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ON THE MODULI SPACE OF LEFT-INVARIANT METRICS ON
THE COTANGENT BUNDLE OF THE HEISENBERG GROUP

TIJANA ŠUKILOVIĆ, SRDJAN VUKMIROVIĆ, AND NEDA BOKAN

Abstract. The focus of the paper is on the study of the moduli space of left-
invariant pseudo-Riemannian metrics on the cotangent bundle of the Heisen-
berg group. We use algebraic approach to obtain orbits of the automorphism
group acting in a natural way on the space of left invariant metrics. However,
geometric tools such as the classification of hyperbolic plane conics are often
needed. For the metrics obtained by the classification, we study geometric
properties: curvature, Ricci tensor, sectional curvature, holonomy, and paral-
lel vector fields. The classification of algebraic Ricci solitons is also presented,
as well as the classification of pseudo-Kähler and pp-wave metrics. We obtain
description of parallel symmetric tensors for each metric and show that they
are derived from parallel vector fields. Finally, we study the totally geodesic
subalgebras and show that for each subalgebra of the observed algebra there
is a metric which makes it totally geodesic.

1. Introduction

The space of metrics is called moduli space and is defined as the orbit space of
the action of R× Aut(g) on the space M(G) of left-invariant metrics on G. Here
Aut(g) denotes the automorphism group of the corresponding Lie algebra and R× is
the scalar group. There are two in some sense dual approaches to the classification
problem, both based on the moduli space of left-invariant (pseudo-)Riemannian
metrics on the Lie group. The first approach consists of fixing a Lie algebra basis
such that the commutator relations are as simple as possible, and then fitting the
inner product to it by the action of the automorphism group. This approach was
first introduced by Milnor [35], who used it to classify all left-invariant Riemannian
metrics on 3-dimensional unimodular Lie groups. The second way is to start from
the basis which puts the inner product in the simplest form, where the Lie brackets
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can be arbitrary but satisfy the Jacobi identity, and in this way define a hypersur-
face with feasible Lie brackets. Note that in both cases the orbits of Aut(g) induce
the isometry classes, while R× induces the scaling. For a more detailed exposition
of the two approaches, we refer to [24, 29].

Interestingly, the Riemannian case is well studied and understood, while the
pseudo-Riemannian case seems to be more difficult and still has many open ques-
tions. Milnor’s classification of 3-dimensional Lie groups with left-invariant posi-
tive definite metric [35] has become a classical reference, while the corresponding
Lorentz classification [13] followed twenty years later. In dimension four, only par-
tial results are known. The classification of 4-dimensional Riemannian Lie groups
is due to Bérard-Bérgery [4]. Jensen [26] has studied homogeneous Einstein spaces
with Riemannian (positive definite) metrics, while Karki and Thompson [27] have
studied Einstein manifolds arising from right invariant Riemannian metrics on a
4-dimensional Lie group. Calvaruso and Zaeim [8] have classified left-invariant
Lorentz metrics on Lie groups which are Einstein or Ricci-parallel, using the sec-
ond approach mentioned above. Classification in the case of nilpotent Lie groups
in small dimensions has been studied in detail in both the Riemannian [31] and
the pseudo-Riemannian setting [5, 43, 25]. Recent results include the classification
of pseudo-Riemannian metrics for 4-dimensional solvable Lie groups [44] and in
the positive definite case, the moduli space for 6-dimensional nilpotent Lie groups
admitting a complex structure with the first Betti number equal to 4 was deter-
mined [38]. For arbitrary dimensions, the Lorentz classification of left-invariant
metrics on the Heisenberg group H2n+1 [47] and the classification of Ricci solitons
on nilmanifolds [32] are worth mentioning.

The cotangent bundles play an important role in the standard description of
physical systems, both for particles and for fields (see, e.g., [2]). In particular,
they appear as configuration spaces of some mechanical systems and are often
endowed with rich algebraic and geometric structures (see, e.g., [19, 16, 17]). In
this paper, we are interested in the cotangent bundle of the Heisenberg group H3,
mainly because this group is a constant topic of research due to its properties and
diverse applications. For example, Herman Weyl was led to an explicit account of
the Heisenberg group when he attempted to answer the question of the physical
equivalence of the Schrödinger and Heisenberg pictures.

The paper is organized as follows.
First, in Section 2 some basic facts about the algebra T∗h3 and its automorphism

group are explained.
In Section 3 we classify all non-isometric left-invariant pseudo-Riemannian met-

rics on T∗h3. For the classification we use the second approach described above:
we fix the commutators and act with automorphisms of the algebra T∗h3 to find
representatives of the metrics. The restriction of the metric to the derived subal-
gebra T∗h3

′ plays a very important role in the analysis. Each induced signature of
T∗h3

′ is treated in a separate subsection, and in each case we have to use different
geometric and algebraic methods for classification. For example, if the induced
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metric is Lorentzian, we must include some classical results from projective geome-
try, while the degenerate case requires a more subtle analysis that depends heavily
on the signature of the degenerate subspace and often involves the use of Euclidean
and hyperbolic rotations. The results are summarised in Theorem 3.4.

Section 4 is devoted to the study of the geometric properties of the obtained
metrics. First, we study the curvature properties (Proposition 4.2) and the scalar
curvature (Proposition 4.4). In Proposition 4.7 we describe parallel left invariant
vector fields and show that all such fields are null. The holonomy of the metrics
is quite diverse and is described in Proposition 4.8. However, we leave a deeper
understanding of holonomy to further research.

In Subsection 4.2 we classify metrics that are algebraic Ricci solitons. In the
Riemannian case (see [32]) such a metric would be unique up to homotety, but
since we are working in pseudo-Riemannian settings, we have several non-isometric
metrics which are shrinking, expanding or steady solitons.

In Subsection 4.3 we consider the invariant complex structure obtained by Sala-
mon [40] in his classification of complex structures on nilpotent Lie algebras. It
is known that the space of the corresponding complex structures is 5-dimensional
and that the nonflat, Ricci-flat, pseudo-Kähler metrics are admissible (see [12]). In
this section we classify pseudo-Kähler metrics and show that they all belong to the
same family of metrics (Proposition 4.14).

It is known that two left-invariant metrics with the same geodesics are affinely
equivalent (see [6]) and that the difference of two such metrics is an invariant
parallel symmetric tensor. In Proposition 4.17 we show that all such tensors can
be obtained using parallel vectors, and therefore it follows from [30] that metrics
admitting such tensors are Riemannian extensions of Euclidean space.

There are many well-known facts about totally geodesic subalgebras of a nilpo-
tent Lie algebra (see, e.g., [7]). Therefore, the Subsection 4.5 is devoted to their
study. Interestingly, for every subalgebra h of T∗h3 there exists a metric which
makes it totally geodesic, as shown in Proposition 4.20.

2. Preliminaries

Let us briefly recall the construction of the cotangent Lie algebra.
The cotangent algebra T ∗g of the Lie algebra g is the semidirect product of g

and its cotangent space g∗,
T ∗g := g⋉ad∗ g∗,

i.e., the commutators are defined by

[(x, ϕ), (y, ψ)] := ([x, y], ad∗(x)(ψ) − ad∗(y)(ϕ)), x, y ∈ g, ϕ, ψ ∈ g∗.

By ad∗ : g → gl(g∗) we denote the coadjoint representation

(ad∗(x)(ϕ))(y) := −ϕ(ad(x)(y)) = −ϕ([x, y]).

The Heisenberg Lie algebra h3 is a 3-dimensional nilpotent Lie algebra defined
by a nonzero commutator

[x1, x2] = x3.
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The cotangent algebra T∗h3 of h3 is a 6-dimensional irreducible 2-step nilpotent
algebra with maximal abelian ideal of rank 4 and 3-dimensional centre (see [36,
Type 3] or [46, Type III3]).

For simplicity, we will fix the basis e = (e1, e2, e3, e4, e5, e6) such that the Lie
algebra T∗h3 is defined by nonzero commutators:

[e1, e2] = e6, [e1, e3] = −e5, [e2, e3] = e4. (2.1)
Note that these relations can be written in the form

[ei, ej ] = εijke3+k, (2.2)
where εijk is the totally antisymmetric Levi-Civita symbol and i, j, k ∈ {1, 2, 3}.
The commutator subalgebra T∗h3

′ = [T∗h3,T∗h3] and the central subalgebra
Z(T∗h3) coincide:

T∗h3
′ = R⟨e4, e5, e6⟩ = Z(T∗h3).

Lemma 2.1. The group of automorphisms of the Lie algebra T∗h3 in the basis e
with commutators (2.1) is given in block-matrix form

Aut(T∗h3) =
{(

A 0
B A∗

)
| detA ̸= 0

}
, (2.3)

where A∗ := (detA)A−T and A,B are 3 × 3 matrices, or equivalently, as

Aut(T∗h3) =
{(

±(
√

detC)C−T 0
B C

)
| detC > 0

}
. (2.4)

Proof. By definition, the automorphism F : T∗h3 → T∗h3 is a linear bijective
mapping satisfying

F ([u, v]) = [F (u), F (v)], u, v ∈ T∗h3.

The automorphism F maps vectors e1, e2, e3 to arbitrary vectors

F (ej) =
3∑

i=1
aijei +

3∑
i=1

bije3+i = aijei + bije3+i. (2.5)

where the 3 × 3 matrix B = (bij) is arbitrary and the 3 × 3 matrix A = (aij)
must be regular. In the last relation, we have omitted the summation sign because
we assume summation over repeated indices, as we will do in what follows. The
automorphism F must preserve the commutator subalgebra. This can be written
as

F (e3+j) = cije3+i, j = 1, 2, 3, (2.6)
where C = (cij) is a 3 × 3 matrix. This explains the zero block in the matrix (2.3).
Now we find the relation between the matrices A and C.

Using (2.2) and (2.6) we get
F ([ei, ej ]) = εijkcpke3+p, (2.7)

[F (ei), F (ej)] = [akiek + bkie3+k, amjem + bmje3+m] = [akiek, amjem]
= akiamjεkmpe3+p. (2.8)
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Comparing the relations (2.7) and (2.8), we get

εijkcpk = εkmpakiamj ,

or, equivalently,

cpk = εkijεkmpakiamj = Apk,

where Apk is the cofactor of the element apk of the matrix A. Therefore, A∗ =
(detA)(A−1)T = C as claimed.

To obtain the second representation, we take the determinant of the relation
C = A∗ = (detA)A−T and we obtain detC = (detA)2 > 0. □

3. Classification of metrics

In this section, we classify non-isometric left-invariant metrics of arbitrary sig-
nature on T∗h3.

If g is a Lie algebra and ⟨·, ·⟩ is an inner product on g, the pair (g, ⟨·, ·⟩) is
called a metric Lie algebra. The structure of a metric Lie algebra uniquely defines
a left-invariant pseudo-Riemannian metric on the corresponding simple connected
Lie group G, and vice versa.

