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ON THE MODULI SPACE OF LEFT-INVARIANT METRICS ON
THE COTANGENT BUNDLE OF THE HEISENBERG GROUP

TIJANA SUKILOVIC, SRDJAN VUKMIROVIC, AND NEDA BOKAN

ABSTRACT. The focus of the paper is on the study of the moduli space of left-
invariant pseudo-Riemannian metrics on the cotangent bundle of the Heisen-
berg group. We use algebraic approach to obtain orbits of the automorphism
group acting in a natural way on the space of left invariant metrics. However,
geometric tools such as the classification of hyperbolic plane conics are often
needed. For the metrics obtained by the classification, we study geometric
properties: curvature, Ricci tensor, sectional curvature, holonomy, and paral-
lel vector fields. The classification of algebraic Ricci solitons is also presented,
as well as the classification of pseudo-Kéhler and pp-wave metrics. We obtain
description of parallel symmetric tensors for each metric and show that they
are derived from parallel vector fields. Finally, we study the totally geodesic
subalgebras and show that for each subalgebra of the observed algebra there
is a metric which makes it totally geodesic.

1. INTRODUCTION

The space of metrics is called moduli space and is defined as the orbit space of
the action of R* Aut(g) on the space M(G) of left-invariant metrics on G. Here
Aut(g) denotes the automorphism group of the corresponding Lie algebra and R* is
the scalar group. There are two in some sense dual approaches to the classification
problem, both based on the moduli space of left-invariant (pseudo-)Riemannian
metrics on the Lie group. The first approach consists of fixing a Lie algebra basis
such that the commutator relations are as simple as possible, and then fitting the
inner product to it by the action of the automorphism group. This approach was
first introduced by Milnor [35], who used it to classify all left-invariant Riemannian
metrics on 3-dimensional unimodular Lie groups. The second way is to start from
the basis which puts the inner product in the simplest form, where the Lie brackets
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can be arbitrary but satisfy the Jacobi identity, and in this way define a hypersur-
face with feasible Lie brackets. Note that in both cases the orbits of Aut(g) induce
the isometry classes, while R* induces the scaling. For a more detailed exposition
of the two approaches, we refer to [24] [29].

Interestingly, the Riemannian case is well studied and understood, while the
pseudo-Riemannian case seems to be more difficult and still has many open ques-
tions. Milnor’s classification of 3-dimensional Lie groups with left-invariant posi-
tive definite metric [35] has become a classical reference, while the corresponding
Lorentz classification [I3] followed twenty years later. In dimension four, only par-
tial results are known. The classification of 4-dimensional Riemannian Lie groups
is due to Bérard-Bérgery [4]. Jensen [26] has studied homogeneous Einstein spaces
with Riemannian (positive definite) metrics, while Karki and Thompson [27] have
studied Einstein manifolds arising from right invariant Riemannian metrics on a
4-dimensional Lie group. Calvaruso and Zaeim [8] have classified left-invariant
Lorentz metrics on Lie groups which are Einstein or Ricci-parallel, using the sec-
ond approach mentioned above. Classification in the case of nilpotent Lie groups
in small dimensions has been studied in detail in both the Riemannian [31] and
the pseudo-Riemannian setting [5], 43}, 25]. Recent results include the classification
of pseudo-Riemannian metrics for 4-dimensional solvable Lie groups [44] and in
the positive definite case, the moduli space for 6-dimensional nilpotent Lie groups
admitting a complex structure with the first Betti number equal to 4 was deter-
mined [38]. For arbitrary dimensions, the Lorentz classification of left-invariant
metrics on the Heisenberg group Ha,11 [47] and the classification of Ricci solitons
on nilmanifolds [32] are worth mentioning.

The cotangent bundles play an important role in the standard description of
physical systems, both for particles and for fields (see, e.g., [2]). In particular,
they appear as configuration spaces of some mechanical systems and are often
endowed with rich algebraic and geometric structures (see, e.g., [19, 16, 17]). In
this paper, we are interested in the cotangent bundle of the Heisenberg group Hs,
mainly because this group is a constant topic of research due to its properties and
diverse applications. For example, Herman Weyl was led to an explicit account of
the Heisenberg group when he attempted to answer the question of the physical
equivalence of the Schrédinger and Heisenberg pictures.

The paper is organized as follows.

First, in Section [2]some basic facts about the algebra T*h3 and its automorphism
group are explained.

In Section [3] we classify all non-isometric left-invariant pseudo-Riemannian met-
rics on T*h3. For the classification we use the second approach described above:
we fix the commutators and act with automorphisms of the algebra T*h3 to find
representatives of the metrics. The restriction of the metric to the derived subal-
gebra T*hs3’ plays a very important role in the analysis. Each induced signature of
T*h3' is treated in a separate subsection, and in each case we have to use different
geometric and algebraic methods for classification. For example, if the induced
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COTANGENT BUNDLE OF THE HEISENBERG GROUP 487

metric is Lorentzian, we must include some classical results from projective geome-
try, while the degenerate case requires a more subtle analysis that depends heavily
on the signature of the degenerate subspace and often involves the use of Euclidean
and hyperbolic rotations. The results are summarised in Theorem

Section [ is devoted to the study of the geometric properties of the obtained
metrics. First, we study the curvature properties (Proposition and the scalar
curvature (Proposition . In Proposition we describe parallel left invariant
vector fields and show that all such fields are null. The holonomy of the metrics
is quite diverse and is described in Proposition However, we leave a deeper
understanding of holonomy to further research.

In Subsection [£:2] we classify metrics that are algebraic Ricci solitons. In the
Riemannian case (see [32]) such a metric would be unique up to homotety, but
since we are working in pseudo-Riemannian settings, we have several non-isometric
metrics which are shrinking, expanding or steady solitons.

In Subsection [£:3] we consider the invariant complex structure obtained by Sala-
mon [40] in his classification of complex structures on nilpotent Lie algebras. It
is known that the space of the corresponding complex structures is 5-dimensional
and that the nonflat, Ricci-flat, pseudo-Kéhler metrics are admissible (see [12]). In
this section we classify pseudo-Kéahler metrics and show that they all belong to the
same family of metrics (Proposition .

It is known that two left-invariant metrics with the same geodesics are affinely
equivalent (see [6]) and that the difference of two such metrics is an invariant
parallel symmetric tensor. In Proposition [£.17] we show that all such tensors can
be obtained using parallel vectors, and therefore it follows from [30] that metrics
admitting such tensors are Riemannian extensions of Euclidean space.

There are many well-known facts about totally geodesic subalgebras of a nilpo-
tent Lie algebra (see, e.g., [7]). Therefore, the Subsection is devoted to their
study. Interestingly, for every subalgebra b of T*h3 there exists a metric which
makes it totally geodesic, as shown in Proposition [4.20)

2. PRELIMINARIES

Let us briefly recall the construction of the cotangent Lie algebra.
The cotangent algebra T*g of the Lie algebra g is the semidirect product of g
and its cotangent space g*,

T"g:=g Xaa~ 9",

i.e., the commutators are defined by
[(z,0), (y, V)] :== ([z,9], ad"(z)(¢) — ad*(y)(9)), =y€9, Y EG"
By ad* : g — gl(g*) we denote the coadjoint representation
(ad™(x)(#))(y) == —¢(ad(x)(y)) = —o([z,y]).

The Heisenberg Lie algebra b3 is a 3-dimensional nilpotent Lie algebra defined
by a nonzero commutator

[.’El,.’EQ] = Is3.
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The cotangent algebra T*h3 of h3 is a 6-dimensional irreducible 2-step nilpotent
algebra with maximal abelian ideal of rank 4 and 3-dimensional centre (see [36),
Type 3] or [46, Type I113]).

For simplicity, we will fix the basis e = (ey, ea, €3, €4, €5,€6) such that the Lie
algebra T*h3 is defined by nonzero commutators:

[61,62] = €6, [61763] = —é€s, [62,63] = €4. (2'1)

Note that these relations can be written in the form
leis ;] = €ijrestr, (2.2)

where €;j, is the totally antisymmetric Levi-Civita symbol and i, j,k € {1,2,3}.
The commutator subalgebra T*h3' = [T*h3, T*h3] and the central subalgebra
Z(T*h3) coincide:

T*hs" = R{ea, e5,e6) = Z(Tb3).

Lemma 2.1. The group of automorphisms of the Lie algebra T*h3 in the basis e
with commutators (2.1)) is given in block-matriz form

X A 0
Aut(T*bh3) = {(B A*) | det A # 0} ) (2.3)
where A* = (det A)A™T and A, B are 3 x 3 matrices, or equivalently, as

Aut(T*hs) = {(iW@) ¢t g) | det C > o}. (2.4)

Proof. By definition, the automorphism F : T*hs — T*hs is a linear bijective
mapping satisfying

F([ua 'U]) = [F(u)vF('U)]v u,v € T*hS

The automorphism F' maps vectors eq, es, e to arbitrary vectors
3 3
F(ej) = Z a;;e; + Z bij€3+i = a;j€; + bije3+i- (2.5)

i=1 i=1
where the 3 x 3 matrix B = (b;;) is arbitrary and the 3 x 3 matrix A = (a;;)
must be regular. In the last relation, we have omitted the summation sign because
we assume summation over repeated indices, as we will do in what follows. The
automorphism F' must preserve the commutator subalgebra. This can be written
as

F(€3+j) = Cij€3+4i, j = 1, 273, (26)
where C' = (¢;5) is a 3 x 3 matrix. This explains the zero block in the matrix (2.3)).
Now we find the relation between the matrices A and C.

