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NEW HARMONIC-MEASURE DISTRIBUTION FUNCTIONS
OF SOME SIMPLY CONNECTED PLANAR REGIONS
IN THE COMPLEX PLANE

ARUNMARAN MAHENTHIRAM

ABSTRACT. Consider a Brownian particle released from a fixed point zg in a
region . The harmonic-measure distribution function, or h-function, h(r), ex-
presses the probability that the Brownian particle first hits the boundary 92 of
the region 2 within distance r of zg. In this paper, we compute the h-function
of several new planar simply connected two-dimensional regions by using two
different methods, both involving conformal maps. We also explain the as-
ymptotic behaviour at certain values of » where two different regimes meet.
Moreover, for some regions, we examine how the behaviour of h(r) changes
when part of the boundary changes.

1. INTRODUCTION AND OVERVIEW

This paper is a continuation of the study of harmonic-measure distribution func-
tions or h-functions, which, broadly speaking, are functions that encapsulate geo-
metric information about a domain in the complex plane. These functions were
first studied in [§], motivated by Stephenson’s questions about the function w(r)
(see [8, Problem 6.116]), which is closely related to the h-function h(r), but not
exactly the same. h-functions have been studied with the overall goals of under-
standing what geometric features of a domain can be recovered from an h-function,
what functions are h-functions of some domain-base point pair, and ultimately, re-
construction of domains whose domain has some specified h-function. A summary
of this progress can be found in the survey article [7], which traces the progress of
h-functions studies from the initial paper [8] up to the time of the survey’s publi-
cation. In particular, explicit formulae for h-functions for some simply connected
domains can be found by conformal mapping techniques, enabling the study of how
the specific features in a domain will affect the h-function.

Recently, in [4] and [5], Mahenthiram presented the h-functions of many new
simply connected planar regions, including some whose boundaries feature special
structures such as junctions, corners, or cusps. Also, the progress of the study on
h-functions of multiply connected domains can be found in [2] and [5].
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460 ARUNMARAN MAHENTHIRAM

Now, we focus on the definition of the h-function: For a domain 2 in the complex
plane C, and a basepoint zg in €, the h-function hq ., (r), for short h(r), is given by
the harmonic measure of the set E,. := 92N B(zg,r) with respect to the domain
at the basepoint zg, where B(zg,r) is the open ball of radius r centred at zg, and

01 is the boundary of Q. In other words,
hQ,ZO (T) = I’L(T) = w(207 ETa Q)7

where w is the harmonic measure. Also, we can describe the h-function via the
solution of the following Dirichlet problem:

Au(z) =0 ifze€Q,

1 ifze E,.;
u(z) = :
0 if z € 0Q\E,.

The h-function is equal to the solution of the above Dirichlet problem at zy. That
is, h(r) = u(zg).

An alternative way of explaining the h-function is the physical intuition of the
Brownian motion. For a domain €2 and a basepoint zg € €, release a Brownian
particle from zg, and allow it to wander; eventually it will hit the boundary 0f2.
We are interested where this particle hits the boundary 02 within distance r of 2.
From this information, the h-function is given by the probability that the particle
first exits € within distance r of zp; see [3].

The h-function always lies in the unit interval [0,1] and it is a non-decreasing,
right-continuous function.

Throughout this paper, we use the notation d to denote the shortest distance
from the basepoint zg to the boundary 9f2 of the given domain €.

The h-function of the upper halfplane Q = C\(—o0, 00) with basepoint zg = id,
d > 0, is given by

h(r) =

0 for 0 d;
{ or U< r<d; (1'1)

2__J2
%arctan 7”"dd for r > d.

See [8, page 292]. This h-function is defined for two different ranges of r, such
as r € (0,d) and r € [d,00), which we call the regimes of r. This h-function has
only two regimes of r. In the first regime, we always exclude both endpoints of
the interval. However, in the later regimes, we exclude one endpoint and include
the other. In the first regime r € (0,d), the h-function is zero as no part of the
boundary is encloseed by the closed ball of radius 7 centred at zy,. Hereafter, we call
the boundary of this ball as the capture circle. The h-function is always zero for
the first regime of r. In the expression , for the second regime r € [d, 00), the
h-function is positive, but is not equal to 1 since the boundary 92 of the halfplane
is unbounded. Therefore, the capture circle cannot enclose the whole boundary for
any value of r. However, when the boundary of a domain is bounded (and even if
the domain is unbounded), the h-function of this domain will take the value 1 for
the last regime of r. In the expression , the h-function h(r) — 1 as r — oo,
but will not take the value 1.
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NEW A-FUNCTIONS OF SOME SIMPLY CONNECTED PLANAR REGIONS 461

This paper focuses on two different methods for computing the h-functions of
certain new simply connected planar domains with a given basepoint zy. It also
explains the asymptotics of some of these h-functions at certain values of r where
two regimes meet. Through the investigation of the h-functions of these domains,
we try to understand the relationship between the h-function and the shape of
the respective domain. Also, through the study of asymptotics, we try to answer
for the longstanding open problem: Is there any simply connected domain with
exponent 3 = 17 (See Definition for the explanation of f.)

Broadly speaking, the exponent 5 explains the behaviour of the h-function at
the intersection of the first and second regimes of r. In most of the h-functions
that we computed so far, the h-functions have a vertical tangent at this intersecting
point from the right. Obviously, all the h-functions have a horizontal tangent at
this intersecting point from the left, since the h-function will always be zero in
the first regime of r. So far, we have obtained the values of 5 € [0,1) for simply
connected regions. In this paper, we have obtained the exponent 8 = 1/2 for some
regions. However, for the computational difficulty due to the complicated formulas
of h(r), we did not explain the exponent S for all domains described in this paper.

