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A CANONICAL DISTRIBUTION ON ISOPARAMETRIC
SUBMANIFOLDS III

CRISTIAN U. SANCHEZ

ABSTRACT. The present paper is devoted to showing that on every compact,
connected homogeneous isoparametric submanifold M = G/K of codimen-
sion h > 2 in a Euclidean space, there exist canonical distributions which
are generated by the compact symmetric spaces associated to M (i.e., those
corresponding to the group G). The central objective is to show that all these
distributions are bracket generating of step 2. To that end, formulae that
complement those in the first article of this series (Rev. Un. Mat. Argentina
61, no. 1 (2020), 113-130) are obtained.

1. INTRODUCTION

The present paper can be considered a sequel and extension of the papers [9]
and [I0]. In those papers, it was established the existence (in any compact, con-
nected, homogeneous, isoparametric submanifold M of codimension h > 2 in a
Euclidean space) of a smooth, completely non-integrable, step 2 distribution D (£2).

Here we indicate, on the family of isoparametric submanifolds M mentioned
above, the existence of new distributions having the same property as D(2), that
is, they are all completely non-integrable of step 2. It is important to mention here
that these distributions are associated to symmetric spaces of Type 1. In fact, for
our isoparametric submanifold M = K/Kpg, the symmetric spaces corresponding
to the group K (which are of the form K/L) “induce” on M smooth distributions
which, similarly to © (), are completely non-integrable of step 2.

Recall that a distribution ® of r-planes (n > r > 2) in a compact, connected
manifold M™ is smooth [12], p. 41, Def. 1.56] if for any p € M™ there are r smooth
vector fields {X1,..., X, } defined on an open set A C M™ containing p such that
X;(q) € ©(q) and D(q) = spang {X; (¢)}, (1 < j <r, Vg € A). The distribution ®
is said to be completely non-integrable of step 2 if for every point p € M™ the above
vector fields defined in A satisfy (Vg € A):

Spang {X;(q), [Xk, X;](q) : 1 < k,j <1} =Ty (M),

i.e., the generated real vector space coincides with the corresponding tangent space.
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The mentioned homogeneous isoparametric submanifolds M™ of codimension
h > 2 in Euclidean spaces are obtained as principal orbits of the tangential repre-
sentation (at a basic point) of a compact (or noncompact dual) symmetric space.
A way to obtain explicitly these submanifolds is to consider a real simple noncom-
pact Lie algebra gg with Cartan decomposition gg = £,®po and Cartan involution 6.
Then ¢, is a maximal compactly embedded subalgebra of go [5, Pr. 7.4, p. 184]. Let
K be the analytic subgroup K of Int(gg) corresponding to the subalgebra adg, (£)
of adg, (go) which is compact and let By be the positive definite, symmetric bilinear
form on gg defined by

By (z,y) := (z,y)y = —B (z,0y), (L.1)
where B is the Killing form of gg.

The principal orbits of the representation of K on py are isoparametric subman-
ifolds M™ of R**" = pg. Let ay be a maximal abelian subspace of py and consider
the set ®(go, ag) of roots “restricted” to ag (see [9] for the required details and
notation). Let A (go,ap) be a corresponding system of simple roots in ® (go, a).
For A € ® (go, ap), it is usual to define the subspaces

tor = {z €t : (ad(h)’z =N (h)x Vh € ap},
por = {z €po: (ad(h))>z =2 (h)z Yh € ap},

for which obviously € x = £ (—x), Po,x = Po,(—x) and with them, respect to By
(1.1), we have orthogonal decompositions

to=mo® >  fton,  Po=00® Y Pox (1.3)

AePT(go,a0) AEPT (go,a0)

(1.2)

where ®* (go, ag) is the set of roots written with non-negative coefficients in terms
of A (go,a0) and mg is the centralizer of ag in EOH As usual, the height of a root
in ®* (go, ap) is defined as the sum of its coefficients with respect to A (go, ap).
Let Q C @7 (go, a0) be the set of positive roots of odd height. As in [9] and [I0],
associated to €2 we define the subspace

2(Q) = ZPO,)\ C po-
AEQ

Let us fix a regular element E € ag C pg, call M = Ad(K)E C po its orbit and
let Kz be the isotropy subgroup of K at E. The regularity of F implies that the
isotropy subalgebra (corresponding to) Kg is ¥y g = my. Furthermore, the tangent
and normal spaces of M at E are

Te(M)= > [oxEl= > pox and Tg(M)=ap (14)
AEPt(go,a0) APt (go,a0)

Since the subspace ©(12) is contained in Tg(M) and it is invariant by the action
of Kg, by translation with K, we obtain in M a distribution which we also call
D(9Q) and is contained in the tangent bundle of M. The main result of [9] and [10]

IThe subspaces defined in (T.2) are also defined in [l p. 57] and are related to the eigenspaces
of the shape operator as in [Il, pp. 70-71].
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is that this distribution is completely non-integrable of step 2. The difference
between [9] and [I0] resides in the nature of the system of restricted roots — reduced
in [9] and non-reduced in [10].

As indicated above, in the present paper we show the existence, on M = Ad(K)FE
of other distributions, all with the same property as (). These distributions
are associated to two classes of compact symmetric spaces. The first one is that
of symmetric R-spaces, i.e., extrinsic symmetric spaces (these are the compact
Hermitian symmetric spaces and their real forms, as indicated in [T}, pp. 427-428]).
The way in which symmetric R-spaces are presented is well known but it may
be convenient to recall it. Let gy be a real simple noncompact Lie algebra with
Cartan decomposition gg = £y ® po and Cartan involution 6. The subalgebra
£y is a maximal compactly embedded in gy. Let K be the analytic subgroup of
Int(go) corresponding to the subalgebra adg, (£) of adg, (go) which is compact.
Let us consider the Euclidean space py with the inner product By . Let
ao C po, P(go,a0) and A (go,ap) have the same meaning as above and assume
that there exists an element H € ag such that the eigenvalues of ad(H) on go
are {(—1),0, 1} (these elements are called extrinsically symmetric). Then the orbit
N = Ad(K)H C po is a symmetric R-space. On the other hand, the principal orbits
of the representation of K on pg are the isoparametric submanifolds that support
the associated distribution (one of them is chosen by taking a regular element
E € q¢ and considering its orbit M = Ad(K)E C po by the adjoint action of K
on pp). A particular subset of symmetric R-spaces is that of the Hermitian ones and
they are presented as follows: Let ug be a compact simple Lie algebra and consider
the real Lie algebra g® = ug @iug. This is a Cartan decomposition of g& [5l, p. 185].
Let us take a Cartan subalgebra tg C ug so ity C iug is a mazimal abelian subspace
of iug and b = (to ® itg) C ug Ding = g* is a Cartan subalgebra of g&. We have the
roots in @ (g®,h) and the restricted roots are those in ® (g, ity). They are just
the roots of uy with respect to t5. Let us take a compact connected Lie group K
(without center) corresponding to ug, the compact Hermitian symmetric space can
be realized (isometrically embedded) as orbit of an extrinsically symmetric element
H € ity C iug C g® by the adjoint action of K on (iug). For Hermitian symmetric
spaces the associated isoparametric submanifolds are the manifolds of complete
flags of the group K. These are the principal orbits of the adjoint representation
of K.