Metric algebras are said to be isometric if there exists an isomorphism of Eu-
clidean spaces preserving the curvature tensor and its covariant derivatives. This
translates to the condition that metric algebras are isometric if and only if they
are isometric as pseudo-Riemannian spaces (see [1, Proposition 2.2]). Although
two isomorphic metric algebras are also isometric, the converse is not true. In gen-
eral, two metric algebras may be isometric even if the corresponding Lie algebras
are not isomorphic. The test to determine whether any two given solvable metric
algebras (i.e., solvmanifolds) are isometric was developed by Gordon and Wilson
in [23]. However, according to the results of Alekseevskĭı [1, Proposition 2.3], in
the completely solvable case, isometric means isomorphic.

Since the Lie algebra T∗h3 is nilpotent and therefore completely solvable, the
non-isometric metrics on T∗h3 are the non-isomorphic ones.

The isomorphic classes of various left-invariant metrics on T∗h3 can be viewed
as orbits of the automorphism group Aut(T∗h3) which naturally act on a space of
left-invariant metrics. This allows us to use the algebraic approach, although more
geometrical tools are often required.

In the basis e of T∗h3, the metric ⟨·, ·⟩ is represented by a symmetric 6×6 matrix
Se = (⟨ei, ej⟩), which we refer to as the metric matrix. The problem of classifying
metrics on T∗h3 reduces to finding conjugacy classes of symmetric matrices under
the action of the group Aut(T∗h3):

Sf = FTSeF, F ∈ Aut(T∗h3). (3.1)

In simple terms, we want to find a new basis f = (f1, f2, f3, f4, f5, f6) of T∗h3
with brackets of the form (2.1) such that the metric matrix Sf in that basis is as
simple as possible. Since the commutator algebra T∗h3

′ = R⟨e4, e5, e6⟩ is invariant
under Aut(T∗h3), we cannot change its metrical character, i.e., its signature.
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Therefore, given a symmetric metric matrix Se in the basis e, we find its canon-
ical form depending on the restriction of the metric ⟨·, ·⟩ on T∗h3

′.
Let S′

e be the symmetric 3×3 matrix representing the restriction. The restriction
of action (3.1) on S′ by the automorphism F ∈ Aut(T∗h3) of the form (2.4) is
CT S′

eC. Since C is an arbitrary matrix with positive determinant, this action puts
S′

e into the canonical form given by the matrix diag(µ1, µ2, µ3), µi ∈ {1,−1, 0}. To
introduce the notation, let

E30 =

1 0 0
0 1 0
0 0 1

 = I, E21 =

1 0 0
0 1 0
0 0 −1

 , E20 =

0 0 0
0 1 0
0 0 1

 ,

E11 =

0 0 0
0 1 0
0 0 −1

 , E10 =

0 0 0
0 0 0
0 0 1

 , E00 =

0 0 0
0 0 0
0 0 0

 , (3.2)

E03 = −E30, E12 = −E21, E02 = −E20, E01 = −E10.

The indexes of Epq denote the signature (p, q), i.e., the number of positive and
negative vectors, respectively, in the canonical form of S′

e.
Thus, choosing the matrix C in the automorphism F such that the restriction

of the metric on T∗h3
′ has the canonical form Epq, the matrix of the metric ⟨·, ·⟩

in the new basis becomes

Spq = FT Se F =
(
S M
MT Epq

)
, (3.3)

where M = (mij) is an arbitrary and ST = S = (sij) is a symmetric 3 × 3 matrix.
To further simplify Spq, we choose an automorphism from the subgroup that

preserves the Epq-part of the matrix Spq

Aut(Epq) = {F ∈ Aut(T∗h3) | CTEpqC = Epq}.

The groups Aut(Epq) and Aut(Eqp) are isomorphic. In other cases these groups
are fundamentally different and therefore we need to discuss separately each case
of Spq given by (3.3).

3.1. T∗h3
′ is definite (case S30 and S03). In this case,

Aut(E30) =
{(

±A 0
B A

)
| ATA = I, detA > 0

}
, (3.4)

i.e., A ∈ SO(3) is orthogonal and B is any 3 × 3 matrix.
Suppose the metric ⟨·, ·⟩ is represented in the basis e by the matrix S30 or S03

given by (3.3). Find a new basis f corresponding to F ∈ Aut(E30) of the form (2.5)
for aij = δij , i.e., the matrix is the identity matrix A = I. From the form of F
given by (3.4), we also have F (e3+i) = e3+i. Then

⟨F (ej), F (e3+k)⟩ = ⟨ej + bije3+i, e3+k⟩
= ⟨ej , e3+k⟩ + bij⟨e3+i, e3+k⟩ = mjk + bijδik.

(3.5)
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Thus, for bjk = −mkj , i.e., for B = −MT , we obtain

⟨F (ej), F (e3+k)⟩ = 0, j, k ∈ {1, 2, 3}.

Therefore, F puts the matrix S30 into the form(
S 0
0 E30

)
or

(
S 0
0 E03

)
,

where S = ST has changed but is denoted by the same letter to simplify notation.
Finally, since the symmetric matrix S can be diagonalized by the orthogonal ma-
trix A, by using the automorphism F of the form (3.4) we obtain the canonical
form for definite T∗h3

′,

S30 =
(

Λ 0
0 E30

)
or S03 =

(
Λ 0
0 E03

)
, (3.6)

where Λ = diag(λ1, λ2, λ3) and λ1 ≥ λ2 ≥ λ3 are nonzero and of arbitrary sign.

3.2. T∗h3
′ is Lorentzian (case S21 and S12). The admissible automorphisms

are

Aut(E21) = Aut(E12) =
{(

±A 0
B A

)
| ATE21A = E21, detA > 0

}
(3.7)

i.e., A ∈ SO(2, 1) and ±A ∈ O(2, 1) and B any 3 × 3 matrix.
Suppose that in the basis e the metric ⟨·, ·⟩ is represented by the matrix S21 or

S12 given by (3.3).
By similar calculations as in (3.5), one can choose the matrices A = I and

B = −E21M
T of the automorphism F ∈ Aut(E21) such that in the new basis ⟨·, ·⟩

has the form (
S 0
0 E21

)
or

(
S 0
0 E12

)
. (3.8)

Now the 3 × 3 symmetric matrix S can have definite or Lorenz signature. To
obtain the form (3.8), we can act by automorphism F ∈ Aut(E21) with B = 0.
This reduces to finding equivalence classes of the action of the group SO(2, 1) on
the Riemannian and on the Lorentzian symmetric matrix S.

3.2.1. T∗h3
′ is Lorentzian, T∗h3

′⊥ is Riemannian. The case where T∗h3
′⊥ is Rie-

mannian is the simpler of the two cases.

Lemma 3.1. Let S be a symmetric matrix with positive eigenvalues. Then there
exists a matrix A ∈ SO(2, 1) such that ATSA is diagonal.

Proof. There exists an orthogonal matrix T ∈ SO(3) such that

T−1ST = D = diag(d1, d2, d3), di > 0.

Then S = TDT−1 and we denote the symmetric matrix
√
S = T

√
DT−1, where√

D = diag(
√
d1,

√
d2,

√
d3). The matrix

√
S

−1
E21

√
S

−1 = (
√
S

−1)TE21
√
S

−1 is
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also symmetric (and has the same signature as E21). Therefore, it can be diago-
nalized by the orthogonal matrix R ∈ SO(3):

RT
(
(
√
S

−1
)TE21

√
S

−1)
R = diag

(
1
δ2

1
,

1
δ2

2
,− 1

δ2
3

)
= ∆−1E21∆−1,

where ∆ = diag(δ1, δ2, δ3). If we set A =
√
S

−1
R∆, then detA > 0 and

ATE21A = E21, ATSA = ∆2 = diag(δ2
1 , δ

2
2 , δ

2
3),

which completes the proof. □

Suppose the metric ⟨·, ·⟩ is represented by the matrix S21 or S12 given by (3.8),
and the matrix S is positive definite (or negative definite). It follows from Lemma 3.1
that there exists a matrix A ∈ SO(2, 1) that diagonalizes S. The corresponding
automorphism F ∈ Aut(E21), given by (3.7) with B = 0, brings the metric into
the canonical form

S21 =
(

±∆ 0
0 E21

)
or S12 =

(
±∆ 0
0 E12

)
, (3.9)

where ∆ = diag(δ2
1 , δ

2
2 , δ

2
3).

3.2.2. T∗h3
′ is Lorentzian, T∗h3

′⊥ is Lorentzian. Suppose the metric ⟨·, ·⟩ is rep-
resented by the matrix S21 (or S12) given by (3.8), and the matrix S is Lorentzian,
i.e., of signature (2, 1) (or signature (1, 2)).

Finding the canonical form of S21 using the automorphism F ∈ Aut(E21), given
by (3.7), reduces to:
Problem 1. Find equivalence classes of symmetric matrices S of Lorentz signature
under the action of the group O(2, 1).

It is useful to consider the group O(2, 1) as a group of isometries of the hyperbolic
plane. This is best seen in the Klein projective model of the hyperbolic plane [14].

Any symmetric nondegenerate matrix H can be viewed as a projective conic
section Γ(H) which satisfies the equation

Γ(H) : 0 = xTHx,

where x = (x1 x2 x3)T denotes the column vector of homogeneous coordinates
(x1 : x2 : x3). For example, the Absolute of the Klein model 0 = x2

1 + x2
2 − x2

3 is a
conic Γ(E21). We restrict our attention only to conics represented by a symmetric
matrix of signature (2, 1), since we have treated the case of signature (3, 0) (and
(0, 3)) in the previous subsection. Moreover, the matrix S with signature (3, 0)
represents the “empty set” of the conics in real projective geometry.

The projective mapping x → Cx, represented by the non-degenerate 3 × 3 ma-
trix C, maps the conic Γ(H) to the conic Γ(CTHC). Therefore, the condition
C ∈ O(2, 1) for the matrix of the projective mapping is equivalent to preserving
the Absolute Γ(E21), i.e., C is a hyperbolic isometry.

Moreover, if H = S, the matrix of the metric we want to simplify, then we can
consider the metric S as “conic” Γ(S). Therefore, Problem 1 of classifying metrics
is equivalent to the problem of classifying hyperbolic conics:
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Problem 1*. Find the canonical forms of projective conics under the group of
hyperbolic isometries.

Note that the conic Γ(S) must not belong to the interior of the Absolute (i.e.,
the hyperbolic plane or the de Sitter space), since the group O(2, 1) also acts on
its exterior (the anti-de Sitter space).