In the first method to compute the h-function, we use the Riemann mapping
theorem, which states that any simply connected region is conformally equivalent
to the interior of the unit disc. However, in this paper, we mostly use the conformal
mapping from the given simply connected domain €2 to a halfplane. In the second
method, we use the conformal transformation that shows the map between the unit
disc and our target domain. First, we use the Cayley map, which transforms the
interior of the unit disc to the lower halfplane. Then, we use appropriate conformal
map from the given domain ) to the interior of the unit disc. Then, we use the
composition of these maps to obtain the connection between the domain €2 and the
lower halfplane. See the initial part of Section [2]for the detailed explanation of the
computational process for these two methods.

This paper is organised as follows. In Section [2] we give some necessary defini-
tions and useful information that we use in this paper. In Section |3} we compute
the h-function of the exterior of a parabola that is symmetrically positioned about
the negative real axis and passing through the origin, when the basepoint zg is fixed
on the positive real axis. In Section ] we explain the h-functions for the comple-
ment of union of two intersecting discs of equal size with a chosen basepoint zg,
and also describe the h-functions of the union of two intersecting discs of equal size
with some locations of the basepoint zy. In Section [5] we explore the h-function
for the complement of a round lollipop that is symmetrically positioned about the
real axis, with a purely imaginary basepoint zo. In Section [6 we compute the h-
function of the complement of a round lollipop, but with the replacement of the ray
to a slit, again with a purely imaginary basepoint zy. In Section [7], we explain the
h-function of a round lollipop along with a line segment when the basepoint zg is
fixed on the real axis. In Section [8| we calculate the h-function for the complement
of a disc with two line segments where the line segments meet the disc on the real
axis, when the basepoint zy is fixed on the real axis. In Section [J] we describe the
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462 ARUNMARAN MAHENTHIRAM

h-function for the complement of two discs which are joined with a common line
segment. Further, in some sections, we check how the behaviour of the hA-function
changes when part of the boundary is removed from the given domain.

2. BACKGROUND

In this section, we provide some definitions, and also explain the process by
which we compute h-functions. In Section we describe the steps that we follow
in computing h-functions. In Section [2.2] we explain certain types of asymptotics
that we usually use for h-functions.

2.1. Computation of h-functions. This section describes two different methods
to compute h-functions of simply connected domains. Both methods involve the
use of conformal maps.

In the first method, we find the conformal map f(z) which transforms the given
domain Q to a halfplane. Then for r € (0, 00), we find the set E, := 0Q N B(zo,r)
in Q and its image f(F,) in the halfplane. Also, in the halfplane, we identify the
image f(z0) of the basepoint zo. Finally, we find the angle of sight, which is the
angle subtended by f(E,) at f(20). Then, the normalised angle of sight produces
the h-function formula. We use this method for most of the sections of this paper.

In the second method, we use the conformal map in two directions. One is
for the conformal map F(¢) from the interior of the unit disc D¢ to our target
domain 2. The second is the classical Cayley map

Rcrn =1 (£22).

T\(C—T

which transforms the interior of the unit disc D; to the lower halfplane, and maps
the boundary of the disc 0D to the real axis, where ( € D, and 7,7 € 0D.. See [2)
page 11].

Next, we formulate a harmonic function W (({, 7, 7) whose imaginary part solves
our Dirichlet problem in D;. Section |§| describes this approach in detail.

2.2. Asymptotics. In this section, we explain two types of asymptotics that we
use throughout this paper. These are as follows:

(i) asr | d;

(ii) as r L r* (> d).
Walden and Ward introduced the asymptotic behaviour as r decreases to d, namely
purely exponential asymptotics, in [8]. The second type of asymptotics as r | r*
(> d) has been studied by Matsumoto [6]. He showed that the h-function can be
asymptotically linear as r | r* (> d), where the derivative of h(r) is discontinuous
at r*. However, “can the h-function be asymptotically linear as r | d?” is still an
open problem.

Definition 2.1 (Purely exponential asymptotics, Walden and Ward [§]). Let €2
be a domain and take a basepoint zg in 2. Let d be the shortest distance between

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



NEW A-FUNCTIONS OF SOME SIMPLY CONNECTED PLANAR REGIONS 463

the basepoint zy and the boundary 9. Then the h-function A(r) of the domain
has purely exponential asymptotics with exponent B as r decreases to d, written as

h(r) ~c(r—d)? asr]d,
if there is a real number § such that the limit

- h(r)
¢i= lim, (r—d)P

exists and is positive.

Theorem 2.2 (Matsumoto [6]). For each ¢ > 0, there exists a domain © and
zo € § such that for some r* > d,
h(r) = h(r")

3. EXTERIOR OF A PARABOLA

In this section, we explain the h-function of the exterior of a parabola when the
basepoint zg is fixed on the real axis. The h-function of the interior of a parabola
has already been studied by Walden and Ward, and documented in [8]. See also
the survey article [7].

Here, we consider the domain 2 = {z =x+iyecC:y?> —4x}, which is the
exterior of the parabola y2 = —4x. We fix the basepoint zyp = 1. Then, the
conformal map v/z 4+ 1 — 1 transplants the domain {2 onto the right halfplane. See
Figure

Y
_¥o© .
( f‘i':’”) Yo
— 2
: vz4+1-1
?}( [] .ﬂ_._ e
Zuzl _!_E Wy
»
L J

FIGURE 1. Conformal transformation from the exterior of a
parabola to a halfplane. The set E, (left) and its image f(F;)
(right) are shown in red.