The other set of symmetric spaces to be considered contains some of the so called
quaternionic symmetric spaces and also the space EVIII = Eg/Spin(16)/Z,, which
is not a quaternionic one. These are not R-spaces.

The symmetric spaces Gra(C"2?) = SU(n + 2)/S(U(n) x U(2)) (n > 1) are
quaternionic symmetric and Hermitian symmetric, so we exclude them from the
present considerations and take the space EVIII instead. Then they are:

e classical:

Gry(R") = SO(n +4)/SO(n) x SO(4), n >3,

HP" = Sp(n +1)/Sp(n) x Sp(1), n>1, )
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e exceptional:
EIX = Eg/E7Sp(1), FI = Fy/Sp(3)Sp(1),
EVI = E7/Spin(12)Sp(1), G = G2/S0(4), (1.6)
EII = E/SU(6)Sp(1), EVIII = Eg/Spin(16)/Zs.

The distributions for this class of symmetric spaces K/H are defined (as for Her-
mitian ones) in the manifolds of complete flags of the group K.

The paper is organized as follows. The next section contains the two results
that are the objectives of the present paper; they are Theorem [2.I which involves
symmetric R-space, and Theorem [2.2] concerning the other type of symmetric spaces
considered here.

The paper goes along the lines of [9] and, for that reason, notation and some
results from that paper have to be recalled. They are contained in Appendix [A]
which is divided into five short sections recalling: basis, smooth local fields, known
identities and finally, formulae (A.13)), and obtained in [9] and cor-
responding to the sums of roots. Standard facts and notation from Lie theory are
taken from [7, B, 4, [, [2], as in [9]. On the other hand, in Appendix [B| we get
the new formulae expressing the vectors of the basis associated to the difference of
roots as combination of brackets of local fields in the distribution (evaluated at the
basic point E of M). The reader shall certainly notice that formulae in Appen-
dix [B] are dual to those in Appendix [A] Section [3] contains the construction of the
distributions, required notation and the necessary lemmata. It contains two sub-
sections, reflecting the differences of the situations considered. Section [4] contains
some examples that illustrate the way in which the distributions are generated and
hopefully shall clarify their meaning. Finally, Section [§] contains the proofs of The-
orem [2.1] and [2:2] where the formulae given in Appendices [A] and [B] are essentially
used.

2. OBJECTIVES

Here we indicate the results contained in the present paper, namely Theorems|2.1
and 2:2] Since the large majority of the compact, connected, irreducible symmet-
ric spaces are extrinsically symmetric (nowadays called symmetric R-spaces) we
indicate first the result associated to them, keeping the notation indicated in the
previous sections.

Theorem 2.1. Let E € ag be a reqular element and assume that there exists an
element H € ag such that the eigenvalues of ad (H) on go are {(—1),0,1} (we
call these elements extrinsically symmetric). Then the orbit N = Ad(K)H C pg
is a symmetric R-space. The tangent space Ty (N) of the symmetric R-space N
at H “induces” a distribution © (N) in T(M) (M = Ad(K)E) which is completely
non-integrable of step 2.

Proof. The proof is contained in Section (]

We shall describe the construction of ® (V) in the next section. Let us consider
now the situation for those symmetric spaces in (|1.5)) and ((1.6).
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Theorem 2.2. Let ugy be one of the compact simple Lie algebras corresponding to
the compact simple groups generating the spaces in and , and consider
the real Lie algebra gf = ug @ iug. With €, = ug and po = iug this €y ® po
is a Cartan decomposition of gf. Then & = ug is a mazimal compactly embedded
subalgebra of g®. Let K be a compact, connected, adjoint Lie group K corresponding
to ug. Let us consider the Euclidean space iug = po with the inner product given
by the Killing form B. Let ity C iug = po, while @ (go,a0) and A (go,a) have
the above meaning. The principal orbits of the representation of K on iug = pg
are isoparametric submanifolds. Let us choose a reqular element E € ay and set
M = Ad(K)E C po. The symmetric space K/H in or induces a
distribution ©(0) in T(M) which is completely non-integrable of step 2.

Proof. The proof of this theorem is also contained in Section O

Recall that a Lie group with trivial center is called an adjoint group.

3. CONSTRUCTION OF THE DISTRIBUTIONS

3.1. Distribution generated by symmetric R-spaces. Let us assume that
there exists H € ag C pg extrinsically symmetric (i.e., ad(H) has only eigenvalues
{(=1),0,1}). Then (ad(H))? has eigenvalues {0, 1} and determines two subsets of
®* (g, ag), namely
o= {Ae®" (go,a0) : AN(H) =0},
0= {/\€¢)+ (go,ao —1}
Note that ®* (go,a9) = ¥o U © and consider the orbit N = Ad(K)H C po. N is

a symmetric R-space (see for instance [3]) whose isotropy subalgebra and tangent
space at H are, respectively,

g = Z €.\ C &

AET,

Ty (N)=[to, Hl = > [ton,Hl = poxC po. (3.2)

AEDPT (go,a0) AEO

(3.1)

Now we observe the following:

Lemma 3.1. If the system of roots ® (go,a0) is irreducible [0, p. 52] and there is
an H € ag C pg extrinsically symmetric, then there is one and only one simple root

n € A(go,ap) such that n € © in (3.1)).
Proof. This is clear. See Remark below. 0

The roots in ¥y (written in terms of A (gg,ap)) are those without the term ),
while those in © have the term 7 (with coefficient 1).
Let us consider now the following:

Lemma 3.2. Let us assume that the mazimal root u € ®* (go,ap) has a simple
root term with coefficient 1. Then for each v € Wo C ®* (gg,a0) there are two
roots ¢ and v in © such that v = ¢ —1 and (¢ + 1) is not a root. The simple root
systems considered in this lemma are A,, B, Cy, D,, Eg, E7.
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Proof. The proof is by inspection on the systems of roots. See Remark [3:4] below.
O

We have then two subspaces of pg, namely (3.2)) and (L.4). We may now define
DE(0) C Te(M) by Dr(©) = >, ce Po,x and have the obvious inclusion

Dp(©) =Y porC D> pox=Te(M).