The classification of hyperbolic conics is a classical and well-known result [42, 33].
In the original paper [42] there are nine types of conics in the classification, but in
later literature [33, 39, 28] 12 types appear. However, all of these classifications are
mostly given by images only. In the paper [21] there are equations, but the classifi-
cation is too complicated and in our case we do not need to distinguish between all
12 types. We get only 4 types, because we consider conics in the projective plane
as a whole and not conics in the hyperbolic plane, which is the intersection of the
projective plane and the interior of the Absolute. Our classification below uses the
concept explained in [39].

We recall some basic facts about hyperbolic isometries in the projective Klein
model (see, e.g., [14]). Let Γ = Γ(H), HT = H be a non-degenerate conic. Let the
point P (ξ1 : ξ2 : ξ3) be a pole and the line

p : p1x1 + p2x2 + p3x3 = 0, i.e., p(p1 : p2 : p3)
its polar with respect to Γ if λp = HP , where λ ̸= 0 is used to emphasize the
homogenous nature of the coordinates. Note that P ∈ p holds if and only if
P ∈ Γ(H). It is well known that projective mappings (or changes of coordinates)
x → Cx preserve the pole-polar relation.

The group of hyperbolic isometries is generated by homologies ϕP (Klein reflec-
tion) with centre P ̸∈ Γ(E21) and its polar p with respect to the Absolute. The
Klein reflection ϕP (M) of a point M is defined as the point M ′ such that points
M,M ′, P, PM are harmonic, where PM is the intersection of PM and p.

In what follows, we are interested in two conics: for H = E21, the conic Γ(E21)
which represents the Absolute and defines the group of admissible transformations
O(2, 1); and for H = S, the conic Γ(S) which represents the metric to be simplified.

The conic Γ(S) is invariant with respect to the Klein reflection ϕP if P and p
are also common pole and polar for both conics Γ(E21) and Γ(S). In this case, the
point P is called the centre of symmetry and p the line of symmetry of Γ(S). The
basic idea is that the equation of a conic simplifies if the coordinates of its centre
of symmetry are “nice”.

The condition that P and p are common pole and polar for both Γ(E21) and
Γ(S) is λ1p = E21P , λ2p = SP , or equivalently

SP = λE21P ⇔ (E21S)P = λP, λ ̸= 0. (3.10)
The nontrivial solution P ̸= (0 : 0 : 0) of this equation exists if and only if

χS(λ) := det(S − λE21) = 0. (3.11)
Note that χS(λ) is not a characteristic polynomial of the matrix S. Moreover, it is
clear from (3.10) that the solution of (3.11) is an eigenvalue, and P is an eigenvector
of the nonsymmetric matrix E21S.
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Multiplying (3.10) by PT from the left, we obtain, for the common pole P ,
|P |2S = PTSP = λPTE21P = λ|P |2, (3.12)

where we have denoted by |P |2S the norm of P with respect to the metric S (i.e.,
⟨·, ·⟩) and by |P | the norm with respect to the “hyperbolic” metric defined by E21.

Since χS(λ) is of degree 3, there is at least one real eigenvalue λ1 ̸= 0 corre-
sponding to the common pole P1.
Case 1 |P1| > 0 (equivalently, P1 is in the exterior of the Absolute).

We can choose a new pseudo-orhonormal basis f = (f1, f2, f3) = C ∈ O(2, 1) of
T∗h3

′⊥ such that f1 = P1
|P1| , and f2, f3 are arbitrary. In the new coordinates we

have P1(1 : 0 : 0), the matrix of the Absolute is unchanged and
λp1 = E21P1 = (1 0 0)T .

The matrix S of the metric ⟨·, ·⟩ has changed to S̄ = CTSC = (s̄ij), which we want
to determine. But regardless of the change of coordinates, P1 and p1 are pole and
polar with respect to the same conic Γ(S̄):

(λ 0 0)T = λp1 = S̄P1 = (s̄11 s̄12 s̄13)T ,

and we have s̄12 = s̄13 = 0. Also,
s̄11 = ⟨f1, f1⟩ = |f1|2S = λ1|f1|2 = λ1.

Therefore, for the case |P1|2 > 0, we can assume that the matrix S of the metric
has the form

S =

λ1 0 0
0 s22 s23
0 s23 s33

 . (3.13)

Now we discuss the possible Jordan forms of the matrix E21S.
Case 1a) E21S is diagonalizable: E21S ∼ diag(λ1, λ2, λ3).

If P1, P2, P3 are corresponding eigenvectors, then the triangle P1P2P3 is autopo-
lar with respect to both conics Γ(E21) and Γ(S). This means that Pi is pole of the
line PjPk for all distinct i, j, k. Since |P1| > 0, i.e., P1 lies in the exterior of the
Absolute, it is easy to prove that exactly one of P2 and P3 must lie in the interior –
let it be P3. Thus: |P1|2, |P2|2 > 0, |P3|2 < 0. As in Case 1 , and more, we choose

f1 = P1

|P1|
, f2 = P2

|P2|
, f3 = P3

|P3|
.

The fact that P1P2P3 is autopolar ensures that f = (f1, f2, f3) = C ∈ O(2, 1).
We already know that in the new basis (because of the choice of f1) the matrix
of the metric conic has the form (3.13). The new coordinates of the points are
P1(1 : 0 : 0), P2(0 : 1 : 0), P3(0 : 0 : 1). Using the fact that p2(0 : 1 : 0) is polar
to the pole P2 with respect to the metric conic Γ(S), we get s23 = 0. It is easy to
verify that the canonical form is

S =

λ1 0 0
0 λ2 0
0 0 λ3

 , (3.14)
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where two of the λi are positive and one is negative.

Case 1b) E21S has the Jordan form
(

λ1 0 0
0 λ2 1
0 0 λ2

)
.

One calculates that E21S has double eigenvalues if and only if

(s22 + s33)2 − 4s2
23 = 0 ⇔ s23 = ±s22 + s33

2 .

It is easy to verify that the automorphism C = diag(1, 1,−1) ∈ O(2, 1) changes s23
to −s23, so we can assume that s23 = s22+s33

2 . We obtain the canonical form

S =

λ1 0 0
0 s22

s22+s33
2

0 s22+s33
2 s33

 , λ1 > 0, s22 ̸= s33. (3.15)

The condition on the coefficients ensures that the signature of S is (2, 1).
Case 1c) E21S has the Jordan form

(
λ1 0 0
0 z 0
0 0 z̄

)
, z ∈ C.

It is obtained that E21S has complex conjugate eigenvalues if and only if (s22 +
s33)2 − 4s2

23 < 0. Suppose that λ1 < 0. Then both eigenvalues of the matrix
S′ = ( s22 s23

s23 s33 ) must be positive, i.e., s22s33 − s2
23 > 0. From the previous two

inequalities, we get (s22 − s33)2 < 0, a contradiction. Therefore, the case λ1 < 0 is
impossible. For λ1 > 0 we must have s22s33 − s2

23 < 0. The matrix S′ represents
the restriction of the metric S to the plane spanned by e2 and e3, which has the
signature (1, 1). Null vectors in this plane are

v± = ±s33e2 + (∓s23 +
√

− detS′)e3.

The product of their squared norms (with respect to the inner product E21),

|v−|2|v+|2 = s2
33((s22 + s33)2 − 4s2

23),

is negative and therefore we can choose v+ to be positive and v− negative. By
hyperbolic rotation,

f2 = coshϕ e2 + sinhϕ e3, f3 = sinhϕ e2 + coshϕ e3

for some ϕ, we get that f3 = v− (that would not be possible if v± were null or
positive). In the new basis f1 = e1, f2, f3 = v− we have s33 = ⟨f3, f3⟩ = |v−|2S = 0
(since f3 is chosen as a null vector).

This results in the canonical form

S =

λ1 0 0
0 s22 s23
0 s23 0

 , λ1 > 0, s23 ̸= 0. (3.16)

Case 2 |P1| = 0 (equivalently, P1 is on the Absolute).

In this case, the Jordan form of E12S is
(

λ1 1 0
0 λ1 1
0 0 λ1

)
. From the relation (3.12)

we obtain |P1|2S = 0, and thus

P1 ∈ Γ(E21) ∩ Γ(S),
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i.e., the P1 belong to the intersection of the conics. After the rotation, we can
assume that P1 is any point on the Absolute, for example P1(0 : −1 : 1). The polar
p1 with respect to the Absolute is p1(0 : 1 : 1). But p1 is also the polar of P1 with
respect to Γ(S):

λp1 = SP1 ⇔ s12 = s13. (3.17)
From the condition that P1 belongs to Γ(S), we get

s33 = −s22 + 2s23. (3.18)

The condition that λ1 is triple root of χS is equivalent to

s22 = s11 + s23. (3.19)

Considering the relations (3.17), (3.18) and (3.19) we obtain that another intersec-
tion point of Γ(S) and the Absolute is

M(−4s13s23 : 4s2
13 − s2

23 : 4s2
13 + s2

23).

We wish to map the point M to M0(1 : 0 : 1) by the transformation C ∈ O(2, 1),
fixing the point P1. The required transformation is a homology with centre {P} =
MM0 ∩ p1 and an axis whose polar p = E21P . It can be shown that the matrix of
this homology is

C =

 8s2
13 4s13(s23 − 2s13) 4s13(s23 − 2s13)

4s13(s23 − 2s13) −4s2
13 − 4s23s13 + s2

23 (s23 − 2s13)2

4s13(2s13 − s23) −(s23 − 2s13)2 −12s2
13 + 4s23s13 − s2

23

 .

Therefore, we assume that M0(1 : 0 : 1) ∈ Γ(S) or equivalently s23 = 2s13 to get
the canonical form

S =

s11 s13 s13
s13 s11 − 2s13 −2s13
s13 −2s13 −s11 − 2s13

 , s11 ̸= 0. (3.20)

The signature of this matrix is always Lorentzian. Note that when s13 = 0, we
obtain the diagonal form (3.14) considered earlier.
Case 3 |P1| < 0 (equivalently, P1 is inside the interior of the Absolute).

Since |P1| < 0, we can choose the basis (f1, f2, f3) ∈ O(2, 1) such that f1 = P1
|P1| .

Similar to Case 1 , we obtain that the metric in this basis is the matrix

S =

s11 s12 0
s12 s22 0
0 0 λ1

 .

The zeros of the characteristic polynomial (3.11) are

−λ1, λ2/3 = s11 + s22 ±
√

4s2
12 + (s22 − s22)2

2 .

We see that the polynomial cannot have multiple roots or complex conjugate roots,
and we obtain only the Case 1a), i.e., the canonical form of the metric is (3.14).
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3.3. T∗h3
′ is degenerate of rank 2 (metrics S20, S02, S11).