From Figure [T, we have that

o\ 2

(1—1—%) —|—y8 =rZ
4

Thus,

Yo = —12+4/8 + 2.
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464 ARUNMARAN MAHENTHIRAM

Since y2 > 0, we have

Yo = \/712+4\/8+7’2.

From Figure [T the angle of sight in the halfplane is 2a, which can be obtained
from the expression

Yo/2

Wo
where wy = v/2 — 1. Hence, the h-function is

{ —3—|—\/8—|—r2}

tana =

h(r) = — arctan
T

V2-1

which is the normalised angle of sight in the halfplane. The h-function graph for
the above domain € with basepoint zg = 1 is shown in Figure

hir]
o
o

FIGURE 2. Graph of the h-function for the exterior of the parabola
y? = —4x with basepoint zy = 1.

Next, we focus on the asymptotic behaviour near r = d = 1. As r decreases
to d,

2
Ve D

where f(r) = =3 + v/8 + 2. Now, by the Taylor expansion of f(r) at r = 1, we
have

f(r), (3.1)

109 = 50+ TRy T g2y
~ 1(7" -1
Then,
70 ~ = 1), (3.2
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By substituting (3.2)) in (3.1]), we obtain

2

hr)~ ————(r = 1)Y2 = ¢(r — d)P,

e IS A A
WhereczmandﬂZI/Z

4. UNION OF TWO INTERSECTING DISCS OF EQUAL SIZE

In this section, we explain the h-function of a domain 2 that consists of two
intersecting circles as its boundary. The domain  is either the union of two
intersecting discs of equal size or the complement of the union of two intersecting
discs of equal size. In Section [4.1] we compute the h-function for the complement
of the union of two intersecting equal-sized discs with a specific location of the
basepoint zg on the real axis. In Section we calculate the h-function for the
union of two intersecting equal-sized discs with various locations of the basepoint zg.

4.1. Complement of the union of two intersecting discs of equal size.
The domain 2 is the complement of the union of two intersecting discs of equal
size, where the discs are centred at 2 and 3.5, both with unit radius. We fix the
basepoint zg = 0. See Figure

im

ke_'

FIGURE 3. Domain ) = C\ (B(Q, 1)U B(3.5, 1)) with various po-

sitions of basepoint zj.

When the radius of the capture circle is smaller than 1, the h-function is zero.
When the radius 7 increases past 1, the capture circle encloses an increasing por-
tion of the boundary 002 of the domain 2. By solving the equations of both
boundary circles, we identify that these two circles intersect at (11/4,+/7/4) and
(11/4,—+/7/4). By converting these co-ordinates into the polar system, both circles
intersect at ke'™ and ke™**, where k = v/8 and a = arccos (13 ).

Since the domain € is simply connected, we transform the domain {2 onto a
halfplane or to the interior of the unit disc. We map the domain €2 onto a halfplane.
We start with the Mébius map (z — ke'®)/(z — ke™'*) that sends the points ke'®,
ke~" and 0 to the points 0, co and e?*®, respectively. This Mobius map transforms
the domain €2 to the interior of a wedge domain with the interior angle 2, where
v = arccos (3/4). Then, the conformal map 2™/?7 transplants the interior of the
wedge domain onto the right halfplane.
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For the regime 1 < r < k, the capture circle encloses part of the left-hand
circular boundary in 0f2, but does not enclose any part of the right-hand circular
boundary in 9. In this case, the h-function is

1 (7)o 2)
h(r) = — arctan 72 = ,
T L+ (p1po)™/?7 — (m T+ p3 7) sin (%)

where
4(8 —r? 4(8 —r?
(8—r7) and  py — 8—r7) _
31 —3r2+ /79 —r2)(r2 - 1) 31 —3r2 —\/7(9 —r2)(r2 — 1)
For the regime k < r < 4.5, the capture circle encloses the whole left-hand

circular boundary in 9f2, and also encloses part of the right-hand circular boundary
in 0€). In this case, the h-function is

[pg/% + i/ 4+ 2sin (%)} cos (%)

(papa)™? + (pg/27 + pz/%) sin (%) cos (27;&)

p1 =

1
h(r) = — arctan

where
B 16(r2 — 8)
P o2 — 411 \Ji(ar? _25)(81 _ 42
and
16(r2 — 8
o (?-3)

1202 — 47 — \/7(4r2 — 25)(81 — 4r2)

For the regime r > 4.5, the capture circle encloses the entire boundary of the
domain Q. Therefore, h(r) = 1 for this range of r. Figureexpresses the h-function
graph of €2 when the basepoint zq is fixed at the origin. Moreover, this h-function
has a horizontal tangent at r = k.

1

09
08
0.7
06
Zos
04
03
0.2

0.1

FIGURE 4. Graph of the h-function for the domain Q =
C\ (B(2, 1)U B35, 1)) with basepoint zp = 0.
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As noted in the Introduction, Mahenthiram [4] found several domains with cor-
ners or cusps whose h-functions have a horizontal tangent at r*, where r* is the
distance between the basepoint zy to the corners or cusps in the boundary of the
domains. Also, Greco [I] found the similar behaviour at 7* in the exterior of a
wedge with spike domain when the basepoint zj is fixed along the line of the spike.

