβ ] =
[
i (xδ − kδxδσ ) + i (kδx−δσ − x−δ) ,

i (xβ − kβxβσ ) − i (kβx−βσ − x−β)
]
.

We get
(9) [Qδ, Vβ ] = −cδ,βxδ+β + kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β − cδ,βk(δ+β)x(δ+β)σ

+ kβcδ,−βσxδ−βσ + kδcδσ,−βxδσ−β − kδc−δσ,βx−δσ+β

− kβc−δ,βσx−δ+βσ + cδ,βk(δ+β)x−(δ+β)σ − kδc−δσ,−βx−δσ−β

− kβc−δ,−βσx−δ−βσ + c−δ,−βx−δ−β + (−1)cδ,−βU(δ−β).

Now, by computing the sum (that is, (5) + (9)) line by line of the two final
expressions, we observe that the second lines in (5) and (9) cancel each other and
the sum is

[Pδ, Uβ ] + [Qδ, Vβ ] = 2 (kβcδ,βσxδ+βσ + kδcδσ,βxδσ+β)
+ 2 (−kδc−δσ,−βx−δσ−β − kβc−δ,−βσx−δ−βσ )
+ (−2)cδ,−βU(δ−β),

which we may write as

(5) + (9) (−2)cδ,−βU(δ−β) +B1 (δ, β) = [Pδ, Uβ ] + [Qδ, Vβ ] , (B.2)

where
B1(δ, β) = 2kβcδ,βσ

(
xδ+βσ − x−(δ+βσ)

)
+ 2kδcδσ,β

(
xδσ+β − x−(δσ+β)

)
,

(B.3)

and observe that
B1(β, δ) = (−1)B1(δ, β). (B.4)

Now, using the pair of roots {ω, φ} and proceeding as above, we may compute
the products (6) and (8), and observe that in both of them appear (with opposite
signs) the terms of

cω,−φV(ω−φ) = i
(
cω,−φx(ω−φ) − k(ω−φ)cω,−φx(ω−φ)σ

)
− i

(
k(ω−φ)cω,−φx−(ω−φ)σ − cω,−φx−(ω−φ)

)
.

Then, by computing the difference (6) − (8), we get

(6) − (8) 2cω,−φV(ω−φ) +B2 (ω, φ) = [Pω, Vφ] − [Qω, Uφ] , (B.5)

and, similarly to (B.3), we find that

B2(ω, φ) = −2ikφcω,φσ

(
xω+φσ + x−(ω+φσ)

)
+ 2kωcωσ,φ

(
xωσ+φ + x−(ωσ+φ)

) (B.6)

and B2(ω, φ) has the property

B2(φ, ω) = B2(ω, φ). (B.7)
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In this fashion, we have formula (B.2) with its companion (B.3) for the complex
roots (δ, β) and (B.5) with (B.6) for the pair of complex roots (ω, φ).

B.1. Brackets of fields. Recalling (B.1) and the definitions (A.3), we take the
following bases of p0,λ and p0,µ, respectively:

Ξp(λ) =
{
Wη, Uδ, Vγ : η ∈ ρ−1(λ)R, δ, γ ∈ ρ−1(λ)∗

C
}
,

Ξp(µ) =
{
Wα, Uβ , Vφ : α ∈ ρ−1(µ)R, β, φ ∈ ρ−1(µ)∗

C
}
.

With these two bases we may obtain the corresponding local fields and with
them form the nine brackets corresponding to the products in (B.1). However, we
shall need only those indicated in the following formulae. Using (A.9) (for η and α
real and γ, δ, β and φ complex) they are

{η, α} real {δ, φ} complex; φ ∈ ρ−1(λ), δ ∈ ρ−1(µ)

(1)
[
WF

η ,W
F
α

]
(E) =

(
−1
λ(E)

)
Ta ([Rη,Wα]) −

(
−1
µ(E)

)
Ta ([Rα,Wη]) ,

(5)
[
UF

δ , U
F
φ

]
(E) =

(
−1
λ(E)