Using (2.2) and (2.6) we get

F([ei e5]) = ijrcppesip, (2.7)
[F'(ei), F(ej)] = [agier + bri€s+ks amjem + bmjesim] = [arier, amjem]
= QkiQmj€kmp€3+p- (28)
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Comparing the relations and , we get
€ijkCpk = EkmpkiQmy,
or, equivalently,
Cpk = €kij€kmpkiGm; = Apk,

where Ay is the cofactor of the element a,; of the matrix A. Therefore, A* =
(det A)(A~1)T = C as claimed.

To obtain the second representation, we take the determinant of the relation
C = A* = (det A)A~T and we obtain det C' = (det 4)? > 0. O

3. CLASSIFICATION OF METRICS

In this section, we classify non-isometric left-invariant metrics of arbitrary sig-
nature on T*bhs.

If g is a Lie algebra and (-,-) is an inner product on g, the pair (g, (-,-)) is
called a metric Lie algebra. The structure of a metric Lie algebra uniquely defines
a left-invariant pseudo-Riemannian metric on the corresponding simple connected
Lie group G, and vice versa.

Metric algebras are said to be isometric if there exists an isomorphism of Eu-
clidean spaces preserving the curvature tensor and its covariant derivatives. This
translates to the condition that metric algebras are isometric if and only if they
are isometric as pseudo-Riemannian spaces (see [I, Proposition 2.2]). Although
two isomorphic metric algebras are also isometric, the converse is not true. In gen-
eral, two metric algebras may be isometric even if the corresponding Lie algebras
are not isomorphic. The test to determine whether any two given solvable metric
algebras (i.e., solvmanifolds) are isometric was developed by Gordon and Wilson
in [23]. However, according to the results of Alekseevskii [I, Proposition 2.3], in
the completely solvable case, isometric means isomorphic.

Since the Lie algebra T*hs is nilpotent and therefore completely solvable, the
non-isometric metrics on T*h3 are the non-isomorphic ones.

The isomorphic classes of various left-invariant metrics on T*h3 can be viewed
as orbits of the automorphism group Aut(T*h3) which naturally act on a space of
left-invariant metrics. This allows us to use the algebraic approach, although more
geometrical tools are often required.

In the basis e of T*bh3, the metric (-, -) is represented by a symmetric 6 X 6 matrix
Se = ((es,€;)), which we refer to as the metric matriz. The problem of classifying
metrics on T*h3 reduces to finding conjugacy classes of symmetric matrices under
the action of the group Aut(T*h3):

Sy =FTS.F, F c Aut(T"h3). (3.1)

In simple terms, we want to find a new basis f = (f1, f2, f3, f4, f5, f6) of T*bhs
with brackets of the form such that the metric matrix Sy in that basis is as
simple as possible. Since the commutator algebra T*h3" = R(ey, 5, €6) is invariant
under Aut(T*hs3), we cannot change its metrical character, i.e., its signature.
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Therefore, given a symmetric metric matrix S, in the basis e, we find its canon-
ical form depending on the restriction of the metric (-,-) on T*h3’.

Let S/ be the symmetric 3 x 3 matrix representing the restriction. The restriction
of action on S’ by the automorphism F € Aut(T*h3) of the form is
CT S!C. Since C is an arbitrary matrix with positive determinant, this action puts
S’ into the canonical form given by the matrix diag(p1, po, 13), i € {1,—1,0}. To
introduce the notation, let

1 0 0 1 0 O 0 0 O
Exw=10 1 0|=1 Ex={01 0], Ex=[0 1 0],
0 0 1 0 0 1 0 0 1
0 0 O 0 0 0 0 0 0
En=(01 0, Eow=[0 0 0], Ew=|0 0 0], (3.2)
0 0 -1 0 0 1 0 0 O
Loz = —E3p, Eig = —Fo, Eyo = —Eoy, Lo = —Eqo.

The indexes of E,, denote the signature (p,q), i.e., the number of positive and
negative vectors, respectively, in the canonical form of S.

Thus, choosing the matrix C' in the automorphism F such that the restriction
of the metric on T*h3’ has the canonical form E,,, the matrix of the metric (-, )
in the new basis becomes

S M
—_ T —
N ) -
where M = (m;;) is an arbitrary and ST = S = (s;;) is a symmetric 3 x 3 matrix.

To further simplify Sp,, we choose an automorphism from the subgroup that
preserves the F,,-part of the matrix Sp,

Aut(Epy) = {F € Aut(T*h3) | CTE,,C = Epy}-

The groups Aut(E,,) and Aut(E,,) are isomorphic. In other cases these groups
are fundamentally different and therefore we need to discuss separately each case

of Spq given by (3.3).

3.1. T*h3' is definite (case S3o and Sp3). In this case,

Aut(E3p) = {(iBA g) | ATA=1,det A > O} , (3.4)
i.e., A € SO(3) is orthogonal and B is any 3 x 3 matrix.

Suppose the metric (-,-) is represented in the basis e by the matrix Ssg or Sps
given by . Find a new basis f corresponding to F' € Aut(E30) of the form
for a;; = d;5, i.e., the matrix is the identity matrix A = I. From the form of F
given by , we also have F'(esy;) = esy;. Then

(F'(ej), F(estr)) = (e + bijesti, ezvr)

3.5
= (ej, €34k) + bij(€3+is €31%) = Mk + bij0ik. (3:5)
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Thus, for bjr, = —my;, ie., for B = —MT, we obtain
(F(ej), F(es+x)) =0, j,ke{l,2,3}

Therefore, F' puts the matrix Ssg into the form

S 0 S 0
0 Eyp) & \o Ew)

where S = ST has changed but is denoted by the same letter to simplify notation.
Finally, since the symmetric matrix S can be diagonalized by the orthogonal ma-
trix A, by using the automorphism F' of the form we obtain the canonical
form for definite T*h3’,

A 0 A 0
530=<0 E30> or 503:<0 E03>1 (36)

where A = diag(A1, A2, A3) and A1 > Ag > A3 are nonzero and of arbitrary sign.

3.2. T*h3' is Lorentzian (case So; and S;5). The admissible automorphisms
are
+4 0 T
Aut(Ezl) = Aut(Elg) = B A | A" FEy A= FEoq, det A >0 (37)

ie, A€ SO(2,1) and £A4 € O(2,1) and B any 3 x 3 matrix.
Suppose that in the basis e the metric (-, -) is represented by the matrix So; or

S12 given by (3.3).
By similar calculations as in (3.5), one can choose the matrices A = I and
B = —FEy M7 of the automorphism F € Aut(Es;) such that in the new basis (-, )

has the form
S 0 S 0
(0 E21) or (0 E12) ) (3.8)

Now the 3 x 3 symmetric matrix S can have definite or Lorenz signature. To
obtain the form , we can act by automorphism F € Aut(FEs;) with B = 0.
This reduces to finding equivalence classes of the action of the group SO(2,1) on
the Riemannian and on the Lorentzian symmetric matrix S.

. . 1. . . 1. .
3.2.1. T*h3' is Lorentzian, T*h3'~ is Riemannian. The case where T*h3' ™ is Rie-
mannian is the simpler of the two cases.

Lemma 3.1. Let S be a symmetric matriz with positive eigenvalues. Then there
exists a matriz A € SO(2,1) such that AT SA is diagonal.

Proof. There exists an orthogonal matrix T' € SO(3) such that
T~'ST = D = diag(dy,do,ds), d; > 0.

Then S = TDT~! and we denote the symmetric matrix v/S = Tv/D T, where
VD = diag(vdy,\/dz, V/d3). The matrix VS EnvS ' = (VS )TEnVS @ is
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also symmetric (and has the same signature as Eo1). Therefore, it can be diago-
nalized by the orthogonal matrix R € SO(3):

RT((\/El)TEzn/El)Rdiag(l .

where A = diag(d1, 02, d3). If we set A = \/gilRA, then det A > 0 and
ATFy A= Ey, ATSA = A? = diag(6?,062,62),
which completes the proof. O

Suppose the metric (-, ) is represented by the matrix So1 or Si5 given by (3.8]),
and the matrix S is positive definite (or negative definite). It follows from Lemma

that there exists a matrix A € SO(2,1) that diagonalizes S. The corresponding
automorphism F € Aut(FEs;), given by (3.7) with B = 0, brings the metric into
the canonical form

+A 0 +A 0
521 = < 0 E21> or 512 = ( 0 E12> s (39)

where A = diag(6%, 03, 63).

) =A'EyATL

3.2.2. T*b3' is Lorentzian, T*[)g'l is Lorentzian. Suppose the metric (-,-) is rep-
resented by the matrix Sy (or Si2) given by , and the matrix S is Lorentzian,
i.e., of signature (2,1) (or signature (1,2)).

Finding the canonical form of Sy; using the automorphism F' € Aut(FEs;), given

by (3.7), reduces to:

Problem 1. Find equivalence classes of symmetric matrices S of Lorentz signature
under the action of the group O(2,1).

Tt is useful to consider the group O(2, 1) as a group of isometries of the hyperbolic
plane. This is best seen in the Klein projective model of the hyperbolic plane [14].

Any symmetric nondegenerate matrix H can be viewed as a projective conic
section I'(H) which satisfies the equation

I'(H): 0=az"Hz,

where 2 = (21 22 23)7 denotes the column vector of homogeneous coordinates
(z1 : ¥ : x3). For example, the Absolute of the Klein model 0 = 23 + 23 — 23 is a
conic I'(E2;1). We restrict our attention only to conics represented by a symmetric
matrix of signature (2,1), since we have treated the case of signature (3,0) (and
(0,3)) in the previous subsection. Moreover, the matrix S with signature (3,0)
represents the “empty set” of the conics in real projective geometry.

The projective mapping x — Cx, represented by the non-degenerate 3 x 3 ma-
trix C, maps the conic I'(H) to the conic I'(CTHC). Therefore, the condition
C € 0(2,1) for the matrix of the projective mapping is equivalent to preserving
the Absolute T'(Es,), i.e., C is a hyperbolic isometry.