A€O AEDP T (go,a0)

The subspace D (0) is invariant by the isotropy subgroup Kg of K at E and
hence, by translation with K, we get the distribution ©(©) on M.

3.2. Distribution generated by the other spaces. We indicate now how to
construct the distributions associated to the spaces in and .

Recall the notations indicated in Theorem 2.2 and take a regular element F €
ag = itg C iug = po, while @ (go, ag) and A (go, ag) have the above meaning. The
orbit M = Ad(K)E C po (a principal orbit) is a manifold of complete flags of K
(the isotropy group of M at E is a maximal torus of K). This is our isoparametric
submanifold in the present case.

Let us write the roots in ®(gg, ap) in terms of A(gg,ag) as

0= Z sy (6)y

YEA(go,a0)

and assume that we can choose a simple root A € A(go,ap) such that for the
maximal root ;1 we have s (1) = 2. The chosen root A € A (ug, tg) splits @ (go, ag)

into three sets, namely
Wy = {5 € P (go,a0) : 55 (6) =0},
Wy = {6 € (go,a0) : 55 (6) =2}, (3.3)
© = {6 ®" (go,a0) : 5x(6) =1}.

The subspace D (0) = > 5.0 Po,5 of Tp(M) in associated to © C % (go, ag)
is invariant by the maximal torus T of K which is the isotropy subgroup of K at
E and so, by translation with K, defines a distribution ©(©) on the manifold M.

Let us consider the symmetric spaces in and . All these spaces have
the property that there is a simple root A € A (ug,tg) such that all roots in the
tangent space (written in terms of A (go, ag)) have a term A with coefficient 1 and
sx(p) = 2. Then, the tangential roots in these symmetric spaces are those in ©.
In the following Tables [ and [2] we indicate, for each one of them, the simple root
that defines ©, as in . The subscripts of the indicated roots are those in the
notation from [5 pp. 477-478]:

A glance at the table in [5, pp. 477-478] shows that for these choices the coeffi-
cient s () for these simple roots is s () = 2. Tables[I]and 2]indicate the existence
of at least one such root for each of these spaces. It is important to mention that
there is no orbit of the type of these symmetric spaces in the corresponding adjoint
representations of their groups. The set O, for each of the indicated symmetric
spaces, is defined by with the roots in |1} and
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space root

Gry(R"1) = SO(n +4)/SO(n) x SO(4), n > 3 {O‘ma n=2m

ay, n=2m-+1
HP" = Sp(n+1)/Sp(n) x Sp(1), n > 1 ap,

TABLE 1.

space  root ‘ space root

EIl  as | EIX oag
EVI (651 FI (65}
EVIIT o G Qs

TABLE 2.

We have the following lemma which replaces Lemma [3.2|in the present situation.

Lemma 3.3. For each v € Wy C & (go,a0) there are two roots ¢ and ¢ in ©
such that v = ¢ — ¥ and the sum (@ + ) is not a root of ® (go, ag). Also, for each
n € ¥y C & (gg,0a9), there are two roots § and w in © such that n = § + w and
|0 — w]| is not a root of ® (go, ap).

Proof. The proof is by inspection on the systems of roots. O
Remark 3.4. The reader can find complete proofs of Lemmata and
in [I1].

At this point, it seems convenient to present some examples to illustrate the
construction of the distributions considered in Theorems 2.1] and

4. EXAMPLES

Let us consider the extrinsic symmetric spaces which are real forms of the Her-
mitian symmetric space EVII. They are:

Hermitian: EVII = E;/(EgU(1))
real forms: EIV = (Eg.U(1))/Fy AIl =SU(8)/Sp(4)

Each one of them is realized as orbit in the tangential representation of the sym-
metric spaces indicated in the following table.

space dim ambient dim
EIV = (Es.U(1))/Fy 27 < EVII =FE;/(EcU(1)) b4
AIT = SU(8)/Sp(4) 27 < EV = E;/SU(8) 70
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We have Cartan decompositions and restricted root system (RRS) for the corre-
sponding “ambient” spaces.

space RRS
EVII ¢; = (QG D R) @D po c3
EV  e; =5su(8) @ po er

4.1. The space EIV = (Eg.U(1))/Fy. Let us consider the symmetric space EVII
and the associated Cartan decomposition

¢7 = (e6 ®R) @ po

and the maximal abelian subspace ag in pg. The Dynkin diagrams of e; and c3,
indicating the coeflicients of the corresponding highest roots, are

2

a2

° 2 2

N , 0O —0 <= o (4.1)
1 2 3 4 3 2 A1 A6 A7
o) — O — O — O — o — o]
(e%4 (o713 as Qg [e%:) (&5}

The restriction rule [5, p. 534] of the roots is

@2
.

\L —> O — O <— ©
o —0 —e —e— e— o© AL Xe A7
(e %4 Qg as (e} (0 %:3 a1

with the notation in [0l p. 534] this is: a; — A; for j = 1,6,7 and «; — 0 for
Jj = 2,3,4,5. The multiplicities of the simple roots are: m(A;) = 8 for j = 1,6
and m (A7) = 1. For convenience, we change the names of the simple roots of c3 to
{A1, A2 := Xg, A3 := A7}. The 9 positive roots of c3 are

e1 —ex =\ e1+es =X +2X\ + A3 2e1 = 2M\1 +2X9 + A3
61—63:)\1+)\2 €2+63:)\2+>\3 262:2>\2+)\3
ey — €3 = Ao e1+e3=A+ A+ A3 2e3 = A3

with maximal roots
long: u=2(A 4+ X2) + As, short: 7= A1+ 2Xy + As.

The following table indicates the corresponding multiplicities for all the positive
roots of ¢3:

m()\1+)\2+)\3)=8 m()\1+2)\2+)\3)=8 m(2)\1+2)\2—|—)\3):1.