)
Ta ([Pδ, Uφ]) −

(
−1
µ(E)

)
Ta ([Pφ, Uδ]) ,

(6)
[
UF

δ , V
F

φ

]
(E) =

(
−1
λ(E)

)
Ta ([Pδ, Vφ]) −

(
−1
µ(E)

)
Ta ([Qφ, Uδ]) ,

(8)
[
V F

δ , UF
φ

]
(E) =

(
−1
λ(E)

)
Ta ([Qδ, Uφ]) −

(
−1
µ(E)

)
Ta ([Pφ, Vδ]) ,

(9)
[
V F

δ , V F
φ

]
(E) =

(
−1
λ(E)

)
Ta ([Qδ, Vφ]) −

(
−1
µ(E)

)
Ta ([Qφ, Vδ]) .

(B.8)

Let us consider now the following two vectors in TE(M) for δ ∈ ρ−1(µ)∗
C and

φ ∈ ρ−1(λ)∗
C:

I (δ, φ) =
[
UF

δ , U
F
φ

]
(E) +

[
V F

δ , V F
φ

]
(E),

J (δ, φ) =
[
UF

δ , V
F

φ

]
(E) −

[
V F

δ , UF
φ

]
(E).

(B.9)

Considering equalities (5) and (9) in (B.8) and (B.2), we have

I (δ, φ) =
(

−1
λ (E)

)
{Ta [Pδ, Uφ] + Ta [Qδ, Vφ]}

−
(

−1
µ(E)

)
{Ta [Pφ, Uδ] + Ta [Qφ, Vδ]} ,

and, by (B.2), we may write

I (δ, φ) =
(

−1
λ(E)

) {
(−2) cδ,−φU(δ−φ) +B1 (δ, φ)

}
−

(
−1
µ(E)

) {
(−2) cφ,−δU(φ−δ) +B1 (φ, δ)

}
.
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Now, since U−α = −Uα (see (A.6)) and cδ,−φ = c−δ,φ = −cφ,−δ, to simplify
notation, we may set

L(λ,µ,δ,φ) = 2cδ,−φ

(
1

λ(E) − 1
µ(E)

)
,

B1(λ,µ,δ,φ) =
(

−1
λ(E)

)
B1 (δ, φ) −

(
−1
µ(E)

)
B1(φ, δ)

=
((

−1
λ(E)

)
+

(
−1
µ(E)

))
B1 (δ, φ) .

By (B.4) and recalling the definition of I (δ, φ), we may finally write

I (δ, φ) =
[
UF

δ , U
F
φ

]
(E) +

[
V F

δ , V F
φ

]
(E)

= L(λ,µ,δ,φ)U(δ−φ) + B1(λ,µ,δ,φ).
(B.10)

Proceeding similarly with (6) and (8) we see that

J (δ, φ) =
(

−1
λ (E)

)
{Ta [Pδ, Vφ] − Ta [Qδ, Uφ]}

−
(

−1
µ(E)

)
{Ta [Qφ, Uδ] − Ta [Pφ, Vδ]} ,

and by the definition (B.9) and the equality (B.5), we see that

J (δ, φ) =
(

−1
λ(E)

) {
2cδ,−φV(δ−φ) +B2 (δ, φ)

}
−

(
−1
µ(E)

) {
2cφ,−δV(φ−δ) +B2 (φ, δ)

}
.

Now, again by (A.6), V−α = −Vα and since cδ,−φ = −cφ,−δ we may set

F(λ,µ,δ,φ) = −2cδ,−φ

(
1

λ(E) + 1
µ (E)

)
and, recalling (B.7), we may also set

B2(λ,µ,δ,φ) =
(

−1
λ(E)

)
B2 (δ, φ) −

(
−1
µ(E)

)
B2(φ, δ)

=
((

−1
λ(E)

)
−

(
−1
µ(E)

))
B2(δ, φ).