3.3.1. Case S20, S02. Suppose that in the basis e the metric ⟨·, ·⟩ is represented by
the matrix S20 or S02 given by (3.3). Therefore, we look for the canonical form(

S M
MT ±E20

)
(3.21)

with S and M as simple as possible. We first describe the group of isometries of
the degenerate inner product E20.

Lemma 3.2. The subgroup of Gl3(R) which preserves the degenerate quadratic
form represented by the matrix E20 is

O3(2, 0) =


λ a b

0 cosϕ ∓ sinϕ
0 sinϕ ± cosϕ

 | a, b, ϕ, λ ∈ R, λ ̸= 0

 .

From this lemma and Lemma 2.1 we derive the subgroup of Aut(T∗h3) preserving
the form of the matrix S20 or S02:

Aut(E20) = Aut(E02) =
{(

±A 0
B A∗

) }
, (3.22)

A =

λ 0 0
a cos ϕ

λ
sin ϕ

λ

b − sin ϕ
λ

cos ϕ
λ

 , A∗ =

 1
λ2

−a cos ϕ+b sin ϕ
λ

−b cos ϕ−a sin ϕ
λ

0 cosϕ ∓ sinϕ
0 sinϕ ± cosϕ

 .

We denote the automorphism F ∈ Aut(E20) of the form (3.22) by F (λ, a, b, ϕ,B),
B = (bij).

The subalgebra T∗h3
′ = R⟨e4, e5, e6⟩ is degenerate, and from (3.2) and (3.3) we

see that e4 ∈ T∗h3
′⊥. Moreover, T∗h3

′ ∩ T∗h3
′⊥ = R⟨e4⟩ and therefore T∗h3

′ +
T∗h3

′⊥ has codimension one in T∗h3.
The search for the canonical form of the metric S = S20 consists of several steps

in which we apply automorphisms in a very specific order. To simplify the notation,
we will always denote the resulting matrix by S and keep the same notation for its
entries, even if the entries change.

The automorphisms are quite restrictive in the plane R⟨e2, e3⟩, since we can
basically choose a new basis only by rotation. We have three cases corresponding
to the following geometric situations:

Case 1. R⟨e2, e3⟩ ∩ T∗h3
′⊥ is non-null.

Case 2. R⟨e2, e3⟩ ⊂ T∗h3
′⊥.

Case 3. R⟨e2, e3⟩ ∩ T∗h3
′⊥ is null vector.

The first step is the same for all three cases.
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Step 1. On the matrix S = S20 we first apply the automorphism F (1, 0, 0, ϕ,B),
where

cosϕ = m31√
m2

21 +m2
31
, sinϕ = m21√

m2
21 +m2

31
,

b22 = −m22m31 +m21m32, b32 = −m23m31 +m21m33.

This results with the matrix FTSF with m12 = m22 = m32 = 0.
Case 1. s22 ̸= 0,m31 ̸= 0.

Step 2. We apply the automorphism F (1, a, b, 0, B), where

a = m11s23 −m31s12

m31s22
, b =

−m11 + 3
√
m31

m31
, b12 = − s23

m31
,

b13 is complicated, so it is omitted, and the remaining bij are zero. After this action
we get s12 = 0 = s13, m11 = 3

√
m13.

Step 3. We apply the automorphism F (1, 0, 0, 0, B), where
b21 = −m12, b23 = −m32, b31 = −m13, b33 = −m33,

b11 = m2
12 +m2

13 − s11

2 3
√
m13

.

Here we have to use the complicated parameter b13 again, and the remaining bij are
zero. The resulting matrix of the metric has s11 = m12 = m13 = m32 = m33 = 0.

Step 4. The automorphism F (λ, 0, 0, 0, B), with λ = 3
√
m13, B = 0 simultane-

ously sets m11 = m13 = 1, and we obtain the canonical form (3.21) of the metric,
with:

S =

0 0 0
0 s22 0
0 0 s33

 , s22 ̸= 0, s33 ̸= 0, M =

1 0 0
0 0 0
1 0 0

 . (3.23)

Case 2. m31 = 0.
Step 2. By the automorphism F (1, 0, 0, 0, B), b23 = −m32, b33 = −m33 we

obtain the matrix FTSF with m32 = 0 = m33.
Step 3. Now we obtain s11 = s12 = s13 = 0 = m12 = m13 with appropriate

choice of parameters a, b, b12, b13, b11.
Step 4. The automorphism F (λ, 0, 0, ϕ,B), λ = m11, B = 0, where ϕ is chosen

such that the corresponding rotation diagonalizes the metric in R⟨e2, e3⟩, gives the
canonical form (3.21), with:

S =

0 0 0
0 s22 0
0 0 s33

, s22, s33 ̸= 0, M =

1 0 0
0 0 0
0 0 0

 . (3.24)

Case 3. s22 = 0.
In a similar way, but without using rotation, we obtain the canonical form (3.21):

S =

 0 s12 0
s12 0 0
0 0 0

, s12 ̸= 0, M =

0 0 0
0 0 0
1 0 0

 . (3.25)
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3.3.2. Case S11. Suppose the metric ⟨·, ·⟩ is represented by the matrix S11 given
by (3.3).

If T∗h3
′ has signature (0,+,−), we have the following automorphisms:

Aut(E11) =
{(

±A 0
B A∗

) }
,

A =

λ 0 0
a cosh ϕ

λ
sinh ϕ

λ

b sinh ϕ
λ

cosh ϕ
λ

 , A∗ =


1

λ2
−a cosh ϕ+b sinh ϕ

λ
−b cosh ϕ+a sinh ϕ

λ

0 coshϕ − sinhϕ
0 − sinhϕ coshϕ

 .

In the plane R⟨e2, e3⟩ the automorphisms act as hyperbolic rotations which do
not necessarily diagonalize the metric in this plane. To describe this effect precisely,
we need the following lemma.

Lemma 3.3. The equivalence classes of the symmetric matrix S =
(

a b
b c

)
under

the action FTSF , where F ∈ SO(1, 1), are:(
a′ 0
0 c′

)
if 4b2 ̸= (a+ c)2, (3.26)(

0 c−a
2

c−a
2 c− a

)
if 4b2 = (a+ c)2, |c| > |a|, (3.27)(

a− c a−c
2

a−c
2 0

)
if 4b2 = (a+ c)2, |c| < |a|. (3.28)

Under the F which is an anti-isometry, i.e., FT diag(1,−1)F = diag(−1, 1), the
canonical forms (3.27) and (3.28) are equivalent.

Proof. Set E11 = diag(1,−1). The group SO(1, 1) consists of hyperbolic rotations
and their negatives:

SO(1, 1) = {F ∈ Gl2(R) | FTE11F = E11, detF = 1}

=
{

±
(

coshϕ sinhϕ
sinhϕ coshϕ

)
| ϕ ∈ R

}
.

Case 1. (a + c)2 − (2b)2 > 0. It is straightforward to verify that a hyperbolic
rotation by the “angle” ϕ is such that

cosh 2ϕ = λ|a+ c|, sinh 2ϕ = −2λ sgn(a+ c)b,

where λ = ((a + c)2 − (2b)2)− 1
2 is determined from the condition cosh2 2ϕ −

sinh2 2ϕ = 1, diagonalizes the matrix S and we obtain the form (3.26).
Case 2. (a + c)2 − (2b)2 < 0. In this case, we diagonalize S with hyperbolic

rotation so that

cosh 2ϕ = λ|2b|, sinh 2ϕ = −2λ sgn(b)(a+ c)

and λ = ((2b)2 − (a+ c)2)− 1
2 .
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Case 3. (a + c)2 − (2b)2 = 0. Suppose that b = a+c
2 . In this case, the null

directions of the metric S are (1,−1) and (c,−a), a > 0. We will apply hyperbolic
rotation such that one of the basis vectors is null. The case |a| = |c| is either
diagonal or impossible. If |a| > |c|, we will take the hyperbolic rotation such that

coshϕ = a√
a2 − c2

, sinhϕ = −c√
a2 − c2

,

to obtain the canonical form (3.28). If |a| < |c|, we take the hyperbolic rotation

coshϕ = c√
c2 − a2

, sinhϕ = −a√
c2 − a2

,

to obtain the canonical form (3.27). Note that these two cases are not equivalent
under the action of O(1, 1), since the null direction of the metric S belongs either
to the set of time-like or to the set of space-like vectors of the metric diag(1,−1),
which are preserved under the action of SO(1, 1) (and also O(1, 1)). However, if
we allow anti-isometries, we can interchange time-like and space-like vectors, and
these two cases are equivalent.

The case b = − a+c
2 is similar. □

The classification of metrics of type S11 is similar to that of type S20, with a
possible difference only when using a rotation. Therefore, we follow the steps from
Subsection 3.3.1 in what follows. We look for the canonical form(

S M
MT ±E11

)
(3.29)

with S and M as simple as possible.
The hyperbolic rotation is not transitive on the vectors of the plane. In “regular”

cases, hyperbolic rotation can be used instead of Euclidean rotation and we obtain
metrics (3.29) with S and M given by (3.23), (3.24) or (3.25).

Now we discuss the “singular” cases. Already in Step 1. the hyperbolic rotation
is not possible if m21 = ±m31 ̸= 0. In fact, these two cases are equivalent by an
anti-isometric automorphism, so we consider the case m21 = m31. After long and
detailed analysis, we obtain two non-equivalent metrics:(

S M
MT E11

)
, S =

s11 0 0
0 s22 0
0 0 0

, s11, s22 ̸= 0, M =

0 0 0
1 0 0
1 0 0

, (3.30)

(
S M
MT E11

)
, S =

 0 s12 0
s12 0 0
0 0 0

, s12 > 0, M =

0 0 0
1 0 0
1 0 0

. (3.31)

If m21 ̸= ±m31 then we can reach m21 = 0 by hyperbolic rotation in Step 1.
and proceed with the remaining steps.

In Case 1. rotation is not used and no additional canonical forms are obtained.
In Case 2. rotation is used in Step 4. to diagonalize the metric in the plane

R⟨e2, e3⟩. According to Lemma 3.3, this is not always possible for hyperbolic
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rotation, so we obtain additional metrics:(
S M
MT E11

)
, S =

0 0 0
0 s22

1
2 |s22|

0 1
2 |s22| 0

, s22 ̸= 0, M =

1 0 0
0 0 0
0 0 0

, (3.32)

(
S M
MT E11

)
, S =

0 0 0
0 0 1

2 |s33|
0 1

2 |s33| s33

, s33 ̸= 0, M =

1 0 0
0 0 0
0 0 0

. (3.33)

Finally, in Case 3. rotation is not used, so the classification of metrics with centre
of signature (0,+,−) is complete.