4.2. Union of two intersecting discs of equal size. Consider the domain 2
which is the union of two discs centred at 0 and 1.5, both with unit radius. By
solving the equations of both boundary circles, we identify that these two circles
intersect at (3/4,+/7/4) and (3/4,—+/7/4). By converting these co-ordinates into
the polar system, both circles intersect at e'® and e~'®, where a = arccos (3/4).
See Figure [5}

FIGURE 5. Domain Q = B(0,1) U B(1.5,1) with various positions
of the basepoint zj.

To compute the h-function, we map the domain €2 to a halfplane. We start with
the Mobius map —(z — e'¥) /(2 — e~%) that sends the points €'*, e~** and 0 to the
points 0, co and —e?*®, respectively. This Mobius map transforms the domain Q
to the exterior of a wedge domain with the exterior angle 2(m — «). Then, the
conformal map z™/2("=%) transforms the exterior of the wedge domain to the right
halfplane.

Now, we discuss the h-function of this domain 2 with various locations of the
basepoint zy. We fix zg at three specific positions such as 0.75, 0.75 4 0.25¢ and 0.
See Figure

A. Fix the basepoint zg = 0.75. That is, the basepoint zj is fixed exactly middle
in the intersecting region of both discs. Let yo = v/7/4. Now, for the regime r < yjo,
the h-function is zero. Similarly for the regime r > 1.75, the h-function is equal
to 1. Now, for the regime yo < r < 1.75, the capture circle equally encloses part of
the boundary of both discs. In this case, the h-function is

2 Lt (pipa) /20
h(r) = - arctan{ o) e
P2 P1

where
4(16r% —7)

3(16r2 +7) 4+ /7(16r2 — 1)(49 — 1672)

p1 =
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468 ARUNMARAN MAHENTHIRAM

and
4(16r2 —17)
3(16r2 +7) — \/7(16r2 — 1)(49 — 1672)

Now, we compare the h-function of the interior of the unit disc with the same
basepoint zy = 0.75. To map this domain ) to the halfplane, we use the M&bius
map (1 + z)/(1 — z) that sends the points —1, 1 and 0 to the points 0, co and 1,
respectively. For the regime 0 < r < 0.25, the A-function is zero. Similarly, the
h-function takes the value 1 for the regime r > 1.75. For the regime 0.25 < r < 1.75,

the h-function is
2 1672 — 1
h = — t —_— .
(r) — arctan {7\/ 19162 }

Figure [f] shows the comparison between the h-function of the interior of the unit
disc (red color graph) and the domain = B(0,1) U B(1.5,1) which is the union
of two intersecting discs where one is the unit disc (blue color graph), with the
same basepoint zg = 0.75. Moreover, the h-function h(r) of the interior of the unit
disc has a point of inflection at r = 1.432491, while h(r) for the domain Q with
basepoint zg = 0.75 has a point of inflection at r = 1.44799.

p2 =

1
09
08
07
06

L o05

FIGURE 6. Comparing the graphs of the h-function for the interior
of the unit disc (red) and the domain Q = B(0,1) U B(1.5,1) with
the same basepoint zg = 0.75 (blue).

B. Fix the basepoint zg = 0.75 + 0.25¢. That is, the basepoint zj is fixed in the
intersecting region of both discs, but in an off-center location (complex point). We
can write zg = ke'?, where k = 1/10/4 and 6 = arccos(3/4k). Let yo = v/7/4. Now,
for the regime r < yg — 0.25, the h-function is zero. For the regime gy — 0.25 <
r < yo + 0.25, the capture circle encloses part of the boundary in the top side of
both discs, and also equally encloses the boundary in both discs. In this case, the

h-function is
10 = Zanean { [ (V1) ]
r) = — arctan - ,
T \/? _1 P1
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NEW A-FUNCTIONS OF SOME SIMPLY CONNECTED PLANAR REGIONS 469

where

4[3(8r% — 3) + /160 — (13 — 8r2)2]
43 + 7272 4 3,/160 — (13 — 8r2)2 4 3,/7(160 — (13 — 8r2)2) 4+ /7(13 — 8r2)

For the regime r > yo + 0.25, the capture circle encloses part of the boundary
in the top and bottom sides of both discs, and also equally encloses the boundary

in both discs. In this case, the h-function is
2 VT+1 Vio1\ 177
h(r) = = ¢ arctan P1 + arctan — ,
Q VT -1 VT+1) p2
4[3(8r% — 3) — /160 — (13 — 8r2)2]

where
43 +72r2 — 3,/160 — (13 — 8r2)2 — 3,/7(160 — (13 — 8r2)2) + V/7(13 — 8r2)

Figure [7] shows the h-function graph for the domain € with basepoint 2y =
0.75 + 0.25¢. Moreover, this h-function has a point of inflection at r = 1.48941.

p1 =

7/2(r—a)

p2 =

1

09

0 0.5 1 1.5 2 25 3

FIGURE 7. Graph of the h-function for the domain Q = B(0,1) U
B(1.5,1) with basepoint zg = 0.75 + 0.254.