We have the subset Q@ C ®* (g, ag) of roots of odd height with respect to the simple
roots {A1, A2, A3}. The set Q has the 6 roots

)\17 )‘27 )‘37
A1+ A2+ Ag, 2X2 + A3, 201 42X + As.
We see that the dimension of D(£2) is dim(D(2)) = 27.
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We can take the dual basis {vi, v, v3} of {A1, A2, A3} defined by A (vj) = 6 5
and consider the vector E' = v + vy 4+ v3 which is clearly a regular element (no
root vanishes on E). So the orbit of E by EgU(1) is a principal orbit which we can
take as our isoparametric submanifold M in this example. The dimension of M
is the sum of the multiplicities of all the positive roots so dim(M) = 51. Then
we have (see (|1.3)) that dim(mg) = 28. In order to get the symmetric R-space,
namely FIV = (Es.U(1)/F,), we just have to take the vector vs € ag just defined
and evaluating the roots on v we see that

/\1(1}3) =0 ()\1 +2Xo + )\3)(’03) =1 (2/\1 +2X9 + )\3)(1}3) =1
()\1 + )\2)(1}3) =0 ()\2 + /\3)(’03) =1 (2/\2 + )\3)(’03) =1

So w3 is extrinsically symmetric and its orbit is in fact a symmetric R-space. We
see that the orbit of v3 by Eg.U(1) has dimension 27, which is that of E¢.U (1) /Fy.
Now O is the set of roots with A3 with coefficient 1 and it defines the subspace

Dp(EIV) = Z Po,x
€O
of dimension 27 in the tangent space Tr(M) at M at the point E, which in turn
extends to a distribution of this dimension in the isoparametric submanifold M of
dimension 51.

4.2. The space AIl = SU(8)/Sp(4).
AIl =SU(8)/Sp(4)27 — EV = E;/SU(8)70.
Let us consider the symmetric space

space dim rank ®(go,ap)
EV  E;/SU(8) 70 7 e7

This is an inner split symmetric space. We have the associated Cartan decompo-
sition
ey = 511(8) @D po.

The restricted root system is e7. The Dynkin diagram of e; (with coefficients of
the highest root) is in . Let us consider the maximal abelian subspace ag in pg
of dimension 7. The orthogonal complement as in has dimension 63, which is
the dimension of the principal orbits. Now we take the duals to the simple roots
of e7, namely &; such that oy (§j) = 0y,; and take the vector {7 € ag C po C er.
By looking at the table of roots in [4, p. 529], we see that evaluating each positive
root in &7 we get either 1 or 0 so this vector is extrinsically symmetric since all the
roots in e7 evaluated in the vector &7 give either 1,0 or (—1).

It is important to observe that there are 27 roots with coefficient 1 in a7 (a7 is the
extreme of the long arm of the above Dynkin diagram), and since the multiplicities
of the roots are all m = 1 we get that the orbit of & by the adjoint action of SU(8)
has dimension 27.

We include now some examples referring to the distributions considered in The-
orem 2.2
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4.3. The space EIl = Eg/SU(6)SU(2). Let us consider the quaternionic sym-
metric space EII. It generates a distribution of dimension 40 in the isoparametric
submanifold M = Eg/T® of dimension 72. M is any chosen principal orbit in the
adjoint representation of Fjg in its Lie algebra.
We have
space dim rank ®(go,a0)
EIl Eg/SU(6)SU(2) 40 4 fa

The maximal root p of eg is a1 + 2ai0 + 2ai3 + 34 + 2a5 + g, SO we have three
simple roots with coefficient 2. But, as indicated in Table [2] we take the root as.
Let us consider now the subsets of roots

\I/O 042 {)\ cdr (go,ao) S>\(042) = 0} y
\112 OLQ {)\ S <I>+(go,a0) SA(OLQ) = 2}
@Oég :{)\ECI) (go,ao)ISA(OéQ):l}.

There are 36 positive roots in ¢g. Then, ny taking a look at the corresponding table
of roots, we see that

|Wo(az)| = 15,
|Wa(az)| =1,
|O(az)| = 20.

Since we are considering the adjoint representation of Eg, the multiplicities of all
the roots are m(A\) = 2, and we see that, by considering the roots in the set O,
in the tangent space to the principal orbit Eg/T%, we get the subspace D(0). It
generates a distribution of dimension 40, which is the dimension of FII. If we take
as instead we have

|Wo(as)| = 11,
|V (as)| = 5,
|©(as)| = 20,

and similarly for az. With the three simple roots of ¢ we get distributions ©(0)
of rank (dimension) 40 in the tangent bundle of Eg/T®.

4.4. The space EVI = E7/SO(12)SU(2).

space dim rank @ (go,ao)
EVI E;/SO(12)SU(2) 64 4 f4

dim(E7) = 133, |positive roots| = 63.

For this space we take the root a; with the notation in [5 p. 477]. (In this notation,
aq is the exterior root in the short arm of the diagram of E7). We have 63 positive
roots in e¢7 and 32 of them have coefficient 1 on «1. Since the roots have multiplicity
m = 2, we see that we have a subspace of dimension 64 in the tangent space to the
isoparametric submanifold E;/T7 of dimension 126. On the other hand, the set
generates a distribution of dimension 70.
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4.5. The space FI = F,/Sp(3)SU(2).

space dim rank @ (go,ap)
FI F,/Sp(3)SU(2) 28 4 fa

This is a split symmetric space and the roots that we have to consider by the table
are those involving the root ;. Again here we consider the adjoint representation
(in this case of Fy) and choose a principal orbit which is of the form F;/T* and
has dimension 48.

With the notation in [B] p. 477], «; is the first long root at the left in the
diagram. The algebra f4 has 24 positive roots and 14 of them have the coefficient
of a; equal to 1. Since in the adjoint representation the roots have multiplicity
m = 2, we see that we have a subspace of dimension 28 in the tangent space to the
isoparametric submanifold F,/T*.

5. PROOF OF THEOREMS [2.1] AND 2.2

In the present section we shall prove Theorems and To that end we are
going to use formulae (A.13)), (A.16)) and (A.17)), recalled in Appendix [Al and also
their dual versions (B.12)), (B.13)) and (B.14) that are obtained in Appendix

Let us start with a general observation. In order to prove each of the Theo-
rems and it suffices to show that, for each positive root A which does not
belong to ©, each vector of the basis Z,(\) of pox C Tg(M) may be com-
puted as a linear combination of brackets (evaluated at E) of local fields defined
around E that belong to the distribution ©(0©). It is important to mention that the
vectors in are associated to the roots in p=1(A) = p=!1 (A)p U p~1(N)% and
that in p~! ()% we have only one element of the pair {a, a”} for each v € p~(\)c.