Moreover, if H = S, the matrix of the metric we want to simplify, then we can
consider the metric S as “conic” I'(S). Therefore, Problem (1] of classifying metrics
is equivalent to the problem of classifying hyperbolic conics:
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COTANGENT BUNDLE OF THE HEISENBERG GROUP 493

Problem 1*. Find the canonical forms of projective conics under the group of
hyperbolic isometries.

Note that the conic T'(S) must not belong to the interior of the Absolute (i.e.,
the hyperbolic plane or the de Sitter space), since the group O(2,1) also acts on
its exterior (the anti-de Sitter space).

The classification of hyperbolic conics is a classical and well-known result [42] 33].
In the original paper [42] there are nine types of conics in the classification, but in
later literature [33][39] 28] 12 types appear. However, all of these classifications are
mostly given by images only. In the paper [21] there are equations, but the classifi-
cation is too complicated and in our case we do not need to distinguish between all
12 types. We get only 4 types, because we consider conics in the projective plane
as a whole and not conics in the hyperbolic plane, which is the intersection of the
projective plane and the interior of the Absolute. Our classification below uses the
concept explained in [39].

We recall some basic facts about hyperbolic isometries in the projective Klein
model (see, e.g., [14]). Let I' = I'(H), HT = H be a non-degenerate conic. Let the
point P(&; : & : &) be a pole and the line

p:p1x1 + pera +p3r3 =0, e, p(p1:p2:p3)

its polar with respect to I' if Ap = HP, where A # 0 is used to emphasize the
homogenous nature of the coordinates. Note that P € p holds if and only if
P €T(H). It is well known that projective mappings (or changes of coordinates)
x — Cx preserve the pole-polar relation.

The group of hyperbolic isometries is generated by homologies ¢p (Klein reflec-
tion) with centre P ¢ I'(E9;) and its polar p with respect to the Absolute. The
Klein reflection ¢p(M) of a point M is defined as the point M’ such that points
M, M’, P, Py; are harmonic, where Py, is the intersection of PM and p.

In what follows, we are interested in two conics: for H = Es1, the conic I'(Ea;)
which represents the Absolute and defines the group of admissible transformations
0(2,1); and for H = S, the conic I'(S) which represents the metric to be simplified.

The conic I'(S) is invariant with respect to the Klein reflection ¢p if P and p
are also common pole and polar for both conics I'(E91) and I'(S). In this case, the
point P is called the centre of symmetry and p the line of symmetry of T'(S). The
basic idea is that the equation of a conic simplifies if the coordinates of its centre
of symmetry are “nice”.

The condition that P and p are common pole and polar for both I'(Fs;) and
[(S) is A\ip = Eo1 P, Aap = SP, or equivalently

The nontrivial solution P # (0 : 0 : 0) of this equation exists if and only if
Xs(A) :=det(S — A\Eq1) = 0. (3.11)

Note that xs()\) is not a characteristic polynomial of the matrix S. Moreover, it is
clear from ([3.10]) that the solution of (3.11)) is an eigenvalue, and P is an eigenvector
of the nonsymmetric matrix F21S.
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Multiplying (3.10) by PT from the left, we obtain, for the common pole P,
|P|% = PTSP = APTEy P = \|PJ?, (3.12)

where we have denoted by |P|% the norm of P with respect to the metric S (i.e.,
(-,-)) and by |P| the norm with respect to the “hyperbolic” metric defined by Fs;.

Since xs(A) is of degree 3, there is at least one real eigenvalue A\; # 0 corre-
sponding to the common pole P;.

Case 1 |P1]| > 0 (equivalently, Py is in the exterior of the Absolute).

We can choose a new pseudo-orhonormal basis f = (f1, f2, f3) = C € O(2,1) of
T*hglJ_ such that f; = ‘%‘, and fs, f3 are arbitrary. In the new coordinates we
have P;(1:0:0), the matrix of the Absolute is unchanged and

)\pl = E21P1 = (1 0 O)T.

The matrix S of the metric (-, -) has changed to S = CTSC = (5;;), which we want
to determine. But regardless of the change of coordinates, Py and p; are pole and

polar with respect to the same conic T'(S):

(A00)" = Apy = SP, = (511 512 513)7,
and we have 5§15 = 513 = 0. Also,

s = (f1i, 1) = [AlE = NlAP =\

Therefore, for the case | P;|?

has the form

> 0, we can assume that the matrix S of the metric

A0 0
S = 0 S99  S23 . (313)
0 s23 833
Now we discuss the possible Jordan forms of the matrix E9;S.

Case 1a) E21S is diagonalizable: E91S ~ diag(A1, Az, Az).

If Py, P», P; are corresponding eigenvectors, then the triangle P, P, P3 is autopo-
lar with respect to both conics I'(E;) and I'(S). This means that P; is pole of the
line P; Py for all distinct 4,5, k. Since |Py| > 0, i.e., P; lies in the exterior of the
Absolute, it is easy to prove that exactly one of P, and Ps; must lie in the interior —
let it be P3. Thus: |P|%, |P2|* > 0, | P32 < 0. As in and more, we choose

Py Py Py

= ik fa= B3k I3 = 2

The fact that Py P>Ps is autopolar ensures that f = (f1, f2, f3) = C € O(2,1).
We already know that in the new basis (because of the choice of fi) the matrix
of the metric conic has the form . The new coordinates of the points are
Pi(1:0:0), P,(0:1:0), P3(0:0:1). Using the fact that p2(0 : 1 : 0) is polar
to the pole P» with respect to the metric conic I'(.S), we get so3 = 0. It is easy to
verify that the canonical form is

A 00
sS=[(0 x 0], (3.14)
0 0 As

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)
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where two of the \; are positive and one is negative.

A 0 0
Case 1b) E91S has the Jordan form 81 )62 )\1
2

One calculates that Fs1S has double eigenvalues if and only if

522 1 533

—

Tt is easy to verify that the automorphism C' = diag(1,1,—1) € O(2,1) changes sa3
to —s23, S0 we can assume that so = 2225533 We obtain the canonical form

(322 + 533)2 - 4533 =0 & s93==%

A1 0 0
S = 0 S99 % s A1 > 0, s22 7£ S533. (315)
0 322-5833 S33

The condition on the coefficients ensures that the signature of S is (2,1).

Case 1¢c) E91S has the Jordan form (Agl % 8), z e C.

It is obtained that Fs;S has complex conjugate eigenvalues if and only if (s92 +
s33)% — 4535 < 0. Suppose that \; < 0. Then both eigenvalues of the matrix
S = (32 32) must be positive, i.e., s22833 — 33 > 0. From the previous two
inequalities, we get (s22 — s33)% < 0, a contradiction. Therefore, the case A\; < 0 is
impossible. For A1 > 0 we must have s92533 — 533 < 0. The matrix S’ represents
the restriction of the metric S to the plane spanned by es and e3, which has the

signature (1,1). Null vectors in this plane are
vy = Esg33es + (Fs23 + V—det F)es.

The product of their squared norms (with respect to the inner product Ea1),
[o-?[v4* = s35((s22 + 533)* — 4533),

is negative and therefore we can choose vy to be positive and v_ negative. By
hyperbolic rotation,

fo =coshges +sinhpes, f3 =sinh@pes + coshees

for some ¢, we get that f3 = v_ (that would not be possible if vy were null or
positive). In the new basis fi = e1, f2, f3 = v_ we have s33 = (f3, f3) = [v_|3 =0
(since f3 is chosen as a null vector).

This results in the canonical form

A0 0
S = 0 S99 Sa93 s Al > 0, S923 7£ 0. (316)
0 S923 0

Case 2 |P1| =0 (equivalently, Py is on the Absolute).

1

. . A1 0 .
In this case, the Jordan form of F15S is ( 0 M1 ) From the relation ([3.12)
1

we obtain |P;|% = 0, and thus

P1 S F(Egl) n F(S),
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i.e., the P; belong to the intersection of the conics. After the rotation, we can
assume that Pj is any point on the Absolute, for example P;(0: —1 : 1). The polar
p1 with respect to the Absolute is p1(0:1:1). But p; is also the polar of P; with
respect to I'(.9):

)\pl = SPl <~ S12 = S13. (317)
From the condition that P; belongs to T'(S), we get

S33 = —So22 + 2893. (318)

The condition that A\ is triple root of xg is equivalent to

822 = S11 1 S23. (3.19)

Considering the relations (3.17)), (3.18) and (3.19)) we obtain that another intersec-
tion point of I'(S) and the Absolute is

. 2 2 . 2 2
M(—4813823 : 4813 — Sap3 ¢ 4813 + 823).

We wish to map the point M to My(1:0: 1) by the transformation C' € O(2,1),
fixing the point P;. The required transformation is a homology with centre {P} =
M My N p; and an axis whose polar p = F51 P. It can be shown that the matrix of
this homology is

8s%, 4513(823 — 2513) 4513(523 — 2513)
C= 4813(523 — 2513) —48%3 — 4823513 + 853 (823 — 2313)2
4813(2813 — 823) 7(823 — 2813)2 7125%3 + 4523813 — 553

Therefore, we assume that My(1:0: 1) € T'(S) or equivalently sa3 = 2513 to get
the canonical form

S11 513 513
S = S$13  S11 — 2513 72813 , S11 7& 0. (320)
513 —2s13 —811 — 2513

The signature of this matrix is always Lorentzian. Note that when s13 = 0, we
obtain the diagonal form considered earlier.
Case 3 |P1| <0 (equivalently, Py is inside the interior of the Absolute).