C. Fix the basepoint zg = 0. That is, the basepoint zg is fixed at the centre of
the left-hand disc. In this case, we expect a jump in the graph of the h-function,
because there is a sudden increase in the harmonic measure when r takes the
value 1. For the regime 0 < r < 1, we have h(r) = 0 and for the regime r > 2.5, we
have h(r) = 1. When r = 1, the capture circle encloses the whole boundary of the
left-hand disc in Q. In this case, h(r) = 0.8506. For the regime 1 < r < 2.5, the
capture circle encloses the entire boundary of the left-hand disc, and also encloses
part of the right-hand disc in €. In this case, the h-function is
(p7lr/2(7r—(x) . pg/?(ﬂ—a)) COS |:(7r72a)7r:|

2(m—a)

1+ (p1p2)™/2(m=e) 4 (PT/Q(PQ) + P;T/z(ﬂia)) sin [(;;2:2;]

1
h(r) = — arctan
™
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where
B 16(r2 — 1)
& 3(4r2 +3) +/7(25 — 4r2)(4r2 — 1)
and
16(r2 —1
p2 = ( )

3(4r2 +3) — /7(25 — 4r2)(4r2 — 1)

Figure [§| shows the A-function graph of the domain £ when the basepoint zg is
fixed at the origin. Moreover, this h-function has a point of inflection at r = 2.105.

FIGURE 8. Graph of the h-function for the domain Q = B(0,1) U
B(1.5,1) with basepoint zg = 0.

5. COMPLEMENT OF A ROUND LOLLIPOP WITH COMPLEX BASEPOINT

In this section, we describe the h-function of a lollipop domain when the base-
point zy is purely imaginary. The A-function for the lollipop domains when the
basepoint is fixed on the real axis has been described in [4]. Consider the domain
which is the complement of the disc {z € C: |z| < 1} along with the ray (—oo, —1];
see Figure [9]

FIGURE 9. Round lollipop domain = C\(B(0,1) U (—oo, —1])
with basepoint zg = 2i.
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For the regime 1 < r < /5, the capture circle encloses only part of the upper
half boundary of the disc. In this case, the h-function is

V2k(1 —sina)sing }

k+sino — \/chosg (cos % + sin %)

1
h(r) = = arct
(r) —arctan {

where

5 — 2

k= 1

4 .
, 0030:5 and sina =

| Ut

That is, for this range of r

1
h(r) = — arctant,
77

where
2(r2 —1) .
ﬁ(1o—r2)—3[\/4+ (9 —7r2)(r2 —1) +\/4 (9 — 72)(r2 —1)}

t=

For the regime v/b < r < 3, the capture circle encloses the entire upper half
boundary of the disc, and also encloses part of the ray and the lower half boundary
of the disc. In this case, the h-function is

\f(\[qL\@sm )smf

{k+\/ﬂcosgsm2\/5(\/%C052+ﬂsing)}
\/E(\/g—\@cos%)sing

{k+\/ﬂcosgcos(2"+\/5(\/Ecosg+\@cosg)}

1
h(r) = = arct
(’I") arctan

1
+ — arctan
s

_ r?-342Vr2-14
where § = N
Now, for the regime r > 3, the capture circle encloses the entire boundary of

the disc and part of the ray. In this case, the h-function is

T
Vit 41232 [

1
h(r)=— — arcsec {

We also note that the h-function is exactly the same for this round lollipop

domain when the basepoint is zg = —2i, since the reflection does not affect the
h-function.

The h-function plot for the above lollipop domain Q = C\(B(0,1) U (—o0, —1])
with basepoint zg = 2¢ or zp = —2¢ is shown in Figure [I0]
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FI1GURE 10. Graph of the h-function for the round lollipop domain
Q= C\(B(0,1) U (=00, —1]) with basepoint zy = 2i or zg = —2i.

6. FINITE LOLLIPOP WITH PURE IMAGINARY BASEPOINT

In this section, we explain the h-function of a lollipop domain with a complex
basepoint, but we change the boundary ray as a line segment. The h-function of
this domain when the basepoint is fixed on the real axis has already been described
in [4].

Consider the domain Q@ = C\({z: |z] <1} U[1,3]). Fix the basepoint zg = 2i.
See Figure [11}

FIGURE 11. Finite lollipop domain 2 with basepoint zy = 2.

To transform the domain {2 to a halfplane, we start with the Joukowski map to
transplant the domain Q to the complement of the line segment [—1,5/3]. Next,
we use the Mobius map (3z — 5)/3(z + 1) that sends the points —1, 1 and 5/3
to the points co, —1/3 and 0, respectively. This Mdbius map transplants the
domain C\([—1,5/3]) to the domain C\(—o0,0]. Finally, we use the square-root
transformation to map the domain C\(—o0,0] to the right halfplane. Through
these conformal transformations, the basepoint zg is shifted from 2i to vke(™=9/2,
where k = 1/481/15 and 6 = arcsec(15v/481/159).

For the regime 1 < r < /5, the capture circle encloses part of the upper half
boundary of the disc, but does not enclose any part of the line segment and the
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lower half boundary of the disc. In this case, the h-function is

h(’")Ziarctan{ VR — i) sin § }

k+ /o — VE(\/Mo + /) cos §
where
_20-3 (r2—=1)(9—12) _20+3 (r2—=1)(9—12)

s ar o) M TS o)

For the regime /5 < r < 3, the capture circle encloses the whole upper half
boundary of the disc, and also encloses part of the lower half boundary of the disc
and part of the line segment. In this case, the h-function is

VE(VS + /1) sin §
Vo — k+ VE(VS — /ir) cos §

1
h(r) = —arct
(r) —arctan

+ l arctan \/H\/?T _ \/S) sing
™ Voo +k+Vk(\/io + Vo) cos & [

10v/r2—4—3(r%—3)
3(r2—3+2vr2—4) °

For the regime 3 < r < /13, the capture circle encloses the whole boundary of
the disc, and also encloses part of the line segment. In this case,

2\/Esin g }

where § =

1
h(r) = - arctan { 5k

Figure shows the h-function graph for this lollipop domain €2 with base-
point zp = 2.
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FiGURE 12. Graph of the h-function for the finite lollipop 2 =
C\(B(0,1) U [1,3]) with basepoint zy = 2i.