Proof of Theorem [2.1] Here our space N = Ad(K)H C pg is a symmetric R-space
and the vector H is dual to a simple root 7 in A (gg,ap) which appears with
coefficient 1 in the maximal root of ®* (go, ag). We have &+ (g, ag) = ¥y UO (see
(3-1)) and the roots in ¥y (written in terms of A (gg,ap)) are those without the
term 7, while those in © have the term 7 with coefficient 1.

Let us take then A € ¥y C &7 (go, ap) and recall the basis of pgy given in .
We start by taking v € (p’l()\)g‘:) for our A and consider U,, V,, for our chosen .
By Lemma there exist two roots § and ¢ in © C ®* (go, ap) such that

A=0—¢

and § + ¢ is not a root of ® (go,ap). Furthermore, for the root v € p~1()), there
exist roots a € p~1(8) and B € p~t(yp) such that v = o — 3. So we consider
Uy = Ua—p), V4 = Via—p). Then, we are to use formulae (B.12) (for the present
subscripts). We have

LepanUia-p) + Blogap = [Ua, U] (B) + [Va, V5] (),

S8 Via-p) + Bip.ap = [Ua, V5 | (B) = [V©, U5 ] (B).
Let us consider the terms B1(s, q,5) and B2, o ) Which, except by non-zero
factors, are By («, ) and Bs («, 8). Since d+ ¢ is not a root of T (go, ap), a+ 3 is
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not a root either because p (o + 8) = 6 + ¢ and furthermore, by the same reason,
neither a® + 8 nor a + (3 are roots of ®* (g,h). Thus By (a, 3) and B3 («, 3)
vanish and then the formulae above reduce to

Lipas)Ua-p = Us US| (B) + [V, VI (B),
SopanViap = Us Vi | (B) = Vi, U] (B),

so we see that Uia—g), Via—p) are linear combinations of brackets (evaluated on £)
of local fields defined around E and belonging to the distribution ©(0).

It remains to consider the case of real roots. So take v € (p~'(A\)r) for X €
Uy C ®F (go,ap), then we have the vector W,. Again there exist two roots ¢ and
¢ in © C T (go, ag) such that A = &§ — ¢, and roots a € p~1 (§), B € p~ () such
that v = a — . Then we have the following possibilities:

(i) @ and 8 are both real roots of ® (g, h);

5.1
(ii) @ and S are both complex roots of ® (g, bh). (5-1)

Considering first the case (i) in (5.1)), we have to use formulae (B.14)). Here the
notation (subscripts) in (B.14]) should be changed as follows:

A— 0, pu—>p, d—a, ©+—pf. (5.2)

Then, by the same reason indicated above, B1(5 4 «,3) and B2(s,, «,3) vanish in all
cases. This shows that W, = W, _g) is a bracket (evaluated at E) of local fields
defined around E that belong to the distribution ©(0). On the other hand, in
case (i) of (5.I), we may apply formulae (B.13) (also with (5.2)) and here again
BLs,pa,p and B2, 5 vanish. We see, again in this case, that W, is a sum
of brackets (evaluated at E) of local fields that belong to the distribution D(0).
Then we have the proof of Theorem O

Proof of Theorem [2.2] Here the positive roots not contained in © are those w € ¥,
and A € Uy, defined in . Here, ¥y has the same meaning as in the previous
theorem, but here we must apply Lemma [3.3] which says that for each w € ¥y C
&7 (go, ag) there are two roots ¢ and v in © such that w = ¢ — % and the sum
(¢ + 1) is not a root of ® (go,ap). By taking a € p~1(p) and 8 € p~1(v)), we see
again, as above, that a4+ (3 is not a root and neither a® + 8 nor a + ¢ are roots
of @* (g, h).

Then, for w € ¥y, the proof just given yields that each vector of the basis Z, (w)
of pow C Tr(M) may be computed as a linear combination of brackets (evaluated
at E) of local fields defined around E that belong to the distribution ©(0).

It remains to consider the case in which A € Wsy. Again we start by taking
v € (pr(N)E) for X € ¥y C T (go, a9) and consider U, and V, for our chosen 7.
By Lemma there exist two roots § and ¢ in © C T (g, ag) such that A = d+¢
and |§ — ¢l is not a root of ® (g, ag). Furthermore, we have roots a € p~1 (§) and
B € p~t(p) such that v = a + B8 and |a — B3| is not a root and, as in the above
proof of Theorem [2.1] neither |a — 37| nor |a” — B3] are roots, and so H; («, 3) and

T5 (, ) in (A.14) and (A.15)) (on roots «, 8) vanish, and we may write formulae

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



A CANONICAL DISTRIBUTION ON ISOPARAMETRIC SUBMANIFOLDS III 449

(ET3) as

OnmasUiars = [Ua Us 1 (E) = [V, Vi (B),

O Viars) = [Ua, V5] (B) + Vi, U5 ] (B).
Then we have that U, = Uwg), V; = Viatp) are sums of brackets (evaluated
on F) of local fields defined around F and belonging to the distribution D(O).
Now we see that the case of real roots is managed by using formulae (A.16)) and/or
(A.17)) in similar fashion to the procedure applied above. This completes the proof
of Theorem 2.2 O

APPENDIX A. NOTATION AND PREVIOUS RESULTS

We shall use the notation in [9], and for that reason, we hope that the reader
will have opportunity to take a look at the second section of [9]. On the other
hand, we recall here parts of the fourth section of that paper which are needed in
the proof of the theorems.

A.l. Basis for go. Let us take the o and 7 adapted Chevalley basis for (g,b)
from [9] (also [7]). In [9], we defined &, for each a € ® (g, h) by
0(zq) = koo, ko = %1
and observed the identities
kokar =1, koo = ko, k_o = ka, (A1)
0(za) = kat—gr, O(xao) =kax_q. (A.2)

Keeping the o and 7 adapted Chevalley basis for (g, ), let us consider, for a €
®(g,bh), the vectors
Xo=2a+0(2q), Ya=i(xa—0(xa)), Zo=Xa+Ya:
They are fized by o, so they belong to go. Now, setting
P, =(Xo+0X,), Qo = Yo +0Y,), Ry =(Zo+0%,), (A3)
Uy = (Xo —0X,), Vo = (Y, — 0Y,), Wo = (Za —0Z,), '

we see that the vectors in the first row of (A.3]) belong to £y and those in the second
row to po. Using (A.2)) and the definitions, we observe that

P, =(Xo+0Xs) = (0 + kaao) + (kaZ—ae +2_4),

Uy = (Xo — 0X0) = (0 + koo ) — (kaZ oo +2_4), AL
Qo = (Y, —|—9Y) i (T — ka®as) + 1 (kal_ae —T_q), (84)
Vo = (Ya Vo) =i (2 — kaao) — i (kaTeqe —T_q).