This notation allows us to finally write

J (δ, φ) =
[
UF

δ , V
F

φ

]
(E) −

[
V F

δ , UF
φ

]
(E)

= F(λ,µ,δ,φ)V(δ−φ) + B2(λ,µ,δ,φ).
(B.11)
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B.2. Resulting formulae for the difference of roots. We may now write
formulae (B.10) and (B.11), for the roots λ, µ ∈ Φ+ (g0, a0), δ ∈ ρ−1(λ)∗

C and
φ ∈ ρ−1(µ)∗

C, as[
UF

δ , U
F
φ

]
(E) +

[
V F

δ , V F
φ

]
(E) = L(λ,µ,δ,φ)U(δ−φ) + B1(λ,µ,δ,φ),[

UF
δ , V

F
φ

]
(E) −

[
V F

δ , UF
φ

]
(E) = F(λ,µ,δ,φ)V(δ−φ) + B2(λ,µ,δ,φ).

(B.12)

It is also necessary to consider the case in which (δ − φ) is a real root and both
δ and φ are complex. Again, λ, µ ∈ Φ+ (g0, a0), δ ∈ ρ−1(λ)∗

C and φ ∈ ρ−1(µ)∗
C. It

follows from (B.12), due to (A.5), that we have
k(δ−φ) = 1,[
UF

δ , U
F
φ

]
(E) +

[
V F

δ , V F
φ

]
(E) = L(λ,µ,δ,φ)W(δ−φ) + B1(λ,µ,δ,φ),

k(δ−φ) = (−1),[
UF

δ , V
F

φ

]
(E) −

[
V F

δ , UF
φ

]
(E) = F(λ,µ,δ,φ)W(δ−φ) + B2(λ,µ,δ,φ).

(B.13)

Let us consider now the case in which both δ and φ are real, that is, λ, µ ∈
Φ+ (g0, a0), δ ∈ ρ−1(λ)R and φ ∈ ρ−1(µ)R. The second line in (A.12) in the present
case clearly yields kδkφ = k(δ−φ) and then formulae (B.13) become

k(δ−φ) = 1, kδ = kφ = 1,
L(λ,µ,δ,φ)W(δ−φ) + B1(λ,µ,δ,φ) =

[
WF

δ ,W
F
φ

]
(E) ,

k(δ−φ) = 1, kδ = kφ = −1,
L(λ,µ,δ,φ)W(δ−φ) + B1(λ,µ,δ,φ) =

[
WF

δ ,W
F
φ

]
(E) ,

k(δ−φ) = (−1) , kδ = 1, kφ = −1,
F(λ,µ,δ,φ)W(δ−φ) + B2(λ,µ,δ,φ) =

[
WF

δ ,W
F
φ

]
(E) ,

k(δ−φ) = (−1) , kδ = −1, kφ = 1,
F(λ,µ,δ,φ)W(δ−φ) + B2(λ,µ,δ,φ) = −

[
WF

δ ,W
F
φ

]
(E) .

(B.14)
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Birkhäuser, Boston, MA, 2002. MR Zbl

[9] C. U. Sánchez, A canonical distribution on isoparametric submanifolds I, Rev. Un. Mat.
Argentina 61 no. 1 (2020), 113–130. DOI MR Zbl

[10] C. U. Sánchez, A canonical distribution on isoparametric submanifolds II, Rev. Un. Mat.
Argentina 62 no. 2 (2021), 491–513. DOI MR Zbl

[11] C. U. Sánchez, The lemmata in “Canonical distribution on isoparametric submanifolds
III”, 2023. Available at https://web.archive.org/web/20250903163113/https://ciem.conicet.
unc.edu.ar/wp-content/uploads/sites/78/2023/03/OTRA-A.pdf.

[12] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman,
and Co., Glenview, Ill.-London, 1971. MR Zbl

Cristián U. Sánchez
Fa.M.A.F., Universidad Nacional de Córdoba and CONICET, Córdoba, Argentina
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