Note that there is no change in the h-function when we change the position of
the basepoint to —2i, since the reflection does not affect the h-function.
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7. LOLLIPOP WITH A JOINED LINE SEGMENT

In this section, we explain the h-function of the complement of a lollipop joined
with a deleted spike when the basepoint z is fixed on the real axis. The h-function
of lollipop domains has already been documented in [4]. When we add a new
boundary component to the lollipop, the whole calculation of h(r) will be changed,
since we map the whole domain to a halfplane. Also, the number of regimes will
be increased in this case.

Consider the domain © which is the complement of the disc {z € C : |z| < 1}, the
ray (—oo, —1] and the line segment [1,b], where b > 1. We fix the basepoint zy =
b+ d in Q.

FIGURE 13. Domain Q = (C\(B(O,l) UL, U (—oo,—1]) with
basepoint zg = b + d.

For the regime d < r < b+d— 1, the capture circle only encloses the part of the
spike in the boundary 0€2. In this case, the h-function is

2 (b+d) [(b+d—7)(br —bd+1) — b
h(r)—warctan\/d(b2+d2l)[ b d .

For the regime b4+ d — 1 < r < b+ d+ 1, the capture circle encloses the whole
boundary of the spike, and part of the boundary of the disc in 0). In this case,
the h-function is

2 b(r2 —1) + (b+d)(1 — bd)
h(r) = 7Tarctan\/ &= 1) .

For the regime » > b+ d + 1, the capture circle encloses the whole boundary of
the spike and the disc, and part of the boundary of the ray in 2. In this case, the
h-function is

hir) = 2 " (b+d) bd(2b+ d) + (b2 + 1)(r — d) + br|r — 2(b + d)]
(r) = - arctan d(bQ+d21)[ r— (b+d) '

Figure [14] shows the h-function graph of the above domain € with b = 2 when
the basepoint is zg = b+ d = 3.
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FiGURE 14. Graph of the h-function for the domain 2 =
C\ (B(O, 1) U[L,2] U (~oo, —1]) with basepoint zo = 3.

Now, we move our focus to the asymptotics of the h-function h(r) near r = d,
r=b+d—1and r =b+d+ 1 at which two regimes meet. Near r = d,

2 [(b+ad)p2—1) .
M~ =" 9 "
=

r—d)*B,

where ¢ = % % and §=1/2.

Nearr=b+d—1,

h(r) — h(b+d — 1)

2 i)+ b d)(1 - ba)
- oeen A2 + & 1)

d(b? + 2 — 1)

5 VAR + 2 = 1) [\/w Fd—bd(b+d)— /b(b+d—1)2+d—bd(b+ d)]
TR Tt R ) i 1 d -0 T b T A1 d b0t )]

2 W((Hd 1)2 — 1)+ (b + d)(1 — bd)

2 A2 +d? — 1)
7 (b3 + d3 + 202d + b — 2% — 2bd]

f(’r)’
(7.1)
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where f(r) = /br2 +d —bd(b+ d) —/b(b+d — 1)2 +d — bd(b + d). By using the
Taylor expansion for the function f(r) at r =b+d — 1, we write

f(r):f(b+d—1)+W[r—(b+d—1)]+W[r—(b+d—l)]z+m
b(b+d— 1)
RV U i e
(7.2)
since f(b+d—1)=0and f/(b+d—1) bb+d_1) r—(b+d—1)).

= Vbolotd—1)td—bd(b+d)

By substituting (7.2]) in (7.1]), we obtain

2 db?* +d> -1
hm_h(l’”‘””w[b3+d3+2(b2d+b21322bd]
x blbvd—1) = (b+d—1)]
Vb(b+d—1)+d—bd(b+d)
= colr — r*]",
where
00_2 A% +d? —1) bb+d—1)

o[B8+ d3 + 2b2d + b — 2b2 — 2bd] Volb+d—1)+d—bd(b+d)
r* =b+4+d—1and v = 1. We are also interested to know the behaviour of the
asymptotics near r = r* = b+ d — 1 when b — 1, that is, when the length of the
spike reduces to the point 1. When b — 1, the constant
2 1
Tdyl—d
which does not blow up. However, this does not mean that this A-function has the
exponent 8 = 1, because the left-hand side term h(r) — h(b + d — 1) consists of a
substracting term from the h-function h(r).

Near r=b+d+1,

h(r) — h(b+d+1)

2 . (b+d) bd(2b+ d) + (b2 + 1)(r — d) + br[r — 2(b + d)]
T oo d(b2+d21)[ r— (b+d)

co —

2 (b+d)
— — arctan l d(i(lH_ 1)

T b2+d?—1)
_ 2 etan d Y= o0+ 1)/ — (b+ d)
: N e ETrE N

where p = ,/% and m = bd(2b + d) + (b*> + 1)(r — d) + br[r — 2(b + d)].
Then,

h(r) — h(b+d+ 1) ~ !