On the other hand, the vectors R, and W, shall be considered only for a real

(i.e., @ = ), and we have the equalities
if ko =1, Ry = Po, Wa="Uy; A5
if ko = —1, Ry =Qun, Wo=V,. (A-5)
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For a € ®¢ and 8 € P we see that P,, Qn, Rg € & and U,, V,, W € py. We
must notice also that by (A.1)) we have

P_,= Pou Q—a = _Qou U_o = _Uou Vea=—Va (A6)

Now as in [9], setting p () = p(8) = A, for a € ¢, B € Pg, the vectors in
(A.3]) are such that

P.,Qq,Rg €ty and Uy, Vo, W3 € pox. (A7)

A.2. Basis for £\ and pg x, A € Dt (go,ap). Consider now for A € T (go, ag) the
set p71(\) ={a € ®T (g,h) : p(a) = A} and split it separating the real roots from
the complex ones. So we set p~'(A\)r = p~1(A) N @g and p~' (N)¢ = p~ 1 (X) N Dc.
For a root v in p~!(\)c we have a” # «; then we define, as in [7], the set p~1(\)z
where we place one of the two elements in {ca, a} for each a € p~1(\)c. Now for

A\ 11 € DT (go, ap) take the sets
Ee(\) = {Ry, P5, @y i € p (Mr, 6,7 € p (N)E S,
Ep(p) = {Wa, Us, Vo v € pH(w)r, By € p~ ()2} -

By (A7), we have Z¢(\) C €x and E,(11) C poy, and each set is linearly inde-
pendent over R. Since the equal cardinalities of Z¢(\) and =, () coincide with the
dimensions of £y ) and pg,», we have a basis for each of these subspaces. Obviously,
there is a one-to-one correspondence between Z¢(A) and =,(A). For the members
of the basis Z¢(A) and =, () we have

[Ry, E] = —n(E)W,, [Ps,E]=—6(E)Us, [Qs,E]=—6(E)Vs,

(A.8)

which is coherent with their one-to-one correspondence.

A.3. Smooth local fields. Proceeding as in [9], we may extend the vectors of the
basis (J,cq Zp(A) to local fields defined in some open set Ap containing £ in M.
We use for them the same notation as in [9], that is,

{(UF VEWE e (o' (NE), a€ (p ' (N)z), A€ O}.

At the point E € M, they coincide with the vectors {Wy,Ug, Vs} of Z, (\) for
A € ©. We have then a local basis for ©(0) in the open set Ag containing F and
these fields are smooth in Ag. Now, at any other point p € M thereisa g € K such
that p = Ad(g)E and we may consider the open set Ad(g)Ag containing p. On
such open set, we have a local basis of smooth vector fields defined by translation
of those on Ag with Ad(g). Hence, by the usual definition ([12] p. 41, Def. 1.56]),
the distribution ©(©) on M is smooth.

In [9] we computed the brackets of the fields in © (O) constructed above by using
the Levi-Civita connection on M. We recall the resulting formula. The bracket of
the fields U} and U at E, for v € p=!(X) and ¢ € p~!(p), evaluated at E, is

F Rl ) = (=L ) 1a (=L 7.
(U205 () = (s ) Ta (Pt = (5 ) TP 00D (A9)
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In this formula, we have brackets of fields (evaluated at E) on the left side and
products in gg on the right side. We use the words brackets for fields and products
for vectors in gg.

For A\, € ©, we have the bases Z,(\) for pox and Z, () for po,, respectively,
as indicated in . To fix notation we set them as

Ep(N\) = {UW,VW,W(; iy € pfl()\)é, o€ pfl()\)R} C Por,
Ep(p) = {Up, Vo, Wy s 0 € p™ ()& m € pH (1)rs } C Pog-

Each of these tangent vectors at E generates a corresponding field {Uf/m , VA/F , WBF }
and {Uf , Vj JWE } around E. So we have nine possible brackets of these fields.

(A.10)

A.4. Known identities. We need to mention some important identities proven
in [9] that are to be used in the required computations. First recall that we have

Cs,8 = C_5,—3- (A.ll)

Since 0 (2(a+p)) = K(at8)T(atp)” and [T, 2] = Ca pT(atg) With real coefficients
Ca,8, the following identities hold:
0 [Ta, 28] = 0 (Ca,pTa+p) = Ca,80 (Tatp) = Ca,8K(a+8)T(a+8)"
0 [2a, 28] = [02a,028] = [kaZas, kargs] = kakgCar go T (ar47)-
By repeating this computation for [z, z_g], [t—a,%s] and [x_q, z_g] (using (A.11)
and (A.1)), we get the four equalities
kakﬁcao7ﬁaxao+ﬁa = Caﬂk(a_,_,g)x(a_i_ﬁ)a,
kakﬁcaa7_ﬁaxaﬁ_ﬂﬁ = Ca7_ﬁkj(a,5)$(a,g)ﬂ, (A_12)
kakgC—as,pr—artpe = C—a,pk(-atp)T(-a+p)”;
kakpC—ar,—prt—ar—pgr = Ca,pk(atp)T—(atp)
A.5. Formulae for the sum of roots. We need to recall now some formulae

obtained in [9] and used there and also in [I0]. Those formulae give expressions for
the vectors

Us+e)s Visre)y Wiety)  inTp(M)

(for the roots A, pp € Q C & (go,a9) with § € p~ (A)¢ and ¢ € p~!(p)¥) in terms
of brackets, evaluated at E, of local fields defined around E. They are:

O o) Uste) T A (Ta(Hr)) = [UF, USIE) — Vi, VEI(E),

Ounpsin Visse) + Ay (Ta(Ta)) = [UF VIIE) + VEUEIE),
with
Hi(6, ) = 2(kscso,—p(T—s04+p — Ts7—y)
= ks, oo (Ts—pr — T_5407)), (A.14)
15(6, ) = 2i(kscsr,—p(Tso—p + T—s044)
— ks, oo (L5 + T 5100))- (A.15)
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We have to consider also the case in which § + ¢ is real and both § and ¢
complex. Again, A\, u € Q C T (go,a9), § € p ' (A& and ¢ € p~ ()5 In this
case, from ([A.13]) and having (A.5)) in mind we obtain

ko) =1,

S} W, + Aoy (Ta(H)) = [US US](B) - [ViF,VE] (B)