3.4. T∗h3
′ is degenerate of rank 1 (case S10, S01). Suppose that in the basis e

the metric ⟨·, ·⟩ is represented by the matrix S10 or S01 given by (3.3). So, we look
for the canonical form (

S M
MT ±E10

)
(3.34)

with S and M as simple as possible.
When T∗h3

′ has the signature (0, 0,+) or (0, 0,−), we have the following group
of automorphisms preserving their canonical form:

Aut(E10) = Aut(E01) =
{(

±A 0
B A∗

) }
, (3.35)

A =

a11 a12 0
a21 a22 0
a31 a32 a33

 , A∗ =

 a22a33 −a21a33 a21a32−a22a31
−a12a33 a11a33 a12a31−a11a32

0 0 a11a22−a12a21

 ,

with condition (a11a22 − a12a21)2 = 1. Note that the automorphism of the form

F =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 −1


interchanges the places of the elements m31 and m32 in the matrix M . Thus, two
cases are distinguished: when m31 ̸= 0 and when m31 = m32 = 0. It is worth noting
that this is not a simple algebraic distinction. These two cases yield completely
different geometric properties (see Proposition 4.8 (iii) below).
Case 1. m31 ̸= 0. In this case, we can obtain the following form of M :0 m12 0

1 0 0
1 0 0

 (3.36)

by performing the next steps:
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Step 1. The appropriate choice of elements a21 and a31 in (3.35) gives us m11 =
m32 = 0, while we can set a22 and a32 such that m21 = t, m31 = t2, where t ̸= 0 is
an arbitrary parameter that is normalized later. Finally, by setting a21, m22 = 0
is obtained.

Step 2. If we now choose the last row of the matrix B, we obtain m13 = m23 =
m33 = 0.

Step 3. Choosing the remaining elements of the matrix B, the matrix S reduces
in (3.34) to ±λE01, λ ̸= 0.

Step 4. In the last step we normalize both λ and t and obtain the metric (3.34)
with S = ±E01 and M in the form (3.36).
Case 2. m31 = m32 = 0. Since the elements a31 and a32 do not act on the ma-
trix M , the problem reduces to the action ATMA of the matrix

A =
(
Ā 0
0 0

)
, Ā ∈ SL(2).

In the first step, depending on the nature of the eigenvalues of the matrix M , we
can choose the matrix Ā such that the upper-left 2 × 2-submatrix of M takes one
of the following three forms:(

m11 0
0 m22

)
,

(
m11 m12

−m12 m11

)
,

(
m11 0

1 m11

)
.

Next, we can repeat Step 2. and Step 3. from above. Finally, in the last step,
we make the basis vector e3 to be unit again. Therefore, our metric is S10 =
(±E01,M,E01), where M takes one of the following three forms:m11 0 0

0 m22 0
0 0 0

 ,

 m11 m12 0
−m12 m11 0

0 0 0

 ,

m11 0 0
1 m11 0
0 0 0

 . (3.37)

Note that the case of the metric S01 can be considered completely analogously.

3.5. T∗h3
′ is degenerate of rank 0 (case S00). The last case of a completely

degenerate centre is the only case that can be considered with a purely algebraic
approach. Suppose that in the basis e the metric ⟨·, ·⟩ is represented by the matrix
S00 given by (3.3). The group of admissible automorphisms is

Aut(E00) =
{(

±A 0
B A∗

) }
, (3.38)

where A, detA ̸= 0 and B are arbitrary 3 × 3 matrices.
If we take the automorphism F of the form (3.38) and act on the matrix S00,

we obtain(
AT BT

0 (A∗)T

) (
S M
MT 0

) (
A 0
B A∗

)
=

(
ATSA+ATMB + (ATMB)T ATMA∗

(ATMA∗)T 0

)
. (3.39)
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From the non-degeneracy of the metric matrix S00, it follows that the matrix M
must also be regular. Thus, setting B = − 1

2M
−1SA, the matrix (3.39) takes the

form (
0 ATMA∗

(ATMA∗)T 0

)
and all that remains is to choose a regular matrix A so that ATMA∗ has the
simplest form. However, one must remember that the matrix M is not symmetric,
so it is not necessarily diagonalizable. At least one eigenvalue of M must be real,
and the other two can be either real (with some multiplicity) or complex conjugate.
Therefore, the possible canonical Jordan forms of M areλ1 0 0

0 λ2 0
0 0 λ3

,
λ1 0 0

0 λ2 1
0 0 λ2

,
λ1 1 0

0 λ1 1
0 0 λ1

,
λ1 0 0

0 λ2 −λ3
0 λ3 λ2

. (3.40)

We can take another step to further simplify these forms: setting the automorphism
matrix as diagonal, in (3.40) we obtain λ1 = 1.

Note that all these metrics have a neutral signature.

3.6. Main result. The preceding extensive analysis proves the following theorem.

Theorem 3.4. The non-isometric left invariant metrics on T∗h3 in the basis e with
commutators (2.1) are represented by matrices Spq = (S,M,Epq) of the form (3.3):

(i) if T∗h3
′ is non-degenerate:

S30 = (S, 0,±E30), where S is of the form (3.6);
S21 = (S, 0,±E21), where S is of the form (3.9), (3.14), (3.15), (3.16)
or (3.20);

(ii) if T∗h3
′ is degenerate of rank 2:

S20 = (S,M,±E20), where S and M take one of the forms (3.23),
(3.24) or (3.25);
S11 = (S,M,±E11), where S and M take one of the forms (3.23)
or (3.25);
S11 = (S,M,E11), where S and M take one of the forms (3.24), (3.30),
(3.31), (3.32) or (3.33);

(iii) if T∗h3
′ is degenerate of rank 1:

S10 = (±E10,M,±E10), where M takes one of the forms (3.36) or
(3.37) (all four combinations of ± can occur here);

(iv) if T∗h3
′ is degenerate of rank 0:

S00 = (0,M, 0), where M takes one of the forms (3.40) with λ1 = 1.

4. Geometrical properties of left-invariant metrics

In this section, we further investigate the metrics obtained in Theorem 3.4.
First, their curvature properties are of interest and then we briefly consider the
holonomy algebras for each metric. We also obtain the description of the parallel
symmetric tensors for each metric and show that they are derived from parallel
vector fields. Special types of metrics, such as pp-waves or Ricci solitons, are also
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studied. Since T∗h3 is even-dimensional, it is natural to study the invariant complex
and symplectic structures. This leads to the classification of pseudo-Kähler metrics.
Finally, the known facts about the totally geodesic subalgebras of a nilpotent Lie
algebra are summarised and it is shown that for every subalgebra of T∗h3 there
exists at least one metric which makes it totally geodesic.

4.1. Curvature and holonomy of the metrics. If S is the matrix corresponding
to the metric ⟨·, ·⟩ in the basis (e1, . . . , e6), the algebra of its isometries so(S) ∼=
so(p, q), with p + q = 6, is spanned by the endomorphisms ei ∧ ej , 1 ≤ i < j ≤ 6,
defined by

(ei ∧ ej)(x) := ⟨ej , x⟩ei − ⟨ei, x⟩ej , x ∈ T∗h3.

For the left-invariant vector fields x, y, z ∈ T∗h3, Koszul’s formula reduces to

2⟨∇xy, z⟩ = ⟨[x, y], z⟩ − ⟨[y, z], x⟩ + ⟨[z, x], y⟩, (4.1)

which allows us to compute the Levi-Civita connection ∇ of the metric ⟨·, ·⟩. The
curvature R and the Ricci tensor ρ are given by

R(x, y)z = ∇x(∇yz) − ∇y(∇xz) − ∇[x,y]z, ρ(x, y) = Tr(z 7→ R(z, x)y).

The scalar curvature is defined as a trace of the Ricci operator.
The metric ⟨·, ·⟩ is called flat if the corresponding curvature tensor is zero every-

where, i.e., R = 0, and it is locally symmetric if ∇R = 0. Similarly, the metric is
Ricci-flat when ρ = 0 and Ricci-parallel when ∇ρ = 0.

We can further simplify the above definitions by considering that we are studying
curvature operators on the nilpotent Lie group. We define the operators ad∗

x, jx

and φx:
⟨adx y, z⟩ = ⟨y, ad∗

x z⟩, jxy := ad∗
y x, φx := adx + ad∗

x .

Then the following lemma holds.

Lemma 4.1 ([1]). In the case of a nilpotent Lie algebra g, the curvature and Ricci
tensors are given by

R(x, y) = 1
2(j[x,y] + [jx, ad∗

y] + [ad∗
x, jy]) − 1

4([φx, φy] + [jx, φy] + [φx, jy] − [jx, jy]),

ρ(x, y) = −1
4 tr(jx ◦ jy) − 1

2 tr(adx ◦ ad∗
y),

for all left-invariant vector fields x, y ∈ g.

In the following statement we describe curvature and Ricci curvature of metrics
on T∗h3 depending on the signature of the induced metric of T∗h3

′.

Proposition 4.2. The following statements hold:
(i) If T∗h3

′ is nondegenerate the metric cannot be flat or Ricci-flat.
(ii) If T∗h3

′ is degenerate of rank 2, the metrics are S20 = (S,M,±E20), where
S and M take the form (3.24), and S11 = (S,M,E11), where S and M take
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one of the forms (3.24), (3.32), or (3.33). These metrics are Ricci-parallel.
Among them, the Ricci-flat metrics are:

S20 = (S,M,±E20), S =

0 0 0
0 s22 0
0 0 ±1 − s22

, M =

1 0 0
0 0 0
0 0 0

,
S11 = (S,M,E11), S =

0 0 0
0 s22 0
0 0 −1 + s22

, M =

1 0 0
0 0 0
0 0 0

,
S11 = (S,M,E11), S =

0 0 0
0 1 1

2
0 1

2 0

, M =

1 0 0
0 0 0
0 0 0

,
S11 = (S,M,E11), S =

0 0 0
0 0 1

2
0 1

2 −1

, M =

1 0 0
0 0 0
0 0 0

.
(iii) If T∗h3

′ is degenerate of rank 1, the corresponding metrics S10 = (±E10,M,
E10), where M takes one of the forms (3.37), are locally symmetric and
Ricci-flat. Specifically, the metrics

S10 = (E10,M,E10) , M =

λ±
√

3 0 0
0 λ 0
0 0 0

 ,

S10 = (−E10,M,E10) , M =

 λ1 ∓
√

3
2 0

±
√

3
2 λ1 0

0 0 0

 ,

are flat. The Ricci-parallel metric also occurs and has the form

S10 = (±E10,M,±E10) , M =

0 λ 0
1 0 0
1 0 0

 .

(iv) If T∗h3
′ is degenerate of rank 0, the corresponding metrics are flat.

(v) The only examples of Einstein metrics (i.e., metrics with proportional Ricci
curvature and metric tensors) are the trivial, Ricci-flat ones.