Since |Py| < 0, we can choose the basis (f1, f2, f3) € O(2,1) such that f; = %.
Similar to we obtain that the metric in this basis is the matrix

s11 s12 0
S=|s12 s 0
0 0o M\

The zeros of the characteristic polynomial (3.11]) are
511 + S92 £ /4525 + (522 — 522)2
5 .

We see that the polynomial cannot have multiple roots or complex conjugate roots,

and we obtain only the [Case 1a), i.e., the canonical form of the metric is (3.14]).

—A1, Agy3 =
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3.3. T*bh3' is degenerate of rank 2 (metrics Say, So2, S11)-

3.3.1. Case Sag, Sp2. Suppose that in the basis e the metric (-, -) is represented by
the matrix Sog or Sp2 given by (3.3]). Therefore, we look for the canonical form

< o ij‘éo) (3.21)

with S and M as simple as possible. We first describe the group of isometries of
the degenerate inner product Eo.

Lemma 3.2. The subgroup of Gl3(R) which preserves the degenerate quadratic
form represented by the matriz Foq is

A a b
05(2,0) = 0 cos¢p Fsing| |a,b,p,NeER, A#£0
0 sing =£cos¢

From this lemma and Lemmawe derive the subgroup of Aut(T*h3) preserving
the form of the matrix Saq or Sps:

+A4 0
Aut(Ego) = Aut(Eog) = {( B A*> } R (3.22)
A 0 0 1 —acos¢+bsing —bcos ¢p—asin ¢
A cos ¢ sin ¢ * A2 A A
=1la 5y ) /\¢ , A*=10 c9s¢ Fsin ¢
b —=~ 3 0 sin ¢ +cos¢

We denote the automorphism F' € Aut(Es) of the form by F(\ a,b, ¢, B),
B = (bij).

The subalgebra T*h3" = R{ey, €5, eg) is degenerate, and from and we
see that ey € T*hs' . Moreover, T*hs' N T*hy' " = R(ey) and therefore T*h3’ +
T*hglJ_ has codimension one in T*h3.

The search for the canonical form of the metric S = S5 consists of several steps
in which we apply automorphisms in a very specific order. To simplify the notation,
we will always denote the resulting matrix by S and keep the same notation for its
entries, even if the entries change.

The automorphisms are quite restrictive in the plane R{es,es3), since we can
basically choose a new basis only by rotation. We have three cases corresponding
to the following geometric situations:

Case 1. Rea,e3) N T*bg’l is non-null.
Case 2. Rea,e3) C T*hglL.
Case 3. R{ea,e3) N T*[’)glJ_ is null vector.

The first step is the same for all three cases.
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Step 1. On the matrix S = Sy we first apply the automorphism F(1,0,0, ¢, B),
where

ms1 . maoi
cosgb:ﬁ, sm(b:ﬁ,
ma; +m3; \/ My + ms
bao = —mooma1 +maimsza, bzg = —Mazma1 + Ma1mas.

This results with the matrix FTSF with mis = mas = mss = 0.

[Case T] s22 # 0,ms1 # 0.
Step 2. We apply the automorphism F'(1,a,b,0, B), where

’ 12 — ——/—
m31522 m3i ms3i

_ Muises T Maisi2 —Mmi1 + /Mm31 b 523
= VvV =

b13 is complicated, so it is omitted, and the remaining b;; are zero. After this action
we get S12 = 0= $13, M11 = Jmas.
Step 3. We apply the automorphism F'(1,0,0,0, B), where

bay = —my2, baz = —m3a, bz = —my3, b3z =—ma33,

Here we have to use the complicated parameter b3 again, and the remaining b;; are
zero. The resulting matrix of the metric has s11 = mi2 = m13 = m3z = mg3 = 0.

Step 4. The automorphism F(X,0,0,0, B), with A = ¢/m3, B = 0 simultane-
ously sets my; = m13 = 1, and we obtain the canonical form of the metric,
with:

0 0 0 100
S=10 S99 0 , S92 75 0, 833 75 0, M=10 0 0]. (323)
0 0 S$33 1 0 0
m3; = 0.
Step 2. By the automorphism F(1,0,0,0,B), bog = —msa, b3z = —ms3 we

obtain the matrix FTSF with mss = 0 = mas.

Step 8. Now we obtain s1; = s12 = s13 = 0 = my12 = my3 with appropriate
choice of parameters a, b, b1, b1z, b11.

Step 4. The automorphism F(X,0,0,¢, B), A = my1, B =0, where ¢ is chosen
such that the corresponding rotation diagonalizes the metric in R{eo, e3), gives the

canonical form (3.21]), with:

0 0 0 1 00
S = 0 59292 0 , 822,833 7é 0, M = 0 0 O (324)
0 0 533 0 0 O
522 = 0.
In a similar way, but without using rotation, we obtain the canonical form (3.21):
0 S12 0 0O 0 0
S=1|s12 0 0], s0#40, M=]|0 0 0]. (3.25)
0 0 O 100
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3.3.2. Case S11. Suppose the metric (-,-) is represented by the matrix Si; given

by .

If T*h3’ has signature (0,+,—), we have the following automorphisms:

ws={(5 2}

1 —a cosh ¢p+bsinh ¢ —b cosh ¢+asinh ¢
A0 0 3 X X
A=|a @ w , A"=10 cosh ¢ —sinh ¢
b w @ 0 —sinh ¢ cosh ¢

In the plane R{es, e3) the automorphisms act as hyperbolic rotations which do
not necessarily diagonalize the metric in this plane. To describe this effect precisely,
we need the following lemma.

Lemma 3.3. The equivalence classes of the symmetric matriz S = (‘g 2) under

the action FTSF, where F € SO(1,1), are:

a' 0 . 2 2
(O c’) if 4b° # (a + ¢)*, (3.26)
(Lo JZ,) 0 =@+ 0 bl > ol (3:27)
2
a—c¢ a—c . 2 2
( a—c 8 ) if 4b° = (a + ¢)*, || < |al. (3.28)
2

Under the F which is an anti-isometry, i.e., FT diag(1,—1)F = diag(—1,1), the

canonical forms (3.27) and (3.28) are equivalent.

Proof. Set Ey; = diag(1,—1). The group SO(1, 1) consists of hyperbolic rotations
and their negatives:

SO(1,1) = {F € GI,(R) | FTE\,F = By, det F =1}
_ cosh¢ sinh¢
- {i (sinhgb cosh(,b) (bER}'

Case 1. (a + c)? — (2b)? > 0. Tt is straightforward to verify that a hyperbolic
rotation by the “angle” ¢ is such that

cosh2¢ = Ma +¢|, sinh2¢ = —2Asgn(a + ¢)b,

where A = ((a + ¢)2 — (2b)2)"2 is determined from the condition cosh?2¢ —
sinh? 2¢ = 1, diagonalizes the matrix S and we obtain the form .

Case 2. (a + c)? — (2b)? < 0. In this case, we diagonalize S with hyperbolic
rotation so that

cosh2¢ = A|2b], sinh2¢ = —2Asgn(b)(a + ¢)

Nl=

and A = ((2b)2 — (a +¢)?)"=.
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Case 3. (a + ¢)* — (2b)2 = 0. Suppose that b = %<, In this case, the null
directions of the metric S are (1, —1) and (¢, —a), a > 0. We will apply hyperbolic
rotation such that one of the basis vectors is null. The case |a| = |c| is either
diagonal or impossible. If |a| > |c|, we will take the hyperbolic rotation such that

a ) —c
, sinh¢ = ——,
a2 — 2 a2 — 2

to obtain the canonical form (3.28)). If |a| < |c|, we take the hyperbolic rotation

cosh ¢ =

—a

cosh ¢ = =

————, sinh¢=

)
c2—a c 2

—Qa

to obtain the canonical form . Note that these two cases are not equivalent
under the action of O(1,1), since the null direction of the metric S belongs either
to the set of time-like or to the set of space-like vectors of the metric diag(1, —1),
which are preserved under the action of SO(1,1) (and also O(1,1)). However, if
we allow anti-isometries, we can interchange time-like and space-like vectors, and
these two cases are equivalent.

The case b = —2F< is similar. O

The classification of metrics of type S1; is similar to that of type Sy, with a
possible difference only when using a rotation. Therefore, we follow the steps from
Subsection B.3.1] in what follows. We look for the canonical form

( o i"‘gn) (3.29)

with S and M as simple as possible.

The hyperbolic rotation is not transitive on the vectors of the plane. In “regular”
cases, hyperbolic rotation can be used instead of Euclidean rotation and we obtain
metrics with S and M given by (3.23), (3.24)) or (3.25).

Now we discuss the “singular” cases. Already in [Step 1) the hyperbolic rotation
is not possible if mo; = £mg; # 0. In fact, these two cases are equivalent by an
anti-isometric automorphism, so we consider the case mo; = mg;. After long and
detailed analysis, we obtain two non-equivalent metrics:

S M S11 0 0 0 0 O
<MT B >, S: 0 S99 0 ,811,822#0, M = 1 0 0 5 330)
1 0 0 0 1 0 0
0 S12 0 0 0 O
<]\5T é”) S=1s12 0 0)],s82>0 M=[1 0 0 (3.31)
1 0 0 0 1 0 0

If ma; # £mg; then we can reach mg; = 0 by hyperbolic rotation in [Step 1]
and proceed with the remaining steps.
In [Case 7] rotation is not used and no additional canonical forms are obtained.

In rotation is used in to diagonalize the metric in the plane
R{ea,e3). According to Lemma this is not always possible for hyperbolic
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rotation, so we obtain additional metrics:

s M 0 0 0 100
(MT E ), S=10 $22 %|522‘ ,822750, M=10 0 0 7(3.32)
H 0 ilsa| O 00 0
0 0 0 100
<J\‘;T é”) S=(0 0  Zilsss|],s33#0, M=[0 0 0].(3.33)
1 0 %|833| 533 0 0 O

Finally, in rotation is not used, so the classification of metrics with centre
of signature (0,4, —) is complete.