(>‘7N757‘P) (6+Lp) ()"N) 1 § 'Y 6 2V ’
k(5+<ﬂ) = (*1)7

Onbio) Wisre) T A (Ta (T2)) = [UF, VT (E) + [V, U] (B),

(A.16)

and it is necessary to consider also the case in which both ¢ and ¢ are real. That
is, \,pp € Q2 C ®T (go,a0), 6 € p (Mg and ¢ € p~! (). Furthermore, the first
line in (A.12) in the present case clearly yields ksk, = k(51,) and then formulae

become
kre) =1, ks = kp =1,
O i) Wiste) + Ao (Ta(Hy)) = Wi, WS (E),
Kty =1, ks = kyp = —
Onpub.0)Wiste) + A (Ta (Hy)) = — (WS, W (E),
kGsro)y=(=1), ks =1, k, = —1,
O us,0)Wis+e) + A (Ta (1)) = [WéFv Wsﬂ (E),
korg) = (=1), ks = =1, ky =
On i) Wiare) + Moy (Ta(T2) = W W] (B).

(A.17)

APPENDIX B. FORMULAE FOR THE DIFFERENCE OF ROOTS

In this appendix, we give a proof for the new formulae (B.12]), (B.13|) and (B.14)),
used in the proofs of Theorems 2.1 and These formulae are complementary to

those in (A.13)), (A.16) and (A.17)) (obtained in [9]), as the latter give vectors corre-
sponding to sums of roots, while the former give those associated to the difference
of roots.

By (A.9), to get the brackets of tangent fields we take the basis Z¢(\) and Z, ()
in (&3

A.8)), for & » and o, respectively. There are nine possible products, namely

(1) [Ry, Wal, (2) (R, Usl, (3) [Ry, Vool
(4) [Fs5, Wa], () [Fs,Usl, (6) [Fs, Vo], (B.1)
(7) @y, Wal, (8) [@y,Usl, (9) (@, V]

However, we shall need only (1) (for 7, a real) and (5), (6), (8) and (9) for complex

roots (4, ¢, § and 7). Now we compute the products (5), (6), (8) and (9) mentioned
in (B.1). For reasons of space, we shall not perform all these computations in
full detail; however, it is straightforward to complete them. We take a pair of
complez roots §, B in ®T (go, ap). Let us start computing the product (5) with the
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expressions in (A.4]):

(5) [Ps,Upl = [((ws + kszsr) + (ksz_s0 + 2_5)),
(25 + kpwpe) — (kpr—ps +2_)].
We obtain

(5) [Fs,Usl = cs,px648 + kpCs,poTs1p7 + kscso oo 4p + kskpcso potso 130
- k‘,gc(s,_ﬁcrm(s_go — C§5,—BT5—B — k&kﬁc§07_/@6.ﬂj55_ﬂa
— kscso,—gxso—g + ksc_5o gx_so4p + kskgc_5o goT_504 80
+c_58T—5+8 + kgc_s,80x_548c — kskgc_so _goT_50_ge
- k(scfga’,gl‘,(;a,[; — kgcf(;’,ﬂam,g,[ga —C_§,—BL—-5—p3-

There are four terms with the product kskg, which can be replaced using the
above identities (A.12); by doing this we get

(5) [Ps, Upl = cs,p25+5 + ks postpe + ksCso pse1p + Co.5K545)T(648)7
— kpcs,—pots—pe — C5,—pTs—p — Co,—pk(s—p)T(5-p)”
— kscoo —prse—p + KsC—5o pT 5715 + C5,K(—548)L(~545)7
tC58T-54p T kpCospoT 5157 — C5,5K(548)T—(548)7
—ksc_so _pT_s5o_g —kgCc_5,_goT_s_go — C_5,_gT_5_3.

Let us consider now the expression for U, in (A.4) (taking o = (6 — 8)). If we
multiply by (—1) ¢5—g, it takes the form

(=1)cs,~pUs-p) = =5, (2(5-p) + ks-p)T(-p) = K(3-)T—(5-p)7 = T-(6-9)):

and observe that the four terms conforming (—1)cs _sUs_p) are present in the
product (5). By placing those terms at the end (recalling that ¢s 3 = c_5,_ and
ki—p) = k(s—s)), we have

(5) [P5, Upl = cs,p2515 + ks poTstpo + ksCoo psetp + Co.5K548)T(648)7
— kgc(;y,gaxg,ga — k‘gc(;a’,gx(sa,g + k56750’5x750+5
+hpc—s,po 0517 — C5,6K(5+5)T—(5+5)7 — KsC—67,—pT—57—p
— ]{750,57,501',5,50 —C_§5,—BL—5—p — C5,—BLs5—p
— 057_,3]6(5_,@)58(5_,3)0 + C_g7gk(_5+5)x(_5+5)o +Cc_§5,8T_518-

Then, replacing them, the product (5) can be written as

(5) [Ps,Upl = cs,8%515 + kpcspo st pe + kscso pTsotp + cs,6k6545) T (5+5)7
—kgcs,—gors_ge — kscso,—pTso_g + ksc_s0 gT_5043
+kgc—spot—stpe = Cs,8KG4p)T—(548)7 — ksC—s0,—pT—57—p
—kgc_s5_gox_5_go —C_5,_gT_5_3+ (—1)65)_5(](5,5).
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We may repeat the computation just performed but with the product (9) and
the same pair of roots § and f3.