Proof. The proof is simple but tedious, since it must be computed case by case for
each canonical form. We give some details for the metric S10 = (E10,M,E10) with
T∗h3

′ of rank 1, where M is given by (3.36).
By (4.1) we obtain the Levi-Civita connection of the metric in terms of nonzero

derivations (taking into account the relation [x, y] = ∇xy − ∇yx)

∇e1e1 = m12(−e2 + e3), ∇e1e2 = 1
2e6, ∇e1e3 = −e5,

2∇e1e6 = −e2 + e3 − e4 = ∇e2e3 = ∇e3e3,

∇e2e2 = e2 − e3, ∇e2e6 = 1
2m12

e5.

(4.2)
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Note that the vectors e4, e5 are parallel. In Proposition 4.7 it was proved that all
parallel vectors are given by their linear combination.

Using Lemma 4.1 or directly from the definition of curvature, we obtain that
nonzero curvature operators are given by

R(e1, e2) = 3
4m12

(−e2 ∧ e5 + e3 ∧ e5) + 4m12 − 3
4m12

e4 ∧ e5 + 1
2 e4 ∧ e6,

R(e1, e3) = e4 ∧ e5 + 1
2 e4 ∧ e6, R(e1, e6) = − 1

4m12
e5 ∧ e6,

R(e2, e6) = R(e3, e6) = − 1
2m12

e4 ∧ e5.

By reapplying Lemma 4.1 again we obtain that the only nonzero component of the
Ricci tensor is

ρ(e1, e1) = −1
2 .

One can easily check that this metric is Ricci-parallel, ∇ρ ≡ 0. We also check (see
the proof of Proposition 4.8) that ∇R ̸≡ 0, and therefore the metric is not locally
symmetric. □

Remark 4.3. Although here we have directly confirmed that there are no Einstein
metrics that are not Ricci-flat, this follows from a more general statement (see [45,
Proposition 3.1]).

In [35] Milnor proved that in the Riemannian case, if the Lie group G is solv-
able, every left-invariant metric on G is either flat, or has strictly negative scalar
curvature. Note that this is not true in the pseudo-Riemannian setting. In the case
of non-degenerate T∗h3

′, the scalar curvatures can be positive, negative or zero de-
pending on the signature, while in the case of degenerate T∗h3

′ all but two metrics
have zero scalar curvature. More precisely, we have the following statement, which
can be obtained from Proposition 4.2 by direct computation.

Proposition 4.4. The following statements hold:
(i) The scalar curvature of the metrics (S, 0, Epq), p + q = 3 on T∗h3 with

non-degenerate centre T∗h3
′ is given by

τ = − trace(SEpq)
2 detS .

(ii) Metrics (S,M,Epq), p + q = 2 with S and M given by (3.23) and (3.25)
have nonzero scalar curvature given, respectively, by τ = ∓ ϵ

2s22s33
and

τ = ± ϵ
2s2

12
, where ϵ is the element at position (3, 3) of Epq.

(iii) All other metrics on T∗h3 with degenerate centre T∗h3
′ have scalar curva-

ture τ = 0.

Example 4.5. In [9, Example 5.1] the authors considered a canonical metric de-
fined by

⟨(x, α), (x′, α′)⟩ = α′(x) + α(x′) ∀x, x′ ∈ h3, α, α
′ ∈ h∗

3.
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This metric is neutral signature and ad-invariant, meaning that, for all x, y, z ∈
T∗h3, ⟨[x, y], z⟩ = −⟨y, [x, z]⟩. Note that this is a special case of our metric S00 =
(0,M, 0) when M is the identity matrix. This is the only ad-invariant metric
on T∗h3 that confirms the result recently obtained in [10].

In what follows, we find all parallel vector fields of metrics on T∗h3. Their
existence has important consequences for the holonomy group of metrics as well
as for the existence of parallel symmetric tensors (see Section 4.4). They are
characterized by the following lemma.

Lemma 4.6. The left-invariant vector field x ∈ g on the metric Lie algebra
(g, ⟨·, ·⟩) is parallel (that is, ∇yx = 0 for all y ∈ g) if and only if x ⊥ g′ and
ad∗

x = − adx.

Proof. From Koszul’s formula (4.1), x is a parallel vector field if and only if, for all
y, z ∈ g,

0 = 2⟨∇yx, z⟩ = ⟨ady x− ad∗
y x− ad∗

x y, z⟩ = ⟨x, adz y⟩ − ⟨(adx + ad∗
x)z, y⟩.

Since ⟨x, adz y⟩ is antisymmetric and ⟨(adx + ad∗
x)z, y⟩ is symmetric with respect

to y and z, we obtain ⟨(adx + ad∗
x)z, y⟩ = 0 = ⟨x, adz y⟩, which is equivalent to

x ⊥ g′ and ad∗
x = − adx. □

Proposition 4.7. Let the metric on T∗h3 be given by the matrix S from Theo-
rem 3.4. In all cases, the parallel vector fields are null. Moreover,

(i) If T∗h3
′ is non-degenerate, then there are no parallel vector fields.

(ii) If T∗h3
′ is degenerate of rank 2, then the only parallel vector fields are

x ∈ R⟨e4⟩.
(iii) If T∗h3

′ is degenerate of rank 1, then the parallel vector fields are x ∈
R⟨e4, e5⟩.

(iv) If T∗h3
′ is totally degenerate, all vectors of T∗h3

′ = R⟨e4, e5, e6⟩ are par-
allel.

Since a nilpotent group is simply connected, the restricted holonomy group
coincides with the full holonomy group. By the Ambrose–Singer theorem, the
holonomy algebra is generated by curvature operators R(x, y) and their covariant
derivatives of arbitrary order. We know that the holonomy algebra is a subalgebra
of the isometry algebra, i.e., so(p, q), where (p, q) denotes the signature of the
metric.

The results are summarised in the following proposition.
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Proposition 4.8. Let the non-flat metric on T∗h3 be given by the matrix S from
Theorem 3.4.

(i) If T∗h3
′ is non-degenerate, the corresponding metrics have a full holonomy

algebra, hol(S) = so(p, q), p+ q = 6.
(ii) If T∗h3

′ is degenerate of rank 2, then the following cases can occur:
(ii1) the holonomy algebra is 10-dimensional so(p, q), p + q = 5, if the

corresponding metric is S20 = (S,M,±E20) or S11 = (S,M,±E11),
where the matrices S and M are one of the forms (3.23) or (3.25),
and S11 = (S,M,E11), where S and M are of the form (3.30);

(ii2) the holonomy algebra is 9-dimensional isomorphic to sl2(R) ⋉ g6,54,
where g6,54 is a 6-dimensional solvable algebra with 5-dimensional nil-
radical (see [37]) in the case of the metric S11 = (S,M,E11), where S
and M take the form (3.31);

(ii3) the holonomy algebra is 4-dimensional and isomorphic to R4 if the
corresponding metric is S20 = (S,M,±E20) or S11 = (S,M,±E11),
where the matrices S and M take the form (3.24), S11 = (S,M,E11),
where S and M take one of the forms (3.32) or (3.33).

(iii) If T∗h3
′ is degenerate of rank 1, the non-flat metrics S10 = (±E10,M,±E10),

where M takes one of the forms (3.37), have a holonomy algebra isomor-
phic to R, while if M takes the form (3.36), then the holonomy algebra is
5-dimensional and isomorphic to the 2-step nilpotent algebra given by the
commutators [h1, h3] = [h2, h4] = h5.

Proof. The proof is case-by-case for all types of metrics. We illustrate it for the
case ((iii)), i.e., for the metric S10 = (E10,M,E10), where M is given by (3.36),
the same thing we discussed in the proof of Proposition 4.2. From there we know
that the curvature operators

r1 := R(e1, e2), r2 := R(e1, e3), r3 := R(e1, e6), r4 := R(e2, e3)
are linearly independent and generate the space R⟨{R(ei, ej) | i, j = 1, . . . , 6}⟩.
Using the connection formulas (4.2) we calculate their derivatives and see that

r5 := ∇e1R(e1, e3) = 1
4(e2 ∧ e4 − e3 ∧ e4)

is the only operator that does not belong to R⟨r1, r2, r3, r4⟩. Now we compute the
covariant derivatives of r1, . . . , r5 and see that they all belong to R⟨r1, r2, r3, r4, r5⟩.
Therefore, the holonomy algebra is spanned by curvature operators and their first
covariant derivatives, and

hol(S) = R⟨r1, r2, r3, r4, r5⟩ ⊂ o(4, 2),
since the signature of S is (4, 2) for all m12 ̸= 0. Now we obtain nonzero commu-
tators

[r1, r3] = 1
3r4, [r1, r5] = −3

8r4, [r2, r3] = 1
4r4,

which, after setting

h1 = r2, h2 = −3r1 + 4r2, h3 = r3, h4 = 2
9r5, h5 = 1

4r4,

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



COTANGENT BUNDLE OF THE HEISENBERG GROUP 509

gives the form formulated in the statement.
Let us now discuss the case ((ii2)) in more detail. Similar to the previous con-

sideration, we obtain that the holonomy algebra is given by the following nonzero
commutators:

[h1, h2] = 2h2, [h2, h5] = h3, [h4, h8] = −h3, [h6, h8] = −h5,

[h1, h3] = h3, [h2, h6] = h4, [h4, h9] = h4, [h6, h9] = h6,

[h1, h4] = h4, [h3, h7] = h4, [h5, h7] = h6, [h7, h8] = h9,

[h1, h5] = −h5, [h3, h9] = −h3, [h5, h9] = −h5, [h7, h9] = 2h7,

[h1, h6] = −h6, [h8, h9] = −2h8.

(4.3)

By the Levi decomposition, we know that the algebra hol(S) is a semi-direct
product of its maximal solvable ideal and a semisimple Lie algebra. Note that
R⟨h7, h8, h9⟩ ∼= sl2(R) and that R⟨h1, . . . , h6⟩ is isomorphic to the 6-dimensional
solvable Lie algebra denoted by g6,54 (with λ = 1, γ = 2) in the classification of
Mubarakzyanov [37, Table 4]. It follows that hol(S) ∼= sl2(R) ⋉π g6,54, where the
form of π : sl2(R) → g6,54 is obtained from the relations (4.3):

π(x) = ρ(x7h7 + x8h8 + x9h9) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 x9 −x7 0 0
0 0 x8 −x9 0 0
0 0 0 0 x9 −x7
0 0 0 0 x8 −x9

 .