3.4. T*h3' is degenerate of rank 1 (case Sio, So1). Suppose that in the basis e
the metric (-, ) is represented by the matrix S19 or Sp1 given by (3.3). So, we look

for the canonical form
S M
(MT iElo) (3.34)

with S and M as simple as possible.
When T*h3’ has the signature (0,0, +) or (0,0, —), we have the following group
of automorphisms preserving their canonical form:

+A 0
Aut(El()) = Aut(E()l) = {( B A* s (335)
a1 a2 O (22033  —0G21033 (21032—02203]
*
A=az ax 0 |, A"=|-apazz a1a33 a12a31—a1asz |,
as1 asz ass 0 0 a11a22—0a12021

with condition (ajjase — ajzas;)? = 1. Note that the automorphism of the form

01 0 00 O
10 0 00 O
00 -1 00 O
F= 00 0 01 0
00 0 10 O
00 0 00 -1

interchanges the places of the elements m3; and mgs in the matrix M. Thus, two
cases are distinguished: when mgs; # 0 and when ms3; = ms2 = 0. It is worth noting
that this is not a simple algebraic distinction. These two cases yield completely
different geometric properties (see Proposition [4.8|(iii)| below).

Case 1. m31 # 0. In this case, we can obtain the following form of M:

0 mio 0
1 0 0 (3.36)
1 0 0

by performing the next steps:
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Step 1. The appropriate choice of elements az; and a3y in (3.35)) gives us my; =
mse = 0, while we can set ago and ass such that ma; = ¢, ms; = t2, where t #0is
an arbitrary parameter that is normalized later. Finally, by setting as1, mas = 0
is obtained.

Step 2. If we now choose the last row of the matrix B, we obtain my3 = mo3 =
mas = 0.

Step 8. Choosing the remaining elements of the matrix B, the matrix S reduces
in to £AEo1, A # 0.

Step 4. In the last step we normalize both A and ¢ and obtain the metric
with § = £Fy; and M in the form .

Case 2. m31 = ms3o = 0. Since the elements as; and a3z do not act on the ma-
trix M, the problem reduces to the action AT M A of the matrix

A= (‘3 8), Ae SL().

In the first step, depending on the nature of the eigenvalues of the matrix M, we
can choose the matrix A such that the upper-left 2 x 2-submatrix of M takes one
of the following three forms:

mip 0 mir Mi2 mi1 O
0 ma)’ —miz M)’ 1 mu )

Next, we can repeat [Step 2| and [Step 3| from above. Finally, in the last step,
we make the basis vector ez to be unit again. Therefore, our metric is Sy =
(£FEo1, M, Ep1), where M takes one of the following three forms:

mi1 0 0 mi1 mi2 0 mi 0 0
0 moo 0 s —mi2 Mi1 0 s 1 mi1 0]. (337)
0 0 O 0 0 O 0 0 O

Note that the case of the metric Sy; can be considered completely analogously.

3.5. T*h3' is degenerate of rank 0 (case Syy). The last case of a completely
degenerate centre is the only case that can be considered with a purely algebraic
approach. Suppose that in the basis e the metric (-, -) is represented by the matrix
Soo given by . The group of admissible automorphisms is

Aut(Eoo) = {(iBA j) } (3.38)

where A, det A # 0 and B are arbitrary 3 x 3 matrices.
If we take the automorphism F' of the form (3.38) and act on the matrix Spo,
we obtain

AT BT S MY (A 0
0 (AT )\MT o)\B A*
ATSA+ ATMB + (ATMB)T AT M A*
— (AT M AT 0 . (3.39)
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From the non-degeneracy of the metric matrix Sy, it follows that the matrix M
must also be regular. Thus, setting B = —%M ~1S A, the matrix (3.39) takes the

form
0 AT M A*
(ATM AT 0

and all that remains is to choose a regular matrix A so that ATMA* has the
simplest form. However, one must remember that the matrix M is not symmetric,
S0 it is not necessarily diagonalizable. At least one eigenvalue of M must be real,
and the other two can be either real (with some multiplicity) or complex conjugate.
Therefore, the possible canonical Jordan forms of M are

M 0 0 M 0 0 M 100 MO0 0
0 X O, [0 x 1], [0 x 1], 10 X —xs]. (340
0 0 A 0 0 X 0 0 N\ 0 A3 Ao

We can take another step to further simplify these forms: setting the automorphism
matrix as diagonal, in (3.40)) we obtain A\; = 1.
Note that all these metrics have a neutral signature.

3.6. Main result. The preceding extensive analysis proves the following theorem.

Theorem 3.4. The non-isometric left invariant metrics on T*h3 in the basis e with

commutators (2.1)) are represented by matrices Spq = (S, M, Epq) of the form :
(i) if T*b3" is non-degenerate:

S30 = (5,0, £ F3g), where S is of the form (3.6);

So1 = (5,0, £FE>), where S is of the form , (3.14), (3.15), (3.16)

(ii) if T*h3’ is degenerate of rank 2:

Sa0 = (S, M, +Es), where S and M take one of the forms ,

S11 = (S, M,+FE11), where S and M take one of the forms

S11 = (S, M, Er1), where S and M take one of the forms (3.24)), (3.30)),
B-31), 332 or (3:33):

(iii) if T*h3' is degenerate of rank 1:
S10 = (£Fh0, M, +E1), where M takes one of the forms or
(13.37) (all four combinations of + can occur here);

(iv) if T*h3" is degenerate of rank 0:
Soo = (0, M, 0), where M takes one of the forms with A\ = 1.

4. GEOMETRICAL PROPERTIES OF LEFT-INVARIANT METRICS

In this section, we further investigate the metrics obtained in Theorem
First, their curvature properties are of interest and then we briefly consider the
holonomy algebras for each metric. We also obtain the description of the parallel
symmetric tensors for each metric and show that they are derived from parallel
vector fields. Special types of metrics, such as pp-waves or Ricci solitons, are also
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studied. Since T*h3 is even-dimensional, it is natural to study the invariant complex
and symplectic structures. This leads to the classification of pseudo-Kéahler metrics.
Finally, the known facts about the totally geodesic subalgebras of a nilpotent Lie
algebra are summarised and it is shown that for every subalgebra of T*hs there
exists at least one metric which makes it totally geodesic.

4.1. Curvature and holonomy of the metrics. If S is the matrix corresponding

~

to the metric (-,-) in the basis (e1,...,eq), the algebra of its isometries so(S) =
so(p, q), with p+ ¢ = 6, is spanned by the endomorphisms e; Aej, 1 < i < j <6,
defined by

(e; Nej)(x) := (ej,x)e; — (e;,x)e;, x € T*hs.

For the left-invariant vector fields z,y, z € T*h3, Koszul’s formula reduces to

2<me7'z> = <[.’)37y},2:> - <[y7Z],.’L‘> + <[Z,.T]7y>, (4'1>

which allows us to compute the Levi-Civita connection V of the metric (-,-). The
curvature R and the Ricci tensor p are given by

R(%y)z = va:(vuz) - vy(vasz) - v[z,y]za p(xvy) = TI‘(,Z = R<Za x)y)

The scalar curvature is defined as a trace of the Ricci operator.

The metric (-, -) is called flat if the corresponding curvature tensor is zero every-
where, i.e., R = 0, and it is locally symmetric if VR = 0. Similarly, the metric is
Ricci-flat when p = 0 and Ricci-parallel when Vp = 0.

We can further simplify the above definitions by considering that we are studying
curvature operators on the nilpotent Lie group. We define the operators ad, j,
and p,:

(adsy,2) = (y,ad; 2), Joy:=adyz, @, :=ad,+ad;.

Then the following lemma holds.

Lemma 4.1 ([I]). In the case of a nilpotent Lie algebra g, the curvature and Ricci
tensors are given by

R(,) = 3G + s 23] + 012, 3y]) = (0o 0] + s 03]+ [0 ] = s o)

1 1
p(SL‘, y) = _i tr(]z o _71/) - 5 tr(adz oad;),
for all left-invariant vector fields x,y € g.

In the following statement we describe curvature and Ricci curvature of metrics
on T*h3 depending on the signature of the induced metric of T*hs'.
Proposition 4.2. The following statements hold:

(i) If T*bs’ is nondegenerate the metric cannot be flat or Ricci-flat.
(i) If T*bs' is degenerate of rank 2, the metrics are Sag = (S, M, £ Es), where
S and M take the form (3.24)), and S11 = (S, M, E11), where S and M take
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one of the forms (3.24)), (3.32), or (3.33)). These metrics are Ricci-parallel.
Among them, the Ricci-flat metrics are:

0 0 0 1 00
SQO = (Sa M7 :l:E20)7 S - O 592 O 5 M = O O O s
0 0 :|:17822 0 0 O
0 0 0 1 00
Sll = (Su M7 Ell)v S = O 522 O 5 M = O O 0 y
0 0 —1+s9 0 0 0
0 0 0 1 00
Su = (8, M, En), S=10 1 %], M=1{0 0 0],
0 3 0 000
00 0 1 00
S = (8, M, Evy), S={0 0 1|, M=10 0 0
0 1 -1 000

(iii) If T*b3' is degenerate of rank 1, the corresponding metrics Sig = (£E10, M,
Ey), where M takes one of the forms (3.37), are locally symmetric and
Ricci-flat. Specifically, the metrics

AEV3 0 0
S10 = (E10, M, Ero), M = 0 A 0],
0 0 0
/\1 :F§ 0
S10 = (=E0, M, Ero) M=1+% )\ o]
0 0 0
are flat. The Ricci-parallel metric also occurs and has the form
0 A 0
S10 = (£E10, M, £E19), M=11 0 0
1 00

(iv) If T*bs' is degenerate of rank 0, the corresponding metrics are flat.
(v) The only examples of Einstein metrics (i.e., metrics with proportional Ricci
curvature and metric tensors) are the trivial, Ricci-flat ones.