(9) [Qs, V] = [i (x5 — kswso) + i (ksw 50 —x_5),
i(vg — kprge) — i (kgr_go — x_g)].
We get
(9) (@5, V5] = —csp518 + kpcs po st + ksCse pse 1 — C5.5K548)T(548)7
+ kgcs,—pows_po + kscso,_pxse g — ksc_s50 T 5048
— kgc—s,57T—54p7 + C5,5K(548) T~ (5+5)7 — KsC—57,—pT-57—p
—kpCs—pot—s-po + Cs5—pT—s5-p + (=1)cs—pUs-p)-
Now, by computing the sum (that is, (5) + (9)) line by line of the two final

expressions, we observe that the second lines in (5) and (9) cancel each other and
the sum is

[Ps, Usl + (@5, Vsl = 2 (kpcs po w5187 + kscso gse 1)
+2 (71650_507_51‘_50_5 — kﬁc_(;,_goz_g_go)
+ (—2)65,,gU(5_5),

which we may write as

(5) +(9) (=2)es,—pU—p) + B1 (6, 8) = [P, Usl + @5, V3], (B.2)
where
B1(6,8) = 2kgcs,po (Ts457 — T—(54p7)) (B.3)
+2kscse g (25715 — T_(574)) -
and observe that
Bi(B,0) = (=1)B1(9, ). (B.4)

Now, using the pair of roots {w, ¢} and proceeding as above, we may compute
the products (6) and (8), and observe that in both of them appear (with opposite
signs) the terms of

Cur, Vi) = 1 (Co,—pT(0—p) = K(w—p)C, 0T ()7
=i (F(w—p) O, 0T ()7 ~ Cu =T () -
Then, by computing the difference (6) — (8), we get
(6) = (8) 2cw,—pViw—y) + B2 (w,9) = [P, Vo] — [Qu, Uy] (B.5)
and, similarly to (B.3)), we find that
BQ(W, QD) = —2’L.k<pcw’tpa (:I;w+<p0‘ + x_(w+@a))
+ 2kuCuo (xw”rw + x*(w“rsa))
and Ba(w, ) has the property
Bs(p,w) = Ba(w, ¢). (B.7)
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In this fashion, we have formula (B.2) with its companion (B.3) for the complex
roots (0, 8) and (B.5) with for the pair of complex roots (w, ).

B.1. Brackets of fields. Recalling (B.1]) and the definitions (A.3)), we take the
following bases of pg » and py ., respectively:

EP(/\) = {Wn>U5>V'y ne p_l(/\)R> 9,7 € p_l()‘)%} )

Ep(1) = {Wa, U, Ve € p~ (), Bop € p M (W)} -

With these two bases we may obtain the corresponding local fields and with
them form the nine brackets corresponding to the products in (B.1)). However, we
shall need only those indicated in the following formulae. Using (for n and «
real and v, §, 8 and ¢ complex) they are

{n, a} real {6, ¢} complex; ¢ € p~'(A), 6 € p~" ()

) W) () = (557 Ta (R Wal) — (s ) oo W),

®) [WF.U£) () = (5757 ) To (U = () To (P 0.

© (W) ) = (5557 ) TallPvid) - (g5 ) T @V, (B)
® [ U2 () = (503 ) Ta@80) ~ (o5 ) a2V,

© V) (8) = (557 ) Ta(1s. Ve - (g ) Tal1Qun Vi)

Let us consider now the following two vectors in Tg(M) for 6 € p~(p)f and
PPN
( (p) [Ué vUF] ( ) [‘/(SFvvch] (E)v
- P (B.9)
J(6,0) = [U5 V]() Vs, UZ] ().

) in and (B.2)), we have

5
a9
) {Ta[Py.U,] + Ta[Qs.V,]}

Considering equalities (5) an

16.0= (x5

A
<ME> {Ta[P,,Us] +Ta|Qy, Vs]},

and, by (B.2), we may write

1(.¢) = (W;) (=2 ¢s Vs + B1 (5,9)}

— (H;é)) {(=2) cp,~sU(p—s5) + B1 (9,0} -
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Now, since U_, = —U, (see (A.6)) and ¢5—p = c_s5,, = —Cyp,—5, to simplify
notation, we may set

1 1
Sonsr =20 (5785 ~ 1)

BL pb,p) = (@) By (6,¢) = (u(;)) Bi(p,9)

~(Gm) + Gam) ) o

By (B.4) and recalling the definition of I (4, ¢), we may finally write

1(8,¢) = [US, UZ](E) + [V, VS (B)

(B.10)
= S(A’U’a‘srso)U(éftp) + %l(/\”u,,(s,tp)'
Proceeding similarly with (6) and (8) we see that

7(5.0) = (@) {Ta[Ps,V,] - TalQs.U,J}

- (u@l?)) {TalQqp, Us] = Ta[Py, Vsl},

and by the definition and the equality (B.5)), we see that

J(0,0) = (Az;)) {2¢5,-pVis—p) + B2 (6,9) }

- </@)> {265 —5Vig-s) + Ba (2,6} .

Now, again by , V_a = =V, and since ¢5,_, = —c,,—5 we may set

1 1
S = 720 (w i m)

and, recalling (B.7)), we may also set
B2 = (1 >B (0, ) — (1 )B (p,9)
51450, E' ? E ?
(A, 1,6,0) )\( ) 2 ,LL( ) 2

S(ESRES) P

This notation allows us to finally write

J(6,9) = [US VI (E) = [V, U] (E)

(B.11)
= S(A7“757W) ‘/(5790) + %2()"/"76790)'
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B.2. Resulting formulae for the difference of roots. We may now write

formulae and (B.11)), for the roots A\, p € ®F (go,a0), 6§ € p~1(A)§ and
@ € pTHp)E, as

(U5 UST(B) + [V VT (B) = £0ns.0)Uts-9) + B us0):

[UéFstf] (E) - [VéFv Usﬂ (E) =S 0ms.0)Vis—0) T B2 b,0)-

It is also necessary to consider the case in which (§ — ¢) is a real root and both

§ and ¢ are complex. Again, A\, u € ®T (go,a0), 0 € p~ (A& and p € p~ ()5, It

follows from (B.12]), due to (A.5)), that we have

(B.12)

k—p) =1,
(U5 UZJ(B) + [V VI I(E) = L0060 Wi—0) + BL( s (B13)
kis—py = (—1), '

(U5 VINE) = [V USNE) = F0umso) W) + B2 use)-
Let us consider now the case in which both § and ¢ are real, that is, A\, p €

®* (go,a0), § € p~ (Mg and ¢ € p~ (). The second line in (A.12)) in the present
case clearly yields ksk, = k(;_,) and then formulae (B.13) become

Kooy =1 ks =kp =1,
Lounsp)Wis—g) T Bliuse) = Wi WL (B),
ki) = 1, ks = kyp = —1,

Loy Wis—g) T Bliuse) = (Wi W (B),
ko) = (1), ks =1, ky = —1,

Funse) Wis—) + B2 i) = (Wi W (E).
Koy = (—1), ks = —1, ky =1,

Suns ) Wis—o) + B2 i) = = (Wi , WS (E).
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