S o
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where fo(r) = py/m — p(b+1)y/r — (b+ d). Again, by using the Taylor expansion
for the function fo(r) at r = b+ d + 1, we obtain

P [(1 — 362 — 4bd — 2b)\/(b+ d)(b+d+ 1) — (b+ 1)2}
20+ 1)/ (b+d)(b+d+1) '

fo(r) ~

Hence,
h(r) — h(b+d+ 1)
{(1 — 362 — 4bd — 2b)\/(b+ d)(b+d+ 1) — (b+ 1)2}

P
m 1+ p2(b+ 120+ 1)/ (b+d)(b+d+1) Ir=( )
=cr—(0b+d+1)],
where ¢ — 2 [(1—3b2—4bd—2b)\/(b+d)(b+d+1)—(b+1)2] and o — 1.

T [P (012 (b1)y/(brd) (brdt1)
8. COMPLEMENT OF A DISC JOINED WITH TWO LINE SEGMENTS

In this section, we describe the h-function of the complement of the unit disc
along with two line segments which meets the real axis at 1 and —1. Again, we
add a line segment to a lollipop when it has a line segment in its boundary instead
of a ray.

Consider the domain Q = C\({z: |z] <1} U[-3,—1] UL, 3]); see Figure

FIGURE 15. Domain ) = (C\(B(O, DU[-3, ~1]U[L, 3]) with base-
point zo = 4.

To compute the h-function, we transform the domain €2 to a halfplane. First, we
use the Joukowski map to transplant the domain €2 to the complement of the line
segment [—5/3,5/3]. Then, we use the Mobius map (3z — 5)/(3z + 5) that sends
the points 5/3, —5/3 and 2 to the points 0, co and 1/11, respectively. This Mobius
map transplants the domain C\[—5/3,5/3] to the domain C\(—o0,0]. Finally, we
use the square-root transformation to map this current domain C\(—o0,0] to the
halfplane.

For the regime 1 < r < 3, the capture circle only encloses part of the line
segment (1,3]. In this case, the h-function is

2 91(3r2 — 147 + 11)
h(r) = = arct .
(r) = - arctan \/11(—3r2 1 34r —91)
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For the regime 3 < r < 5, the capture circle encloses the entire line segment
[1,3] and part of the boundary of the disc in 9. In this case, the h-function is

91(3r2 — 11)

2
h(r) = < arctan 4| ol — ).
(r) = 2 arctany [ 70— )

For the regime 5 < r < 7, the capture circle encloses the entire line segment
[1, 3] and the boundary of the disc in 9. Also, it encloses part of the line segment
(=3, —1]. In this case, the h-function is

2 91(3r2 — 14r + 11)
h(r) = = arct .
(r) = - arctan \/11(—3r2 + 34r — 91)

Figure (16| shows the h-function graph for the domain € with basepoint zg = 4.
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FiGURE 16. Graph of the h-function for the domain 2 =
C\ (B(O, 1Hul-3,-1] U1, 3]) with basepoint zg = 4.

In this domain, we have

VI001(3 —7)(5 — )

for1 <r < 3;

7r(dr — 15)4/(3r — 11)(r — 1)(—=3r2 + 34r — 91)

/1001
B (r)= 00 for 3 <r < 5;
3rry/(3r2 — 11)(91 — 3r2)
/1001 (3 — -

001(3 —r)(5 1) for 5 <r<7.

7r(4r — 15)4/(3r — 11)(r — 1)(—3r2 + 34r — 91)

We note that h’ and A/  denote the left-hand and the right-hand derivatives of
the function h, respectively. In our case, h’ (1) = 0, A/ (1) = oo, A’ (3) = 0,
W,(3) = 598, h(5) = ¥ and K (5) = 0. Therefore, at r = 1, the h-
function has a horizontal tangent from the left and a vertical tangent from the
right. Similarly, the hA-function has a horizontal tangent at » = 3 from the left only,

and a horizontal tangent at » = 5 from the right only.
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Moreover, we have h” (1) = 0, A (1) = oco. Also, h” (3) # h'[(3) with both
left-hand and right-hand derivatives being not equal to either 0 or co. Similarly,
h” (5) # h'[(5) with both both left-hand and right-hand derivatives being not equal
to either 0 or oco.

Now, we move our focus to the asymptotics on the h-function of this domain 2
near the values of r where two regimes meet. Near r = 1,

B(r) ~ i\/f\/? S 112 = o — d)f,

_2 fou [2 S _ —
where c = =, /971/75, d=1and 8 =1/2.
Near r = r* = 3,

2 _
h(r) —h(3) = 2 arctan\/ 91(3r2 —14r +11) 2 arctan { 911}
T 7r

11(=3r2 + 34r — 91) 112

2 2 2 11— — 3r2

= —arctan { v 1001 V3r 11— Vo1 —3r (8'1>
™ 22v/91 — 3r2 + 91v/3r2 — 11
4/1001

where f(r) = 2v/3r2 — 11 — /91 — 3r2. By using the Taylor expansion of f(r) at
r = 3, we obtain

45
F)~ 23, (82
Applying (8.2) to the expression (8.1)), we obtain
h(r) —h(3) ~ co(r —1")7,

where ¢y = Vjég?l and v = 1.

Near r = r** =5,

2 3r2 — 14 11 — 2v/—=3r2 4+ 34r — 91
h(r)—h(5):arctan{\/£ﬁ[ var i Vo3 43

™ 11V/=3r2 + 34r — 91 + 182/3r2 — 14r + 11
Vo1
[V/3r2 — 14r + 11 — 2/=3r2 + 34r — 91]

~ 3757

NIV,
~ 407T(T_5)

=ci(r—r"")7,

}

where ¢; = % and v = 2.