Proof. The proof is simple but tedious, since it must be computed case by case for
each canonical form. We give some details for the metric S19 = (E10, M, E1g) with

T*h3’ of rank 1, where M is given by (3.36).
By (4.1]) we obtain the Levi-Civita connection of the metric in terms of nonzero

derivations (taking into account the relation [z,y] = V,y — V,z)

1
Ve e1 = m12(—62 + 63), Ve, €2 = 5667 Ve, €3 = —es,
2Ve €6 = —e2 +e3 — €4 = Ve,e3 = Ve, (4.2)

Ve,e0 = €2 —e3, Ve = es.

2m12

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



506 T. SUKILOVIC, S. VUKMIROVIC, AND N. BOKAN

Note that the vectors e4, e5 are parallel. In Proposition [£.7] it was proved that all
parallel vectors are given by their linear combination.

Using Lemma or directly from the definition of curvature, we obtain that
nonzero curvature operators are given by

3 4m12—3 1
R(e1,e9) = —es ANe ez N\e —————e4Ne —eg Ne
(e1,€2) 4m12( 2 ANes+ezAes)+ imi 4 5+2 4 N\ e,
1 1
R(61,€3> =e4 Nes+ 564 N eg, R(el,ee) = —4m12 es N eg,
R(EQ,GG) = R(63,€6) = 72m12 eq N €s5.

By reapplying Lemma again we obtain that the only nonzero component of the
Ricci tensor is

1

pler,e1) = —3

One can easily check that this metric is Ricci-parallel, Vp = 0. We also check (see
the proof of Proposition that VR # 0, and therefore the metric is not locally

symmetric. O

Remark 4.3. Although here we have directly confirmed that there are no Einstein
metrics that are not Ricci-flat, this follows from a more general statement (see [45,
Proposition 3.1]).

In [35] Milnor proved that in the Riemannian case, if the Lie group G is solv-
able, every left-invariant metric on G is either flat, or has strictly negative scalar
curvature. Note that this is not true in the pseudo-Riemannian setting. In the case
of non-degenerate T*h3’, the scalar curvatures can be positive, negative or zero de-
pending on the signature, while in the case of degenerate T*hs’ all but two metrics
have zero scalar curvature. More precisely, we have the following statement, which
can be obtained from Proposition [£.2 by direct computation.

Proposition 4.4. The following statements hold:
(i) The scalar curvature of the metrics (S,0,Epy), p+q = 3 on T*hs with
non-degenerate centre T*hs3' is given by
trace(SEpq)
2det S
(ii) Metrics (S,M,Eyq), p+q =2 with S and M given by (3.23) and (3.25))
have monzero scalar curvature given, respectively, by T = :':252;33 and
T= :I:ﬁ, where € is the element at position (3,3) of Epyg.
(iii) All other metrics on T*h3 with degenerate centre T*bh3' have scalar curva-
ture T = 0.

Example 4.5. In [9, Example 5.1] the authors considered a canonical metric de-
fined by

((z,0), (2, a)) = d'(z) + alz)) Vz,x' € b3, a,a’ € bi.
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This metric is neutral signature and ad-invariant, meaning that, for all z,y, 2 €
T*bs, ([z,y],2) = —(y, [z, 2]). Note that this is a special case of our metric Sog =
(0, M,0) when M is the identity matrix. This is the only ad-invariant metric
on T*h3 that confirms the result recently obtained in [I0].

In what follows, we find all parallel vector fields of metrics on T*h3. Their
existence has important consequences for the holonomy group of metrics as well
as for the existence of parallel symmetric tensors (see Section . They are
characterized by the following lemma.

Lemma 4.6. The left-invariant vector field x € g on the metric Lie algebra
(g, (-,-)) is parallel (that is, Vyx = 0 for all y € g) if and only if x L ¢’ and
ad) = —ad,.

Proof. From Koszul’s formula (4.1]),  is a parallel vector field if and only if, for all
y? z G g?

0=2(Vyz,2) = (ady x — ad, x — ad} y, 2) = (z,ad. y) — ((ad, +ad})z,y).

Since (x,ad, y) is antisymmetric and ((ad, +ad})z,y) is symmetric with respect
to y and z, we obtain ((ad, +ad})z,y) = 0 = (z,ad, y), which is equivalent to
z L g’ and ad} = —ad,. O

Proposition 4.7. Let the metric on T*h3 be given by the matriz S from Theo-
rem [3:4) In all cases, the parallel vector fields are null. Moreover,

(i) If T*bs' is non-degenerate, then there are no parallel vector fields.
(ii) If T*h3' is degenerate of rank 2, then the only parallel vector fields are

x € R{eyq).

(iii) If T*b3' is degenerate of rank 1, then the parallel vector fields are x €
R<€4,€5>.

(iv) If T*bh3' is totally degenerate, all vectors of T*h3' = R{ey, es5,e6) are par-
allel.

Since a nilpotent group is simply connected, the restricted holonomy group
coincides with the full holonomy group. By the Ambrose—Singer theorem, the
holonomy algebra is generated by curvature operators R(x,y) and their covariant
derivatives of arbitrary order. We know that the holonomy algebra is a subalgebra
of the isometry algebra, i.e., so(p,q), where (p,q) denotes the signature of the
metric.

The results are summarised in the following proposition.
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Proposition 4.8. Let the non-flat metric on T*h3 be given by the matriz S from
Theorem 3.4l

(i) If T*h3’ is non-degenerate, the corresponding metrics have a full holonomy

algebra, hol(S) = so(p,q), p+ q = 6.

(i) If T*b3' is degenerate of rank 2, then the following cases can occur:

(ii1) the holonomy algebra is 10-dimensional so(p,q), p +q = 5, if the
corresponding metric is Sag = (S, M, +E9y) or S11 = (S, M,£E1),
where the matrices S and M are one of the forms (3.23) or ,
and S11 = (S, M, E11), where S and M are of the fo%;

(iiz) the holonomy algebra is 9-dimensional isomorphic to sla(R) X g 54,
where g 54 15 a 6-dimensional solvable algebra with 5-dimensional nil-
radical (see [37]) in the case of the metric S11 = (S, M, E11), where S
and M take the form ;

(ii3) the holonomy algebra is 4-dimensional and isomorphic to R* if the
corresponding metric is Sog = (S, M, +FEsy) or S11 = (S, M,+£E),
where the matrices S and M take the form , S11 = (S, M, Eq1),
where S and M take one of the forms or ,

(iii) If T*b3' is degenerate of rank 1, the non-flat metrics Sio = (£ E10, M, =FE10),
where M takes one of the forms Ue a holonomy algebra isomor-

phic to R, while if M takes the form (3.36)), then the holonomy algebra is
5-dimensional and isomorphic to the 2-step nilpotent algebra given by the
commutators [hy, hs] = [ha, hy] = hs.

Proof. The proof is case-by-case for all types of metrics. We illustrate it for the

case ((iii)]), i.e., for the metric S19 = (F10, M, E10), where M is given by (3.36]),
the same thing we discussed in the proof of Proposition From there we know
that the curvature operators

r1:= R(e1,e2), 12:=R(er,e3), r3:=Rler,eq), ra:=R(es,e3)

are linearly independent and generate the space R({R(e;,e;) | ¢, = 1,...,6}).
Using the connection formulas (4.2)) we calculate their derivatives and see that

1
ry 1= VelR(el,eg) = 1(62 Neg—eg /\64)

is the only operator that does not belong to R{rq,ra,73,74). Now we compute the
covariant derivatives of 1, ..., 75 and see that they all belong to R(rq,ra, 73,74, 75).
Therefore, the holonomy algebra is spanned by curvature operators and their first
covariant derivatives, and

hol(S) = R(r1,r2,73,74,75) C 0(4,2),

since the signature of S is (4,2) for all mi5 # 0. Now we obtain nonzero commu-
tators

riral = 2rae o) rars] = 1
r,r3| = =71 1,75 = — =T ro, T3] = =T
1,73 3 4, 1,75 8 4, 2,13 4 4,
which, after setting
2 1
hi=ry, ho=-3r1+4rs, h3=r3, hyg=_r5, hs= -1y,

9
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gives the form formulated in the statement.

Let us now discuss the case in more detail. Similar to the previous con-
sideration, we obtain that the holonomy algebra is given by the following nonzero
commutators:

[h1, ho] = 2ha,  [ho,hs] = h3,  [ha,hs] = —h3, [he, hs] = —hs,

[h1,h3] = h3,  [ha,he] = ha,  [ha,ho]l = ha,  [hg, ho] = he,

(h1,ha] = ha,  [h3,h7] = ha,  [hs,h7] =he,  [h7,hs] = hg, (4.3)
[h1,hs] = —hs, [hs, ho] = —h3, [hs,ho] = —hs, [hr,ho] = 2hs,

[h1, he] = —he, [hs, ho] = —2hg

By the Levi decomposition, we know that the algebra hol(S) is a semi-direct
product of its maximal solvable ideal and a semisimple Lie algebra. Note that
R{h7, hg, hg) = sla(R) and that R{hq,...,hg) is isomorphic to the 6-dimensional
solvable Lie algebra denoted by g 54 (With A = 1, v = 2) in the classification of
Mubarakzyanov [37, Table 4]. It follows that hol(S) = slo(R) X, g¢ 54, where the
form of 7 : sla(R) — g6 54 is obtained from the relations (4.3)):

00 0 O
0 0

7T($) = p(1‘7h7 + xghg + xghg) =

cocoococo
cocoococo
8
s
[
8
©

We recall that a metric g is called a pp-wave metric if there exists a parallel null
vector field v such that R(u,w) = 0 for all u,w € v*.