□

We recall that a metric g is called a pp-wave metric if there exists a parallel null
vector field v such that R(u,w) = 0 for all u,w ∈ v⊥.
Proposition 4.9. The left-invariant pp-wave metrics are S20 = (S1,M,±E20),
S11 = (Sk,M,±E11), k = 1, 2, where

M =

1 0 0
0 0 0
0 0 0

 , S1 =

0 0 0
0 s22 0
0 0 s33

 , S2 =

0 0 0
0 s22

1
2 |s22|

0 1
2 |s22| 0

 ,

with s22, s33 ̸= 0, and S10 = (±E10,M,±E10), where M takes one of the forms
in (3.37).
Proof. We have already established that the basis vector e4 is a parallel null vector
field for all metrics from the proposition. The space orthogonal to e4 is spanned
by vectors e2, . . . , e6 in every case except for the metric S10 with

M =

 m11 m12 0
−m12 m11 0

0 0 0

 ,

where it is spanned by vectors e3, . . . , e6. However, it is a straightforward calcula-
tion to show that R(ei, ej) = 0, i, j = 2, . . . 6, in all cases. Therefore, the metrics
are pp-waves. □
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Corollary 4.10. All left-invariant metrics on T∗h3 with abelian holonomy algebra
Rk, k = 1, 4, are homogeneous pp-wave metrics.
4.2. Algebraic Ricci solitons on T∗h3. Since the only Einstein metrics are the
trivial ones, i.e., Ricci-flat, the next step is to consider a weaker condition – Ricci
soliton metrics, i.e., nilsolitons. It was proven in [11] that in the pseudo-Riemannian
setting there are four different kinds of nilsolitons. In this paper we focus on a
special class of algebraic Ricci solitons. The non-flat left-invariant metric on a Lie
group is called an algebraic Ricci soliton if it satisfies Ric = γI +D, where γ is an
arbitrary constant, Ric is the Ricci operator and D denotes a derivation of a Lie
algebra. A Ricci soliton is said to be shrinking, steady or expanding depending on
whether γ > 0, γ = 0 or γ < 0, respectively.

If D = 0 and γ ̸= 0, the solutions are Einstein metrics that do not exist on
T∗h3. If D = 0 and γ = 0, the solutions are the Ricci-flat metrics described in
Proposition 4.2. Hence, in the next proposition we describe the solitons for D ̸= 0.
Proposition 4.11. Algebraic nilsolitons on T∗h3 satisfying Ric ̸= 0 are:

(i) expanding (γ = − 5
2λ2 ), in case of the metric S30 = (S, 0, E30), with S =

diag(λ, λ, λ);
(ii) shrinking (γ = 5

2λ2 ), in case of the metric S21 = (S, 0, E21), with S =
diag(λ, λ,−λ);

(iii) steady (γ = 0), in case of the metrics S20 = (S1,M,±E20) or S11 =
(Sk,M,E11), where the matrices Sk (k = 1, 2, 3) and M take the forms:

S1 =

0 0 0
0 s22 0
0 0 s33

 , s22 + s33 ̸= ±1, S2 =

0 0 0
0 s22

1
2 |s22|

0 1
2 |s22| 0

 , s22 ̸= 1,

S3 =

0 0 0
0 0 1

2 |s33|
0 1

2 |s33| s33

 , s33 ̸= −1, M =

1 0 0
0 0 0
0 0 0

 .

Proof. The proof requires an analysis for each metric from the classification. Let
us prove the positive result for case (i); the other cases can be analyzed in a similar
way.

For the metric S30 = (S, 0, E30), with S = diag(λ1, λ2, λ3) the Ricci operator is
diagonal, hence D = Ric −γI also has the diagonal form

D = diag
(

− λ2 + λ3

2λ1λ2λ3
− γ,− λ1 + λ3

2λ1λ2λ3
− γ,− λ1 + λ2

2λ1λ2λ3
− γ,

1
2λ2λ3

− γ,
1

2λ1λ3
− γ,

1
2λ1λ2

− γ

)
.

Since D is derivation, it must satisfy the condition D[x, y] = [x,Dy] + [Dx, y] for
all x, y ∈ T∗h3. By solving this system of equations, we obtain λ1 = λ2 = λ3 and
γ = − 5

2λ2
1
.

We have shown that not all metrics S30 = (S, 0, E30), where S takes the form (3.6),
admit nilsolitons. They exist only in the positive definite and neutral signature
case, i.e., only when S = λE30, λ ̸= 0. □
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Remark 4.12. The classification in Proposition 4.11 is up to a sign. Namely, if
the metric g is a (shrinking/expanding) algebraic Ricci soliton then the metric −g
is an (expanding/shrinking) algebraic Ricci soliton.

It was proved in [32] that the Riemannian left homogenous Ricci soliton metric
(equivalently, the algebraic Ricci soliton) on a nilpotent Lie group is unique up
to isometry and scaling. Proposition 4.11 confirms that result for the metric Lie
algebra T∗h3. However, it also shows that the result does not hold in the pseudo-
Riemannian setting, since some of the Ricci soliton metrics ((i))−−((iii)) have the
same signature but are not homothetic.

4.3. Pseudo-Kähler metrics on T∗h3. Let us now classify the pseudo-Kähler
metrics on T∗h3.

An almost complex structure on a Lie algebra g is an endomorphism J : g → g
satisfying J2 = −id. If J is integrable, in the sense that the Nijenhuis tensor

NJ(x, y) = [x, y] − [Jx, Jy] + J [Jx, y] + J [x, Jy]
of J vanishes, i.e., if it satisfies the condition NJ(x, y) = 0 for all x, y ∈ g, then it
is called a complex structure on g.

The centre of T∗h3 is 3-dimensional, so it cannot admit an abelian complex struc-
ture, i.e., a complex structure satisfying [x, y] = [Jx, Jy], which means that the cen-
tre of the algebra must be J-invariant (consequently, even-dimensional). However,
every complex structure on T∗h3 is 3-step nilpotent (see [9, Proposition 4.11 i))]
or [12]) and they are all equivalent to the following structure (see [12, 40, 34]):

Je1 = e2, Je3 = −e6, Je4 = e5. (4.4)
A complex structure J is called Hermitian if it preserves the metric: ⟨Jx, Jy⟩ =

⟨x, y⟩ for all x, y ∈ g.

Example 4.13. Let us fix the basis in which the complex structure J has the
form (4.4). One can check that J is Hermitian if the corresponding metric is the
positive definite metric S30 = (S, 0, E30), with S = diag(λ, λ, 1), λ > 0.

A symplectic structure on a Lie algebra g is a closed 2-form Ω ∈
∧2

g∗ of maximal
rank. A pair (J,Ω), where J is complex and Ω is symplectic, is called a pseudo-
Kähler structure if Ω(Jx, Jy) = Ω(x, y) holds for all x, y ∈ g.

We already know from [12, Proposition 3.9 i)] that the algebra T∗h3 has a com-
plex structure admitting a 5-dimensional set of compatible symplectic forms. De-
note by {e1, . . . , e6} the dual basis of {e1, . . . , e6}. The Maurer–Cartan equations
on T∗h3 are given by

de1 = de2 = de3 = 0, de4 = e2 ∧ e3, de5 = −e1 ∧ e3, de6 = e1 ∧ e2.

The symplectic structure Ω =
∑

i<j aije
i ∧ ej , aij ∈ R, has to be closed (dΩ = 0)

and compatible with the complex structure J given by (4.4). Hence, it takes the
form

Ω = a12e
1 ∧ e2 + a13(e1 ∧ e3 − e2 ∧ e6) + a14(e1 ∧ e4 + e2 ∧ e5 − 2e3 ∧ e6)

+ a15(e1 ∧ e5 − e2 ∧ e4) + a16(e1 ∧ e6 + e2 ∧ e3).
(4.5)
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The pseudo-Kähler pair (J,Ω) generates a Hermitian structure on a Lie algebra g
by defining a metric ⟨·, ·⟩ as

⟨x, y⟩ = Ω(Jx, y) (4.6)
for all x, y ∈ g. For this Hermitian structure, the condition of parallelism of J
with respect to the Levi-Civita connection is satisfied for ⟨·, ·⟩. In this case, a pair
(J, ⟨·, ·⟩) is called a pseudo-Kähler metric on g.

From [12, Corollary 3.2] we know that the algebra T∗h3 has compatible pairs
(J,Ω) since it admits both symplectic and nilpotent complex structures. In [3,
Theorem A] it was proved that the metric associated to any compatible pair (J,Ω)
cannot be positive definite since T∗h3 is not abelian. Therefore, the metric from
Example 4.13 is not pseudo-Kähler. However, it follows from [20] that any pseudo-
Kähler metric on T∗h3 is Ricci-flat. Here we give its classification and explicit
form.

Proposition 4.14. The Lie algebra T∗h3 admits Ricci-flat pseudo-Kähler metrics
which are not flat. Any pseudo-Kähler metric on T∗h3 is equivalent to S10 =
(E10,M,E10), where M has the form of the second matrix in (3.37).

Proof. We fix the basis, where the complex structure J is given by (4.4) and the
symplectic form Ω is given by (4.5). The compatibility condition (4.6) for (J,Ω)
gives us that the restriction of the metric on T∗h3

′ must be degenerate of rank 1.
One computes that the metric itself is represented by a symmetric 5-parameter
matrix:

S =


−a12 0 a16 −a15 a14 −a13

0 −a12 −a13 −a14 −a15 −a16
a16 −a13 −2a14 0 0 0

−a15 −a14 0 0 0 0
a14 −a15 0 0 0 0

−a13 −a16 0 0 0 −2a14

 , a14 ̸= 0.

By examining the curvature properties, we conclude that this metric is locally sym-
metric and Ricci-flat, but not flat. From Proposition 4.2 (iii) we know that this met-
ric must be equivalent to a metric from one of the families S10 = (±E10,M,±E10),
where M takes one of the forms in (3.37). We can do even more. We can find a
particular form of the automorphism matrix F such that the matrix FTSF has
the following form:

S10 = (E10,M,E10), M =

 λ 1
2 0

− 1
2 λ 0

0 0 0

 , where λ = − a15

2a14
.

In this case, the complex structure is J ′ = FJF−1, while the explicit formula for
the corresponding symplectic forms can be retrieved from (4.6). □

Remark 4.15. In [41] the author considered three symplectic structures which are
special cases of the symplectic structure given by (4.5). For each of these structures,
a corresponding metric was determined. However, the author has not noticed that
all of these metrics are equivalent.
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Remark 4.16. The previous proposition also shows that the differences between
the metrics in the classification (Theorem 3.4) are very geometrical, and not just
algebraic.

4.4. Geodesically equivalent metrics. We say that a metric ⟨·, ·⟩ on a con-
nected manifold Mn is geodesically equivalent to ⟨·, ·⟩ if every geodesic of ⟨·, ·⟩ is a
reparameterized geodesic of ⟨·, ·⟩. We say that they are affinely equivalent if their
Levi-Civita connections coincide. We call a metric ⟨·, ·⟩ geodesically rigid if every
metric ⟨·, ·⟩ that is geodesically equivalent to ⟨·, ·⟩ is proportional to ⟨·, ·⟩ (by the
result of H. Weyl, the proportionality coefficient is a constant). In the Riemannian
case, if the metric is not decomposable (not a product of two metrics), it is geodesi-
cally rigid. Therefore, it makes sense to look for geodesically equivalent metrics
only in the pseudo-Riemannian case.