9. TWO DISCS CONNECTED BY A COMMON LINE SEGMENT

In this section, we explain the h-function of an unbounded domain whose bound-
ary components are two discs and a line segment which connects both discs. How-
ever, for the computation of the h-function, here we use a different approach which
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is not used in the earlier sections of this paper. The interesting part of this method
is the construction of a harmonic function to solve our Dirichlet problem. This
method was first mentioned in [2].

Consider the unbounded domain §2 which is the complement of two discs D1, Do
and the common line segment { = [1,1.700005], where the disc D is centred at zero
with unit radius, while the disc Dy is centred at 1.755190 with radius 0.055185.
We fix the basepoint zy = —2.

To compute the h-function of 2 with this given basepoint zy, we use the method
of conformal transformations. In this case, we transform our target domain 2 to
the interior of the unit disc. We start with the inverse map (1/z) to transplant
the domain €2 to a bounded domain which is the interior of the unit disc, but the
complement of the lollipop whose boundary consists of the line segment [0.588233, 1]
and the boundary circle that meets the real line at the points ¢ = 0.552378 and
d = 0.588233.

Next, we use the Mobius map (z — A)/(Az — 1) with A = (¢ + d)/(1 + cd +

(1 =¢?)(1 —d?)) to transform the current region to the concentric annulus ex-
cluding the line segment [—1, —p], where p is the radius of the inner circle of the
annulus and the outer circle of the annulus has the unit radius. Next, we use the
logarithmic transformation to map this new region to the interior of the rectangle
whose vertices are (0,7), (0,—7), (Inp,—7) and (In p, 7). Then, we use the map
(1.38403z/7) to replace the vertices of the rectangle at (0,1.38403), (0, —1.38403),
(—1.59814, —1.38403) and (—1.59814, —1.38403). Now, we can obtain this new rec-
tangle from the unit disc via the Schwarz—Christoffel mapping f(¢) by fixing the
pre-vertices of this rectangle at the points /12 ¢=5im/12  o=Tin/12 and Tin/12,
where

¢ 54 1 ; = _1/2
f(C) _ / [(1 _ team’/m)(l o te7z7r/12)(1 7 t677z7r/12)(1 - teﬂm/u)] dt.
1

Hence, the composite map

where

™

A(Q) = exp { 1.38403
¢ , . , , -1/2
% / {(1 —4eBIT/12Y (] geTim/12) (1 g Tim/12)(1 te—5z7r/12):| dt},
1

transforms the interior of the unit disc to our target domain Q. Also, F (1) = —1,
F(e2™/12) = 1, F(e"7/12) = 1.700005 and F(—1) = 1.810375.

Now, we move our focus to the h-function computation. Let 7 and 7 be the
preimages of the intersecting points in the boundary 02 by the capture circle,
where 7 = €®. In the computation of h(r), we use the classical Cayley map

R(Cm7) = (C - T)

T\(—T
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which transforms the interior of the unit disc to the lower halfplane. For |¢| =1,

A= ()

(o=t
(1/¢) —(1/7)

()
- ()

= R((, T, 7).

Thus, R is real on |(| = 1. We also fix the branch of the argument function arg R
such that —m < arg R < 7. Therefore,

0 for 0 < |arg (| < ¢;
-7 for ¢ < |arg(| < m.

arg R(¢, 7,7) = {
Now, we define the harmonic function
_ 1 _ .
W(Ca T, T) = - [IOgR(C, T, T) + “T] .
T
Then,

(W (¢,7,7)] = = farg R(G, 7, 7)] +1
)1 for 0 < |arg(| < ¢;
10 for ¢ < |arg(¢| < .

Therefore, the harmonic function Im[W ({, 7, 7)] solves our Dirichlet problem in
the interior of the unit disc. Thus, the composite function Im[W] o F~! solves our
Dirichlet problem in our target domain 2. Hence, the h-function is given by

h(r) = Im[W (¢, 7, 7)]-

For the regime 1 < r < 3, the capture circle encloses part of the boundary of the
unit disc in 9. In this case, the angle ¢ € [0,57/12). Similarly, for the regime
3 < r < 3.700005, the capture circle encloses the whole boundary of the unit disc
in 002, and also encloses part of the line segment in 9€2. In this case, the angle
¢ € [57/12,77/12). For the regime r > 3.810375, the capture circle encloses the
whole boundary of the unit disc and the line segment in 0f), and also encloses part
of the boundary of the other circle in 9. In this case, the angle ¢ € [7n/12,7).
Figure [[7] shows the subset E, for the three regimes of r.

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



482 ARUNMARAN MAHENTHIRAM

D
DU * D fi] Dl

(A) For 1 <r <3 (B) For 3 < r < 3.700005

Dy
(¢) For r > 3.700005

FIGURE 17. The set E, (shown in red) for three regimes of r.

The h-function graph for the above domain 2 with basepoint zyg = —2 is shown
in Figure

0ot
08t
o7t
0sf
Zost
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04t

03r

FiGurRe 18. Graph of the h-function for the domain Q2 =

C\({|z] <1} U [1,1.700005] U {|z — 1.755190| < 0.055185}) with
basepoint zg = —2.

In this section, our h-function expression is in an implicit form. Also, the con-
formal map F({) consists of an integral form within it. Therefore, it is hard to
investigate the asymptotics at the values of » where two regimes meet.
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