Proposition 4.9. The left-invariant pp-wave metrics are Sog = (S1, M, +£FEs),
S11 = (8%, M,+E), k=1,2, where

100 0 0 0 0 0 0
M=[0 0 0], S'=[0 s 0], S*=[0 s 2i[s:a|],
000 0 0 s33 0 2sao| O

with S92, 833 # 0, and S1o = (£E19, M, £FE1o), where M takes one of the forms
in (3.37).

Proof. We have already established that the basis vector e4 is a parallel null vector
field for all metrics from the proposition. The space orthogonal to e4 is spanned

by vectors ea, ..., eg in every case except for the metric Sy with
mi1 miz 0
M=1|-m32 mn 0],
0 0 O
where it is spanned by vectors es, ..., eg. However, it is a straightforward calcula-
tion to show that R(e;,e;) =0, ¢,7 = 2,...6, in all cases. Therefore, the metrics
are pp-waves. O
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Corollary 4.10. All left-invariant metrics on T*hs with abelian holonomy algebra
RF, k= 1,4, are homogeneous pp-wave metrics.

4.2. Algebraic Ricci solitons on T*h3. Since the only Einstein metrics are the
trivial ones, i.e., Ricci-flat, the next step is to consider a weaker condition — Ricci
soliton metrics, i.e., nilsolitons. It was proven in [II] that in the pseudo-Riemannian
setting there are four different kinds of nilsolitons. In this paper we focus on a
special class of algebraic Ricci solitons. The non-flat left-invariant metric on a Lie
group is called an algebraic Ricci soliton if it satisfies Ric = «I + D, where 7 is an
arbitrary constant, Ric is the Ricci operator and D denotes a derivation of a Lie
algebra. A Ricci soliton is said to be shrinking, steady or expanding depending on
whether v > 0, v = 0 or v < 0, respectively.

If D = 0 and v # 0, the solutions are Einstein metrics that do not exist on
T*hs. If D = 0 and v = 0, the solutions are the Ricci-flat metrics described in
Proposition Hence, in the next proposition we describe the solitons for D # 0.

Proposition 4.11. Algebraic nilsolitons on T*hs satisfying Ric # 0 are:
(i) expanding (v = —%), in case of the metric Sso = (5,0, E30), with S =
diag(M\ A\, A);
(ii) shrinking (v = 533), in case of the metric So1 = (8,0, Ea1), with S =
diag(\, A\, —A);
(iii) steady (v = 0), in case of the metrics Sag = (S*, M,+FEs) or Si; =
(S¥, M, E11), where the matrices S* (k=1,2,3) and M take the forms:

0 O 0 0 0 0
Sl =10 s99 0 , S22 + 833 7& +1, SZ =10 S99 %|822| , S99 75 1,
0 0 833 0 %|822| 0
0 0 0 1 0 0
s2=(0 o Llsas| |, ss3#£ -1, M=(0 0 0
0 %lsss|  sss 000

Proof. The proof requires an analysis for each metric from the classification. Let
us prove the positive result for case the other cases can be analyzed in a similar
way.

For the metric S3g = (5,0, F3p), with S = diag(A1, A2, A3) the Ricci operator is
diagonal, hence D = Ric —vI also has the diagonal form

Dedief - 22T AMAA At A
I WS VB VS VAR5 VS V5 VAR AR S VS VS VAR

1 1 1
53V VA VS WA ) VO VL &
Since D is derivation, it must satisfy the condition D[z,y] = [z, Dy] + [Dx,y] for
all z,y € T*h3. By solving this system of equations, we obtain \; = Ay = A3 and
_ _ 5
7= "o
We have shown that not all metrics S3g = (S, 0, F3g), where S takes the form (3.6]),

admit nilsolitons. They exist only in the positive definite and neutral signature
case, i.e., only when S = AE3q, A # 0. (]
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Remark 4.12. The classification in Proposition f.11] is up to a sign. Namely, if
the metric ¢ is a (shrinking/expanding) algebraic Ricci soliton then the metric —g
is an (expanding/shrinking) algebraic Ricci soliton.

It was proved in [32] that the Riemannian left homogenous Ricci soliton metric
(equivalently, the algebraic Ricci soliton) on a nilpotent Lie group is unique up
to isometry and scaling. Proposition confirms that result for the metric Lie
algebra T*h3. However, it also shows that the result does not hold in the pseudo-
Riemannian setting, since some of the Ricci soliton metrics 77 have the
same signature but are not homothetic.

4.3. Pseudo-Kihler metrics on T*h3. Let us now classify the pseudo-Kéhler
metrics on T*hs.

An almost complex structure on a Lie algebra g is an endomorphism J : g — g
satisfying J2 = —id. If J is integrable, in the sense that the Nijenhuis tensor

NJ(xay) = [$>y] - [J$7Jy] + J[J:Ly] + J[,’L‘, Jy]

of J vanishes, i.e., if it satisfies the condition N;(z,y) = 0 for all z,y € g, then it
is called a complex structure on g.

The centre of T*h3 is 3-dimensional, so it cannot admit an abelian complex struc-
ture, i.e., a complex structure satisfying [z, y] = [Jx, Jy], which means that the cen-
tre of the algebra must be J-invariant (consequently, even-dimensional). However,
every complex structure on T*h3 is 3-step nilpotent (see [9, Proposition 4.111))]
or [12]) and they are all equivalent to the following structure (see [12}, 40, [34]):

Jel = €2, J@g = —€g, J64 = €5. (44)

A complex structure J is called Hermitian if it preserves the metric: (Jx, Jy) =
(x,y) for all z,y € g.

Example 4.13. Let us fix the basis in which the complex structure J has the
form (4.4). One can check that J is Hermitian if the corresponding metric is the
positive definite metric S3g = (5,0, E39), with S = diag(A, A\, 1), A > 0.

A symplectic structure on a Lie algebra g is a closed 2-form §2 € /\2 g* of maximal
rank. A pair (J,), where J is complex and € is symplectic, is called a pseudo-
Kahler structure if Q(Jz, Jy) = Q(z,y) holds for all z,y € g.

We already know from [I2], Proposition 3.91)] that the algebra T*hs has a com-
plex structure admitting a 5-dimensional set of compatible symplectic forms. De-

note by {e!,...,e%} the dual basis of {ej,...,es}. The Maurer—Cartan equations
on T*h3 are given by
del =de? =de® =0, de*=e?>ne®, de® = —el Ne®, deb =el Ae.

The symplectic structure Q = 3-, _a;je’ Ae/, a;; € R, has to be closed (dQ = 0)
and compatible with the complex structure J given by (4.4)). Hence, it takes the
form

Q=ape' Ne? + alg(el Aed —e? A 66) + al4(e1 ANet +e? ne® —2e3 A 66)

(4.5)

+ars(er Ae® — e Aet) +arg(et Aeb +e? Aed).
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The pseudo-Kéhler pair (J, €2) generates a Hermitian structure on a Lie algebra g

by defining a metric (-, -) as

(z,y) = Q(Jz,y) (4.6)
for all x,y € g. For this Hermitian structure, the condition of parallelism of J
with respect to the Levi-Civita connection is satisfied for (-,-). In this case, a pair
(J,(-,-)) is called a pseudo-Kdhler metric on g.

From [12] Corollary 3.2] we know that the algebra T*h3 has compatible pairs
(J,9) since it admits both symplectic and nilpotent complex structures. In [3]
Theorem A] it was proved that the metric associated to any compatible pair (J, )
cannot be positive definite since T*h3 is not abelian. Therefore, the metric from
Example is not pseudo-Kéahler. However, it follows from [20] that any pseudo-
Kéhler metric on T*h3 is Ricci-flat. Here we give its classification and explicit
form.

Proposition 4.14. The Lie algebra T*h3 admits Ricci-flat pseudo-Kdahler metrics
which are not flat. Any pseudo-Kdhler metric on T*bhs is equivalent to Sig =
(Er0, M, Eyp), where M has the form of the second matriz in (3.37)).

Proof. We fix the basis, where the complex structure J is given by (4.4) and the
symplectic form 2 is given by . The compatibility condition or (J,9)
gives us that the restriction of the metric on T*h3’ must be degenerate of rank 1.
One computes that the metric itself is represented by a symmetric 5-parameter
matrix:

—aiz 0 a1 —a15 Q14 —a13
0 —ai2 —a13 —aw —ais  —ai
(451 —a13 —2&14 0 0 0
S - —a15 —ai4 0 0 0 0 ’ @14 7& 0.
alq —a15 O O 0 0
—a1z3 —aie 0 0 0 72@14

By examining the curvature properties, we conclude that this metric is locally sym-
metric and Ricci-flat, but not flat. From Proposition we know that this met-
ric must be equivalent to a metric from one of the families S19 = (£ FE19, M, £F19),
where M takes one of the forms in . We can do even more. We can find a
particular form of the automorphism matrix F such that the matrix F7SF has
the following form:

A Lo
2
Sio = (Fr0, M, Eyg), M= [-1 X 0], where\=—-22
0 0 0 2a14

In this case, the complex structure is J' = FJF ™!, while the explicit formula for
the corresponding symplectic forms can be retrieved from (4.6)). O

Remark 4.15. In [41] the author considered three symplectic structures which are
special cases of the symplectic structure given by . For each of these structures,
a corresponding metric was determined. However, the author has not noticed that
all of these metrics are equivalent.
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Remark 4.16. The previous proposition also shows that the differences between
the metrics in the classification (Theorem [3.4)) are very geometrical, and not just
algebraic.