As proved in [6], two geodesically equivalent invariant metrics on a homogeneous
space are affinely equivalent. In particular, this is true for left-invariant metrics
on Lie groups. If an invariant metric does not admit a nonproportional affinely
equivalent invariant metric, we call it invariantly rigid.

The nonproportional, affinely equivalent metrics ⟨·, ·⟩ and ⟨·, ·⟩ are both parallel
with respect to the mutual Levi-Civita connection and hence their difference is a
parallel symmetric tensor. Such tensors are closely related to the description of
holonomy groups [22]. Metrics admitting such tensors are fully described on gen-
eral pseudo-Riemannian manifolds in [30] as either Riemannian extensions or using
certain complex metrics. In Proposition 4.17 below we show that such (not invari-
antly rigid) left-invariant metrics on T∗h3 are Riemannian extensions. Moreover,
all such parallel tensors on T∗h3 are “made” of parallel vector fields in the following
way.

Suppose v1, . . . , vr are parallel vector fields with respect to the metric ⟨·, ·⟩, and
v∗

1 , . . . , v
∗
r are 1-forms metrically dual to these vectors. It is easy to verify that for

arbitrary constants Cmn = Cnm, n,m = 1, . . . r, the metric

⟨·, ·⟩ = ⟨·, ·⟩ + Cnmv
∗
n ⊗ v∗

m (4.7)

is affinely equivalent to ⟨·, ·⟩, or equivalently, the symmetric tensor Cnmv
∗
n ⊗ v∗

m is
parallel.

In [30] it was shown that such a metric ⟨·, ·⟩ is a Euclidean extension of Rie-
mannian space.

To classify non-invariantly rigid metrics on T∗h3, we follow the algorithm pro-
posed in [6]. To simplify the notation, the matrix S is used to denote the metric
⟨·, ·⟩.

Proposition 4.17. If T∗h3
′ is non-degenerate, the corresponding left-invariant

metrics are geodesically rigid. If T∗h3
′ is degenerate, then non-trivial affinely

equivalent metrics exist and these are exactly the metrics obtained with parallel
null vector fields by (4.7).

Proof. It is clear that if the original metric ⟨·, ·⟩ has parallel vector fields, the
metric (4.7) is affinely equivalent to it.
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To prove the converse we perform a case-by-case analysis for each metric from
our classification.

Let S be a symmetric matrix representing a left-invariant metric ⟨·, ·⟩ in the
basis {e1, . . . , e6} and ω its Levi-Civita connection matrix of 1-forms. As proved
in [6, Proposition 3.1], the left-invariant metric S̄ is geodesically equivalent to S if
and only if its matrix S̄ in the basis {e1, . . . , e6} belongs to the subspace

aff(S) := {S̄ | S̄ω + ωTS̄ = 0}.

Since ω is a matrix of 1-forms, the given relations are six matrix equations.
If S is such that T∗h3

′ is non-degenerate, we can directly check that aff(S) is
1-dimensional, that is, S is geodesically rigid. This also follows (without computa-
tion) from the fact that such metrics have a full holonomy algebra (Proposition 4.8).
Indeed, if a metric is not geometrically rigid, it cannot have full holonomy (see [6]).

We illustrate the proof for the metric S = S10 = (E10,M,E10) with T∗h3
′ of

rank 1, where M is given by (3.36). The connection matrix ω can be computed
from the relations (4.2) and we obtain that aff(S) is a space of matrices

λS +


c11 c12 c12 0 0 0
c12 c22 c22 0 0 0
c12 c22 c22 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , λ, c11, c12, c22 ∈ R. (4.8)

Indeed, aff(S) is the set of all parallel symmetric (left-invariant) tensors for the
metric S and we see that it is 4-dimensional. Now we will prove that it consists
of parallel vectors using the formula (4.7). Parallel vectors for the metric S are
v1 = e4 and v2 = 1

m12
e5 (Proposition 4.7). Their metric dual forms are

v∗
1 = e2 + e3, v∗

2 = e1,

where (e1, . . . , e6) is the basis of one forms dual to the vectors (e1, . . . , e6) in the
sense that ei(ej) = δi

j . Now we see that

c11(v∗
1 ⊗ v∗

1) + c12(v∗
1 ⊗ v∗

2 + v∗
2 ⊗ v∗

1) + c22(v∗
2 ⊗ v∗

2)

are exactly parallel symmetric tensors in (4.8) which are not proportional to S.
They are obtained from parallel vector fields with (4.7). □

Remark 4.18. One can check that non-proportional affinely equivalent metrics are
connected by an automorphism of the group. This means that the corresponding
Lie groups endowed with these metrics have a family of automorphisms which are
not isometries but preserve geodesics.

Remark 4.19. Note that if the metric is Ricci-parallel, i.e., ∇ρ = 0, then ρ ∈
aff(S). Obviously, the converse is not true: not all non-invariantly rigid metrics
are Ricci-parallel.
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4.5. Totally geodesic subalgebras of T∗h3. A subalgebra h of a metric algebra
(g, ⟨·, ·⟩) is called totally geodesic if ∇yz ∈ h for all y, z ∈ h. If h⊥ denotes the
orthogonal complement of h in T∗h3, then as a direct consequence of Koszul’s
formula we obtain that h is a totally geodesic subalgebra of T∗h3 if and only if

⟨[x, y], z⟩ + ⟨[x, z], y⟩ = 0 for all x ∈ h⊥, y, z ∈ h.

We say that h⊥ is h-invariant if [x, y] ∈ h⊥ for all x ∈ h⊥, y ∈ h. A nonzero
element y ∈ T∗h3 is called geodesic if it spans a totally geodesic subalgebra h and
can be characterized by the condition that h⊥ is h-invariant. For nilpotent Lie
groups there is an inner product for which a nonzero element y is geodesic (see,
e.g., [7]).

Eberlein [18] considered totally geodesic subalgebras of nonsingular 2-step nilpo-
tent Lie algebras, implying that for any noncentral element x ∈ g the adjoint map
ad(x) is surjective on Z(g). Later, in [7] the non-singularity condition was re-
placed by a weaker version: the adjoint map had to be surjective on the derived
algebra [g, g]. Finally, in [15] the authors gave criteria for a subalgebra to be totally
geodesic without the non-singularity condition.

Proposition 4.20. For every subalgebra h of T∗h3 there is a metric which makes
it totally geodesic.

Proof. Let h be an n-dimensional subalgebra of the metric algebra (T∗h3, ⟨·, ·⟩),
T∗h3 = ν ⊕ ξ, where ξ denotes the centre of T∗h3 and ν its complement. Then h
is either abelian (R, R2 ∼= R⟨x, y⟩ or R3 ∼= R⟨x, y, z⟩, with x ∈ T∗h3, y, z ∈ ξ) or
2-step nilpotent (isomorphic to one of the algebras h3, h3 ⊕ R or h3 ⊕ R2).

Trivially, every subspace of ξ and every abelian subspace of ν are totally geodesic
subalgebras of a 2-step nilpotent metric algebra. For other abelian algebras, it
suffices to find a metric that makes h flat, which implies that ∇yz = 0 for all y, z ∈ h.
It is not hard to verify that the metric S00 = (0,M, 0), with M = diag(1, λ2, λ3),
is exactly the one required.

The nilpotent case is very similar. First, note that we can always change the
basis (by the action of automorphisms (2.3)) so that the corresponding subalgebra h
is isometric to one of the following: h3 ∼= R⟨e1, e2, e6⟩, h3 ⊕ R ∼= R⟨e1, e2, e4, e6⟩,
h3 ⊕R2 ∼= R⟨e1, e2, e4, e5, e6⟩. Consider the metric S20 = (S,M,E20), where S and
M are given by (3.25). By a simple calculation we obtain that all three subalgebras
are totally geodesic with respect to this metric. □

A subspace h ⊆ (g, ⟨·, ·⟩) is called isotropic if ⟨x, y⟩ = 0 for all x, y ∈ h, i.e.,
h ⊂ h⊥. Moreover, h is called totally isotropic if h = h⊥.

Example 4.21. In [9, Example 5.2] it was mentioned that on T∗h3 with the
canonical metric from Example 4.5 both spaces h3 and h∗

3 are totally isotropic.
Here we can see that both spaces are totally isotropic if the metric corresponds to
the degenerate centre T∗h3

′ of rank 0. For the same four families of metrics, the
totally geodesic subalgebra h3 ∼= R⟨e2, e3, e4⟩ is also totally isotropic.

Finally, let us consider the decomposition of the totally geodesic subalgebra h.
If the nilpotent metric algebra is non-singular and the corresponding metric is
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Riemannian, Eberlein showed that h = (h ∩ ν) ⊕ (h ∩ ξ) (see [18, Lemma 2.2]).
If the non-singularity condition is dropped, according to [15, Theorem 4.10], h is
either abelian and flat, or it is the direct sum of nonzero subspaces hz

+ = {x ∈ h |
Rz(x) = λx, λ > 0} and hz

0 = {x ∈ h | Rz(x) = 0} for every z ∈ h ∩ ξ. Here Rz

denotes the Jacobi operator Rz(x) = R(x, z)z. The following example shows what
happens if we consider the pseudo-Riemannian case.

Example 4.22. First, observe the algebra h = h3 ⊕ R2 ∼= R⟨e1, e2, e4, e5, e6⟩ and
the metric S11 = (E10,M,E10), where M = diag(µ, µ, 0). It is easy to check that
h is a totally geodesic subalgebra of a singular metric algebra (T∗h3, S11) and for
every element z = αe4 + βe5 + γe6 ∈ ξ, hz

+ = {0} and hz
0 = h.

Now, consider the metric S20 = (S,M,E20) from the proof of Proposition 4.20.
Fix z from the centre ξ of T∗h3. If z ∈ R⟨e4, e5⟩, then hz

+ = R⟨e1, e2⟩ = h ∩ ν and
hz

0 = R⟨e4, e5, e6⟩ = h ∩ ξ. On the other hand, if z = e6, then hz
+ = {0}, hz

0 = ξ
and we have the new subspace hz

− = {x ∈ h | Rz(x) = λx, λ < 0} = h ∩ ν. Hence,
in both cases we obtained Eberlein’s decomposition without the non-singularity
condition. However, this is not true for every z ∈ h ∩ ξ. For example, z = e5 + e6
yields subspaces hz

+ = {0}, hz
0 = ξ and hz

− = R⟨e2, e4 − 1
s12
e1⟩ ̸= h ∩ ν.
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