4.4. Geodesically equivalent metrics. We say that a metric (-,-) on a con-
nected manifold M™ is geodesically equivalent to (-,-) if every geodesic of (-,-) is a

reparameterized geodesic of (-,-). We say that they are affinely equivalent if their
Levi-Civita connections coincide. We call a metric (-,-) geodesically rigid if every

metric (-,-) that is geodesically equivalent to (-,-) is proportional to (-,-) (by the
result of H. Weyl, the proportionality coefficient is a constant). In the Riemannian
case, if the metric is not decomposable (not a product of two metrics), it is geodesi-
cally rigid. Therefore, it makes sense to look for geodesically equivalent metrics
only in the pseudo-Riemannian case.

As proved in [6], two geodesically equivalent invariant metrics on a homogeneous
space are affinely equivalent. In particular, this is true for left-invariant metrics
on Lie groups. If an invariant metric does not admit a nonproportional affinely
equivalent invariant metric, we call it invariantly rigid.

The nonproportional, affinely equivalent metrics m and (-, -) are both parallel
with respect to the mutual Levi-Civita connection and hence their difference is a
parallel symmetric tensor. Such tensors are closely related to the description of
holonomy groups [22]. Metrics admitting such tensors are fully described on gen-
eral pseudo-Riemannian manifolds in [30] as either Riemannian extensions or using
certain complex metrics. In Proposition below we show that such (not invari-
antly rigid) left-invariant metrics on T*h3 are Riemannian extensions. Moreover,
all such parallel tensors on T*h3 are “made” of parallel vector fields in the following
way.

Suppose v, ..., v, are parallel vector fields with respect to the metric (-, -), and
vf, ..., v} are 1-forms metrically dual to these vectors. It is easy to verify that for
arbitrary constants Cp,,, = Cpm, n,m = 1,...7, the metric

() = () 4 Comuy, @ vy, (4.7)

is affinely equivalent to (-,-), or equivalently, the symmetric tensor Cp,, v} ® v}, is
parallel.

In [30] it was shown that such a metric (-,-) is a Euclidean extension of Rie-
mannian space.

To classify non-invariantly rigid metrics on T*h3, we follow the algorithm pro-
posed in [6]. To simplify the notation, the matrix S is used to denote the metric

<'7 >
Proposition 4.17. If T*h3' is non-degenerate, the corresponding left-invariant

metrics are geodesically rigid. If T*hs' is degenerate, then non-trivial affinely
equivalent metrics exist and these are exactly the metrics obtained with parallel

null vector fields by (4.7]).

Proof. Tt is clear that if the original metric (-,-) has parallel vector fields, the
metric (4.7)) is affinely equivalent to it.
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To prove the converse we perform a case-by-case analysis for each metric from
our classification.

Let S be a symmetric matrix representing a left-invariant metric (-,-) in the
basis {ei,...,eq} and w its Levi-Civita connection matrix of 1-forms. As proved
in [6, Proposition 3.1], the left-invariant metric S is geodesically equivalent to S if
and only if its matrix S in the basis {e1,...,es} belongs to the subspace

aff(S) := {S | Sw + w'S = 0}.

Since w is a matrix of 1-forms, the given relations are six matrix equations.

If S is such that T*h3’ is non-degenerate, we can directly check that aff(S) is
1-dimensional, that is, S is geodesically rigid. This also follows (without computa-
tion) from the fact that such metrics have a full holonomy algebra (Proposition.
Indeed, if a metric is not geometrically rigid, it cannot have full holonomy (see [6]).

We illustrate the proof for the metric S = Syg = (E19, M, E1g) with T*h3’ of
rank 1, where M is given by . The connection matrix w can be computed
from the relations and we obtain that aff(S) is a space of matrices

C11 C12 Cl2 0 0 O

cl2 C22 c22 0 0 O
12 22 22
R P Ol RS WELFARERS (4.8)
0 0 0 0 0 O
0 0 0 0 0 O

Indeed, aff(S) is the set of all parallel symmetric (left-invariant) tensors for the

metric S and we see that it is 4-dimensional. Now we will prove that it consists

of parallel vectors using the formula (4.7)). Parallel vectors for the metric S are
&

v; = eq and vy = ——e5 (Proposition . Their metric dual forms are
mi2

2., .3 1
v =e“4e’, vy =e,

where (e!,...,e%) is the basis of one forms dual to the vectors (ey,...,eg) in the

sense that e’(e;) = 65. Now we see that
(v @ v7) + 2 (vf ®v3 +v5 @ 07) + ¢ (v3 ® v3)

are exactly parallel symmetric tensors in (4.8) which are not proportional to S.
They are obtained from parallel vector fields with (4.7)). O

Remark 4.18. One can check that non-proportional affinely equivalent metrics are
connected by an automorphism of the group. This means that the corresponding
Lie groups endowed with these metrics have a family of automorphisms which are
not isometries but preserve geodesics.

Remark 4.19. Note that if the metric is Ricci-parallel, i.e., Vp = 0, then p €
aff(S). Obviously, the converse is not true: not all non-invariantly rigid metrics
are Ricci-parallel.
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4.5. Totally geodesic subalgebras of T*h3. A subalgebra b of a metric algebra
(g, (-,+)) is called totally geodesic if V,z € b for all y,z € h. If b~ denotes the
orthogonal complement of h in T*hs, then as a direct consequence of Koszul’s
formula we obtain that b is a totally geodesic subalgebra of T*h3 if and only if

([z,9),2) + ([2,2],y) =0 forallzeh, y,z€h.

We say that b+ is h-invariant if [z,y] € b for all x € b+, y € h. A nonzero
element y € T*h3 is called geodesic if it spans a totally geodesic subalgebra b and
can be characterized by the condition that h' is h-invariant. For nilpotent Lie
groups there is an inner product for which a nonzero element y is geodesic (see,
e.g., [7).

Eberlein [I8] considered totally geodesic subalgebras of nonsingular 2-step nilpo-
tent Lie algebras, implying that for any noncentral element = € g the adjoint map
ad(z) is surjective on Z(g). Later, in [7] the non-singularity condition was re-
placed by a weaker version: the adjoint map had to be surjective on the derived
algebra [g, g]. Finally, in [I5] the authors gave criteria for a subalgebra to be totally
geodesic without the non-singularity condition.

Proposition 4.20. For every subalgebra b of T*hs there is a metric which makes
it totally geodesic.

Proof. Let h be an n-dimensional subalgebra of the metric algebra (T*bs, (-,-)),
T*hy = v ® &, where & denotes the centre of T*h3 and v its complement. Then b
is either abelian (R, R? = R(z,y) or R? = R(z,y, 2), with z € T*h3, y,2 € £) or
2-step nilpotent (isomorphic to one of the algebras b3, hs @ R or h3 @ R?).

Trivially, every subspace of £ and every abelian subspace of v are totally geodesic
subalgebras of a 2-step nilpotent metric algebra. For other abelian algebras, it
suffices to find a metric that makes b flat, which implies that V,z = 0 forall y, z € b.
It is not hard to verify that the metric Sog = (0, M, 0), with M = diag(1, A2, A3),
is exactly the one required.

The nilpotent case is very similar. First, note that we can always change the
basis (by the action of automorphisms ) so that the corresponding subalgebra b
is isometric to one of the following: hs = R{ey, eq,e5), hs @ R = R{ey, ea, €4, €6),
hs ®R? = R(ey, 9, €4, €5, €6). Consider the metric Sag = (S, M, Eg), where S and
M are given by . By a simple calculation we obtain that all three subalgebras
are totally geodesic with respect to this metric. O

A subspace h C (g, (,-)) is called isotropic if (x,y) = 0 for all z,y € b, ie.,
h C h*. Moreover, b is called totally isotropic if h = h=+.

Example 4.21. In [9, Example 5.2] it was mentioned that on T*h3 with the
canonical metric from Example both spaces h3 and b3 are totally isotropic.
Here we can see that both spaces are totally isotropic if the metric corresponds to
the degenerate centre T*h3’ of rank 0. For the same four families of metrics, the
totally geodesic subalgebra hs = R{eq, €3, e4) is also totally isotropic.

Finally, let us consider the decomposition of the totally geodesic subalgebra .
If the nilpotent metric algebra is non-singular and the corresponding metric is
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Riemannian, Eberlein showed that h = (h Nv) @ (hNE) (see [I8, Lemma 2.2]).
If the non-singularity condition is dropped, according to [I5l Theorem 4.10], b is
either abelian and flat, or it is the direct sum of nonzero subspaces h7 = {z € b |
R.(z) = Az, A >0} and h§ = {z € h | R,(z) = 0} for every z € hN§. Here R,
denotes the Jacobi operator R,(x) = R(x, z)z. The following example shows what
happens if we consider the pseudo-Riemannian case.

Example 4.22. First, observe the algebra h = h3 @ R? = R{ey, €2, €4, €5, €6) and
the metric S11 = (E10, M, E19), where M = diag(u, p1,0). It is easy to check that
b is a totally geodesic subalgebra of a singular metric algebra (T*hs,S11) and for
every element z = aey + fes +veg € &, b7 = {0} and h§ = b.

Now, consider the metric Sog = (S, M, Fag) from the proof of Proposition
Fix z from the centre £ of T*h3. If z € R(e4, e5), then b7 = R(eq,e2) = hNv and
b = Res,e5,e6) = hN & On the other hand, if z = eg, then b7 = {0}, b§ = ¢
and we have the new subspace h* = {z € h | R.(z) = Az, A < 0} = h Nv. Hence,
in both cases we obtained Eberlein’s decomposition without the non-singularity
condition. However, this is not true for every z € h N &. For example, z = e5 + e4
yields subspaces b3 = {0}, b5 = & and hZ = R(es,eq — 7-e1) # hNv.
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